xref: /linux/include/linux/kvm_host.h (revision 1e525507)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4 
5 
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39 
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42 
43 #include <linux/kvm_types.h>
44 
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47 
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51 
52 /*
53  * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54  * used in kvm, other bits are visible for userspace which are defined in
55  * include/linux/kvm_h.
56  */
57 #define KVM_MEMSLOT_INVALID	(1UL << 16)
58 
59 /*
60  * Bit 63 of the memslot generation number is an "update in-progress flag",
61  * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62  * This flag effectively creates a unique generation number that is used to
63  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64  * i.e. may (or may not) have come from the previous memslots generation.
65  *
66  * This is necessary because the actual memslots update is not atomic with
67  * respect to the generation number update.  Updating the generation number
68  * first would allow a vCPU to cache a spte from the old memslots using the
69  * new generation number, and updating the generation number after switching
70  * to the new memslots would allow cache hits using the old generation number
71  * to reference the defunct memslots.
72  *
73  * This mechanism is used to prevent getting hits in KVM's caches while a
74  * memslot update is in-progress, and to prevent cache hits *after* updating
75  * the actual generation number against accesses that were inserted into the
76  * cache *before* the memslots were updated.
77  */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS	BIT_ULL(63)
79 
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS	2
82 
83 #ifndef KVM_MAX_NR_ADDRESS_SPACES
84 #define KVM_MAX_NR_ADDRESS_SPACES	1
85 #endif
86 
87 /*
88  * For the normal pfn, the highest 12 bits should be zero,
89  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
90  * mask bit 63 to indicate the noslot pfn.
91  */
92 #define KVM_PFN_ERR_MASK	(0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK	(0xfffULL << 52)
94 #define KVM_PFN_NOSLOT		(0x1ULL << 63)
95 
96 #define KVM_PFN_ERR_FAULT	(KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON	(KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT	(KVM_PFN_ERR_MASK + 2)
99 #define KVM_PFN_ERR_SIGPENDING	(KVM_PFN_ERR_MASK + 3)
100 
101 /*
102  * error pfns indicate that the gfn is in slot but faild to
103  * translate it to pfn on host.
104  */
105 static inline bool is_error_pfn(kvm_pfn_t pfn)
106 {
107 	return !!(pfn & KVM_PFN_ERR_MASK);
108 }
109 
110 /*
111  * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
112  * by a pending signal.  Note, the signal may or may not be fatal.
113  */
114 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
115 {
116 	return pfn == KVM_PFN_ERR_SIGPENDING;
117 }
118 
119 /*
120  * error_noslot pfns indicate that the gfn can not be
121  * translated to pfn - it is not in slot or failed to
122  * translate it to pfn.
123  */
124 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
125 {
126 	return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
127 }
128 
129 /* noslot pfn indicates that the gfn is not in slot. */
130 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
131 {
132 	return pfn == KVM_PFN_NOSLOT;
133 }
134 
135 /*
136  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
137  * provide own defines and kvm_is_error_hva
138  */
139 #ifndef KVM_HVA_ERR_BAD
140 
141 #define KVM_HVA_ERR_BAD		(PAGE_OFFSET)
142 #define KVM_HVA_ERR_RO_BAD	(PAGE_OFFSET + PAGE_SIZE)
143 
144 static inline bool kvm_is_error_hva(unsigned long addr)
145 {
146 	return addr >= PAGE_OFFSET;
147 }
148 
149 #endif
150 
151 static inline bool kvm_is_error_gpa(gpa_t gpa)
152 {
153 	return gpa == INVALID_GPA;
154 }
155 
156 #define KVM_ERR_PTR_BAD_PAGE	(ERR_PTR(-ENOENT))
157 
158 static inline bool is_error_page(struct page *page)
159 {
160 	return IS_ERR(page);
161 }
162 
163 #define KVM_REQUEST_MASK           GENMASK(7,0)
164 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
165 #define KVM_REQUEST_WAIT           BIT(9)
166 #define KVM_REQUEST_NO_ACTION      BIT(10)
167 /*
168  * Architecture-independent vcpu->requests bit members
169  * Bits 3-7 are reserved for more arch-independent bits.
