xref: /linux/include/linux/filter.h (revision f86fd32d)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7 
8 #include <stdarg.h>
9 
10 #include <linux/atomic.h>
11 #include <linux/refcount.h>
12 #include <linux/compat.h>
13 #include <linux/skbuff.h>
14 #include <linux/linkage.h>
15 #include <linux/printk.h>
16 #include <linux/workqueue.h>
17 #include <linux/sched.h>
18 #include <linux/capability.h>
19 #include <linux/cryptohash.h>
20 #include <linux/set_memory.h>
21 #include <linux/kallsyms.h>
22 #include <linux/if_vlan.h>
23 #include <linux/vmalloc.h>
24 
25 #include <net/sch_generic.h>
26 
27 #include <asm/byteorder.h>
28 #include <uapi/linux/filter.h>
29 #include <uapi/linux/bpf.h>
30 
31 struct sk_buff;
32 struct sock;
33 struct seccomp_data;
34 struct bpf_prog_aux;
35 struct xdp_rxq_info;
36 struct xdp_buff;
37 struct sock_reuseport;
38 struct ctl_table;
39 struct ctl_table_header;
40 
41 /* ArgX, context and stack frame pointer register positions. Note,
42  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
43  * calls in BPF_CALL instruction.
44  */
45 #define BPF_REG_ARG1	BPF_REG_1
46 #define BPF_REG_ARG2	BPF_REG_2
47 #define BPF_REG_ARG3	BPF_REG_3
48 #define BPF_REG_ARG4	BPF_REG_4
49 #define BPF_REG_ARG5	BPF_REG_5
50 #define BPF_REG_CTX	BPF_REG_6
51 #define BPF_REG_FP	BPF_REG_10
52 
53 /* Additional register mappings for converted user programs. */
54 #define BPF_REG_A	BPF_REG_0
55 #define BPF_REG_X	BPF_REG_7
56 #define BPF_REG_TMP	BPF_REG_2	/* scratch reg */
57 #define BPF_REG_D	BPF_REG_8	/* data, callee-saved */
58 #define BPF_REG_H	BPF_REG_9	/* hlen, callee-saved */
59 
60 /* Kernel hidden auxiliary/helper register. */
61 #define BPF_REG_AX		MAX_BPF_REG
62 #define MAX_BPF_EXT_REG		(MAX_BPF_REG + 1)
63 #define MAX_BPF_JIT_REG		MAX_BPF_EXT_REG
64 
65 /* unused opcode to mark special call to bpf_tail_call() helper */
66 #define BPF_TAIL_CALL	0xf0
67 
68 /* unused opcode to mark special load instruction. Same as BPF_ABS */
69 #define BPF_PROBE_MEM	0x20
70 
71 /* unused opcode to mark call to interpreter with arguments */
72 #define BPF_CALL_ARGS	0xe0
73 
74 /* As per nm, we expose JITed images as text (code) section for
75  * kallsyms. That way, tools like perf can find it to match
76  * addresses.
77  */
78 #define BPF_SYM_ELF_TYPE	't'
79 
80 /* BPF program can access up to 512 bytes of stack space. */
81 #define MAX_BPF_STACK	512
82 
83 /* Helper macros for filter block array initializers. */
84 
85 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
86 
87 #define BPF_ALU64_REG(OP, DST, SRC)				\
88 	((struct bpf_insn) {					\
89 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,	\
90 		.dst_reg = DST,					\
91 		.src_reg = SRC,					\
92 		.off   = 0,					\
93 		.imm   = 0 })
94 
95 #define BPF_ALU32_REG(OP, DST, SRC)				\
96 	((struct bpf_insn) {					\
97 		.code  = BPF_ALU | BPF_OP(OP) | BPF_X,		\
98 		.dst_reg = DST,					\
99 		.src_reg = SRC,					\
100 		.off   = 0,					\
101 		.imm   = 0 })
102 
103 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
104 
105 #define BPF_ALU64_IMM(OP, DST, IMM)				\
106 	((struct bpf_insn) {					\
107 		.code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,	\
108 		.dst_reg = DST,					\
109 		.src_reg = 0,					\
110 		.off   = 0,					\
111 		.imm   = IMM })
112 
113 #define BPF_ALU32_IMM(OP, DST, IMM)				\
114 	((struct bpf_insn) {					\
115 		.code  = BPF_ALU | BPF_OP(OP) | BPF_K,		\
116 		.dst_reg = DST,					\
117 		.src_reg = 0,					\
118 		.off   = 0,					\
119 		.imm   = IMM })
120 
121 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
122 
123 #define BPF_ENDIAN(TYPE, DST, LEN)				\
124 	((struct bpf_insn) {					\
125 		.code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),	\
126 		.dst_reg = DST,					\
127 		.src_reg = 0,					\
128 		.off   = 0,					\
129 		.imm   = LEN })
130 
131 /* Short form of mov, dst_reg = src_reg */
132 
133 #define BPF_MOV64_REG(DST, SRC)					\
134 	((struct bpf_insn) {					\
135 		.code  = BPF_ALU64 | BPF_MOV | BPF_X,		\
136 		.dst_reg = DST,					\
137 		.src_reg = SRC,					\
138 		.off   = 0,					\
139 		.imm   = 0 })
140 
141 #define BPF_MOV32_REG(DST, SRC)					\
142 	((struct bpf_insn) {					\
143 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
144 		.dst_reg = DST,					\
145 		.src_reg = SRC,					\
146 		.off   = 0,					\
147 		.imm   = 0 })
148 
149 /* Short form of mov, dst_reg = imm32 */
150 
151 #define BPF_MOV64_IMM(DST, IMM)					\
152 	((struct bpf_insn) {					\
153 		.code  = BPF_ALU64 | BPF_MOV | BPF_K,		\
154 		.dst_reg = DST,					\
155 		.src_reg = 0,					\
156 		.off   = 0,					\
157 		.imm   = IMM })
158 
159 #define BPF_MOV32_IMM(DST, IMM)					\
160 	((struct bpf_insn) {					\
161 		.code  = BPF_ALU | BPF_MOV | BPF_K,		\
162 		.dst_reg = DST,					\
163 		.src_reg = 0,					\
164 		.off   = 0,					\
165 		.imm   = IMM })
