xref: /linux/include/linux/hyperv.h (revision 9a6b55ac)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *
4  * Copyright (c) 2011, Microsoft Corporation.
5  *
6  * Authors:
7  *   Haiyang Zhang <haiyangz@microsoft.com>
8  *   Hank Janssen  <hjanssen@microsoft.com>
9  *   K. Y. Srinivasan <kys@microsoft.com>
10  */
11 
12 #ifndef _HYPERV_H
13 #define _HYPERV_H
14 
15 #include <uapi/linux/hyperv.h>
16 
17 #include <linux/types.h>
18 #include <linux/scatterlist.h>
19 #include <linux/list.h>
20 #include <linux/timer.h>
21 #include <linux/completion.h>
22 #include <linux/device.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/interrupt.h>
25 #include <linux/reciprocal_div.h>
26 
27 #define MAX_PAGE_BUFFER_COUNT				32
28 #define MAX_MULTIPAGE_BUFFER_COUNT			32 /* 128K */
29 
30 #pragma pack(push, 1)
31 
32 /* Single-page buffer */
33 struct hv_page_buffer {
34 	u32 len;
35 	u32 offset;
36 	u64 pfn;
37 };
38 
39 /* Multiple-page buffer */
40 struct hv_multipage_buffer {
41 	/* Length and Offset determines the # of pfns in the array */
42 	u32 len;
43 	u32 offset;
44 	u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
45 };
46 
47 /*
48  * Multiple-page buffer array; the pfn array is variable size:
49  * The number of entries in the PFN array is determined by
50  * "len" and "offset".
51  */
52 struct hv_mpb_array {
53 	/* Length and Offset determines the # of pfns in the array */
54 	u32 len;
55 	u32 offset;
56 	u64 pfn_array[];
57 };
58 
59 /* 0x18 includes the proprietary packet header */
60 #define MAX_PAGE_BUFFER_PACKET		(0x18 +			\
61 					(sizeof(struct hv_page_buffer) * \
62 					 MAX_PAGE_BUFFER_COUNT))
63 #define MAX_MULTIPAGE_BUFFER_PACKET	(0x18 +			\
64 					 sizeof(struct hv_multipage_buffer))
65 
66 
67 #pragma pack(pop)
68 
69 struct hv_ring_buffer {
70 	/* Offset in bytes from the start of ring data below */
71 	u32 write_index;
72 
73 	/* Offset in bytes from the start of ring data below */
74 	u32 read_index;
75 
76 	u32 interrupt_mask;
77 
78 	/*
79 	 * WS2012/Win8 and later versions of Hyper-V implement interrupt
80 	 * driven flow management. The feature bit feat_pending_send_sz
81 	 * is set by the host on the host->guest ring buffer, and by the
82 	 * guest on the guest->host ring buffer.
83 	 *
84 	 * The meaning of the feature bit is a bit complex in that it has
85 	 * semantics that apply to both ring buffers.  If the guest sets
86 	 * the feature bit in the guest->host ring buffer, the guest is
87 	 * telling the host that:
88 	 * 1) It will set the pending_send_sz field in the guest->host ring
89 	 *    buffer when it is waiting for space to become available, and
90 	 * 2) It will read the pending_send_sz field in the host->guest
91 	 *    ring buffer and interrupt the host when it frees enough space
92 	 *
93 	 * Similarly, if the host sets the feature bit in the host->guest
94 	 * ring buffer, the host is telling the guest that:
95 	 * 1) It will set the pending_send_sz field in the host->guest ring
96 	 *    buffer when it is waiting for space to become available, and
97 	 * 2) It will read the pending_send_sz field in the guest->host
98 	 *    ring buffer and interrupt the guest when it frees enough space
99 	 *
100 	 * If either the guest or host does not set the feature bit that it
101 	 * owns, that guest or host must do polling if it encounters a full
102 	 * ring buffer, and not signal the other end with an interrupt.
103 	 */
104 	u32 pending_send_sz;
105 	u32 reserved1[12];
106 	union {
107 		struct {
108 			u32 feat_pending_send_sz:1;
109 		};
110 		u32 value;
111 	} feature_bits;
112 
113 	/* Pad it to PAGE_SIZE so that data starts on page boundary */
114 	u8	reserved2[4028];
115 
116 	/*
117 	 * Ring data starts here + RingDataStartOffset
118 	 * !!! DO NOT place any fields below this !!!
119 	 */
120 	u8 buffer[0];
121 } __packed;
122 
123 struct hv_ring_buffer_info {
124 	struct hv_ring_buffer *ring_buffer;
125 	u32 ring_size;			/* Include the shared header */
126 	struct reciprocal_value ring_size_div10_reciprocal;
127 	spinlock_t ring_lock;
128 
129 	u32 ring_datasize;		/* < ring_size */
130 	u32 priv_read_index;
131 	/*
132 	 * The ring buffer mutex lock. This lock prevents the ring buffer from
133 	 * being freed while the ring buffer is being accessed.
134 	 */
135 	struct mutex ring_buffer_mutex;
136 };
137 
138 
139 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
140 {
141 	u32 read_loc, write_loc, dsize, read;
142 
143 	dsize = rbi->ring_datasize;
144 	read_loc = rbi->ring_buffer->read_index;
145 	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
146 
147 	read = write_loc >= read_loc ? (write_loc - read_loc) :
148 		(dsize - read_loc) + write_loc;
149 
150 	return read;
151 }
152 
153 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
154 {
155 	u32 read_loc, write_loc, dsize, write;
156 
157 	dsize = rbi->ring_datasize;
158 	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
159 	write_loc = rbi->ring_buffer->write_index;
160 
161 	write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
162 		read_loc - write_loc;
163 	return write;
164 }
165 
166 static inline u32 hv_get_avail_to_write_percent(
167 		const struct hv_ring_buffer_info *rbi)
168 {
169 	u32 avail_write = hv_get_bytes_to_write(rbi);
170 
171 	return reciprocal_divide(
172 			(avail_write  << 3) + (avail_write << 1),
173 			rbi->ring_size_div10_reciprocal);
174 }
175 
176 /*
177  * VMBUS version is 32 bit entity broken up into
178  * two 16 bit quantities: major_number. minor_number.