170  */
171 #define KVM_REQ_TLB_FLUSH		(0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
172 #define KVM_REQ_VM_DEAD			(1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
173 #define KVM_REQ_UNBLOCK			2
174 #define KVM_REQ_DIRTY_RING_SOFT_FULL	3
175 #define KVM_REQUEST_ARCH_BASE		8
176 
177 /*
178  * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
179  * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
180  * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
181  * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
182  * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
183  * guarantee the vCPU received an IPI and has actually exited guest mode.
184  */
185 #define KVM_REQ_OUTSIDE_GUEST_MODE	(KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
186 
187 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
188 	BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
189 	(unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
190 })
191 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
192 
193 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
194 				 unsigned long *vcpu_bitmap);
195 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
196 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
197 				      struct kvm_vcpu *except);
198 
199 #define KVM_USERSPACE_IRQ_SOURCE_ID		0
200 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID	1
201 
202 extern struct mutex kvm_lock;
203 extern struct list_head vm_list;
204 
205 struct kvm_io_range {
206 	gpa_t addr;
207 	int len;
208 	struct kvm_io_device *dev;
209 };
210 
211 #define NR_IOBUS_DEVS 1000
212 
213 struct kvm_io_bus {
214 	int dev_count;
215 	int ioeventfd_count;
216 	struct kvm_io_range range[];
217 };
218 
219 enum kvm_bus {
220 	KVM_MMIO_BUS,
221 	KVM_PIO_BUS,
222 	KVM_VIRTIO_CCW_NOTIFY_BUS,
223 	KVM_FAST_MMIO_BUS,
224 	KVM_NR_BUSES
225 };
226 
227 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
228 		     int len, const void *val);
229 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
230 			    gpa_t addr, int len, const void *val, long cookie);
231 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
232 		    int len, void *val);
233 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
234 			    int len, struct kvm_io_device *dev);
235 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
236 			      struct kvm_io_device *dev);
237 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
238 					 gpa_t addr);
239 
240 #ifdef CONFIG_KVM_ASYNC_PF
241 struct kvm_async_pf {
242 	struct work_struct work;
243 	struct list_head link;
244 	struct list_head queue;
245 	struct kvm_vcpu *vcpu;
246 	gpa_t cr2_or_gpa;
247 	unsigned long addr;
248 	struct kvm_arch_async_pf arch;
249 	bool   wakeup_all;
250 	bool notpresent_injected;
251 };
252 
253 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
254 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
255 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
256 			unsigned long hva, struct kvm_arch_async_pf *arch);
257 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
258 #endif
259 
260 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
261 union kvm_mmu_notifier_arg {
262 	pte_t pte;
263 	unsigned long attributes;
264 };
265 
266 struct kvm_gfn_range {
267 	struct kvm_memory_slot *slot;
268 	gfn_t start;
269 	gfn_t end;
270 	union kvm_mmu_notifier_arg arg;
271 	bool may_block;
272 };
273 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
274 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
275 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
276 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
277 #endif
278 
279 enum {
280 	OUTSIDE_GUEST_MODE,
281 	IN_GUEST_MODE,
282 	EXITING_GUEST_MODE,
283 	READING_SHADOW_PAGE_TABLES,
284 };
285 
286 #define KVM_UNMAPPED_PAGE	((void *) 0x500 + POISON_POINTER_DELTA)
287 
288 struct kvm_host_map {
289 	/*
290 	 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
291 	 * a 'struct page' for it. When using mem= kernel parameter some memory
292 	 * can be used as guest memory but they are not managed by host
293 	 * kernel).
294 	 * If 'pfn' is not managed by the host kernel, this field is
295 	 * initialized to KVM_UNMAPPED_PAGE.