166 
167 /* Special form of mov32, used for doing explicit zero extension on dst. */
168 #define BPF_ZEXT_REG(DST)					\
169 	((struct bpf_insn) {					\
170 		.code  = BPF_ALU | BPF_MOV | BPF_X,		\
171 		.dst_reg = DST,					\
172 		.src_reg = DST,					\
173 		.off   = 0,					\
174 		.imm   = 1 })
175 
176 static inline bool insn_is_zext(const struct bpf_insn *insn)
177 {
178 	return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
179 }
180 
181 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
182 #define BPF_LD_IMM64(DST, IMM)					\
183 	BPF_LD_IMM64_RAW(DST, 0, IMM)
184 
185 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)				\
186 	((struct bpf_insn) {					\
187 		.code  = BPF_LD | BPF_DW | BPF_IMM,		\
188 		.dst_reg = DST,					\
189 		.src_reg = SRC,					\
190 		.off   = 0,					\
191 		.imm   = (__u32) (IMM) }),			\
192 	((struct bpf_insn) {					\
193 		.code  = 0, /* zero is reserved opcode */	\
194 		.dst_reg = 0,					\
195 		.src_reg = 0,					\
196 		.off   = 0,					\
197 		.imm   = ((__u64) (IMM)) >> 32 })
198 
199 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
200 #define BPF_LD_MAP_FD(DST, MAP_FD)				\
201 	BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
202 
203 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
204 
205 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)			\
206 	((struct bpf_insn) {					\
207 		.code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),	\
208 		.dst_reg = DST,					\
209 		.src_reg = SRC,					\
210 		.off   = 0,					\
211 		.imm   = IMM })
212 
213 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)			\
214 	((struct bpf_insn) {					\
215 		.code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),	\
216 		.dst_reg = DST,					\
217 		.src_reg = SRC,					\
218 		.off   = 0,					\
219 		.imm   = IMM })
220 
221 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
222 
223 #define BPF_LD_ABS(SIZE, IMM)					\
224 	((struct bpf_insn) {					\
225 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,	\
226 		.dst_reg = 0,					\
227 		.src_reg = 0,					\
228 		.off   = 0,					\
229 		.imm   = IMM })
230 
231 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
232 
233 #define BPF_LD_IND(SIZE, SRC, IMM)				\
234 	((struct bpf_insn) {					\
235 		.code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,	\
236 		.dst_reg = 0,					\
237 		.src_reg = SRC,					\
238 		.off   = 0,					\
239 		.imm   = IMM })
240 
241 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
242 
243 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)			\
244 	((struct bpf_insn) {					\
245 		.code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,	\
246 		.dst_reg = DST,					\
247 		.src_reg = SRC,					\
248 		.off   = OFF,					\
249 		.imm   = 0 })
250 
251 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
252 
253 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)			\
254 	((struct bpf_insn) {					\
255 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,	\
256 		.dst_reg = DST,					\
257 		.src_reg = SRC,					\
258 		.off   = OFF,					\
259 		.imm   = 0 })
260 
261 /* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */
262 
263 #define BPF_STX_XADD(SIZE, DST, SRC, OFF)			\
264 	((struct bpf_insn) {					\
265 		.code  = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD,	\
266 		.dst_reg = DST,					\
267 		.src_reg = SRC,					\
268 		.off   = OFF,					\
269 		.imm   = 0 })
270 
271 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
272 
273 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)				\
274 	((struct bpf_insn) {					\
275 		.code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,	\
276 		.dst_reg = DST,					\
277 		.src_reg = 0,					\
278 		.off   = OFF,					\
279 		.imm   = IMM })
280 
281 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
282 
283 #define BPF_JMP_REG(OP, DST, SRC, OFF)				\
284 	((struct bpf_insn) {					\
285 		.code  = BPF_JMP | BPF_OP(OP) | BPF_X,		\
286 		.dst_reg = DST,					\
287 		.src_reg = SRC,					\
288 		.off   = OFF,					\
289 		.imm   = 0 })
290 
291 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
292 
293 #define BPF_JMP_IMM(OP, DST, IMM, OFF)				\
294 	((struct bpf_insn) {					\
295 		.code  = BPF_JMP | BPF_OP(OP) | BPF_K,		\
296 		.dst_reg = DST,					\
297 		.src_reg = 0,					\
298 		.off   = OFF,					\
299 		.imm   = IMM })
300 
301 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
302 
303 #define BPF_JMP32_REG(OP, DST, SRC, OFF)			\
304 	((struct bpf_insn) {					\
305 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,	\
306 		.dst_reg = DST,					\
307 		.src_reg = SRC,					\
308 		.off   = OFF,					\
309 		.imm   = 0 })
310 
311 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
312 
313 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)			\
314 	((struct bpf_insn) {					\
