xref: /linux/include/linux/kernel.h (revision 44f57d78)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_KERNEL_H
3 #define _LINUX_KERNEL_H
4 
5 
6 #include <stdarg.h>
7 #include <linux/limits.h>
8 #include <linux/linkage.h>
9 #include <linux/stddef.h>
10 #include <linux/types.h>
11 #include <linux/compiler.h>
12 #include <linux/bitops.h>
13 #include <linux/log2.h>
14 #include <linux/typecheck.h>
15 #include <linux/printk.h>
16 #include <linux/build_bug.h>
17 #include <asm/byteorder.h>
18 #include <asm/div64.h>
19 #include <uapi/linux/kernel.h>
20 #include <asm/div64.h>
21 
22 #define STACK_MAGIC	0xdeadbeef
23 
24 /**
25  * REPEAT_BYTE - repeat the value @x multiple times as an unsigned long value
26  * @x: value to repeat
27  *
28  * NOTE: @x is not checked for > 0xff; larger values produce odd results.
29  */
30 #define REPEAT_BYTE(x)	((~0ul / 0xff) * (x))
31 
32 /* @a is a power of 2 value */
33 #define ALIGN(x, a)		__ALIGN_KERNEL((x), (a))
34 #define ALIGN_DOWN(x, a)	__ALIGN_KERNEL((x) - ((a) - 1), (a))
35 #define __ALIGN_MASK(x, mask)	__ALIGN_KERNEL_MASK((x), (mask))
36 #define PTR_ALIGN(p, a)		((typeof(p))ALIGN((unsigned long)(p), (a)))
37 #define IS_ALIGNED(x, a)		(((x) & ((typeof(x))(a) - 1)) == 0)
38 
39 /* generic data direction definitions */
40 #define READ			0
41 #define WRITE			1
42 
43 /**
44  * ARRAY_SIZE - get the number of elements in array @arr
45  * @arr: array to be sized
46  */
47 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
48 
49 #define u64_to_user_ptr(x) (		\
50 {					\
51 	typecheck(u64, (x));		\
52 	(void __user *)(uintptr_t)(x);	\
53 }					\
54 )
55 
56 /*
57  * This looks more complex than it should be. But we need to
58  * get the type for the ~ right in round_down (it needs to be
59  * as wide as the result!), and we want to evaluate the macro
60  * arguments just once each.
61  */
62 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
63 /**
64  * round_up - round up to next specified power of 2
65  * @x: the value to round
66  * @y: multiple to round up to (must be a power of 2)
67  *
68  * Rounds @x up to next multiple of @y (which must be a power of 2).
69  * To perform arbitrary rounding up, use roundup() below.
70  */
71 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
72 /**
73  * round_down - round down to next specified power of 2
74  * @x: the value to round
75  * @y: multiple to round down to (must be a power of 2)
76  *
77  * Rounds @x down to next multiple of @y (which must be a power of 2).
78  * To perform arbitrary rounding down, use rounddown() below.
79  */
80 #define round_down(x, y) ((x) & ~__round_mask(x, y))
81 
82 /**
83  * FIELD_SIZEOF - get the size of a struct's field
84  * @t: the target struct
85  * @f: the target struct's field
86  * Return: the size of @f in the struct definition without having a
87  * declared instance of @t.
88  */
89 #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
90 
91 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
92 
93 #define DIV_ROUND_DOWN_ULL(ll, d) \
94 	({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
95 
96 #define DIV_ROUND_UP_ULL(ll, d)		DIV_ROUND_DOWN_ULL((ll) + (d) - 1, (d))
97 
98 #if BITS_PER_LONG == 32
99 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
100 #else
101 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
102 #endif
103 
104 /**
105  * roundup - round up to the next specified multiple
106  * @x: the value to up
107  * @y: multiple to round up to
108  *
109  * Rounds @x up to next multiple of @y. If @y will always be a power
110  * of 2, consider using the faster round_up().
111  */
112 #define roundup(x, y) (					\
113 {							\
114 	typeof(y) __y = y;				\
115 	(((x) + (__y - 1)) / __y) * __y;		\
116 }							\
117 )
118 /**
119  * rounddown - round down to next specified multiple
120  * @x: the value to round
121  * @y: multiple to round down to
122  *
123  * Rounds @x down to next multiple of @y. If @y will always be a power
124  * of 2, consider using the faster round_down().