296 	 */
297 	struct page *page;
298 	void *hva;
299 	kvm_pfn_t pfn;
300 	kvm_pfn_t gfn;
301 };
302 
303 /*
304  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
305  * directly to check for that.
306  */
307 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
308 {
309 	return !!map->hva;
310 }
311 
312 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
313 {
314 	return single_task_running() && !need_resched() && ktime_before(cur, stop);
315 }
316 
317 /*
318  * Sometimes a large or cross-page mmio needs to be broken up into separate
319  * exits for userspace servicing.
320  */
321 struct kvm_mmio_fragment {
322 	gpa_t gpa;
323 	void *data;
324 	unsigned len;
325 };
326 
327 struct kvm_vcpu {
328 	struct kvm *kvm;
329 #ifdef CONFIG_PREEMPT_NOTIFIERS
330 	struct preempt_notifier preempt_notifier;
331 #endif
332 	int cpu;
333 	int vcpu_id; /* id given by userspace at creation */
334 	int vcpu_idx; /* index into kvm->vcpu_array */
335 	int ____srcu_idx; /* Don't use this directly.  You've been warned. */
336 #ifdef CONFIG_PROVE_RCU
337 	int srcu_depth;
338 #endif
339 	int mode;
340 	u64 requests;
341 	unsigned long guest_debug;
342 
343 	struct mutex mutex;
344 	struct kvm_run *run;
345 
346 #ifndef __KVM_HAVE_ARCH_WQP
347 	struct rcuwait wait;
348 #endif
349 	struct pid __rcu *pid;
350 	int sigset_active;
351 	sigset_t sigset;
352 	unsigned int halt_poll_ns;
353 	bool valid_wakeup;
354 
355 #ifdef CONFIG_HAS_IOMEM
356 	int mmio_needed;
357 	int mmio_read_completed;
358 	int mmio_is_write;
359 	int mmio_cur_fragment;
360 	int mmio_nr_fragments;
361 	struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
362 #endif
363 
364 #ifdef CONFIG_KVM_ASYNC_PF
365 	struct {
366 		u32 queued;
367 		struct list_head queue;
368 		struct list_head done;
369 		spinlock_t lock;
370 	} async_pf;
371 #endif
372 
373 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
374 	/*
375 	 * Cpu relax intercept or pause loop exit optimization
376 	 * in_spin_loop: set when a vcpu does a pause loop exit
377 	 *  or cpu relax intercepted.
378 	 * dy_eligible: indicates whether vcpu is eligible for directed yield.
379 	 */
380 	struct {
381 		bool in_spin_loop;
382 		bool dy_eligible;
383 	} spin_loop;
384 #endif
385 	bool preempted;
386 	bool ready;
387 	struct kvm_vcpu_arch arch;
388 	struct kvm_vcpu_stat stat;
389 	char stats_id[KVM_STATS_NAME_SIZE];
390 	struct kvm_dirty_ring dirty_ring;
391 
392 	/*
393 	 * The most recently used memslot by this vCPU and the slots generation
394 	 * for which it is valid.
395 	 * No wraparound protection is needed since generations won't overflow in
396 	 * thousands of years, even assuming 1M memslot operations per second.
397 	 */
398 	struct kvm_memory_slot *last_used_slot;
399 	u64 last_used_slot_gen;
400 };
401 
402 /*
403  * Start accounting time towards a guest.
404  * Must be called before entering guest context.
405  */
406 static __always_inline void guest_timing_enter_irqoff(void)
407 {
408 	/*
409 	 * This is running in ioctl context so its safe to assume that it's the
410 	 * stime pending cputime to flush.
411 	 */
412 	instrumentation_begin();
413 	vtime_account_guest_enter();
414 	instrumentation_end();
415 }
416 
417 /*
418  * Enter guest context and enter an RCU extended quiescent state.