315 		.code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,	\
316 		.dst_reg = DST,					\
317 		.src_reg = 0,					\
318 		.off   = OFF,					\
319 		.imm   = IMM })
320 
321 /* Unconditional jumps, goto pc + off16 */
322 
323 #define BPF_JMP_A(OFF)						\
324 	((struct bpf_insn) {					\
325 		.code  = BPF_JMP | BPF_JA,			\
326 		.dst_reg = 0,					\
327 		.src_reg = 0,					\
328 		.off   = OFF,					\
329 		.imm   = 0 })
330 
331 /* Relative call */
332 
333 #define BPF_CALL_REL(TGT)					\
334 	((struct bpf_insn) {					\
335 		.code  = BPF_JMP | BPF_CALL,			\
336 		.dst_reg = 0,					\
337 		.src_reg = BPF_PSEUDO_CALL,			\
338 		.off   = 0,					\
339 		.imm   = TGT })
340 
341 /* Function call */
342 
343 #define BPF_CAST_CALL(x)					\
344 		((u64 (*)(u64, u64, u64, u64, u64))(x))
345 
346 #define BPF_EMIT_CALL(FUNC)					\
347 	((struct bpf_insn) {					\
348 		.code  = BPF_JMP | BPF_CALL,			\
349 		.dst_reg = 0,					\
350 		.src_reg = 0,					\
351 		.off   = 0,					\
352 		.imm   = ((FUNC) - __bpf_call_base) })
353 
354 /* Raw code statement block */
355 
356 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)			\
357 	((struct bpf_insn) {					\
358 		.code  = CODE,					\
359 		.dst_reg = DST,					\
360 		.src_reg = SRC,					\
361 		.off   = OFF,					\
362 		.imm   = IMM })
363 
364 /* Program exit */
365 
366 #define BPF_EXIT_INSN()						\
367 	((struct bpf_insn) {					\
368 		.code  = BPF_JMP | BPF_EXIT,			\
369 		.dst_reg = 0,					\
370 		.src_reg = 0,					\
371 		.off   = 0,					\
372 		.imm   = 0 })
373 
374 /* Internal classic blocks for direct assignment */
375 
376 #define __BPF_STMT(CODE, K)					\
377 	((struct sock_filter) BPF_STMT(CODE, K))
378 
379 #define __BPF_JUMP(CODE, K, JT, JF)				\
380 	((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
381 
382 #define bytes_to_bpf_size(bytes)				\
383 ({								\
384 	int bpf_size = -EINVAL;					\
385 								\
386 	if (bytes == sizeof(u8))				\
387 		bpf_size = BPF_B;				\
388 	else if (bytes == sizeof(u16))				\
389 		bpf_size = BPF_H;				\
390 	else if (bytes == sizeof(u32))				\
391 		bpf_size = BPF_W;				\
392 	else if (bytes == sizeof(u64))				\
393 		bpf_size = BPF_DW;				\
394 								\
395 	bpf_size;						\
396 })
397 
398 #define bpf_size_to_bytes(bpf_size)				\
399 ({								\
400 	int bytes = -EINVAL;					\
401 								\
402 	if (bpf_size == BPF_B)					\
403 		bytes = sizeof(u8);				\
404 	else if (bpf_size == BPF_H)				\
405 		bytes = sizeof(u16);				\
406 	else if (bpf_size == BPF_W)				\
407 		bytes = sizeof(u32);				\
408 	else if (bpf_size == BPF_DW)				\
409 		bytes = sizeof(u64);				\
410 								\
411 	bytes;							\
412 })
413 
414 #define BPF_SIZEOF(type)					\
415 	({							\
416 		const int __size = bytes_to_bpf_size(sizeof(type)); \
417 		BUILD_BUG_ON(__size < 0);			\
418 		__size;						\
419 	})
420 
421 #define BPF_FIELD_SIZEOF(type, field)				\
422 	({							\
423 		const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
424 		BUILD_BUG_ON(__size < 0);			\
425 		__size;						\
426 	})
427 
428 #define BPF_LDST_BYTES(insn)					\
429 	({							\
430 		const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
431 		WARN_ON(__size < 0);				\
432 		__size;						\
433 	})
434 
435 #define __BPF_MAP_0(m, v, ...) v
436 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
437 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
438 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
439 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
440 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
441 
442 #define __BPF_REG_0(...) __BPF_PAD(5)
443 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
444 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
445 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
446 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
447 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
448 
449 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
450 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
451 
452 #define __BPF_CAST(t, a)						       \
453 	(__force t)							       \
454 	(__force							       \
455 	 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
456 				      (unsigned long)0, (t)0))) a
457 #define __BPF_V void
458 #define __BPF_N
459 
460 #define __BPF_DECL_ARGS(t, a) t   a
461 #define __BPF_DECL_REGS(t, a) u64 a
462 
463 #define __BPF_PAD(n)							       \
464 	__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
465 		  u64, __ur_3, u64, __ur_4, u64, __ur_5)
466 
467 #define BPF_CALL_x(x, name, ...)					       \
468 	static __always_inline						       \
469 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
470 	typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
471 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));	       \
472 	u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))	       \