125  */
126 #define rounddown(x, y) (				\
127 {							\
128 	typeof(x) __x = (x);				\
129 	__x - (__x % (y));				\
130 }							\
131 )
132 
133 /*
134  * Divide positive or negative dividend by positive or negative divisor
135  * and round to closest integer. Result is undefined for negative
136  * divisors if the dividend variable type is unsigned and for negative
137  * dividends if the divisor variable type is unsigned.
138  */
139 #define DIV_ROUND_CLOSEST(x, divisor)(			\
140 {							\
141 	typeof(x) __x = x;				\
142 	typeof(divisor) __d = divisor;			\
143 	(((typeof(x))-1) > 0 ||				\
144 	 ((typeof(divisor))-1) > 0 ||			\
145 	 (((__x) > 0) == ((__d) > 0))) ?		\
146 		(((__x) + ((__d) / 2)) / (__d)) :	\
147 		(((__x) - ((__d) / 2)) / (__d));	\
148 }							\
149 )
150 /*
151  * Same as above but for u64 dividends. divisor must be a 32-bit
152  * number.
153  */
154 #define DIV_ROUND_CLOSEST_ULL(x, divisor)(		\
155 {							\
156 	typeof(divisor) __d = divisor;			\
157 	unsigned long long _tmp = (x) + (__d) / 2;	\
158 	do_div(_tmp, __d);				\
159 	_tmp;						\
160 }							\
161 )
162 
163 /*
164  * Multiplies an integer by a fraction, while avoiding unnecessary
165  * overflow or loss of precision.
166  */
167 #define mult_frac(x, numer, denom)(			\
168 {							\
169 	typeof(x) quot = (x) / (denom);			\
170 	typeof(x) rem  = (x) % (denom);			\
171 	(quot * (numer)) + ((rem * (numer)) / (denom));	\
172 }							\
173 )
174 
175 
176 #define _RET_IP_		(unsigned long)__builtin_return_address(0)
177 #define _THIS_IP_  ({ __label__ __here; __here: (unsigned long)&&__here; })
178 
179 #define sector_div(a, b) do_div(a, b)
180 
181 /**
182  * upper_32_bits - return bits 32-63 of a number
183  * @n: the number we're accessing
184  *
185  * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
186  * the "right shift count >= width of type" warning when that quantity is
187  * 32-bits.
188  */
189 #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
190 
191 /**
192  * lower_32_bits - return bits 0-31 of a number
193  * @n: the number we're accessing
194  */
195 #define lower_32_bits(n) ((u32)(n))
196 
197 struct completion;
198 struct pt_regs;
199 struct user;
200 
201 #ifdef CONFIG_PREEMPT_VOLUNTARY
202 extern int _cond_resched(void);
203 # define might_resched() _cond_resched()
204 #else
205 # define might_resched() do { } while (0)
206 #endif
207 
208 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
209 extern void ___might_sleep(const char *file, int line, int preempt_offset);
210 extern void __might_sleep(const char *file, int line, int preempt_offset);
211 extern void __cant_sleep(const char *file, int line, int preempt_offset);
212 
213 /**
214  * might_sleep - annotation for functions that can sleep
215  *
216  * this macro will print a stack trace if it is executed in an atomic
217  * context (spinlock, irq-handler, ...).
218  *
219  * This is a useful debugging help to be able to catch problems early and not
220  * be bitten later when the calling function happens to sleep when it is not
221  * supposed to.
222  */
223 # define might_sleep() \
224 	do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
225 /**
226  * cant_sleep - annotation for functions that cannot sleep
227  *
228  * this macro will print a stack trace if it is executed with preemption enabled
229  */
230 # define cant_sleep() \
231 	do { __cant_sleep(__FILE__, __LINE__, 0); } while (0)
232 # define sched_annotate_sleep()	(current->task_state_change = 0)
233 #else
234   static inline void ___might_sleep(const char *file, int line,
235 				   int preempt_offset) { }
236   static inline void __might_sleep(const char *file, int line,
237 				   int preempt_offset) { }
238 # define might_sleep() do { might_resched(); } while (0)
239 # define cant_sleep() do { } while (0)
240 # define sched_annotate_sleep() do { } while (0)
241 #endif
242 
243 #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
244 
245 /**
246  * abs - return absolute value of an argument
247  * @x: the value.  If it is unsigned type, it is converted to signed type first.
248  *     char is treated as if it was signed (regardless of whether it really is)
249  *     but the macro's return type is preserved as char.
250  *
251  * Return: an absolute value of x.
