xref: /linux/include/linux/hugetlb.h (revision 021bc4b9)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HUGETLB_H
3 #define _LINUX_HUGETLB_H
4 
5 #include <linux/mm.h>
6 #include <linux/mm_types.h>
7 #include <linux/mmdebug.h>
8 #include <linux/fs.h>
9 #include <linux/hugetlb_inline.h>
10 #include <linux/cgroup.h>
11 #include <linux/page_ref.h>
12 #include <linux/list.h>
13 #include <linux/kref.h>
14 #include <linux/pgtable.h>
15 #include <linux/gfp.h>
16 #include <linux/userfaultfd_k.h>
17 
18 struct ctl_table;
19 struct user_struct;
20 struct mmu_gather;
21 struct node;
22 
23 #ifndef CONFIG_ARCH_HAS_HUGEPD
24 typedef struct { unsigned long pd; } hugepd_t;
25 #define is_hugepd(hugepd) (0)
26 #define __hugepd(x) ((hugepd_t) { (x) })
27 #endif
28 
29 void free_huge_folio(struct folio *folio);
30 
31 #ifdef CONFIG_HUGETLB_PAGE
32 
33 #include <linux/pagemap.h>
34 #include <linux/shm.h>
35 #include <asm/tlbflush.h>
36 
37 /*
38  * For HugeTLB page, there are more metadata to save in the struct page. But
39  * the head struct page cannot meet our needs, so we have to abuse other tail
40  * struct page to store the metadata.
41  */
42 #define __NR_USED_SUBPAGE 3
43 
44 struct hugepage_subpool {
45 	spinlock_t lock;
46 	long count;
47 	long max_hpages;	/* Maximum huge pages or -1 if no maximum. */
48 	long used_hpages;	/* Used count against maximum, includes */
49 				/* both allocated and reserved pages. */
50 	struct hstate *hstate;
51 	long min_hpages;	/* Minimum huge pages or -1 if no minimum. */
52 	long rsv_hpages;	/* Pages reserved against global pool to */
53 				/* satisfy minimum size. */
54 };
55 
56 struct resv_map {
57 	struct kref refs;
58 	spinlock_t lock;
59 	struct list_head regions;
60 	long adds_in_progress;
61 	struct list_head region_cache;
62 	long region_cache_count;
63 	struct rw_semaphore rw_sema;
64 #ifdef CONFIG_CGROUP_HUGETLB
65 	/*
66 	 * On private mappings, the counter to uncharge reservations is stored
67 	 * here. If these fields are 0, then either the mapping is shared, or
68 	 * cgroup accounting is disabled for this resv_map.
69 	 */
70 	struct page_counter *reservation_counter;
71 	unsigned long pages_per_hpage;
72 	struct cgroup_subsys_state *css;
73 #endif
74 };
75 
76 /*
77  * Region tracking -- allows tracking of reservations and instantiated pages
78  *                    across the pages in a mapping.
79  *
80  * The region data structures are embedded into a resv_map and protected
81  * by a resv_map's lock.  The set of regions within the resv_map represent
82  * reservations for huge pages, or huge pages that have already been
83  * instantiated within the map.  The from and to elements are huge page
84  * indices into the associated mapping.  from indicates the starting index
85  * of the region.  to represents the first index past the end of  the region.
86  *
87  * For example, a file region structure with from == 0 and to == 4 represents
88  * four huge pages in a mapping.  It is important to note that the to element
89  * represents the first element past the end of the region. This is used in
90  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
91  *
92  * Interval notation of the form [from, to) will be used to indicate that
93  * the endpoint from is inclusive and to is exclusive.
94  */
95 struct file_region {
96 	struct list_head link;
97 	long from;
98 	long to;
99 #ifdef CONFIG_CGROUP_HUGETLB
100 	/*
101 	 * On shared mappings, each reserved region appears as a struct
102 	 * file_region in resv_map. These fields hold the info needed to
103 	 * uncharge each reservation.