473 	{								       \
474 		return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
475 	}								       \
476 	static __always_inline						       \
477 	u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
478 
479 #define BPF_CALL_0(name, ...)	BPF_CALL_x(0, name, __VA_ARGS__)
480 #define BPF_CALL_1(name, ...)	BPF_CALL_x(1, name, __VA_ARGS__)
481 #define BPF_CALL_2(name, ...)	BPF_CALL_x(2, name, __VA_ARGS__)
482 #define BPF_CALL_3(name, ...)	BPF_CALL_x(3, name, __VA_ARGS__)
483 #define BPF_CALL_4(name, ...)	BPF_CALL_x(4, name, __VA_ARGS__)
484 #define BPF_CALL_5(name, ...)	BPF_CALL_x(5, name, __VA_ARGS__)
485 
486 #define bpf_ctx_range(TYPE, MEMBER)						\
487 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
488 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)				\
489 	offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
490 #if BITS_PER_LONG == 64
491 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
492 	offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
493 #else
494 # define bpf_ctx_range_ptr(TYPE, MEMBER)					\
495 	offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
496 #endif /* BITS_PER_LONG == 64 */
497 
498 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)				\
499 	({									\
500 		BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));		\
501 		*(PTR_SIZE) = (SIZE);						\
502 		offsetof(TYPE, MEMBER);						\
503 	})
504 
505 #ifdef CONFIG_COMPAT
506 /* A struct sock_filter is architecture independent. */
507 struct compat_sock_fprog {
508 	u16		len;
509 	compat_uptr_t	filter;	/* struct sock_filter * */
510 };
511 #endif
512 
513 struct sock_fprog_kern {
514 	u16			len;
515 	struct sock_filter	*filter;
516 };
517 
518 /* Some arches need doubleword alignment for their instructions and/or data */
519 #define BPF_IMAGE_ALIGNMENT 8
520 
521 struct bpf_binary_header {
522 	u32 pages;
523 	u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
524 };
525 
526 struct bpf_prog {
527 	u16			pages;		/* Number of allocated pages */
528 	u16			jited:1,	/* Is our filter JIT'ed? */
529 				jit_requested:1,/* archs need to JIT the prog */
530 				gpl_compatible:1, /* Is filter GPL compatible? */
531 				cb_access:1,	/* Is control block accessed? */
532 				dst_needed:1,	/* Do we need dst entry? */
533 				blinded:1,	/* Was blinded */
534 				is_func:1,	/* program is a bpf function */
535 				kprobe_override:1, /* Do we override a kprobe? */
536 				has_callchain_buf:1, /* callchain buffer allocated? */
537 				enforce_expected_attach_type:1; /* Enforce expected_attach_type checking at attach time */
538 	enum bpf_prog_type	type;		/* Type of BPF program */
539 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
540 	u32			len;		/* Number of filter blocks */
541 	u32			jited_len;	/* Size of jited insns in bytes */
542 	u8			tag[BPF_TAG_SIZE];
543 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
544 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
545 	unsigned int		(*bpf_func)(const void *ctx,
546 					    const struct bpf_insn *insn);
547 	/* Instructions for interpreter */
548 	union {
549 		struct sock_filter	insns[0];
550 		struct bpf_insn		insnsi[0];
551 	};
552 };
553 
554 struct sk_filter {
555 	refcount_t	refcnt;
556 	struct rcu_head	rcu;
557 	struct bpf_prog	*prog;
558 };
559 
560 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
561 
562 #define __BPF_PROG_RUN(prog, ctx, dfunc)	({			\
563 	u32 ret;							\
564 	cant_sleep();							\
565 	if (static_branch_unlikely(&bpf_stats_enabled_key)) {		\
566 		struct bpf_prog_stats *stats;				\
567 		u64 start = sched_clock();				\
568 		ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);	\
569 		stats = this_cpu_ptr(prog->aux->stats);			\
570 		u64_stats_update_begin(&stats->syncp);			\
571 		stats->cnt++;						\
572 		stats->nsecs += sched_clock() - start;			\
573 		u64_stats_update_end(&stats->syncp);			\
574 	} else {							\
575 		ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func);	\
576 	}								\
577 	ret; })
578 
579 #define BPF_PROG_RUN(prog, ctx) __BPF_PROG_RUN(prog, ctx,		\
580 					       bpf_dispatcher_nopfunc)
581 
582 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
583 
584 struct bpf_skb_data_end {
585 	struct qdisc_skb_cb qdisc_cb;
586 	void *data_meta;
587 	void *data_end;
588 };
589 
590 struct bpf_redirect_info {
591 	u32 flags;
592 	u32 tgt_index;
593 	void *tgt_value;
594 	struct bpf_map *map;
595 	u32 kern_flags;
596 };
597 
598 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
599 
600 /* flags for bpf_redirect_info kern_flags */
601 #define BPF_RI_F_RF_NO_DIRECT	BIT(0)	/* no napi_direct on return_frame */
602 
603 /* Compute the linear packet data range [data, data_end) which
604  * will be accessed by various program types (cls_bpf, act_bpf,
605  * lwt, ...). Subsystems allowing direct data access must (!)