179  *
180  * 0 . 13 (Windows Server 2008)
181  * 1 . 1  (Windows 7)
182  * 2 . 4  (Windows 8)
183  * 3 . 0  (Windows 8 R2)
184  * 4 . 0  (Windows 10)
185  * 4 . 1  (Windows 10 RS3)
186  * 5 . 0  (Newer Windows 10)
187  * 5 . 1  (Windows 10 RS4)
188  * 5 . 2  (Windows Server 2019, RS5)
189  */
190 
191 #define VERSION_WS2008  ((0 << 16) | (13))
192 #define VERSION_WIN7    ((1 << 16) | (1))
193 #define VERSION_WIN8    ((2 << 16) | (4))
194 #define VERSION_WIN8_1    ((3 << 16) | (0))
195 #define VERSION_WIN10 ((4 << 16) | (0))
196 #define VERSION_WIN10_V4_1 ((4 << 16) | (1))
197 #define VERSION_WIN10_V5 ((5 << 16) | (0))
198 #define VERSION_WIN10_V5_1 ((5 << 16) | (1))
199 #define VERSION_WIN10_V5_2 ((5 << 16) | (2))
200 
201 /* Make maximum size of pipe payload of 16K */
202 #define MAX_PIPE_DATA_PAYLOAD		(sizeof(u8) * 16384)
203 
204 /* Define PipeMode values. */
205 #define VMBUS_PIPE_TYPE_BYTE		0x00000000
206 #define VMBUS_PIPE_TYPE_MESSAGE		0x00000004
207 
208 /* The size of the user defined data buffer for non-pipe offers. */
209 #define MAX_USER_DEFINED_BYTES		120
210 
211 /* The size of the user defined data buffer for pipe offers. */
212 #define MAX_PIPE_USER_DEFINED_BYTES	116
213 
214 /*
215  * At the center of the Channel Management library is the Channel Offer. This
216  * struct contains the fundamental information about an offer.
217  */
218 struct vmbus_channel_offer {
219 	guid_t if_type;
220 	guid_t if_instance;
221 
222 	/*
223 	 * These two fields are not currently used.
224 	 */
225 	u64 reserved1;
226 	u64 reserved2;
227 
228 	u16 chn_flags;
229 	u16 mmio_megabytes;		/* in bytes * 1024 * 1024 */
230 
231 	union {
232 		/* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
233 		struct {
234 			unsigned char user_def[MAX_USER_DEFINED_BYTES];
235 		} std;
236 
237 		/*
238 		 * Pipes:
239 		 * The following sructure is an integrated pipe protocol, which
240 		 * is implemented on top of standard user-defined data. Pipe
241 		 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
242 		 * use.
243 		 */
244 		struct {
245 			u32  pipe_mode;
246 			unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
247 		} pipe;
248 	} u;
249 	/*
250 	 * The sub_channel_index is defined in Win8: a value of zero means a
251 	 * primary channel and a value of non-zero means a sub-channel.
252 	 *
253 	 * Before Win8, the field is reserved, meaning it's always zero.
254 	 */
255 	u16 sub_channel_index;
256 	u16 reserved3;
257 } __packed;
258 
259 /* Server Flags */
260 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE	1
261 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES	2
262 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS		4
263 #define VMBUS_CHANNEL_NAMED_PIPE_MODE			0x10
264 #define VMBUS_CHANNEL_LOOPBACK_OFFER			0x100
265 #define VMBUS_CHANNEL_PARENT_OFFER			0x200
266 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION	0x400
267 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER		0x2000
268 
269 struct vmpacket_descriptor {
270 	u16 type;
271 	u16 offset8;
272 	u16 len8;
273 	u16 flags;
274 	u64 trans_id;
275 } __packed;
276 
277 struct vmpacket_header {
278 	u32 prev_pkt_start_offset;
279 	struct vmpacket_descriptor descriptor;
280 } __packed;
281 
282 struct vmtransfer_page_range {
283 	u32 byte_count;
284 	u32 byte_offset;
285 } __packed;
286 
287 struct vmtransfer_page_packet_header {
288 	struct vmpacket_descriptor d;
289 	u16 xfer_pageset_id;
290 	u8  sender_owns_set;
291 	u8 reserved;
292 	u32 range_cnt;
293 	struct vmtransfer_page_range ranges[1];
294 } __packed;
295 
296 struct vmgpadl_packet_header {
297 	struct vmpacket_descriptor d;
298 	u32 gpadl;
299 	u32 reserved;
300 } __packed;
301 
302 struct vmadd_remove_transfer_page_set {
303 	struct vmpacket_descriptor d;
304 	u32 gpadl;
305 	u16 xfer_pageset_id;
306 	u16 reserved;
307 } __packed;
308 
309 /*
310  * This structure defines a range in guest physical space that can be made to
311  * look virtually contiguous.
312  */
313 struct gpa_range {
314 	u32 byte_count;
315 	u32 byte_offset;
316 	u64 pfn_array[0];
317 };
318 
319 /*
320  * This is the format for an Establish Gpadl packet, which contains a handle by
321  * which this GPADL will be known and a set of GPA ranges associated with it.
322  * This can be converted to a MDL by the guest OS.  If there are multiple GPA
323  * ranges, then the resulting MDL will be "chained," representing multiple VA
324  * ranges.
325  */
326 struct vmestablish_gpadl {
327 	struct vmpacket_descriptor d;
328 	u32 gpadl;
329 	u32 range_cnt;
330 	struct gpa_range range[1];
331 } __packed;
332 
333 /*
334  * This is the format for a Teardown Gpadl packet, which indicates that the
335  * GPADL handle in the Establish Gpadl packet will never be referenced again.
336  */
337 struct vmteardown_gpadl {
338 	struct vmpacket_descriptor d;
339 	u32 gpadl;
340 	u32 reserved;	/* for alignment to a 8-byte boundary */
341 } __packed;
342 
343 /*
344  * This is the format for a GPA-Direct packet, which contains a set of GPA
345  * ranges, in addition to commands and/or data.