104 	 */
105 	struct page_counter *reservation_counter;
106 	struct cgroup_subsys_state *css;
107 #endif
108 };
109 
110 struct hugetlb_vma_lock {
111 	struct kref refs;
112 	struct rw_semaphore rw_sema;
113 	struct vm_area_struct *vma;
114 };
115 
116 extern struct resv_map *resv_map_alloc(void);
117 void resv_map_release(struct kref *ref);
118 
119 extern spinlock_t hugetlb_lock;
120 extern int hugetlb_max_hstate __read_mostly;
121 #define for_each_hstate(h) \
122 	for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
123 
124 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
125 						long min_hpages);
126 void hugepage_put_subpool(struct hugepage_subpool *spool);
127 
128 void hugetlb_dup_vma_private(struct vm_area_struct *vma);
129 void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
130 int move_hugetlb_page_tables(struct vm_area_struct *vma,
131 			     struct vm_area_struct *new_vma,
132 			     unsigned long old_addr, unsigned long new_addr,
133 			     unsigned long len);
134 int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
135 			    struct vm_area_struct *, struct vm_area_struct *);
136 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
137 				      unsigned long address, unsigned int flags,
138 				      unsigned int *page_mask);
139 void unmap_hugepage_range(struct vm_area_struct *,
140 			  unsigned long, unsigned long, struct page *,
141 			  zap_flags_t);
142 void __unmap_hugepage_range(struct mmu_gather *tlb,
143 			  struct vm_area_struct *vma,
144 			  unsigned long start, unsigned long end,
145 			  struct page *ref_page, zap_flags_t zap_flags);
146 void hugetlb_report_meminfo(struct seq_file *);
147 int hugetlb_report_node_meminfo(char *buf, int len, int nid);
148 void hugetlb_show_meminfo_node(int nid);
149 unsigned long hugetlb_total_pages(void);
150 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
151 			unsigned long address, unsigned int flags);
152 #ifdef CONFIG_USERFAULTFD
153 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
154 			     struct vm_area_struct *dst_vma,
155 			     unsigned long dst_addr,
156 			     unsigned long src_addr,
157 			     uffd_flags_t flags,
158 			     struct folio **foliop);
159 #endif /* CONFIG_USERFAULTFD */
160 bool hugetlb_reserve_pages(struct inode *inode, long from, long to,
161 						struct vm_area_struct *vma,
162 						vm_flags_t vm_flags);
163 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
164 						long freed);
165 bool isolate_hugetlb(struct folio *folio, struct list_head *list);
166 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
167 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
168 				bool *migratable_cleared);
169 void folio_putback_active_hugetlb(struct folio *folio);
170 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
171 void hugetlb_fix_reserve_counts(struct inode *inode);
172 extern struct mutex *hugetlb_fault_mutex_table;
173 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
174 
175 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
176 		      unsigned long addr, pud_t *pud);
177 
178 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage);
179 
180 extern int sysctl_hugetlb_shm_group;
181 extern struct list_head huge_boot_pages;
182 
183 /* arch callbacks */
184 
185 #ifndef CONFIG_HIGHPTE
186 /*
187  * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures
188  * which may go down to the lowest PTE level in their huge_pte_offset() and
189  * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap().
190  */
191 static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address)
192 {
193 	return pte_offset_kernel(pmd, address);
194 }
195 static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd,
196 				    unsigned long address)
197 {
198 	return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address);
199 }
200 #endif
201 
202 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
203 			unsigned long addr, unsigned long sz);
204 /*
205  * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
206  * Returns the pte_t* if found, or NULL if the address is not mapped.
207  *
208  * IMPORTANT: we should normally not directly call this function, instead
209  * this is only a common interface to implement arch-specific
210  * walker. Please use hugetlb_walk() instead, because that will attempt to
211  * verify the locking for you.
212  *
213  * Since this function will walk all the pgtable pages (including not only
214  * high-level pgtable page, but also PUD entry that can be unshared
215  * concurrently for VM_SHARED), the caller of this function should be
216  * responsible of its thread safety.  One can follow this rule:
217  *
218  *  (1) For private mappings: pmd unsharing is not possible, so holding the
219  *      mmap_lock for either read or write is sufficient. Most callers
220  *      already hold the mmap_lock, so normally, no special action is
221  *      required.
222  *
223  *  (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
224  *      pgtable page can go away from under us!  It can be done by a pmd
225  *      unshare with a follow up munmap() on the other process), then we
226  *      need either:
227  *
228  *     (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
229  *           won't happen upon the range (it also makes sure the pte_t we
230  *           read is the right and stable one), or,
231  *
232  *     (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
233  *           sure even if unshare happened the racy unmap() will wait until
234  *           i_mmap_rwsem is released.
235  *
236  * Option (2.1) is the safest, which guarantees pte stability from pmd
237  * sharing pov, until the vma lock released.  Option (2.2) doesn't protect
238  * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
239  * access.