606  * ensure that cb[] area can be written to when BPF program is
607  * invoked (otherwise cb[] save/restore is necessary).
608  */
609 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
610 {
611 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
612 
613 	BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
614 	cb->data_meta = skb->data - skb_metadata_len(skb);
615 	cb->data_end  = skb->data + skb_headlen(skb);
616 }
617 
618 /* Similar to bpf_compute_data_pointers(), except that save orginal
619  * data in cb->data and cb->meta_data for restore.
620  */
621 static inline void bpf_compute_and_save_data_end(
622 	struct sk_buff *skb, void **saved_data_end)
623 {
624 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
625 
626 	*saved_data_end = cb->data_end;
627 	cb->data_end  = skb->data + skb_headlen(skb);
628 }
629 
630 /* Restore data saved by bpf_compute_data_pointers(). */
631 static inline void bpf_restore_data_end(
632 	struct sk_buff *skb, void *saved_data_end)
633 {
634 	struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
635 
636 	cb->data_end = saved_data_end;
637 }
638 
639 static inline u8 *bpf_skb_cb(struct sk_buff *skb)
640 {
641 	/* eBPF programs may read/write skb->cb[] area to transfer meta
642 	 * data between tail calls. Since this also needs to work with
643 	 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
644 	 *
645 	 * In some socket filter cases, the cb unfortunately needs to be
646 	 * saved/restored so that protocol specific skb->cb[] data won't
647 	 * be lost. In any case, due to unpriviledged eBPF programs
648 	 * attached to sockets, we need to clear the bpf_skb_cb() area
649 	 * to not leak previous contents to user space.
650 	 */
651 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
652 	BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
653 		     sizeof_field(struct qdisc_skb_cb, data));
654 
655 	return qdisc_skb_cb(skb)->data;
656 }
657 
658 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
659 					 struct sk_buff *skb)
660 {
661 	u8 *cb_data = bpf_skb_cb(skb);
662 	u8 cb_saved[BPF_SKB_CB_LEN];
663 	u32 res;
664 
665 	if (unlikely(prog->cb_access)) {
666 		memcpy(cb_saved, cb_data, sizeof(cb_saved));
667 		memset(cb_data, 0, sizeof(cb_saved));
668 	}
669 
670 	res = BPF_PROG_RUN(prog, skb);
671 
672 	if (unlikely(prog->cb_access))
673 		memcpy(cb_data, cb_saved, sizeof(cb_saved));
674 
675 	return res;
676 }
677 
678 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
679 				       struct sk_buff *skb)
680 {
681 	u32 res;
682 
683 	preempt_disable();
684 	res = __bpf_prog_run_save_cb(prog, skb);
685 	preempt_enable();
686 	return res;
687 }
688 
689 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
690 					struct sk_buff *skb)
691 {
692 	u8 *cb_data = bpf_skb_cb(skb);
693 	u32 res;
694 
695 	if (unlikely(prog->cb_access))
696 		memset(cb_data, 0, BPF_SKB_CB_LEN);
697 
698 	preempt_disable();
699 	res = BPF_PROG_RUN(prog, skb);
700 	preempt_enable();
701 	return res;
702 }
703 
704 DECLARE_BPF_DISPATCHER(bpf_dispatcher_xdp)
705 
706 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
707 					    struct xdp_buff *xdp)
708 {
709 	/* Caller needs to hold rcu_read_lock() (!), otherwise program
710 	 * can be released while still running, or map elements could be
711 	 * freed early while still having concurrent users. XDP fastpath
712 	 * already takes rcu_read_lock() when fetching the program, so
713 	 * it's not necessary here anymore.
714 	 */
715 	return __BPF_PROG_RUN(prog, xdp,
716 			      BPF_DISPATCHER_FUNC(bpf_dispatcher_xdp));
717 }
718 
719 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
720 
721 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
722 {
723 	return prog->len * sizeof(struct bpf_insn);
724 }
725 
726 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
727 {
728 	return round_up(bpf_prog_insn_size(prog) +
729 			sizeof(__be64) + 1, SHA_MESSAGE_BYTES);
730 }
731 
732 static inline unsigned int bpf_prog_size(unsigned int proglen)
733 {
734 	return max(sizeof(struct bpf_prog),
735 		   offsetof(struct bpf_prog, insns[proglen]));
736 }
737 
738 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
739 {
740 	/* When classic BPF programs have been loaded and the arch
741 	 * does not have a classic BPF JIT (anymore), they have been
742 	 * converted via bpf_migrate_filter() to eBPF and thus always
743 	 * have an unspec program type.