252  */
253 #define abs(x)	__abs_choose_expr(x, long long,				\
254 		__abs_choose_expr(x, long,				\
255 		__abs_choose_expr(x, int,				\
256 		__abs_choose_expr(x, short,				\
257 		__abs_choose_expr(x, char,				\
258 		__builtin_choose_expr(					\
259 			__builtin_types_compatible_p(typeof(x), char),	\
260 			(char)({ signed char __x = (x); __x<0?-__x:__x; }), \
261 			((void)0)))))))
262 
263 #define __abs_choose_expr(x, type, other) __builtin_choose_expr(	\
264 	__builtin_types_compatible_p(typeof(x),   signed type) ||	\
265 	__builtin_types_compatible_p(typeof(x), unsigned type),		\
266 	({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
267 
268 /**
269  * reciprocal_scale - "scale" a value into range [0, ep_ro)
270  * @val: value
271  * @ep_ro: right open interval endpoint
272  *
273  * Perform a "reciprocal multiplication" in order to "scale" a value into
274  * range [0, @ep_ro), where the upper interval endpoint is right-open.
275  * This is useful, e.g. for accessing a index of an array containing
276  * @ep_ro elements, for example. Think of it as sort of modulus, only that
277  * the result isn't that of modulo. ;) Note that if initial input is a
278  * small value, then result will return 0.
279  *
280  * Return: a result based on @val in interval [0, @ep_ro).
281  */
282 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
283 {
284 	return (u32)(((u64) val * ep_ro) >> 32);
285 }
286 
287 #if defined(CONFIG_MMU) && \
288 	(defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
289 #define might_fault() __might_fault(__FILE__, __LINE__)
290 void __might_fault(const char *file, int line);
291 #else
292 static inline void might_fault(void) { }
293 #endif
294 
295 extern struct atomic_notifier_head panic_notifier_list;
296 extern long (*panic_blink)(int state);
297 __printf(1, 2)
298 void panic(const char *fmt, ...) __noreturn __cold;
299 void nmi_panic(struct pt_regs *regs, const char *msg);
300 extern void oops_enter(void);
301 extern void oops_exit(void);
302 void print_oops_end_marker(void);
303 extern int oops_may_print(void);
304 void do_exit(long error_code) __noreturn;
305 void complete_and_exit(struct completion *, long) __noreturn;
306 
307 #ifdef CONFIG_ARCH_HAS_REFCOUNT
308 void refcount_error_report(struct pt_regs *regs, const char *err);
309 #else
310 static inline void refcount_error_report(struct pt_regs *regs, const char *err)
311 { }
312 #endif
313 
314 /* Internal, do not use. */
315 int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
316 int __must_check _kstrtol(const char *s, unsigned int base, long *res);
317 
318 int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
319 int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
320 
321 /**
322  * kstrtoul - convert a string to an unsigned long
323  * @s: The start of the string. The string must be null-terminated, and may also
324  *  include a single newline before its terminating null. The first character
325  *  may also be a plus sign, but not a minus sign.
326  * @base: The number base to use. The maximum supported base is 16. If base is
327  *  given as 0, then the base of the string is automatically detected with the
328  *  conventional semantics - If it begins with 0x the number will be parsed as a
329  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
330  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
331  * @res: Where to write the result of the conversion on success.
332  *
333  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
334  * Used as a replacement for the obsolete simple_strtoull. Return code must
335  * be checked.
336 */
337 static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
338 {
339 	/*
340 	 * We want to shortcut function call, but
341 	 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
342 	 */
343 	if (sizeof(unsigned long) == sizeof(unsigned long long) &&
344 	    __alignof__(unsigned long) == __alignof__(unsigned long long))
345 		return kstrtoull(s, base, (unsigned long long *)res);
346 	else
347 		return _kstrtoul(s, base, res);
348 }
349 
350 /**
351  * kstrtol - convert a string to a long
352  * @s: The start of the string. The string must be null-terminated, and may also
353  *  include a single newline before its terminating null. The first character
354  *  may also be a plus sign or a minus sign.
355  * @base: The number base to use. The maximum supported base is 16. If base is
356  *  given as 0, then the base of the string is automatically detected with the
357  *  conventional semantics - If it begins with 0x the number will be parsed as a
358  *  hexadecimal (case insensitive), if it otherwise begins with 0, it will be
359  *  parsed as an octal number. Otherwise it will be parsed as a decimal.
360  * @res: Where to write the result of the conversion on success.
361  *
362  * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
363  * Used as a replacement for the obsolete simple_strtoull. Return code must
364  * be checked.
365  */
366 static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
367 {
368 	/*
369 	 * We want to shortcut function call, but
370 	 * __builtin_types_compatible_p(long, long long) = 0.