419  *
420  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
421  * unsafe to use any code which may directly or indirectly use RCU, tracing
422  * (including IRQ flag tracing), or lockdep. All code in this period must be
423  * non-instrumentable.
424  */
425 static __always_inline void guest_context_enter_irqoff(void)
426 {
427 	/*
428 	 * KVM does not hold any references to rcu protected data when it
429 	 * switches CPU into a guest mode. In fact switching to a guest mode
430 	 * is very similar to exiting to userspace from rcu point of view. In
431 	 * addition CPU may stay in a guest mode for quite a long time (up to
432 	 * one time slice). Lets treat guest mode as quiescent state, just like
433 	 * we do with user-mode execution.
434 	 */
435 	if (!context_tracking_guest_enter()) {
436 		instrumentation_begin();
437 		rcu_virt_note_context_switch();
438 		instrumentation_end();
439 	}
440 }
441 
442 /*
443  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
444  * guest_state_enter_irqoff().
445  */
446 static __always_inline void guest_enter_irqoff(void)
447 {
448 	guest_timing_enter_irqoff();
449 	guest_context_enter_irqoff();
450 }
451 
452 /**
453  * guest_state_enter_irqoff - Fixup state when entering a guest
454  *
455  * Entry to a guest will enable interrupts, but the kernel state is interrupts
456  * disabled when this is invoked. Also tell RCU about it.
457  *
458  * 1) Trace interrupts on state
459  * 2) Invoke context tracking if enabled to adjust RCU state
460  * 3) Tell lockdep that interrupts are enabled
461  *
462  * Invoked from architecture specific code before entering a guest.
463  * Must be called with interrupts disabled and the caller must be
464  * non-instrumentable.
465  * The caller has to invoke guest_timing_enter_irqoff() before this.
466  *
467  * Note: this is analogous to exit_to_user_mode().
468  */
469 static __always_inline void guest_state_enter_irqoff(void)
470 {
471 	instrumentation_begin();
472 	trace_hardirqs_on_prepare();
473 	lockdep_hardirqs_on_prepare();
474 	instrumentation_end();
475 
476 	guest_context_enter_irqoff();
477 	lockdep_hardirqs_on(CALLER_ADDR0);
478 }
479 
480 /*
481  * Exit guest context and exit an RCU extended quiescent state.
482  *
483  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
484  * unsafe to use any code which may directly or indirectly use RCU, tracing
485  * (including IRQ flag tracing), or lockdep. All code in this period must be
486  * non-instrumentable.
487  */
488 static __always_inline void guest_context_exit_irqoff(void)
489 {
490 	context_tracking_guest_exit();
491 }
492 
493 /*
494  * Stop accounting time towards a guest.
495  * Must be called after exiting guest context.
496  */
497 static __always_inline void guest_timing_exit_irqoff(void)
498 {
499 	instrumentation_begin();
500 	/* Flush the guest cputime we spent on the guest */
501 	vtime_account_guest_exit();
502 	instrumentation_end();
503 }
504 
505 /*
506  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
507  * guest_timing_exit_irqoff().
508  */
509 static __always_inline void guest_exit_irqoff(void)
510 {
511 	guest_context_exit_irqoff();
512 	guest_timing_exit_irqoff();
513 }
514 
515 static inline void guest_exit(void)
516 {
517 	unsigned long flags;
518 
519 	local_irq_save(flags);
520 	guest_exit_irqoff();
521 	local_irq_restore(flags);
522 }
523 
524 /**
525  * guest_state_exit_irqoff - Establish state when returning from guest mode
526  *
527  * Entry from a guest disables interrupts, but guest mode is traced as
528  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
529  *
530  * 1) Tell lockdep that interrupts are disabled
531  * 2) Invoke context tracking if enabled to reactivate RCU
532  * 3) Trace interrupts off state
533  *
534  * Invoked from architecture specific code after exiting a guest.
535  * Must be invoked with interrupts disabled and the caller must be
536  * non-instrumentable.
537  * The caller has to invoke guest_timing_exit_irqoff() after this.