346  */
347 struct vmdata_gpa_direct {
348 	struct vmpacket_descriptor d;
349 	u32 reserved;
350 	u32 range_cnt;
351 	struct gpa_range range[1];
352 } __packed;
353 
354 /* This is the format for a Additional Data Packet. */
355 struct vmadditional_data {
356 	struct vmpacket_descriptor d;
357 	u64 total_bytes;
358 	u32 offset;
359 	u32 byte_cnt;
360 	unsigned char data[1];
361 } __packed;
362 
363 union vmpacket_largest_possible_header {
364 	struct vmpacket_descriptor simple_hdr;
365 	struct vmtransfer_page_packet_header xfer_page_hdr;
366 	struct vmgpadl_packet_header gpadl_hdr;
367 	struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
368 	struct vmestablish_gpadl establish_gpadl_hdr;
369 	struct vmteardown_gpadl teardown_gpadl_hdr;
370 	struct vmdata_gpa_direct data_gpa_direct_hdr;
371 };
372 
373 #define VMPACKET_DATA_START_ADDRESS(__packet)	\
374 	(void *)(((unsigned char *)__packet) +	\
375 	 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
376 
377 #define VMPACKET_DATA_LENGTH(__packet)		\
378 	((((struct vmpacket_descriptor)__packet)->len8 -	\
379 	  ((struct vmpacket_descriptor)__packet)->offset8) * 8)
380 
381 #define VMPACKET_TRANSFER_MODE(__packet)	\
382 	(((struct IMPACT)__packet)->type)
383 
384 enum vmbus_packet_type {
385 	VM_PKT_INVALID				= 0x0,
386 	VM_PKT_SYNCH				= 0x1,
387 	VM_PKT_ADD_XFER_PAGESET			= 0x2,
388 	VM_PKT_RM_XFER_PAGESET			= 0x3,
389 	VM_PKT_ESTABLISH_GPADL			= 0x4,
390 	VM_PKT_TEARDOWN_GPADL			= 0x5,
391 	VM_PKT_DATA_INBAND			= 0x6,
392 	VM_PKT_DATA_USING_XFER_PAGES		= 0x7,
393 	VM_PKT_DATA_USING_GPADL			= 0x8,
394 	VM_PKT_DATA_USING_GPA_DIRECT		= 0x9,
395 	VM_PKT_CANCEL_REQUEST			= 0xa,
396 	VM_PKT_COMP				= 0xb,
397 	VM_PKT_DATA_USING_ADDITIONAL_PKT	= 0xc,
398 	VM_PKT_ADDITIONAL_DATA			= 0xd
399 };
400 
401 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED	1
402 
403 
404 /* Version 1 messages */
405 enum vmbus_channel_message_type {
406 	CHANNELMSG_INVALID			=  0,
407 	CHANNELMSG_OFFERCHANNEL		=  1,
408 	CHANNELMSG_RESCIND_CHANNELOFFER	=  2,
409 	CHANNELMSG_REQUESTOFFERS		=  3,
410 	CHANNELMSG_ALLOFFERS_DELIVERED	=  4,
411 	CHANNELMSG_OPENCHANNEL		=  5,
412 	CHANNELMSG_OPENCHANNEL_RESULT		=  6,
413 	CHANNELMSG_CLOSECHANNEL		=  7,
414 	CHANNELMSG_GPADL_HEADER		=  8,
415 	CHANNELMSG_GPADL_BODY			=  9,
416 	CHANNELMSG_GPADL_CREATED		= 10,
417 	CHANNELMSG_GPADL_TEARDOWN		= 11,
418 	CHANNELMSG_GPADL_TORNDOWN		= 12,
419 	CHANNELMSG_RELID_RELEASED		= 13,
420 	CHANNELMSG_INITIATE_CONTACT		= 14,
421 	CHANNELMSG_VERSION_RESPONSE		= 15,
422 	CHANNELMSG_UNLOAD			= 16,
423 	CHANNELMSG_UNLOAD_RESPONSE		= 17,
424 	CHANNELMSG_18				= 18,
425 	CHANNELMSG_19				= 19,
426 	CHANNELMSG_20				= 20,
427 	CHANNELMSG_TL_CONNECT_REQUEST		= 21,
428 	CHANNELMSG_COUNT
429 };
430 
431 /* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */
432 #define INVALID_RELID	U32_MAX
433 
434 struct vmbus_channel_message_header {
435 	enum vmbus_channel_message_type msgtype;
436 	u32 padding;
437 } __packed;
438 
439 /* Query VMBus Version parameters */
440 struct vmbus_channel_query_vmbus_version {
441 	struct vmbus_channel_message_header header;
442 	u32 version;
443 } __packed;
444 
445 /* VMBus Version Supported parameters */
446 struct vmbus_channel_version_supported {
447 	struct vmbus_channel_message_header header;
448 	u8 version_supported;
449 } __packed;
450 
451 /* Offer Channel parameters */
452 struct vmbus_channel_offer_channel {
453 	struct vmbus_channel_message_header header;
454 	struct vmbus_channel_offer offer;
455 	u32 child_relid;
456 	u8 monitorid;
457 	/*
458 	 * win7 and beyond splits this field into a bit field.
459 	 */
460 	u8 monitor_allocated:1;
461 	u8 reserved:7;
462 	/*
463 	 * These are new fields added in win7 and later.
464 	 * Do not access these fields without checking the
465 	 * negotiated protocol.
466 	 *
467 	 * If "is_dedicated_interrupt" is set, we must not set the
468 	 * associated bit in the channel bitmap while sending the
469 	 * interrupt to the host.
470 	 *
471 	 * connection_id is to be used in signaling the host.
472 	 */
473 	u16 is_dedicated_interrupt:1;
474 	u16 reserved1:15;
475 	u32 connection_id;
476 } __packed;
477 
478 /* Rescind Offer parameters */
479 struct vmbus_channel_rescind_offer {
480 	struct vmbus_channel_message_header header;
481 	u32 child_relid;
482 } __packed;
483 
484 static inline u32
485 hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi)
486 {
487 	return rbi->ring_buffer->pending_send_sz;
488 }
489 
490 /*
491  * Request Offer -- no parameters, SynIC message contains the partition ID
492  * Set Snoop -- no parameters, SynIC message contains the partition ID
493  * Clear Snoop -- no parameters, SynIC message contains the partition ID
494  * All Offers Delivered -- no parameters, SynIC message contains the partition
495  *		           ID
496  * Flush Client -- no parameters, SynIC message contains the partition ID
497  */
498 
499 /* Open Channel parameters */
500 struct vmbus_channel_open_channel {
501 	struct vmbus_channel_message_header header;
502 
503 	/* Identifies the specific VMBus channel that is being opened. */
504 	u32 child_relid;
505 
506 	/* ID making a particular open request at a channel offer unique. */
507 	u32 openid;
508 
509 	/* GPADL for the channel's ring buffer. */
510 	u32 ringbuffer_gpadlhandle;
511 
512 	/*
513 	 * Starting with win8, this field will be used to specify
514 	 * the target virtual processor on which to deliver the interrupt for
515 	 * the host to guest communication.
516 	 * Prior to win8, incoming channel interrupts would only
517 	 * be delivered on cpu 0. Setting this value to 0 would
518 	 * preserve the earlier behavior.
519 	 */
520 	u32 target_vp;
521 
522 	/*
523 	 * The upstream ring buffer begins at offset zero in the memory
524 	 * described by RingBufferGpadlHandle. The downstream ring buffer
525 	 * follows it at this offset (in pages).
526 	 */
527 	u32 downstream_ringbuffer_pageoffset;
528 
529 	/* User-specific data to be passed along to the server endpoint. */
530 	unsigned char userdata[MAX_USER_DEFINED_BYTES];
531 } __packed;
532 
533 /* Open Channel Result parameters */
534 struct vmbus_channel_open_result {
535 	struct vmbus_channel_message_header header;
536 	u32 child_relid;
537 	u32 openid;
538 	u32 status;
539 } __packed;
540 
541 /* Close channel parameters; */
542 struct vmbus_channel_close_channel {
543 	struct vmbus_channel_message_header header;
544 	u32 child_relid;
545 } __packed;
546 
547 /* Channel Message GPADL */
548 #define GPADL_TYPE_RING_BUFFER		1
549 #define GPADL_TYPE_SERVER_SAVE_AREA	2
550 #define GPADL_TYPE_TRANSACTION		8
551 
552 /*
553  * The number of PFNs in a GPADL message is defined by the number of
554  * pages that would be spanned by ByteCount and ByteOffset.  If the
555  * implied number of PFNs won't fit in this packet, there will be a
556  * follow-up packet that contains more.