371 	 */
372 	if (sizeof(long) == sizeof(long long) &&
373 	    __alignof__(long) == __alignof__(long long))
374 		return kstrtoll(s, base, (long long *)res);
375 	else
376 		return _kstrtol(s, base, res);
377 }
378 
379 int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
380 int __must_check kstrtoint(const char *s, unsigned int base, int *res);
381 
382 static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
383 {
384 	return kstrtoull(s, base, res);
385 }
386 
387 static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
388 {
389 	return kstrtoll(s, base, res);
390 }
391 
392 static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
393 {
394 	return kstrtouint(s, base, res);
395 }
396 
397 static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
398 {
399 	return kstrtoint(s, base, res);
400 }
401 
402 int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
403 int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
404 int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
405 int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
406 int __must_check kstrtobool(const char *s, bool *res);
407 
408 int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
409 int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
410 int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
411 int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
412 int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
413 int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
414 int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
415 int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
416 int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
417 int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
418 int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
419 
420 static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
421 {
422 	return kstrtoull_from_user(s, count, base, res);
423 }
424 
425 static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
426 {
427 	return kstrtoll_from_user(s, count, base, res);
428 }
429 
430 static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
431 {
432 	return kstrtouint_from_user(s, count, base, res);
433 }
434 
435 static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
436 {
437 	return kstrtoint_from_user(s, count, base, res);
438 }
439 
440 /* Obsolete, do not use.  Use kstrto<foo> instead */
441 
442 extern unsigned long simple_strtoul(const char *,char **,unsigned int);
443 extern long simple_strtol(const char *,char **,unsigned int);
444 extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
445 extern long long simple_strtoll(const char *,char **,unsigned int);
446 
447 extern int num_to_str(char *buf, int size,
448 		      unsigned long long num, unsigned int width);
449 
450 /* lib/printf utilities */
451 
452 extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
453 extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
454 extern __printf(3, 4)
455 int snprintf(char *buf, size_t size, const char *fmt, ...);
456 extern __printf(3, 0)
457 int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
458 extern __printf(3, 4)
459 int scnprintf(char *buf, size_t size, const char *fmt, ...);
460 extern __printf(3, 0)
461 int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
462 extern __printf(2, 3) __malloc
463 char *kasprintf(gfp_t gfp, const char *fmt, ...);
464 extern __printf(2, 0) __malloc
465 char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
466 extern __printf(2, 0)
467 const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
468 
469 extern __scanf(2, 3)
470 int sscanf(const char *, const char *, ...);
471 extern __scanf(2, 0)
472 int vsscanf(const char *, const char *, va_list);
473 
474 extern int get_option(char **str, int *pint);
475 extern char *get_options(const char *str, int nints, int *ints);
476 extern unsigned long long memparse(const char *ptr, char **retptr);
477 extern bool parse_option_str(const char *str, const char *option);
478 extern char *next_arg(char *args, char **param, char **val);
479 
480 extern int core_kernel_text(unsigned long addr);
481 extern int init_kernel_text(unsigned long addr);
482 extern int core_kernel_data(unsigned long addr);
483 extern int __kernel_text_address(unsigned long addr);
484 extern int kernel_text_address(unsigned long addr);
485 extern int func_ptr_is_kernel_text(void *ptr);
486 
487 u64 int_pow(u64 base, unsigned int exp);
488 unsigned long int_sqrt(unsigned long);
489 
490 #if BITS_PER_LONG < 64
491 u32 int_sqrt64(u64 x);
492 #else
493 static inline u32 int_sqrt64(u64 x)
494 {
495 	return (u32)int_sqrt(x);
496 }
497 #endif
498 
499 extern void bust_spinlocks(int yes);
500 extern int oops_in_progress;		/* If set, an oops, panic(), BUG() or die() is in progress */
501 extern int panic_timeout;
502 extern unsigned long panic_print;
503 extern int panic_on_oops;
504 extern int panic_on_unrecovered_nmi;
505 extern int panic_on_io_nmi;
506 extern int panic_on_warn;
507 extern int sysctl_panic_on_rcu_stall;
508 extern int sysctl_panic_on_stackoverflow;
509 
510 extern bool crash_kexec_post_notifiers;
511 
512 /*
513  * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
514  * holds a CPU number which is executing panic() currently. A value of
515  * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
516  */
517 extern atomic_t panic_cpu;
518 #define PANIC_CPU_INVALID	-1
519 
520 /*
521  * Only to be used by arch init code. If the user over-wrote the default
522  * CONFIG_PANIC_TIMEOUT, honor it.