240  */
241 pte_t *huge_pte_offset(struct mm_struct *mm,
242 		       unsigned long addr, unsigned long sz);
243 unsigned long hugetlb_mask_last_page(struct hstate *h);
244 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
245 				unsigned long addr, pte_t *ptep);
246 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
247 				unsigned long *start, unsigned long *end);
248 
249 extern void __hugetlb_zap_begin(struct vm_area_struct *vma,
250 				unsigned long *begin, unsigned long *end);
251 extern void __hugetlb_zap_end(struct vm_area_struct *vma,
252 			      struct zap_details *details);
253 
254 static inline void hugetlb_zap_begin(struct vm_area_struct *vma,
255 				     unsigned long *start, unsigned long *end)
256 {
257 	if (is_vm_hugetlb_page(vma))
258 		__hugetlb_zap_begin(vma, start, end);
259 }
260 
261 static inline void hugetlb_zap_end(struct vm_area_struct *vma,
262 				   struct zap_details *details)
263 {
264 	if (is_vm_hugetlb_page(vma))
265 		__hugetlb_zap_end(vma, details);
266 }
267 
268 void hugetlb_vma_lock_read(struct vm_area_struct *vma);
269 void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
270 void hugetlb_vma_lock_write(struct vm_area_struct *vma);
271 void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
272 int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
273 void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
274 void hugetlb_vma_lock_release(struct kref *kref);
275 
276 int pmd_huge(pmd_t pmd);
277 int pud_huge(pud_t pud);
278 long hugetlb_change_protection(struct vm_area_struct *vma,
279 		unsigned long address, unsigned long end, pgprot_t newprot,
280 		unsigned long cp_flags);
281 
282 bool is_hugetlb_entry_migration(pte_t pte);
283 bool is_hugetlb_entry_hwpoisoned(pte_t pte);
284 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
285 
286 #else /* !CONFIG_HUGETLB_PAGE */
287 
288 static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
289 {
290 }
291 
292 static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
293 {
294 }
295 
296 static inline unsigned long hugetlb_total_pages(void)
297 {
298 	return 0;
299 }
300 
301 static inline struct address_space *hugetlb_page_mapping_lock_write(
302 							struct page *hpage)
303 {
304 	return NULL;
305 }
306 
307 static inline int huge_pmd_unshare(struct mm_struct *mm,
308 					struct vm_area_struct *vma,
309 					unsigned long addr, pte_t *ptep)
310 {
311 	return 0;
312 }
313 
314 static inline void adjust_range_if_pmd_sharing_possible(
315 				struct vm_area_struct *vma,
316 				unsigned long *start, unsigned long *end)
317 {
318 }
319 
320 static inline void hugetlb_zap_begin(
321 				struct vm_area_struct *vma,
322 				unsigned long *start, unsigned long *end)
323 {
324 }
325 
326 static inline void hugetlb_zap_end(
327 				struct vm_area_struct *vma,
328 				struct zap_details *details)
329 {
330 }
331 
332 static inline struct page *hugetlb_follow_page_mask(
333     struct vm_area_struct *vma, unsigned long address, unsigned int flags,
334     unsigned int *page_mask)
335 {
336 	BUILD_BUG(); /* should never be compiled in if !CONFIG_HUGETLB_PAGE*/
337 }
338 
339 static inline int copy_hugetlb_page_range(struct mm_struct *dst,
340 					  struct mm_struct *src,
341 					  struct vm_area_struct *dst_vma,
342 					  struct vm_area_struct *src_vma)
343 {
344 	BUG();
345 	return 0;
346 }
347 
348 static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
349 					   struct vm_area_struct *new_vma,
350 					   unsigned long old_addr,
351 					   unsigned long new_addr,
352 					   unsigned long len)
353 {
354 	BUG();
355 	return 0;
356 }
357 
358 static inline void hugetlb_report_meminfo(struct seq_file *m)
359 {
360 }
361 
362 static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
363 {
364 	return 0;
365 }
366 
367 static inline void hugetlb_show_meminfo_node(int nid)
368 {
369 }
370 
371 static inline int prepare_hugepage_range(struct file *file,
372 				unsigned long addr, unsigned long len)
373 {
374 	return -EINVAL;
375 }
376 
377 static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
378 {
379 }
380 
381 static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
382 {
383 }
384 
385 static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
386 {
387 }
388 
389 static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
390 {
391 }
392 
393 static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
394 {
395 	return 1;
396 }
397 
398 static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
399 {
400 }
401 
402 static inline int pmd_huge(pmd_t pmd)
403 {
404 	return 0;
405 }
406 
407 static inline int pud_huge(pud_t pud)
408 {
409 	return 0;
410 }
411 
412 static inline int is_hugepage_only_range(struct mm_struct *mm,
413 					unsigned long addr, unsigned long len)
414 {
415 	return 0;
416 }
417 
418 static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb,
419 				unsigned long addr, unsigned long end,
420 				unsigned long floor, unsigned long ceiling)
421 {
422 	BUG();
423 }
424 
425 #ifdef CONFIG_USERFAULTFD
426 static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
427 					   struct vm_area_struct *dst_vma,
428 					   unsigned long dst_addr,
429 					   unsigned long src_addr,
430 					   uffd_flags_t flags,
431 					   struct folio **foliop)
432 {
433 	BUG();
434 	return 0;
435 }
436 #endif /* CONFIG_USERFAULTFD */
437 
438 static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
439 					unsigned long sz)
440 {
441 	return NULL;
442 }
443 
444 static inline bool isolate_hugetlb(struct folio *folio, struct list_head *list)
445 {
446 	return false;
447 }
448 
449 static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
450 {
451 	return 0;
452 }
453 
454 static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
455 					bool *migratable_cleared)
456 {
457 	return 0;
458 }
459 
460 static inline void folio_putback_active_hugetlb(struct folio *folio)
461 {
462 }
463 
464 static inline void move_hugetlb_state(struct folio *old_folio,
465 					struct folio *new_folio, int reason)
466 {
467 }
468 
469 static inline long hugetlb_change_protection(
470 			struct vm_area_struct *vma, unsigned long address,
471 			unsigned long end, pgprot_t newprot,
472 			unsigned long cp_flags)
473 {
474 	return 0;
475 }
476 
477 static inline void __unmap_hugepage_range(struct mmu_gather *tlb,
478 			struct vm_area_struct *vma, unsigned long start,
479 			unsigned long end, struct page *ref_page,
480 			zap_flags_t zap_flags)
481 {
482 	BUG();
483 }
484 
485 static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
486 			struct vm_area_struct *vma, unsigned long address,
487 			unsigned int flags)
488 {
489 	BUG();
490 	return 0;
491 }
492 
493 static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
494 
495 #endif /* !CONFIG_HUGETLB_PAGE */
496 /*
497  * hugepages at page global directory. If arch support
498  * hugepages at pgd level, they need to define this.