557  */
558 struct vmbus_channel_gpadl_header {
559 	struct vmbus_channel_message_header header;
560 	u32 child_relid;
561 	u32 gpadl;
562 	u16 range_buflen;
563 	u16 rangecount;
564 	struct gpa_range range[0];
565 } __packed;
566 
567 /* This is the followup packet that contains more PFNs. */
568 struct vmbus_channel_gpadl_body {
569 	struct vmbus_channel_message_header header;
570 	u32 msgnumber;
571 	u32 gpadl;
572 	u64 pfn[0];
573 } __packed;
574 
575 struct vmbus_channel_gpadl_created {
576 	struct vmbus_channel_message_header header;
577 	u32 child_relid;
578 	u32 gpadl;
579 	u32 creation_status;
580 } __packed;
581 
582 struct vmbus_channel_gpadl_teardown {
583 	struct vmbus_channel_message_header header;
584 	u32 child_relid;
585 	u32 gpadl;
586 } __packed;
587 
588 struct vmbus_channel_gpadl_torndown {
589 	struct vmbus_channel_message_header header;
590 	u32 gpadl;
591 } __packed;
592 
593 struct vmbus_channel_relid_released {
594 	struct vmbus_channel_message_header header;
595 	u32 child_relid;
596 } __packed;
597 
598 struct vmbus_channel_initiate_contact {
599 	struct vmbus_channel_message_header header;
600 	u32 vmbus_version_requested;
601 	u32 target_vcpu; /* The VCPU the host should respond to */
602 	union {
603 		u64 interrupt_page;
604 		struct {
605 			u8	msg_sint;
606 			u8	padding1[3];
607 			u32	padding2;
608 		};
609 	};
610 	u64 monitor_page1;
611 	u64 monitor_page2;
612 } __packed;
613 
614 /* Hyper-V socket: guest's connect()-ing to host */
615 struct vmbus_channel_tl_connect_request {
616 	struct vmbus_channel_message_header header;
617 	guid_t guest_endpoint_id;
618 	guid_t host_service_id;
619 } __packed;
620 
621 struct vmbus_channel_version_response {
622 	struct vmbus_channel_message_header header;
623 	u8 version_supported;
624 
625 	u8 connection_state;
626 	u16 padding;
627 
628 	/*
629 	 * On new hosts that support VMBus protocol 5.0, we must use
630 	 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message,
631 	 * and for subsequent messages, we must use the Message Connection ID
632 	 * field in the host-returned Version Response Message.
633 	 *
634 	 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1).
635 	 */
636 	u32 msg_conn_id;
637 } __packed;
638 
639 enum vmbus_channel_state {
640 	CHANNEL_OFFER_STATE,
641 	CHANNEL_OPENING_STATE,
642 	CHANNEL_OPEN_STATE,
643 	CHANNEL_OPENED_STATE,
644 };
645 
646 /*
647  * Represents each channel msg on the vmbus connection This is a
648  * variable-size data structure depending on the msg type itself
649  */
650 struct vmbus_channel_msginfo {
651 	/* Bookkeeping stuff */
652 	struct list_head msglistentry;
653 
654 	/* So far, this is only used to handle gpadl body message */
655 	struct list_head submsglist;
656 
657 	/* Synchronize the request/response if needed */
658 	struct completion  waitevent;
659 	struct vmbus_channel *waiting_channel;
660 	union {
661 		struct vmbus_channel_version_supported version_supported;
662 		struct vmbus_channel_open_result open_result;
663 		struct vmbus_channel_gpadl_torndown gpadl_torndown;
664 		struct vmbus_channel_gpadl_created gpadl_created;
665 		struct vmbus_channel_version_response version_response;
666 	} response;
667 
668 	u32 msgsize;
669 	/*
670 	 * The channel message that goes out on the "wire".
671 	 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
672 	 */
673 	unsigned char msg[0];
674 };
675 
676 struct vmbus_close_msg {
677 	struct vmbus_channel_msginfo info;
678 	struct vmbus_channel_close_channel msg;
679 };
680 
681 /* Define connection identifier type. */
682 union hv_connection_id {
683 	u32 asu32;
684 	struct {
685 		u32 id:24;
686 		u32 reserved:8;
687 	} u;
688 };
689 
690 enum hv_numa_policy {
691 	HV_BALANCED = 0,
692 	HV_LOCALIZED,
693 };
694 
695 enum vmbus_device_type {
696 	HV_IDE = 0,
697 	HV_SCSI,
698 	HV_FC,
699 	HV_NIC,
700 	HV_ND,
701 	HV_PCIE,
702 	HV_FB,
703 	HV_KBD,
704 	HV_MOUSE,
705 	HV_KVP,
706 	HV_TS,
707 	HV_HB,
708 	HV_SHUTDOWN,
709 	HV_FCOPY,
710 	HV_BACKUP,
711 	HV_DM,
712 	HV_UNKNOWN,
713 };
714 
715 struct vmbus_device {
716 	u16  dev_type;
717 	guid_t guid;
718 	bool perf_device;
719 };
720 
721 struct vmbus_channel {
722 	struct list_head listentry;
723 
724 	struct hv_device *device_obj;
725 
726 	enum vmbus_channel_state state;
727 
728 	struct vmbus_channel_offer_channel offermsg;
729 	/*
730 	 * These are based on the OfferMsg.MonitorId.
731 	 * Save it here for easy access.
732 	 */
733 	u8 monitor_grp;
734 	u8 monitor_bit;
735 
736 	bool rescind; /* got rescind msg */
737 	struct completion rescind_event;
738 
739 	u32 ringbuffer_gpadlhandle;
740 
741 	/* Allocated memory for ring buffer */
742 	struct page *ringbuffer_page;
743 	u32 ringbuffer_pagecount;
744 	u32 ringbuffer_send_offset;
745 	struct hv_ring_buffer_info outbound;	/* send to parent */
746 	struct hv_ring_buffer_info inbound;	/* receive from parent */
747 
748 	struct vmbus_close_msg close_msg;
749 
750 	/* Statistics */
751 	u64	interrupts;	/* Host to Guest interrupts */
752 	u64	sig_events;	/* Guest to Host events */
753 
754 	/*
755 	 * Guest to host interrupts caused by the outbound ring buffer changing
756 	 * from empty to not empty.
757 	 */
758 	u64 intr_out_empty;
759 
760 	/*
761 	 * Indicates that a full outbound ring buffer was encountered. The flag
762 	 * is set to true when a full outbound ring buffer is encountered and
763 	 * set to false when a write to the outbound ring buffer is completed.
764 	 */
765 	bool out_full_flag;
766 
767 	/* Channel callback's invoked in softirq context */
768 	struct tasklet_struct callback_event;
769 	void (*onchannel_callback)(void *context);
770 	void *channel_callback_context;
771 
772 	/*
773 	 * A channel can be marked for one of three modes of reading:
774 	 *   BATCHED - callback called from taslket and should read
775 	 *            channel until empty. Interrupts from the host
776 	 *            are masked while read is in process (default).