523  */
524 static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
525 {
526 	if (panic_timeout == arch_default_timeout)
527 		panic_timeout = timeout;
528 }
529 extern const char *print_tainted(void);
530 enum lockdep_ok {
531 	LOCKDEP_STILL_OK,
532 	LOCKDEP_NOW_UNRELIABLE
533 };
534 extern void add_taint(unsigned flag, enum lockdep_ok);
535 extern int test_taint(unsigned flag);
536 extern unsigned long get_taint(void);
537 extern int root_mountflags;
538 
539 extern bool early_boot_irqs_disabled;
540 
541 /*
542  * Values used for system_state. Ordering of the states must not be changed
543  * as code checks for <, <=, >, >= STATE.
544  */
545 extern enum system_states {
546 	SYSTEM_BOOTING,
547 	SYSTEM_SCHEDULING,
548 	SYSTEM_RUNNING,
549 	SYSTEM_HALT,
550 	SYSTEM_POWER_OFF,
551 	SYSTEM_RESTART,
552 	SYSTEM_SUSPEND,
553 } system_state;
554 
555 /* This cannot be an enum because some may be used in assembly source. */
556 #define TAINT_PROPRIETARY_MODULE	0
557 #define TAINT_FORCED_MODULE		1
558 #define TAINT_CPU_OUT_OF_SPEC		2
559 #define TAINT_FORCED_RMMOD		3
560 #define TAINT_MACHINE_CHECK		4
561 #define TAINT_BAD_PAGE			5
562 #define TAINT_USER			6
563 #define TAINT_DIE			7
564 #define TAINT_OVERRIDDEN_ACPI_TABLE	8
565 #define TAINT_WARN			9
566 #define TAINT_CRAP			10
567 #define TAINT_FIRMWARE_WORKAROUND	11
568 #define TAINT_OOT_MODULE		12
569 #define TAINT_UNSIGNED_MODULE		13
570 #define TAINT_SOFTLOCKUP		14
571 #define TAINT_LIVEPATCH			15
572 #define TAINT_AUX			16
573 #define TAINT_RANDSTRUCT		17
574 #define TAINT_FLAGS_COUNT		18
575 
576 struct taint_flag {
577 	char c_true;	/* character printed when tainted */
578 	char c_false;	/* character printed when not tainted */
579 	bool module;	/* also show as a per-module taint flag */
580 };
581 
582 extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
583 
584 extern const char hex_asc[];
585 #define hex_asc_lo(x)	hex_asc[((x) & 0x0f)]
586 #define hex_asc_hi(x)	hex_asc[((x) & 0xf0) >> 4]
587 
588 static inline char *hex_byte_pack(char *buf, u8 byte)
589 {
590 	*buf++ = hex_asc_hi(byte);
591 	*buf++ = hex_asc_lo(byte);
592 	return buf;
593 }
594 
595 extern const char hex_asc_upper[];
596 #define hex_asc_upper_lo(x)	hex_asc_upper[((x) & 0x0f)]
597 #define hex_asc_upper_hi(x)	hex_asc_upper[((x) & 0xf0) >> 4]
598 
599 static inline char *hex_byte_pack_upper(char *buf, u8 byte)
600 {
601 	*buf++ = hex_asc_upper_hi(byte);
602 	*buf++ = hex_asc_upper_lo(byte);
603 	return buf;
604 }
605 
606 extern int hex_to_bin(char ch);
607 extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
608 extern char *bin2hex(char *dst, const void *src, size_t count);
609 
610 bool mac_pton(const char *s, u8 *mac);
611 
612 /*
613  * General tracing related utility functions - trace_printk(),
614  * tracing_on/tracing_off and tracing_start()/tracing_stop
615  *
616  * Use tracing_on/tracing_off when you want to quickly turn on or off
617  * tracing. It simply enables or disables the recording of the trace events.
618  * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
619  * file, which gives a means for the kernel and userspace to interact.
620  * Place a tracing_off() in the kernel where you want tracing to end.
621  * From user space, examine the trace, and then echo 1 > tracing_on
622  * to continue tracing.
623  *
624  * tracing_stop/tracing_start has slightly more overhead. It is used
625  * by things like suspend to ram where disabling the recording of the
626  * trace is not enough, but tracing must actually stop because things
627  * like calling smp_processor_id() may crash the system.
628  *
629  * Most likely, you want to use tracing_on/tracing_off.