538  *
539  * Note: this is analogous to enter_from_user_mode().
540  */
541 static __always_inline void guest_state_exit_irqoff(void)
542 {
543 	lockdep_hardirqs_off(CALLER_ADDR0);
544 	guest_context_exit_irqoff();
545 
546 	instrumentation_begin();
547 	trace_hardirqs_off_finish();
548 	instrumentation_end();
549 }
550 
551 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
552 {
553 	/*
554 	 * The memory barrier ensures a previous write to vcpu->requests cannot
555 	 * be reordered with the read of vcpu->mode.  It pairs with the general
556 	 * memory barrier following the write of vcpu->mode in VCPU RUN.
557 	 */
558 	smp_mb__before_atomic();
559 	return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
560 }
561 
562 /*
563  * Some of the bitops functions do not support too long bitmaps.
564  * This number must be determined not to exceed such limits.
565  */
566 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
567 
568 /*
569  * Since at idle each memslot belongs to two memslot sets it has to contain
570  * two embedded nodes for each data structure that it forms a part of.
571  *
572  * Two memslot sets (one active and one inactive) are necessary so the VM
573  * continues to run on one memslot set while the other is being modified.
574  *
575  * These two memslot sets normally point to the same set of memslots.
576  * They can, however, be desynchronized when performing a memslot management
577  * operation by replacing the memslot to be modified by its copy.
578  * After the operation is complete, both memslot sets once again point to
579  * the same, common set of memslot data.
580  *
581  * The memslots themselves are independent of each other so they can be
582  * individually added or deleted.
583  */
584 struct kvm_memory_slot {
585 	struct hlist_node id_node[2];
586 	struct interval_tree_node hva_node[2];
587 	struct rb_node gfn_node[2];
588 	gfn_t base_gfn;
589 	unsigned long npages;
590 	unsigned long *dirty_bitmap;
591 	struct kvm_arch_memory_slot arch;
592 	unsigned long userspace_addr;
593 	u32 flags;
594 	short id;
595 	u16 as_id;
596 
597 #ifdef CONFIG_KVM_PRIVATE_MEM
598 	struct {
599 		struct file __rcu *file;
600 		pgoff_t pgoff;
601 	} gmem;
602 #endif
603 };
604 
605 static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
606 {
607 	return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
608 }
609 
610 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
611 {
612 	return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
613 }
614 
615 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
616 {
617 	return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
618 }
619 
620 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
621 {
622 	unsigned long len = kvm_dirty_bitmap_bytes(memslot);
623 
624 	return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
625 }
626 
627 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
628 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
629 #endif
630 
631 struct kvm_s390_adapter_int {
632 	u64 ind_addr;
633 	u64 summary_addr;
634 	u64 ind_offset;
635 	u32 summary_offset;
636 	u32 adapter_id;
637 };
638 
639 struct kvm_hv_sint {
640 	u32 vcpu;
641 	u32 sint;
642 };
643 
644 struct kvm_xen_evtchn {
645 	u32 port;
646 	u32 vcpu_id;
647 	int vcpu_idx;
648 	u32 priority;
649 };
650 
651 struct kvm_kernel_irq_routing_entry {
652 	u32 gsi;
653 	u32 type;
654 	int (*set)(struct kvm_kernel_irq_routing_entry *e,
655 		   struct kvm *kvm, int irq_source_id, int level,
656 		   bool line_status);
657 	union {
658 		struct {
659 			unsigned irqchip;
660 			unsigned pin;
661 		} irqchip;
662 		struct {
663 			u32 address_lo;
664 			u32 address_hi;
665 			u32 data;
666 			u32 flags;
667 			u32 devid;
668 		} msi;
669 		struct kvm_s390_adapter_int adapter;
670 		struct kvm_hv_sint hv_sint;
671 		struct kvm_xen_evtchn xen_evtchn;
672 	};
673 	struct hlist_node link;
674 };
675 
676 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
677 struct kvm_irq_routing_table {
678 	int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
679 	u32 nr_rt_entries;
680 	/*
681 	 * Array indexed by gsi. Each entry contains list of irq chips
682 	 * the gsi is connected to.