499  */
500 #ifndef pgd_huge
501 #define pgd_huge(x)	0
502 #endif
503 #ifndef p4d_huge
504 #define p4d_huge(x)	0
505 #endif
506 
507 #ifndef pgd_write
508 static inline int pgd_write(pgd_t pgd)
509 {
510 	BUG();
511 	return 0;
512 }
513 #endif
514 
515 #define HUGETLB_ANON_FILE "anon_hugepage"
516 
517 enum {
518 	/*
519 	 * The file will be used as an shm file so shmfs accounting rules
520 	 * apply
521 	 */
522 	HUGETLB_SHMFS_INODE     = 1,
523 	/*
524 	 * The file is being created on the internal vfs mount and shmfs
525 	 * accounting rules do not apply
526 	 */
527 	HUGETLB_ANONHUGE_INODE  = 2,
528 };
529 
530 #ifdef CONFIG_HUGETLBFS
531 struct hugetlbfs_sb_info {
532 	long	max_inodes;   /* inodes allowed */
533 	long	free_inodes;  /* inodes free */
534 	spinlock_t	stat_lock;
535 	struct hstate *hstate;
536 	struct hugepage_subpool *spool;
537 	kuid_t	uid;
538 	kgid_t	gid;
539 	umode_t mode;
540 };
541 
542 static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
543 {
544 	return sb->s_fs_info;
545 }
546 
547 struct hugetlbfs_inode_info {
548 	struct inode vfs_inode;
549 	unsigned int seals;
550 };
551 
552 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
553 {
554 	return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
555 }
556 
557 extern const struct file_operations hugetlbfs_file_operations;
558 extern const struct vm_operations_struct hugetlb_vm_ops;
559 struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
560 				int creat_flags, int page_size_log);
561 
562 static inline bool is_file_hugepages(struct file *file)
563 {
564 	if (file->f_op == &hugetlbfs_file_operations)
565 		return true;
566 
567 	return is_file_shm_hugepages(file);
568 }
569 
570 static inline struct hstate *hstate_inode(struct inode *i)
571 {
572 	return HUGETLBFS_SB(i->i_sb)->hstate;
573 }
574 #else /* !CONFIG_HUGETLBFS */
575 
576 #define is_file_hugepages(file)			false
577 static inline struct file *
578 hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
579 		int creat_flags, int page_size_log)
580 {
581 	return ERR_PTR(-ENOSYS);
582 }
583 
584 static inline struct hstate *hstate_inode(struct inode *i)
585 {
586 	return NULL;
587 }
588 #endif /* !CONFIG_HUGETLBFS */
589 
590 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
591 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
592 					unsigned long len, unsigned long pgoff,
593 					unsigned long flags);
594 #endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */
595 
596 unsigned long
597 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
598 				  unsigned long len, unsigned long pgoff,
599 				  unsigned long flags);
600 
601 /*
602  * huegtlb page specific state flags.  These flags are located in page.private
603  * of the hugetlb head page.  Functions created via the below macros should be
604  * used to manipulate these flags.
605  *
606  * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
607  *	allocation time.  Cleared when page is fully instantiated.  Free
608  *	routine checks flag to restore a reservation on error paths.
609  *	Synchronization:  Examined or modified by code that knows it has
610  *	the only reference to page.  i.e. After allocation but before use
611  *	or when the page is being freed.
612  * HPG_migratable  - Set after a newly allocated page is added to the page
613  *	cache and/or page tables.  Indicates the page is a candidate for
614  *	migration.
615  *	Synchronization:  Initially set after new page allocation with no
616  *	locking.  When examined and modified during migration processing
617  *	(isolate, migrate, putback) the hugetlb_lock is held.
618  * HPG_temporary - Set on a page that is temporarily allocated from the buddy
619  *	allocator.  Typically used for migration target pages when no pages
620  *	are available in the pool.  The hugetlb free page path will
621  *	immediately free pages with this flag set to the buddy allocator.
622  *	Synchronization: Can be set after huge page allocation from buddy when
623  *	code knows it has only reference.  All other examinations and
624  *	modifications require hugetlb_lock.
625  * HPG_freed - Set when page is on the free lists.
626  *	Synchronization: hugetlb_lock held for examination and modification.
627  * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
628  * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
629  *     that is not tracked by raw_hwp_page list.