630  */
631 
632 enum ftrace_dump_mode {
633 	DUMP_NONE,
634 	DUMP_ALL,
635 	DUMP_ORIG,
636 };
637 
638 #ifdef CONFIG_TRACING
639 void tracing_on(void);
640 void tracing_off(void);
641 int tracing_is_on(void);
642 void tracing_snapshot(void);
643 void tracing_snapshot_alloc(void);
644 
645 extern void tracing_start(void);
646 extern void tracing_stop(void);
647 
648 static inline __printf(1, 2)
649 void ____trace_printk_check_format(const char *fmt, ...)
650 {
651 }
652 #define __trace_printk_check_format(fmt, args...)			\
653 do {									\
654 	if (0)								\
655 		____trace_printk_check_format(fmt, ##args);		\
656 } while (0)
657 
658 /**
659  * trace_printk - printf formatting in the ftrace buffer
660  * @fmt: the printf format for printing
661  *
662  * Note: __trace_printk is an internal function for trace_printk() and
663  *       the @ip is passed in via the trace_printk() macro.
664  *
665  * This function allows a kernel developer to debug fast path sections
666  * that printk is not appropriate for. By scattering in various
667  * printk like tracing in the code, a developer can quickly see
668  * where problems are occurring.
669  *
670  * This is intended as a debugging tool for the developer only.
671  * Please refrain from leaving trace_printks scattered around in
672  * your code. (Extra memory is used for special buffers that are
673  * allocated when trace_printk() is used.)
674  *
675  * A little optimization trick is done here. If there's only one
676  * argument, there's no need to scan the string for printf formats.
677  * The trace_puts() will suffice. But how can we take advantage of
678  * using trace_puts() when trace_printk() has only one argument?
679  * By stringifying the args and checking the size we can tell
680  * whether or not there are args. __stringify((__VA_ARGS__)) will
681  * turn into "()\0" with a size of 3 when there are no args, anything
682  * else will be bigger. All we need to do is define a string to this,
683  * and then take its size and compare to 3. If it's bigger, use
684  * do_trace_printk() otherwise, optimize it to trace_puts(). Then just
685  * let gcc optimize the rest.
686  */
687 
688 #define trace_printk(fmt, ...)				\
689 do {							\
690 	char _______STR[] = __stringify((__VA_ARGS__));	\
691 	if (sizeof(_______STR) > 3)			\
692 		do_trace_printk(fmt, ##__VA_ARGS__);	\
693 	else						\
694 		trace_puts(fmt);			\
695 } while (0)
696 
697 #define do_trace_printk(fmt, args...)					\
698 do {									\
699 	static const char *trace_printk_fmt __used			\
700 		__attribute__((section("__trace_printk_fmt"))) =	\
701 		__builtin_constant_p(fmt) ? fmt : NULL;			\
702 									\
703 	__trace_printk_check_format(fmt, ##args);			\
704 									\
705 	if (__builtin_constant_p(fmt))					\
706 		__trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args);	\
707 	else								\
708 		__trace_printk(_THIS_IP_, fmt, ##args);			\
709 } while (0)
710 
711 extern __printf(2, 3)
712 int __trace_bprintk(unsigned long ip, const char *fmt, ...);
713 
714 extern __printf(2, 3)
715 int __trace_printk(unsigned long ip, const char *fmt, ...);
716 
717 /**
718  * trace_puts - write a string into the ftrace buffer
719  * @str: the string to record
720  *
721  * Note: __trace_bputs is an internal function for trace_puts and
722  *       the @ip is passed in via the trace_puts macro.
723  *
724  * This is similar to trace_printk() but is made for those really fast
725  * paths that a developer wants the least amount of "Heisenbug" effects,
726  * where the processing of the print format is still too much.
727  *
728  * This function allows a kernel developer to debug fast path sections
729  * that printk is not appropriate for. By scattering in various
730  * printk like tracing in the code, a developer can quickly see
731  * where problems are occurring.
732  *
733  * This is intended as a debugging tool for the developer only.
734  * Please refrain from leaving trace_puts scattered around in
735  * your code. (Extra memory is used for special buffers that are
736  * allocated when trace_puts() is used.)
737  *
738  * Returns: 0 if nothing was written, positive # if string was.