777 	 *   DIRECT - callback called from tasklet (softirq).
778 	 *   ISR - callback called in interrupt context and must
779 	 *         invoke its own deferred processing.
780 	 *         Host interrupts are disabled and must be re-enabled
781 	 *         when ring is empty.
782 	 */
783 	enum hv_callback_mode {
784 		HV_CALL_BATCHED,
785 		HV_CALL_DIRECT,
786 		HV_CALL_ISR
787 	} callback_mode;
788 
789 	bool is_dedicated_interrupt;
790 	u64 sig_event;
791 
792 	/*
793 	 * Starting with win8, this field will be used to specify
794 	 * the target virtual processor on which to deliver the interrupt for
795 	 * the host to guest communication.
796 	 * Prior to win8, incoming channel interrupts would only
797 	 * be delivered on cpu 0. Setting this value to 0 would
798 	 * preserve the earlier behavior.
799 	 */
800 	u32 target_vp;
801 	/* The corresponding CPUID in the guest */
802 	u32 target_cpu;
803 	/*
804 	 * State to manage the CPU affiliation of channels.
805 	 */
806 	struct cpumask alloced_cpus_in_node;
807 	int numa_node;
808 	/*
809 	 * Support for sub-channels. For high performance devices,
810 	 * it will be useful to have multiple sub-channels to support
811 	 * a scalable communication infrastructure with the host.
812 	 * The support for sub-channels is implemented as an extention
813 	 * to the current infrastructure.
814 	 * The initial offer is considered the primary channel and this
815 	 * offer message will indicate if the host supports sub-channels.
816 	 * The guest is free to ask for sub-channels to be offerred and can
817 	 * open these sub-channels as a normal "primary" channel. However,
818 	 * all sub-channels will have the same type and instance guids as the
819 	 * primary channel. Requests sent on a given channel will result in a
820 	 * response on the same channel.
821 	 */
822 
823 	/*
824 	 * Sub-channel creation callback. This callback will be called in
825 	 * process context when a sub-channel offer is received from the host.
826 	 * The guest can open the sub-channel in the context of this callback.
827 	 */
828 	void (*sc_creation_callback)(struct vmbus_channel *new_sc);
829 
830 	/*
831 	 * Channel rescind callback. Some channels (the hvsock ones), need to
832 	 * register a callback which is invoked in vmbus_onoffer_rescind().
833 	 */
834 	void (*chn_rescind_callback)(struct vmbus_channel *channel);
835 
836 	/*
837 	 * The spinlock to protect the structure. It is being used to protect
838 	 * test-and-set access to various attributes of the structure as well
839 	 * as all sc_list operations.
840 	 */
841 	spinlock_t lock;
842 	/*
843 	 * All Sub-channels of a primary channel are linked here.
844 	 */
845 	struct list_head sc_list;
846 	/*
847 	 * The primary channel this sub-channel belongs to.
848 	 * This will be NULL for the primary channel.
849 	 */
850 	struct vmbus_channel *primary_channel;
851 	/*
852 	 * Support per-channel state for use by vmbus drivers.
853 	 */
854 	void *per_channel_state;
855 	/*
856 	 * To support per-cpu lookup mapping of relid to channel,
857 	 * link up channels based on their CPU affinity.
858 	 */
859 	struct list_head percpu_list;
860 
861 	/*
862 	 * Defer freeing channel until after all cpu's have
863 	 * gone through grace period.
864 	 */
865 	struct rcu_head rcu;
866 
867 	/*
868 	 * For sysfs per-channel properties.
869 	 */
870 	struct kobject			kobj;
871 
872 	/*
873 	 * For performance critical channels (storage, networking
874 	 * etc,), Hyper-V has a mechanism to enhance the throughput
875 	 * at the expense of latency:
876 	 * When the host is to be signaled, we just set a bit in a shared page
877 	 * and this bit will be inspected by the hypervisor within a certain
878 	 * window and if the bit is set, the host will be signaled. The window
879 	 * of time is the monitor latency - currently around 100 usecs. This
880 	 * mechanism improves throughput by:
881 	 *
882 	 * A) Making the host more efficient - each time it wakes up,
883 	 *    potentially it will process morev number of packets. The
884 	 *    monitor latency allows a batch to build up.
885 	 * B) By deferring the hypercall to signal, we will also minimize
886 	 *    the interrupts.
887 	 *
888 	 * Clearly, these optimizations improve throughput at the expense of
889 	 * latency. Furthermore, since the channel is shared for both
890 	 * control and data messages, control messages currently suffer
891 	 * unnecessary latency adversley impacting performance and boot
892 	 * time. To fix this issue, permit tagging the channel as being
893 	 * in "low latency" mode. In this mode, we will bypass the monitor
894 	 * mechanism.
895 	 */
896 	bool low_latency;
897 
898 	/*
899 	 * NUMA distribution policy:
900 	 * We support two policies:
901 	 * 1) Balanced: Here all performance critical channels are
902 	 *    distributed evenly amongst all the NUMA nodes.
903 	 *    This policy will be the default policy.
904 	 * 2) Localized: All channels of a given instance of a
905 	 *    performance critical service will be assigned CPUs
906 	 *    within a selected NUMA node.
907 	 */
908 	enum hv_numa_policy affinity_policy;
909 
910 	bool probe_done;
911 
912 	/*
913 	 * We must offload the handling of the primary/sub channels
914 	 * from the single-threaded vmbus_connection.work_queue to
915 	 * two different workqueue, otherwise we can block
916 	 * vmbus_connection.work_queue and hang: see vmbus_process_offer().
917 	 */
918 	struct work_struct add_channel_work;
919 
920 	/*
921 	 * Guest to host interrupts caused by the inbound ring buffer changing
922 	 * from full to not full while a packet is waiting.
923 	 */
924 	u64 intr_in_full;
925 
926 	/*
927 	 * The total number of write operations that encountered a full
928 	 * outbound ring buffer.
929 	 */
930 	u64 out_full_total;
931 
932 	/*
933 	 * The number of write operations that were the first to encounter a
934 	 * full outbound ring buffer.
935 	 */
936 	u64 out_full_first;
937 
938 	/* enabling/disabling fuzz testing on the channel (default is false)*/
939 	bool fuzz_testing_state;
940 
941 	/*
942 	 * Interrupt delay will delay the guest from emptying the ring buffer
943 	 * for a specific amount of time. The delay is in microseconds and will
944 	 * be between 1 to a maximum of 1000, its default is 0 (no delay).
945 	 * The  Message delay will delay guest reading on a per message basis
946 	 * in microseconds between 1 to 1000 with the default being 0
947 	 * (no delay).