630  */
631 enum hugetlb_page_flags {
632 	HPG_restore_reserve = 0,
633 	HPG_migratable,
634 	HPG_temporary,
635 	HPG_freed,
636 	HPG_vmemmap_optimized,
637 	HPG_raw_hwp_unreliable,
638 	__NR_HPAGEFLAGS,
639 };
640 
641 /*
642  * Macros to create test, set and clear function definitions for
643  * hugetlb specific page flags.
644  */
645 #ifdef CONFIG_HUGETLB_PAGE
646 #define TESTHPAGEFLAG(uname, flname)				\
647 static __always_inline						\
648 bool folio_test_hugetlb_##flname(struct folio *folio)		\
649 	{	void *private = &folio->private;		\
650 		return test_bit(HPG_##flname, private);		\
651 	}							\
652 static inline int HPage##uname(struct page *page)		\
653 	{ return test_bit(HPG_##flname, &(page->private)); }
654 
655 #define SETHPAGEFLAG(uname, flname)				\
656 static __always_inline						\
657 void folio_set_hugetlb_##flname(struct folio *folio)		\
658 	{	void *private = &folio->private;		\
659 		set_bit(HPG_##flname, private);			\
660 	}							\
661 static inline void SetHPage##uname(struct page *page)		\
662 	{ set_bit(HPG_##flname, &(page->private)); }
663 
664 #define CLEARHPAGEFLAG(uname, flname)				\
665 static __always_inline						\
666 void folio_clear_hugetlb_##flname(struct folio *folio)		\
667 	{	void *private = &folio->private;		\
668 		clear_bit(HPG_##flname, private);		\
669 	}							\
670 static inline void ClearHPage##uname(struct page *page)		\
671 	{ clear_bit(HPG_##flname, &(page->private)); }
672 #else
673 #define TESTHPAGEFLAG(uname, flname)				\
674 static inline bool						\
675 folio_test_hugetlb_##flname(struct folio *folio)		\
676 	{ return 0; }						\
677 static inline int HPage##uname(struct page *page)		\
678 	{ return 0; }
679 
680 #define SETHPAGEFLAG(uname, flname)				\
681 static inline void						\
682 folio_set_hugetlb_##flname(struct folio *folio) 		\
683 	{ }							\
684 static inline void SetHPage##uname(struct page *page)		\
685 	{ }
686 
687 #define CLEARHPAGEFLAG(uname, flname)				\
688 static inline void						\
689 folio_clear_hugetlb_##flname(struct folio *folio)		\
690 	{ }							\
691 static inline void ClearHPage##uname(struct page *page)		\
692 	{ }
693 #endif
694 
695 #define HPAGEFLAG(uname, flname)				\
696 	TESTHPAGEFLAG(uname, flname)				\
697 	SETHPAGEFLAG(uname, flname)				\
698 	CLEARHPAGEFLAG(uname, flname)				\
699 
700 /*
701  * Create functions associated with hugetlb page flags
702  */
703 HPAGEFLAG(RestoreReserve, restore_reserve)
704 HPAGEFLAG(Migratable, migratable)
705 HPAGEFLAG(Temporary, temporary)
706 HPAGEFLAG(Freed, freed)
707 HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
708 HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
709 
710 #ifdef CONFIG_HUGETLB_PAGE
711 
712 #define HSTATE_NAME_LEN 32
713 /* Defines one hugetlb page size */
714 struct hstate {
715 	struct mutex resize_lock;
716 	int next_nid_to_alloc;
717 	int next_nid_to_free;
718 	unsigned int order;
719 	unsigned int demote_order;
720 	unsigned long mask;
721 	unsigned long max_huge_pages;
722 	unsigned long nr_huge_pages;
723 	unsigned long free_huge_pages;
724 	unsigned long resv_huge_pages;
725 	unsigned long surplus_huge_pages;
726 	unsigned long nr_overcommit_huge_pages;
727 	struct list_head hugepage_activelist;
728 	struct list_head hugepage_freelists[MAX_NUMNODES];
729 	unsigned int max_huge_pages_node[MAX_NUMNODES];
730 	unsigned int nr_huge_pages_node[MAX_NUMNODES];
731 	unsigned int free_huge_pages_node[MAX_NUMNODES];
732 	unsigned int surplus_huge_pages_node[MAX_NUMNODES];
733 #ifdef CONFIG_CGROUP_HUGETLB
734 	/* cgroup control files */
735 	struct cftype cgroup_files_dfl[8];
736 	struct cftype cgroup_files_legacy[10];
737 #endif
738 	char name[HSTATE_NAME_LEN];
739 };
740 
741 struct huge_bootmem_page {
742 	struct list_head list;
743 	struct hstate *hstate;
744 };
745 
746 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list);
747 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
748 				unsigned long addr, int avoid_reserve);
749 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
750 				nodemask_t *nmask, gfp_t gfp_mask);
751 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
752 			pgoff_t idx);
753 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
754 				unsigned long address, struct folio *folio);
755 
756 /* arch callback */
757 int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
758 int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
759 bool __init hugetlb_node_alloc_supported(void);
760 
761 void __init hugetlb_add_hstate(unsigned order);
762 bool __init arch_hugetlb_valid_size(unsigned long size);