739  *  (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
740  */
741 
742 #define trace_puts(str) ({						\
743 	static const char *trace_printk_fmt __used			\
744 		__attribute__((section("__trace_printk_fmt"))) =	\
745 		__builtin_constant_p(str) ? str : NULL;			\
746 									\
747 	if (__builtin_constant_p(str))					\
748 		__trace_bputs(_THIS_IP_, trace_printk_fmt);		\
749 	else								\
750 		__trace_puts(_THIS_IP_, str, strlen(str));		\
751 })
752 extern int __trace_bputs(unsigned long ip, const char *str);
753 extern int __trace_puts(unsigned long ip, const char *str, int size);
754 
755 extern void trace_dump_stack(int skip);
756 
757 /*
758  * The double __builtin_constant_p is because gcc will give us an error
759  * if we try to allocate the static variable to fmt if it is not a
760  * constant. Even with the outer if statement.
761  */
762 #define ftrace_vprintk(fmt, vargs)					\
763 do {									\
764 	if (__builtin_constant_p(fmt)) {				\
765 		static const char *trace_printk_fmt __used		\
766 		  __attribute__((section("__trace_printk_fmt"))) =	\
767 			__builtin_constant_p(fmt) ? fmt : NULL;		\
768 									\
769 		__ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs);	\
770 	} else								\
771 		__ftrace_vprintk(_THIS_IP_, fmt, vargs);		\
772 } while (0)
773 
774 extern __printf(2, 0) int
775 __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
776 
777 extern __printf(2, 0) int
778 __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
779 
780 extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
781 #else
782 static inline void tracing_start(void) { }
783 static inline void tracing_stop(void) { }
784 static inline void trace_dump_stack(int skip) { }
785 
786 static inline void tracing_on(void) { }
787 static inline void tracing_off(void) { }
788 static inline int tracing_is_on(void) { return 0; }
789 static inline void tracing_snapshot(void) { }
790 static inline void tracing_snapshot_alloc(void) { }
791 
792 static inline __printf(1, 2)
793 int trace_printk(const char *fmt, ...)
794 {
795 	return 0;
796 }
797 static __printf(1, 0) inline int
798 ftrace_vprintk(const char *fmt, va_list ap)
799 {
800 	return 0;
801 }
802 static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
803 #endif /* CONFIG_TRACING */
804 
805 /*
806  * min()/max()/clamp() macros must accomplish three things:
807  *
808  * - avoid multiple evaluations of the arguments (so side-effects like
809  *   "x++" happen only once) when non-constant.
810  * - perform strict type-checking (to generate warnings instead of
811  *   nasty runtime surprises). See the "unnecessary" pointer comparison
812  *   in __typecheck().
813  * - retain result as a constant expressions when called with only
814  *   constant expressions (to avoid tripping VLA warnings in stack
815  *   allocation usage).
816  */
817 #define __typecheck(x, y) \
818 		(!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
819 
820 /*
821  * This returns a constant expression while determining if an argument is
822  * a constant expression, most importantly without evaluating the argument.
823  * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
824  */
825 #define __is_constexpr(x) \
826 	(sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
827 
828 #define __no_side_effects(x, y) \
829 		(__is_constexpr(x) && __is_constexpr(y))
830 
831 #define __safe_cmp(x, y) \
832 		(__typecheck(x, y) && __no_side_effects(x, y))
833 
834 #define __cmp(x, y, op)	((x) op (y) ? (x) : (y))
835 
836 #define __cmp_once(x, y, unique_x, unique_y, op) ({	\
837 		typeof(x) unique_x = (x);		\
838 		typeof(y) unique_y = (y);		\
839 		__cmp(unique_x, unique_y, op); })
840 
841 #define __careful_cmp(x, y, op) \
842 	__builtin_choose_expr(__safe_cmp(x, y), \
843 		__cmp(x, y, op), \
844 		__cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
845 
846 /**
847  * min - return minimum of two values of the same or compatible types
848  * @x: first value
849  * @y: second value
850  */
851 #define min(x, y)	__careful_cmp(x, y, <)
852 
853 /**
854  * max - return maximum of two values of the same or compatible types
855  * @x: first value
856  * @y: second value
857  */
858 #define max(x, y)	__careful_cmp(x, y, >)
859 
860 /**
861  * min3 - return minimum of three values
862  * @x: first value
863  * @y: second value
864  * @z: third value
865  */
866 #define min3(x, y, z) min((typeof(x))min(x, y), z)
867 
868 /**
869  * max3 - return maximum of three values
870  * @x: first value
871  * @y: second value
872  * @z: third value
873  */
874 #define max3(x, y, z) max((typeof(x))max(x, y), z)
875 
876 /**
877  * min_not_zero - return the minimum that is _not_ zero, unless both are zero
878  * @x: value1
879  * @y: value2
880  */
881 #define min_not_zero(x, y) ({			\
882 	typeof(x) __x = (x);			\
883 	typeof(y) __y = (y);			\
884 	__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
885 
886 /**
887  * clamp - return a value clamped to a given range with strict typechecking
888  * @val: current value
889  * @lo: lowest allowable value
890  * @hi: highest allowable value
891  *
892  * This macro does strict typechecking of @lo/@hi to make sure they are of the
893  * same type as @val.  See the unnecessary pointer comparisons.