744 	 */
745 	return prog->type == BPF_PROG_TYPE_UNSPEC;
746 }
747 
748 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
749 {
750 	const u32 size_machine = sizeof(unsigned long);
751 
752 	if (size > size_machine && size % size_machine == 0)
753 		size = size_machine;
754 
755 	return size;
756 }
757 
758 static inline bool
759 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
760 {
761 	return size <= size_default && (size & (size - 1)) == 0;
762 }
763 
764 static inline u8
765 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
766 {
767 	u8 access_off = off & (size_default - 1);
768 
769 #ifdef __LITTLE_ENDIAN
770 	return access_off;
771 #else
772 	return size_default - (access_off + size);
773 #endif
774 }
775 
776 #define bpf_ctx_wide_access_ok(off, size, type, field)			\
777 	(size == sizeof(__u64) &&					\
778 	off >= offsetof(type, field) &&					\
779 	off + sizeof(__u64) <= offsetofend(type, field) &&		\
780 	off % sizeof(__u64) == 0)
781 
782 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
783 
784 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
785 {
786 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
787 	if (!fp->jited) {
788 		set_vm_flush_reset_perms(fp);
789 		set_memory_ro((unsigned long)fp, fp->pages);
790 	}
791 #endif
792 }
793 
794 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
795 {
796 	set_vm_flush_reset_perms(hdr);
797 	set_memory_ro((unsigned long)hdr, hdr->pages);
798 	set_memory_x((unsigned long)hdr, hdr->pages);
799 }
800 
801 static inline struct bpf_binary_header *
802 bpf_jit_binary_hdr(const struct bpf_prog *fp)
803 {
804 	unsigned long real_start = (unsigned long)fp->bpf_func;
805 	unsigned long addr = real_start & PAGE_MASK;
806 
807 	return (void *)addr;
808 }
809 
810 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
811 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
812 {
813 	return sk_filter_trim_cap(sk, skb, 1);
814 }
815 
816 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
817 void bpf_prog_free(struct bpf_prog *fp);
818 
819 bool bpf_opcode_in_insntable(u8 code);
820 
821 void bpf_prog_free_linfo(struct bpf_prog *prog);
822 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
823 			       const u32 *insn_to_jit_off);
824 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
825 void bpf_prog_free_jited_linfo(struct bpf_prog *prog);
826 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog);
827 
828 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
829 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
830 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
831 				  gfp_t gfp_extra_flags);
832 void __bpf_prog_free(struct bpf_prog *fp);
833 
834 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
835 {
836 	__bpf_prog_free(fp);
837 }
838 
839 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
840 				       unsigned int flen);
841 
842 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
843 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
844 			      bpf_aux_classic_check_t trans, bool save_orig);
845 void bpf_prog_destroy(struct bpf_prog *fp);
846 const struct bpf_func_proto *
847 bpf_base_func_proto(enum bpf_func_id func_id);
848 
849 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
850 int sk_attach_bpf(u32 ufd, struct sock *sk);
851 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
852 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
853 void sk_reuseport_prog_free(struct bpf_prog *prog);
854 int sk_detach_filter(struct sock *sk);
855 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
856 		  unsigned int len);
857 
858 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
859 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
860 
861 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
862 #define __bpf_call_base_args \
863 	((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
864 	 __bpf_call_base)
865 
866 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
867 void bpf_jit_compile(struct bpf_prog *prog);
868 bool bpf_jit_needs_zext(void);
869 bool bpf_helper_changes_pkt_data(void *func);
870 
871 static inline bool bpf_dump_raw_ok(void)
872 {
873 	/* Reconstruction of call-sites is dependent on kallsyms,
874 	 * thus make dump the same restriction.
875 	 */
876 	return kallsyms_show_value() == 1;
877 }
878 
879 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
880 				       const struct bpf_insn *patch, u32 len);
881 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
882 
883 void bpf_clear_redirect_map(struct bpf_map *map);
884 
885 static inline bool xdp_return_frame_no_direct(void)
886 {
887 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
888 
889 	return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
890 }
891 
892 static inline void xdp_set_return_frame_no_direct(void)
893 {
894 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
895 
896 	ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
897 }
898 
899 static inline void xdp_clear_return_frame_no_direct(void)
900 {
901 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
902 
903 	ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
904 }
905 
906 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
907 				 unsigned int pktlen)
908 {
909 	unsigned int len;
910 
911 	if (unlikely(!(fwd->flags & IFF_UP)))
912 		return -ENETDOWN;
913 
914 	len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
915 	if (pktlen > len)
916 		return -EMSGSIZE;
917 
918 	return 0;
919 }
920 
921 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
922  * same cpu context. Further for best results no more than a single map
923  * for the do_redirect/do_flush pair should be used. This limitation is
924  * because we only track one map and force a flush when the map changes.
925  * This does not appear to be a real limitation for existing software.
926  */
927 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
928 			    struct xdp_buff *xdp, struct bpf_prog *prog);
929 int xdp_do_redirect(struct net_device *dev,
930 		    struct xdp_buff *xdp,
931 		    struct bpf_prog *prog);
932 void xdp_do_flush(void);
933 
934 /* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
935  * it is no longer only flushing maps. Keep this define for compatibility
936  * until all drivers are updated - do not use xdp_do_flush_map() in new code!