763 struct hstate *size_to_hstate(unsigned long size);
764 
765 #ifndef HUGE_MAX_HSTATE
766 #define HUGE_MAX_HSTATE 1
767 #endif
768 
769 extern struct hstate hstates[HUGE_MAX_HSTATE];
770 extern unsigned int default_hstate_idx;
771 
772 #define default_hstate (hstates[default_hstate_idx])
773 
774 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
775 {
776 	return folio->_hugetlb_subpool;
777 }
778 
779 static inline void hugetlb_set_folio_subpool(struct folio *folio,
780 					struct hugepage_subpool *subpool)
781 {
782 	folio->_hugetlb_subpool = subpool;
783 }
784 
785 static inline struct hstate *hstate_file(struct file *f)
786 {
787 	return hstate_inode(file_inode(f));
788 }
789 
790 static inline struct hstate *hstate_sizelog(int page_size_log)
791 {
792 	if (!page_size_log)
793 		return &default_hstate;
794 
795 	if (page_size_log < BITS_PER_LONG)
796 		return size_to_hstate(1UL << page_size_log);
797 
798 	return NULL;
799 }
800 
801 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
802 {
803 	return hstate_file(vma->vm_file);
804 }
805 
806 static inline unsigned long huge_page_size(const struct hstate *h)
807 {
808 	return (unsigned long)PAGE_SIZE << h->order;
809 }
810 
811 extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
812 
813 extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
814 
815 static inline unsigned long huge_page_mask(struct hstate *h)
816 {
817 	return h->mask;
818 }
819 
820 static inline unsigned int huge_page_order(struct hstate *h)
821 {
822 	return h->order;
823 }
824 
825 static inline unsigned huge_page_shift(struct hstate *h)
826 {
827 	return h->order + PAGE_SHIFT;
828 }
829 
830 static inline bool hstate_is_gigantic(struct hstate *h)
831 {
832 	return huge_page_order(h) > MAX_PAGE_ORDER;
833 }
834 
835 static inline unsigned int pages_per_huge_page(const struct hstate *h)
836 {
837 	return 1 << h->order;
838 }
839 
840 static inline unsigned int blocks_per_huge_page(struct hstate *h)
841 {
842 	return huge_page_size(h) / 512;
843 }
844 
845 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
846 				struct address_space *mapping, pgoff_t idx)
847 {
848 	return filemap_lock_folio(mapping, idx << huge_page_order(h));
849 }
850 
851 #include <asm/hugetlb.h>
852 
853 #ifndef is_hugepage_only_range
854 static inline int is_hugepage_only_range(struct mm_struct *mm,
855 					unsigned long addr, unsigned long len)
856 {
857 	return 0;
858 }
859 #define is_hugepage_only_range is_hugepage_only_range
860 #endif
861 
862 #ifndef arch_clear_hugepage_flags
863 static inline void arch_clear_hugepage_flags(struct page *page) { }
864 #define arch_clear_hugepage_flags arch_clear_hugepage_flags
865 #endif
866 
867 #ifndef arch_make_huge_pte
868 static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
869 				       vm_flags_t flags)
870 {
871 	return pte_mkhuge(entry);
872 }
873 #endif
874 
875 static inline struct hstate *folio_hstate(struct folio *folio)
876 {
877 	VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
878 	return size_to_hstate(folio_size(folio));
879 }
880 
881 static inline unsigned hstate_index_to_shift(unsigned index)
882 {
883 	return hstates[index].order + PAGE_SHIFT;
884 }
885 
886 static inline int hstate_index(struct hstate *h)
887 {
888 	return h - hstates;
889 }
890 
891 extern int dissolve_free_huge_page(struct page *page);
892 extern int dissolve_free_huge_pages(unsigned long start_pfn,
893 				    unsigned long end_pfn);
894 
895 #ifdef CONFIG_MEMORY_FAILURE
896 extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
897 #else
898 static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
899 {
900 }
901 #endif
902 
903 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
904 #ifndef arch_hugetlb_migration_supported
905 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
906 {
907 	if ((huge_page_shift(h) == PMD_SHIFT) ||
908 		(huge_page_shift(h) == PUD_SHIFT) ||
909 			(huge_page_shift(h) == PGDIR_SHIFT))
910 		return true;
911 	else
912 		return false;
913 }
914 #endif
915 #else
916 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
917 {
918 	return false;
919 }
920 #endif
921 
922 static inline bool hugepage_migration_supported(struct hstate *h)
923 {
924 	return arch_hugetlb_migration_supported(h);
925 }
926 
927 /*
928  * Movability check is different as compared to migration check.
929  * It determines whether or not a huge page should be placed on
930  * movable zone or not. Movability of any huge page should be
931  * required only if huge page size is supported for migration.