894  */
895 #define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
896 
897 /*
898  * ..and if you can't take the strict
899  * types, you can specify one yourself.
900  *
901  * Or not use min/max/clamp at all, of course.
902  */
903 
904 /**
905  * min_t - return minimum of two values, using the specified type
906  * @type: data type to use
907  * @x: first value
908  * @y: second value
909  */
910 #define min_t(type, x, y)	__careful_cmp((type)(x), (type)(y), <)
911 
912 /**
913  * max_t - return maximum of two values, using the specified type
914  * @type: data type to use
915  * @x: first value
916  * @y: second value
917  */
918 #define max_t(type, x, y)	__careful_cmp((type)(x), (type)(y), >)
919 
920 /**
921  * clamp_t - return a value clamped to a given range using a given type
922  * @type: the type of variable to use
923  * @val: current value
924  * @lo: minimum allowable value
925  * @hi: maximum allowable value
926  *
927  * This macro does no typechecking and uses temporary variables of type
928  * @type to make all the comparisons.
929  */
930 #define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
931 
932 /**
933  * clamp_val - return a value clamped to a given range using val's type
934  * @val: current value
935  * @lo: minimum allowable value
936  * @hi: maximum allowable value
937  *
938  * This macro does no typechecking and uses temporary variables of whatever
939  * type the input argument @val is.  This is useful when @val is an unsigned
940  * type and @lo and @hi are literals that will otherwise be assigned a signed
941  * integer type.
942  */
943 #define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
944 
945 
946 /**
947  * swap - swap values of @a and @b
948  * @a: first value
949  * @b: second value
950  */
951 #define swap(a, b) \
952 	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
953 
954 /* This counts to 12. Any more, it will return 13th argument. */
955 #define __COUNT_ARGS(_0, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _n, X...) _n
956 #define COUNT_ARGS(X...) __COUNT_ARGS(, ##X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
957 
958 #define __CONCAT(a, b) a ## b
959 #define CONCATENATE(a, b) __CONCAT(a, b)
960 
961 /**
962  * container_of - cast a member of a structure out to the containing structure
963  * @ptr:	the pointer to the member.
964  * @type:	the type of the container struct this is embedded in.
965  * @member:	the name of the member within the struct.
966  *
967  */
968 #define container_of(ptr, type, member) ({				\
969 	void *__mptr = (void *)(ptr);					\
970 	BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&	\
971 			 !__same_type(*(ptr), void),			\
972 			 "pointer type mismatch in container_of()");	\
973 	((type *)(__mptr - offsetof(type, member))); })
974 
975 /**
976  * container_of_safe - cast a member of a structure out to the containing structure
977  * @ptr:	the pointer to the member.
978  * @type:	the type of the container struct this is embedded in.
979  * @member:	the name of the member within the struct.
980  *
981  * If IS_ERR_OR_NULL(ptr), ptr is returned unchanged.
982  */
983 #define container_of_safe(ptr, type, member) ({				\
984 	void *__mptr = (void *)(ptr);					\
985 	BUILD_BUG_ON_MSG(!__same_type(*(ptr), ((type *)0)->member) &&	\
986 			 !__same_type(*(ptr), void),			\
987 			 "pointer type mismatch in container_of()");	\
988 	IS_ERR_OR_NULL(__mptr) ? ERR_CAST(__mptr) :			\
989 		((type *)(__mptr - offsetof(type, member))); })
990 
991 /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
992 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
993 # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
994 #endif
995 
996 /* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
997 #define VERIFY_OCTAL_PERMISSIONS(perms)						\
998 	(BUILD_BUG_ON_ZERO((perms) < 0) +					\
999 	 BUILD_BUG_ON_ZERO((perms) > 0777) +					\
1000 	 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */		\
1001 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) +	\
1002 	 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) +		\
1003 	 /* USER_WRITABLE >= GROUP_WRITABLE */					\
1004 	 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) +	\
1005 	 /* OTHER_WRITABLE?  Generally considered a bad idea. */		\
1006 	 BUILD_BUG_ON_ZERO((perms) & 2) +					\
1007 	 (perms))
1008 #endif
1009