937  */
938 #define xdp_do_flush_map xdp_do_flush
939 
940 void bpf_warn_invalid_xdp_action(u32 act);
941 
942 #ifdef CONFIG_INET
943 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
944 				  struct bpf_prog *prog, struct sk_buff *skb,
945 				  u32 hash);
946 #else
947 static inline struct sock *
948 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
949 		     struct bpf_prog *prog, struct sk_buff *skb,
950 		     u32 hash)
951 {
952 	return NULL;
953 }
954 #endif
955 
956 #ifdef CONFIG_BPF_JIT
957 extern int bpf_jit_enable;
958 extern int bpf_jit_harden;
959 extern int bpf_jit_kallsyms;
960 extern long bpf_jit_limit;
961 
962 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
963 
964 struct bpf_binary_header *
965 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
966 		     unsigned int alignment,
967 		     bpf_jit_fill_hole_t bpf_fill_ill_insns);
968 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
969 u64 bpf_jit_alloc_exec_limit(void);
970 void *bpf_jit_alloc_exec(unsigned long size);
971 void bpf_jit_free_exec(void *addr);
972 void bpf_jit_free(struct bpf_prog *fp);
973 
974 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
975 				struct bpf_jit_poke_descriptor *poke);
976 
977 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
978 			  const struct bpf_insn *insn, bool extra_pass,
979 			  u64 *func_addr, bool *func_addr_fixed);
980 
981 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
982 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
983 
984 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
985 				u32 pass, void *image)
986 {
987 	pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
988 	       proglen, pass, image, current->comm, task_pid_nr(current));
989 
990 	if (image)
991 		print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
992 			       16, 1, image, proglen, false);
993 }
994 
995 static inline bool bpf_jit_is_ebpf(void)
996 {
997 # ifdef CONFIG_HAVE_EBPF_JIT
998 	return true;
999 # else
1000 	return false;
1001 # endif
1002 }
1003 
1004 static inline bool ebpf_jit_enabled(void)
1005 {
1006 	return bpf_jit_enable && bpf_jit_is_ebpf();
1007 }
1008 
1009 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1010 {
1011 	return fp->jited && bpf_jit_is_ebpf();
1012 }
1013 
1014 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1015 {
1016 	/* These are the prerequisites, should someone ever have the
1017 	 * idea to call blinding outside of them, we make sure to
1018 	 * bail out.
1019 	 */
1020 	if (!bpf_jit_is_ebpf())
1021 		return false;
1022 	if (!prog->jit_requested)
1023 		return false;
1024 	if (!bpf_jit_harden)
1025 		return false;
1026 	if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1027 		return false;
1028 
1029 	return true;
1030 }
1031 
1032 static inline bool bpf_jit_kallsyms_enabled(void)
1033 {
1034 	/* There are a couple of corner cases where kallsyms should
1035 	 * not be enabled f.e. on hardening.
1036 	 */
1037 	if (bpf_jit_harden)
1038 		return false;
1039 	if (!bpf_jit_kallsyms)
1040 		return false;
1041 	if (bpf_jit_kallsyms == 1)
1042 		return true;
1043 
1044 	return false;
1045 }
1046 
1047 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1048 				 unsigned long *off, char *sym);
1049 bool is_bpf_text_address(unsigned long addr);
1050 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1051 		    char *sym);
1052 
1053 static inline const char *
1054 bpf_address_lookup(unsigned long addr, unsigned long *size,
1055 		   unsigned long *off, char **modname, char *sym)
1056 {
1057 	const char *ret = __bpf_address_lookup(addr, size, off, sym);
1058 
1059 	if (ret && modname)
1060 		*modname = NULL;
1061 	return ret;
1062 }
1063 
1064 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1065 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1066 void bpf_get_prog_name(const struct bpf_prog *prog, char *sym);
1067 
1068 #else /* CONFIG_BPF_JIT */
1069 
1070 static inline bool ebpf_jit_enabled(void)
1071 {
1072 	return false;
1073 }
1074 
1075 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1076 {
1077 	return false;
1078 }
1079 
1080 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1081 {
1082 	return false;
1083 }
1084 
1085 static inline int
1086 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1087 			    struct bpf_jit_poke_descriptor *poke)
1088 {
1089 	return -ENOTSUPP;
1090 }
1091 
1092 static inline void bpf_jit_free(struct bpf_prog *fp)
1093 {
1094 	bpf_prog_unlock_free(fp);
1095 }
1096 
1097 static inline bool bpf_jit_kallsyms_enabled(void)