932  * There won't be any reason for the huge page to be movable if
933  * it is not migratable to start with. Also the size of the huge
934  * page should be large enough to be placed under a movable zone
935  * and still feasible enough to be migratable. Just the presence
936  * in movable zone does not make the migration feasible.
937  *
938  * So even though large huge page sizes like the gigantic ones
939  * are migratable they should not be movable because its not
940  * feasible to migrate them from movable zone.
941  */
942 static inline bool hugepage_movable_supported(struct hstate *h)
943 {
944 	if (!hugepage_migration_supported(h))
945 		return false;
946 
947 	if (hstate_is_gigantic(h))
948 		return false;
949 	return true;
950 }
951 
952 /* Movability of hugepages depends on migration support. */
953 static inline gfp_t htlb_alloc_mask(struct hstate *h)
954 {
955 	if (hugepage_movable_supported(h))
956 		return GFP_HIGHUSER_MOVABLE;
957 	else
958 		return GFP_HIGHUSER;
959 }
960 
961 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
962 {
963 	gfp_t modified_mask = htlb_alloc_mask(h);
964 
965 	/* Some callers might want to enforce node */
966 	modified_mask |= (gfp_mask & __GFP_THISNODE);
967 
968 	modified_mask |= (gfp_mask & __GFP_NOWARN);
969 
970 	return modified_mask;
971 }
972 
973 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
974 					   struct mm_struct *mm, pte_t *pte)
975 {
976 	if (huge_page_size(h) == PMD_SIZE)
977 		return pmd_lockptr(mm, (pmd_t *) pte);
978 	VM_BUG_ON(huge_page_size(h) == PAGE_SIZE);
979 	return &mm->page_table_lock;
980 }
981 
982 #ifndef hugepages_supported
983 /*
984  * Some platform decide whether they support huge pages at boot
985  * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
986  * when there is no such support
987  */
988 #define hugepages_supported() (HPAGE_SHIFT != 0)
989 #endif
990 
991 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
992 
993 static inline void hugetlb_count_init(struct mm_struct *mm)
994 {
995 	atomic_long_set(&mm->hugetlb_usage, 0);
996 }
997 
998 static inline void hugetlb_count_add(long l, struct mm_struct *mm)
999 {
1000 	atomic_long_add(l, &mm->hugetlb_usage);
1001 }
1002 
1003 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1004 {
1005 	atomic_long_sub(l, &mm->hugetlb_usage);
1006 }
1007 
1008 #ifndef huge_ptep_modify_prot_start
1009 #define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
1010 static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
1011 						unsigned long addr, pte_t *ptep)
1012 {
1013 	return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep);
1014 }
1015 #endif
1016 
1017 #ifndef huge_ptep_modify_prot_commit
1018 #define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
1019 static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
1020 						unsigned long addr, pte_t *ptep,
1021 						pte_t old_pte, pte_t pte)
1022 {
1023 	unsigned long psize = huge_page_size(hstate_vma(vma));
1024 
1025 	set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize);
1026 }
1027 #endif
1028 
1029 #ifdef CONFIG_NUMA
1030 void hugetlb_register_node(struct node *node);
1031 void hugetlb_unregister_node(struct node *node);
1032 #endif
1033 
1034 /*
1035  * Check if a given raw @page in a hugepage is HWPOISON.
1036  */
1037 bool is_raw_hwpoison_page_in_hugepage(struct page *page);
1038 
1039 #else	/* CONFIG_HUGETLB_PAGE */
1040 struct hstate {};
1041 
1042 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1043 {
1044 	return NULL;
1045 }
1046 
1047 static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
1048 				struct address_space *mapping, pgoff_t idx)
1049 {
1050 	return NULL;
1051 }
1052 
1053 static inline int isolate_or_dissolve_huge_page(struct page *page,
1054 						struct list_head *list)
1055 {
1056 	return -ENOMEM;
1057 }
1058 
1059 static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
1060 					   unsigned long addr,
1061 					   int avoid_reserve)
1062 {
1063 	return NULL;
1064 }
1065 
1066 static inline struct folio *
1067 alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
1068 			nodemask_t *nmask, gfp_t gfp_mask)
1069 {
1070 	return NULL;
1071 }
1072 
1073 static inline int __alloc_bootmem_huge_page(struct hstate *h)
1074 {
1075 	return 0;
1076 }
1077 
1078 static inline struct hstate *hstate_file(struct file *f)
1079 {
1080 	return NULL;
1081 }
1082 
1083 static inline struct hstate *hstate_sizelog(int page_size_log)
1084 {
1085 	return NULL;
1086 }
1087 
1088 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1089 {
1090 	return NULL;
1091 }
1092 
1093 static inline struct hstate *folio_hstate(struct folio *folio)
1094 {
1095 	return NULL;
1096 }
1097 
1098 static inline struct hstate *size_to_hstate(unsigned long size)
1099 {
1100 	return NULL;
1101 }
1102 
1103 static inline unsigned long huge_page_size(struct hstate *h)