948 	 */
949 	u32 fuzz_testing_interrupt_delay;
950 	u32 fuzz_testing_message_delay;
951 
952 };
953 
954 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
955 {
956 	return !!(c->offermsg.offer.chn_flags &
957 		  VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
958 }
959 
960 static inline bool is_sub_channel(const struct vmbus_channel *c)
961 {
962 	return c->offermsg.offer.sub_channel_index != 0;
963 }
964 
965 static inline void set_channel_affinity_state(struct vmbus_channel *c,
966 					      enum hv_numa_policy policy)
967 {
968 	c->affinity_policy = policy;
969 }
970 
971 static inline void set_channel_read_mode(struct vmbus_channel *c,
972 					enum hv_callback_mode mode)
973 {
974 	c->callback_mode = mode;
975 }
976 
977 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
978 {
979 	c->per_channel_state = s;
980 }
981 
982 static inline void *get_per_channel_state(struct vmbus_channel *c)
983 {
984 	return c->per_channel_state;
985 }
986 
987 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
988 						 u32 size)
989 {
990 	unsigned long flags;
991 
992 	if (size) {
993 		spin_lock_irqsave(&c->outbound.ring_lock, flags);
994 		++c->out_full_total;
995 
996 		if (!c->out_full_flag) {
997 			++c->out_full_first;
998 			c->out_full_flag = true;
999 		}
1000 		spin_unlock_irqrestore(&c->outbound.ring_lock, flags);
1001 	} else {
1002 		c->out_full_flag = false;
1003 	}
1004 
1005 	c->outbound.ring_buffer->pending_send_sz = size;
1006 }
1007 
1008 static inline void set_low_latency_mode(struct vmbus_channel *c)
1009 {
1010 	c->low_latency = true;
1011 }
1012 
1013 static inline void clear_low_latency_mode(struct vmbus_channel *c)
1014 {
1015 	c->low_latency = false;
1016 }
1017 
1018 void vmbus_onmessage(void *context);
1019 
1020 int vmbus_request_offers(void);
1021 
1022 /*
1023  * APIs for managing sub-channels.
1024  */
1025 
1026 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1027 			void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1028 
1029 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
1030 		void (*chn_rescind_cb)(struct vmbus_channel *));
1031 
1032 /*
1033  * Check if sub-channels have already been offerred. This API will be useful
1034  * when the driver is unloaded after establishing sub-channels. In this case,
1035  * when the driver is re-loaded, the driver would have to check if the
1036  * subchannels have already been established before attempting to request
1037  * the creation of sub-channels.
1038  * This function returns TRUE to indicate that subchannels have already been
1039  * created.
1040  * This function should be invoked after setting the callback function for
1041  * sub-channel creation.
1042  */
1043 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
1044 
1045 /* The format must be the same as struct vmdata_gpa_direct */
1046 struct vmbus_channel_packet_page_buffer {
1047 	u16 type;
1048 	u16 dataoffset8;
1049 	u16 length8;
1050 	u16 flags;
1051 	u64 transactionid;
1052 	u32 reserved;
1053 	u32 rangecount;
1054 	struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1055 } __packed;
1056 
1057 /* The format must be the same as struct vmdata_gpa_direct */
1058 struct vmbus_channel_packet_multipage_buffer {
1059 	u16 type;
1060 	u16 dataoffset8;
1061 	u16 length8;
1062 	u16 flags;
1063 	u64 transactionid;
1064 	u32 reserved;
1065 	u32 rangecount;		/* Always 1 in this case */
1066 	struct hv_multipage_buffer range;
1067 } __packed;
1068 
1069 /* The format must be the same as struct vmdata_gpa_direct */
1070 struct vmbus_packet_mpb_array {
1071 	u16 type;
1072 	u16 dataoffset8;
1073 	u16 length8;
1074 	u16 flags;
1075 	u64 transactionid;
1076 	u32 reserved;
1077 	u32 rangecount;         /* Always 1 in this case */
1078 	struct hv_mpb_array range;
1079 } __packed;
1080 
1081 int vmbus_alloc_ring(struct vmbus_channel *channel,
1082 		     u32 send_size, u32 recv_size);
1083 void vmbus_free_ring(struct vmbus_channel *channel);
1084 
1085 int vmbus_connect_ring(struct vmbus_channel *channel,
1086 		       void (*onchannel_callback)(void *context),
1087 		       void *context);
1088 int vmbus_disconnect_ring(struct vmbus_channel *channel);
1089 
1090 extern int vmbus_open(struct vmbus_channel *channel,
1091 			    u32 send_ringbuffersize,
1092 			    u32 recv_ringbuffersize,
1093 			    void *userdata,
1094 			    u32 userdatalen,
1095 			    void (*onchannel_callback)(void *context),
1096 			    void *context);
1097 
1098 extern void vmbus_close(struct vmbus_channel *channel);
1099 
1100 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1101 				  void *buffer,
1102 				  u32 bufferLen,
1103 				  u64 requestid,
1104 				  enum vmbus_packet_type type,
1105 				  u32 flags);
1106 
1107 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1108 					    struct hv_page_buffer pagebuffers[],
1109 					    u32 pagecount,
1110 					    void *buffer,
1111 					    u32 bufferlen,
1112 					    u64 requestid);
1113 
1114 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1115 				     struct vmbus_packet_mpb_array *mpb,
1116 				     u32 desc_size,
1117 				     void *buffer,
1118 				     u32 bufferlen,
1119 				     u64 requestid);
1120 
1121 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1122 				      void *kbuffer,
1123 				      u32 size,
1124 				      u32 *gpadl_handle);
1125 
1126 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1127 				     u32 gpadl_handle);
1128 
1129 void vmbus_reset_channel_cb(struct vmbus_channel *channel);
1130 
1131 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1132 				  void *buffer,
1133 				  u32 bufferlen,
1134 				  u32 *buffer_actual_len,
1135 				  u64 *requestid);
1136 
1137 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1138 				     void *buffer,
1139 				     u32 bufferlen,
1140 				     u32 *buffer_actual_len,
1141 				     u64 *requestid);
1142 
1143 
1144 extern void vmbus_ontimer(unsigned long data);
1145 
1146 /* Base driver object */
1147 struct hv_driver {
1148 	const char *name;
1149 
1150 	/*
1151 	 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1152 	 * channel flag, actually doesn't mean a synthetic device because the
1153 	 * offer's if_type/if_instance can change for every new hvsock
1154 	 * connection.
1155 	 *
1156 	 * However, to facilitate the notification of new-offer/rescind-offer
1157 	 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1158 	 * a special vmbus device, and hence we need the below flag to
1159 	 * indicate if the driver is the hvsock driver or not: we need to
1160 	 * specially treat the hvosck offer & driver in vmbus_match().