1098 {
1099 	return false;
1100 }
1101 
1102 static inline const char *
1103 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1104 		     unsigned long *off, char *sym)
1105 {
1106 	return NULL;
1107 }
1108 
1109 static inline bool is_bpf_text_address(unsigned long addr)
1110 {
1111 	return false;
1112 }
1113 
1114 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1115 				  char *type, char *sym)
1116 {
1117 	return -ERANGE;
1118 }
1119 
1120 static inline const char *
1121 bpf_address_lookup(unsigned long addr, unsigned long *size,
1122 		   unsigned long *off, char **modname, char *sym)
1123 {
1124 	return NULL;
1125 }
1126 
1127 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1128 {
1129 }
1130 
1131 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1132 {
1133 }
1134 
1135 static inline void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
1136 {
1137 	sym[0] = '\0';
1138 }
1139 
1140 #endif /* CONFIG_BPF_JIT */
1141 
1142 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1143 
1144 #define BPF_ANC		BIT(15)
1145 
1146 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1147 {
1148 	switch (first->code) {
1149 	case BPF_RET | BPF_K:
1150 	case BPF_LD | BPF_W | BPF_LEN:
1151 		return false;
1152 
1153 	case BPF_LD | BPF_W | BPF_ABS:
1154 	case BPF_LD | BPF_H | BPF_ABS:
1155 	case BPF_LD | BPF_B | BPF_ABS:
1156 		if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1157 			return true;
1158 		return false;
1159 
1160 	default:
1161 		return true;
1162 	}
1163 }
1164 
1165 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1166 {
1167 	BUG_ON(ftest->code & BPF_ANC);
1168 
1169 	switch (ftest->code) {
1170 	case BPF_LD | BPF_W | BPF_ABS:
1171 	case BPF_LD | BPF_H | BPF_ABS:
1172 	case BPF_LD | BPF_B | BPF_ABS:
1173 #define BPF_ANCILLARY(CODE)	case SKF_AD_OFF + SKF_AD_##CODE:	\
1174 				return BPF_ANC | SKF_AD_##CODE
1175 		switch (ftest->k) {
1176 		BPF_ANCILLARY(PROTOCOL);
1177 		BPF_ANCILLARY(PKTTYPE);
1178 		BPF_ANCILLARY(IFINDEX);
1179 		BPF_ANCILLARY(NLATTR);
1180 		BPF_ANCILLARY(NLATTR_NEST);
1181 		BPF_ANCILLARY(MARK);
1182 		BPF_ANCILLARY(QUEUE);
1183 		BPF_ANCILLARY(HATYPE);
1184 		BPF_ANCILLARY(RXHASH);
1185 		BPF_ANCILLARY(CPU);
1186 		BPF_ANCILLARY(ALU_XOR_X);
1187 		BPF_ANCILLARY(VLAN_TAG);
1188 		BPF_ANCILLARY(VLAN_TAG_PRESENT);
1189 		BPF_ANCILLARY(PAY_OFFSET);
1190 		BPF_ANCILLARY(RANDOM);
1191 		BPF_ANCILLARY(VLAN_TPID);
1192 		}
1193 		/* Fallthrough. */
1194 	default:
1195 		return ftest->code;
1196 	}
1197 }
1198 
1199 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1200 					   int k, unsigned int size);
1201 
1202 static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
1203 				     unsigned int size, void *buffer)
1204 {
1205 	if (k >= 0)
1206 		return skb_header_pointer(skb, k, size, buffer);
1207 
1208 	return bpf_internal_load_pointer_neg_helper(skb, k, size);
1209 }
1210 
1211 static inline int bpf_tell_extensions(void)
1212 {
1213 	return SKF_AD_MAX;
1214 }
1215 
1216 struct bpf_sock_addr_kern {
1217 	struct sock *sk;
1218 	struct sockaddr *uaddr;
1219 	/* Temporary "register" to make indirect stores to nested structures
1220 	 * defined above. We need three registers to make such a store, but
1221 	 * only two (src and dst) are available at convert_ctx_access time
1222 	 */
1223 	u64 tmp_reg;
1224 	void *t_ctx;	/* Attach type specific context. */
1225 };
1226 
1227 struct bpf_sock_ops_kern {
1228 	struct	sock *sk;
1229 	u32	op;
1230 	union {
1231 		u32 args[4];
1232 		u32 reply;
1233 		u32 replylong[4];
1234 	};
1235 	u32	is_fullsock;
1236 	u64	temp;			/* temp and everything after is not
1237 					 * initialized to 0 before calling
1238 					 * the BPF program. New fields that
1239 					 * should be initialized to 0 should
1240 					 * be inserted before temp.
1241 					 * temp is scratch storage used by
1242 					 * sock_ops_convert_ctx_access
1243 					 * as temporary storage of a register.
1244 					 */
1245 };
1246 
1247 struct bpf_sysctl_kern {
1248 	struct ctl_table_header *head;
1249 	struct ctl_table *table;
1250 	void *cur_val;
1251 	size_t cur_len;
1252 	void *new_val;
1253 	size_t new_len;
1254 	int new_updated;
1255 	int write;
1256 	loff_t *ppos;
1257 	/* Temporary "register" for indirect stores to ppos. */
1258 	u64 tmp_reg;
1259 };
1260 
1261 struct bpf_sockopt_kern {
1262 	struct sock	*sk;
1263 	u8		*optval;
1264 	u8		*optval_end;
1265 	s32		level;
1266 	s32		optname;
1267 	s32		optlen;
1268 	s32		retval;
1269 };
1270 
1271 #endif /* __LINUX_FILTER_H__ */
1272