1104 {
1105 	return PAGE_SIZE;
1106 }
1107 
1108 static inline unsigned long huge_page_mask(struct hstate *h)
1109 {
1110 	return PAGE_MASK;
1111 }
1112 
1113 static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1114 {
1115 	return PAGE_SIZE;
1116 }
1117 
1118 static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1119 {
1120 	return PAGE_SIZE;
1121 }
1122 
1123 static inline unsigned int huge_page_order(struct hstate *h)
1124 {
1125 	return 0;
1126 }
1127 
1128 static inline unsigned int huge_page_shift(struct hstate *h)
1129 {
1130 	return PAGE_SHIFT;
1131 }
1132 
1133 static inline bool hstate_is_gigantic(struct hstate *h)
1134 {
1135 	return false;
1136 }
1137 
1138 static inline unsigned int pages_per_huge_page(struct hstate *h)
1139 {
1140 	return 1;
1141 }
1142 
1143 static inline unsigned hstate_index_to_shift(unsigned index)
1144 {
1145 	return 0;
1146 }
1147 
1148 static inline int hstate_index(struct hstate *h)
1149 {
1150 	return 0;
1151 }
1152 
1153 static inline int dissolve_free_huge_page(struct page *page)
1154 {
1155 	return 0;
1156 }
1157 
1158 static inline int dissolve_free_huge_pages(unsigned long start_pfn,
1159 					   unsigned long end_pfn)
1160 {
1161 	return 0;
1162 }
1163 
1164 static inline bool hugepage_migration_supported(struct hstate *h)
1165 {
1166 	return false;
1167 }
1168 
1169 static inline bool hugepage_movable_supported(struct hstate *h)
1170 {
1171 	return false;
1172 }
1173 
1174 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1175 {
1176 	return 0;
1177 }
1178 
1179 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1180 {
1181 	return 0;
1182 }
1183 
1184 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1185 					   struct mm_struct *mm, pte_t *pte)
1186 {
1187 	return &mm->page_table_lock;
1188 }
1189 
1190 static inline void hugetlb_count_init(struct mm_struct *mm)
1191 {
1192 }
1193 
1194 static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1195 {
1196 }
1197 
1198 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1199 {
1200 }
1201 
1202 static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1203 					  unsigned long addr, pte_t *ptep)
1204 {
1205 #ifdef CONFIG_MMU
1206 	return ptep_get(ptep);
1207 #else
1208 	return *ptep;
1209 #endif
1210 }
1211 
1212 static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
1213 				   pte_t *ptep, pte_t pte, unsigned long sz)
1214 {
1215 }
1216 
1217 static inline void hugetlb_register_node(struct node *node)
1218 {
1219 }
1220 
1221 static inline void hugetlb_unregister_node(struct node *node)
1222 {
1223 }
1224 #endif	/* CONFIG_HUGETLB_PAGE */
1225 
1226 static inline spinlock_t *huge_pte_lock(struct hstate *h,
1227 					struct mm_struct *mm, pte_t *pte)
1228 {
1229 	spinlock_t *ptl;
1230 
1231 	ptl = huge_pte_lockptr(h, mm, pte);
1232 	spin_lock(ptl);
1233 	return ptl;
1234 }
1235 
1236 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1237 extern void __init hugetlb_cma_reserve(int order);
1238 #else
1239 static inline __init void hugetlb_cma_reserve(int order)
1240 {
1241 }
1242 #endif
1243 
1244 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
1245 static inline bool hugetlb_pmd_shared(pte_t *pte)
1246 {
1247 	return page_count(virt_to_page(pte)) > 1;
1248 }
1249 #else
1250 static inline bool hugetlb_pmd_shared(pte_t *pte)
1251 {
1252 	return false;
1253 }
1254 #endif
1255 
1256 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1257 
1258 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1259 /*
1260  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1261  * implement this.
1262  */
1263 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1264 #endif
1265 
1266 static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1267 {
1268 	return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1269 }
1270 
1271 bool __vma_private_lock(struct vm_area_struct *vma);
1272 
1273 /*
1274  * Safe version of huge_pte_offset() to check the locks.  See comments
1275  * above huge_pte_offset().
1276  */
1277 static inline pte_t *
1278 hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1279 {
1280 #if defined(CONFIG_HUGETLB_PAGE) && \
1281 	defined(CONFIG_ARCH_WANT_HUGE_PMD_SHARE) && defined(CONFIG_LOCKDEP)
1282 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1283 
1284 	/*
1285 	 * If pmd sharing possible, locking needed to safely walk the
1286 	 * hugetlb pgtables.  More information can be found at the comment
1287 	 * above huge_pte_offset() in the same file.
1288 	 *
1289 	 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1290 	 */
1291 	if (__vma_shareable_lock(vma))
1292 		WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1293 			     !lockdep_is_held(
1294 				 &vma->vm_file->f_mapping->i_mmap_rwsem));
1295 #endif
1296 	return huge_pte_offset(vma->vm_mm, addr, sz);
1297 }
1298 
1299 #endif /* _LINUX_HUGETLB_H */
1300