1161 	 */
1162 	bool hvsock;
1163 
1164 	/* the device type supported by this driver */
1165 	guid_t dev_type;
1166 	const struct hv_vmbus_device_id *id_table;
1167 
1168 	struct device_driver driver;
1169 
1170 	/* dynamic device GUID's */
1171 	struct  {
1172 		spinlock_t lock;
1173 		struct list_head list;
1174 	} dynids;
1175 
1176 	int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1177 	int (*remove)(struct hv_device *);
1178 	void (*shutdown)(struct hv_device *);
1179 
1180 	int (*suspend)(struct hv_device *);
1181 	int (*resume)(struct hv_device *);
1182 
1183 };
1184 
1185 /* Base device object */
1186 struct hv_device {
1187 	/* the device type id of this device */
1188 	guid_t dev_type;
1189 
1190 	/* the device instance id of this device */
1191 	guid_t dev_instance;
1192 	u16 vendor_id;
1193 	u16 device_id;
1194 
1195 	struct device device;
1196 	char *driver_override; /* Driver name to force a match */
1197 
1198 	struct vmbus_channel *channel;
1199 	struct kset	     *channels_kset;
1200 
1201 	/* place holder to keep track of the dir for hv device in debugfs */
1202 	struct dentry *debug_dir;
1203 
1204 };
1205 
1206 
1207 static inline struct hv_device *device_to_hv_device(struct device *d)
1208 {
1209 	return container_of(d, struct hv_device, device);
1210 }
1211 
1212 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1213 {
1214 	return container_of(d, struct hv_driver, driver);
1215 }
1216 
1217 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1218 {
1219 	dev_set_drvdata(&dev->device, data);
1220 }
1221 
1222 static inline void *hv_get_drvdata(struct hv_device *dev)
1223 {
1224 	return dev_get_drvdata(&dev->device);
1225 }
1226 
1227 struct hv_ring_buffer_debug_info {
1228 	u32 current_interrupt_mask;
1229 	u32 current_read_index;
1230 	u32 current_write_index;
1231 	u32 bytes_avail_toread;
1232 	u32 bytes_avail_towrite;
1233 };
1234 
1235 
1236 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
1237 				struct hv_ring_buffer_debug_info *debug_info);
1238 
1239 /* Vmbus interface */
1240 #define vmbus_driver_register(driver)	\
1241 	__vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1242 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1243 					 struct module *owner,
1244 					 const char *mod_name);
1245 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1246 
1247 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1248 
1249 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1250 			resource_size_t min, resource_size_t max,
1251 			resource_size_t size, resource_size_t align,
1252 			bool fb_overlap_ok);
1253 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1254 
1255 /*
1256  * GUID definitions of various offer types - services offered to the guest.
1257  */
1258 
1259 /*
1260  * Network GUID
1261  * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1262  */
1263 #define HV_NIC_GUID \
1264 	.guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1265 			  0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1266 
1267 /*
1268  * IDE GUID
1269  * {32412632-86cb-44a2-9b5c-50d1417354f5}
1270  */
1271 #define HV_IDE_GUID \
1272 	.guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1273 			  0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1274 
1275 /*
1276  * SCSI GUID
1277  * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1278  */
1279 #define HV_SCSI_GUID \
1280 	.guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1281 			  0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1282 
1283 /*
1284  * Shutdown GUID
1285  * {0e0b6031-5213-4934-818b-38d90ced39db}
1286  */
1287 #define HV_SHUTDOWN_GUID \
1288 	.guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1289 			  0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1290 
1291 /*
1292  * Time Synch GUID
1293  * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1294  */
1295 #define HV_TS_GUID \
1296 	.guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1297 			  0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1298 
1299 /*
1300  * Heartbeat GUID
1301  * {57164f39-9115-4e78-ab55-382f3bd5422d}
1302  */
1303 #define HV_HEART_BEAT_GUID \
1304 	.guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1305 			  0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1306 
1307 /*
1308  * KVP GUID
1309  * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1310  */
1311 #define HV_KVP_GUID \
1312 	.guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1313 			  0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1314 
1315 /*
1316  * Dynamic memory GUID
1317  * {525074dc-8985-46e2-8057-a307dc18a502}
1318  */
1319 #define HV_DM_GUID \
1320 	.guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1321 			  0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1322 
1323 /*
1324  * Mouse GUID
1325  * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1326  */
1327 #define HV_MOUSE_GUID \
1328 	.guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1329 			  0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1330 
1331 /*
1332  * Keyboard GUID
1333  * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1334  */
1335 #define HV_KBD_GUID \
1336 	.guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1337 			  0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1338 
1339 /*
1340  * VSS (Backup/Restore) GUID
1341  */
1342 #define HV_VSS_GUID \
1343 	.guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1344 			  0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1345 /*
1346  * Synthetic Video GUID
1347  * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1348  */
1349 #define HV_SYNTHVID_GUID \
1350 	.guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1351 			  0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1352 
1353 /*
1354  * Synthetic FC GUID
1355  * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1356  */
1357 #define HV_SYNTHFC_GUID \
1358 	.guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1359 			  0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1360 
1361 /*
1362  * Guest File Copy Service
1363  * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1364  */
1365 
1366 #define HV_FCOPY_GUID \
1367 	.guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1368 			  0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1369 
1370 /*
1371  * NetworkDirect. This is the guest RDMA service.
1372  * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1373  */
1374 #define HV_ND_GUID \
1375 	.guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1376 			  0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1377 
1378 /*
1379  * PCI Express Pass Through
1380  * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1381  */
1382 
1383 #define HV_PCIE_GUID \
1384 	.guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1385 			  0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1386 
1387 /*
1388  * Linux doesn't support the 3 devices: the first two are for
1389  * Automatic Virtual Machine Activation, and the third is for
1390  * Remote Desktop Virtualization.
1391  * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1392  * {3375baf4-9e15-4b30-b765-67acb10d607b}
1393  * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1394  */
1395 
1396 #define HV_AVMA1_GUID \
1397 	.guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1398 			  0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1399 
1400 #define HV_AVMA2_GUID \
1401 	.guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1402 			  0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1403 
1404 #define HV_RDV_GUID \
1405 	.guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1406 			  0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1407 
1408 /*
1409  * Common header for Hyper-V ICs
1410  */
1411 
1412 #define ICMSGTYPE_NEGOTIATE		0
1413 #define ICMSGTYPE_HEARTBEAT		1
1414 #define ICMSGTYPE_KVPEXCHANGE		2
1415 #define ICMSGTYPE_SHUTDOWN		3
1416 #define ICMSGTYPE_TIMESYNC		4
1417 #define ICMSGTYPE_VSS			5
1418 
1419 #define ICMSGHDRFLAG_TRANSACTION	1
1420 #define ICMSGHDRFLAG_REQUEST		2
1421 #define ICMSGHDRFLAG_RESPONSE		4
1422 
1423 
1424 /*
1425  * While we want to handle util services as regular devices,
1426  * there is only one instance of each of these services; so
1427  * we statically allocate the service specific state.
1428  */
1429 
1430 struct hv_util_service {
1431 	u8 *recv_buffer;
1432 	void *channel;
1433 	void (*util_cb)(void *);
1434 	int (*util_init)(struct hv_util_service *);
1435 	void (*util_deinit)(void);
1436 };
1437 
1438 struct vmbuspipe_hdr {
1439 	u32 flags;
1440 	u32 msgsize;
1441 } __packed;
1442 
1443 struct ic_version {
1444 	u16 major;
1445 	u16 minor;
1446 } __packed;
1447 
1448 struct icmsg_hdr {
1449 	struct ic_version icverframe;
1450 	u16 icmsgtype;
1451 	struct ic_version icvermsg;
1452 	u16 icmsgsize;
1453 	u32 status;
1454 	u8 ictransaction_id;
1455 	u8 icflags;
1456 	u8 reserved[2];
1457 } __packed;
1458 
1459 struct icmsg_negotiate {
1460 	u16 icframe_vercnt;
1461 	u16 icmsg_vercnt;
1462 	u32 reserved;
1463 	struct ic_version icversion_data[1]; /* any size array */
1464 } __packed;
1465 
1466 struct shutdown_msg_data {
1467 	u32 reason_code;
1468 	u32 timeout_seconds;
1469 	u32 flags;
1470 	u8  display_message[2048];
1471 } __packed;
1472 
1473 struct heartbeat_msg_data {
1474 	u64 seq_num;
1475 	u32 reserved[8];
1476 } __packed;
1477 
1478 /* Time Sync IC defs */
1479 #define ICTIMESYNCFLAG_PROBE	0
1480 #define ICTIMESYNCFLAG_SYNC	1
1481 #define ICTIMESYNCFLAG_SAMPLE	2
1482 
1483 #ifdef __x86_64__
1484 #define WLTIMEDELTA	116444736000000000L	/* in 100ns unit */
1485 #else
1486 #define WLTIMEDELTA	116444736000000000LL
1487 #endif
1488 
1489 struct ictimesync_data {
1490 	u64 parenttime;
1491 	u64 childtime;
1492 	u64 roundtriptime;
1493 	u8 flags;
1494 } __packed;
1495 
1496 struct ictimesync_ref_data {
1497 	u64 parenttime;
1498 	u64 vmreferencetime;
1499 	u8 flags;
1500 	char leapflags;
1501 	char stratum;
1502 	u8 reserved[3];
1503 } __packed;
1504 
1505 struct hyperv_service_callback {
1506 	u8 msg_type;
1507 	char *log_msg;
1508 	guid_t data;
1509 	struct vmbus_channel *channel;
1510 	void (*callback)(void *context);
1511 };
1512 
1513 #define MAX_SRV_VER	0x7ffffff
1514 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf,
1515 				const int *fw_version, int fw_vercnt,
1516 				const int *srv_version, int srv_vercnt,
1517 				int *nego_fw_version, int *nego_srv_version);
1518 
1519 void hv_process_channel_removal(struct vmbus_channel *channel);
1520 
1521 void vmbus_setevent(struct vmbus_channel *channel);
1522 /*
1523  * Negotiated version with the Host.
1524  */
1525 
1526 extern __u32 vmbus_proto_version;
1527 
1528 int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id,
1529 				  const guid_t *shv_host_servie_id);
1530 void vmbus_set_event(struct vmbus_channel *channel);
1531 
1532 /* Get the start of the ring buffer. */
1533 static inline void *
1534 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1535 {
1536 	return ring_info->ring_buffer->buffer;
1537 }
1538 
1539 /*
1540  * Mask off host interrupt callback notifications
1541  */
1542 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1543 {
1544 	rbi->ring_buffer->interrupt_mask = 1;
1545 
1546 	/* make sure mask update is not reordered */
1547 	virt_mb();
1548 }
1549 
1550 /*
1551  * Re-enable host callback and return number of outstanding bytes
1552  */
1553 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1554 {
1555 
1556 	rbi->ring_buffer->interrupt_mask = 0;
1557 
1558 	/* make sure mask update is not reordered */
1559 	virt_mb();
1560 
1561 	/*
1562 	 * Now check to see if the ring buffer is still empty.
1563 	 * If it is not, we raced and we need to process new
1564 	 * incoming messages.
1565 	 */
1566 	return hv_get_bytes_to_read(rbi);
1567 }
1568 
1569 /*
1570  * An API to support in-place processing of incoming VMBUS packets.
1571  */
1572 
1573 /* Get data payload associated with descriptor */
1574 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1575 {
1576 	return (void *)((unsigned long)desc + (desc->offset8 << 3));
1577 }
1578 
1579 /* Get data size associated with descriptor */
1580 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1581 {
1582 	return (desc->len8 << 3) - (desc->offset8 << 3);
1583 }
1584 
1585 
1586 struct vmpacket_descriptor *
1587 hv_pkt_iter_first(struct vmbus_channel *channel);
1588 
1589 struct vmpacket_descriptor *
1590 __hv_pkt_iter_next(struct vmbus_channel *channel,
1591 		   const struct vmpacket_descriptor *pkt);
1592 
1593 void hv_pkt_iter_close(struct vmbus_channel *channel);
1594 
1595 /*
1596  * Get next packet descriptor from iterator
1597  * If at end of list, return NULL and update host.
1598  */
1599 static inline struct vmpacket_descriptor *
1600 hv_pkt_iter_next(struct vmbus_channel *channel,
1601 		 const struct vmpacket_descriptor *pkt)
1602 {
1603 	struct vmpacket_descriptor *nxt;
1604 
1605 	nxt = __hv_pkt_iter_next(channel, pkt);
1606 	if (!nxt)
1607 		hv_pkt_iter_close(channel);
1608 
1609 	return nxt;
1610 }
1611 
1612 #define foreach_vmbus_pkt(pkt, channel) \
1613 	for (pkt = hv_pkt_iter_first(channel); pkt; \
1614 	    pkt = hv_pkt_iter_next(channel, pkt))
1615 
1616 /*
1617  * Interface for passing data between SR-IOV PF and VF drivers. The VF driver
1618  * sends requests to read and write blocks. Each block must be 128 bytes or
1619  * smaller. Optionally, the VF driver can register a callback function which
1620  * will be invoked when the host says that one or more of the first 64 block
1621  * IDs is "invalid" which means that the VF driver should reread them.
1622  */
1623 #define HV_CONFIG_BLOCK_SIZE_MAX 128
1624 
1625 int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len,
1626 			unsigned int block_id, unsigned int *bytes_returned);
1627 int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len,
1628 			 unsigned int block_id);
1629 int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context,
1630 				void (*block_invalidate)(void *context,
1631 							 u64 block_mask));
1632 
1633 struct hyperv_pci_block_ops {
1634 	int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len,
1635 			  unsigned int block_id, unsigned int *bytes_returned);
1636 	int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len,
1637 			   unsigned int block_id);
1638 	int (*reg_blk_invalidate)(struct pci_dev *dev, void *context,
1639 				  void (*block_invalidate)(void *context,
1640 							   u64 block_mask));
1641 };
1642 
1643 extern struct hyperv_pci_block_ops hvpci_block_ops;
1644 
1645 #endif /* _HYPERV_H */
1646