683 	 */
684 	struct hlist_head map[] __counted_by(nr_rt_entries);
685 };
686 #endif
687 
688 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
689 
690 #ifndef KVM_INTERNAL_MEM_SLOTS
691 #define KVM_INTERNAL_MEM_SLOTS 0
692 #endif
693 
694 #define KVM_MEM_SLOTS_NUM SHRT_MAX
695 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
696 
697 #if KVM_MAX_NR_ADDRESS_SPACES == 1
698 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
699 {
700 	return KVM_MAX_NR_ADDRESS_SPACES;
701 }
702 
703 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
704 {
705 	return 0;
706 }
707 #endif
708 
709 /*
710  * Arch code must define kvm_arch_has_private_mem if support for private memory
711  * is enabled.
712  */
713 #if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
714 static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
715 {
716 	return false;
717 }
718 #endif
719 
720 struct kvm_memslots {
721 	u64 generation;
722 	atomic_long_t last_used_slot;
723 	struct rb_root_cached hva_tree;
724 	struct rb_root gfn_tree;
725 	/*
726 	 * The mapping table from slot id to memslot.
727 	 *
728 	 * 7-bit bucket count matches the size of the old id to index array for
729 	 * 512 slots, while giving good performance with this slot count.
730 	 * Higher bucket counts bring only small performance improvements but
731 	 * always result in higher memory usage (even for lower memslot counts).
732 	 */
733 	DECLARE_HASHTABLE(id_hash, 7);
734 	int node_idx;
735 };
736 
737 struct kvm {
738 #ifdef KVM_HAVE_MMU_RWLOCK
739 	rwlock_t mmu_lock;
740 #else
741 	spinlock_t mmu_lock;
742 #endif /* KVM_HAVE_MMU_RWLOCK */
743 
744 	struct mutex slots_lock;
745 
746 	/*
747 	 * Protects the arch-specific fields of struct kvm_memory_slots in
748 	 * use by the VM. To be used under the slots_lock (above) or in a
749 	 * kvm->srcu critical section where acquiring the slots_lock would
750 	 * lead to deadlock with the synchronize_srcu in
751 	 * kvm_swap_active_memslots().
752 	 */
753 	struct mutex slots_arch_lock;
754 	struct mm_struct *mm; /* userspace tied to this vm */
755 	unsigned long nr_memslot_pages;
756 	/* The two memslot sets - active and inactive (per address space) */
757 	struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
758 	/* The current active memslot set for each address space */
759 	struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
760 	struct xarray vcpu_array;
761 	/*
762 	 * Protected by slots_lock, but can be read outside if an
763 	 * incorrect answer is acceptable.
764 	 */
765 	atomic_t nr_memslots_dirty_logging;
766 
767 	/* Used to wait for completion of MMU notifiers.  */
768 	spinlock_t mn_invalidate_lock;
769 	unsigned long mn_active_invalidate_count;
770 	struct rcuwait mn_memslots_update_rcuwait;
771 
772 	/* For management / invalidation of gfn_to_pfn_caches */
773 	spinlock_t gpc_lock;
774 	struct list_head gpc_list;
775 
776 	/*
777 	 * created_vcpus is protected by kvm->lock, and is incremented
778 	 * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
779 	 * incremented after storing the kvm_vcpu pointer in vcpus,
780 	 * and is accessed atomically.
781 	 */
782 	atomic_t online_vcpus;
783 	int max_vcpus;
784 	int created_vcpus;
785 	int last_boosted_vcpu;
786 	struct list_head vm_list;
787 	struct mutex lock;
788 	struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
789 #ifdef CONFIG_HAVE_KVM_IRQCHIP
790 	struct {
791 		spinlock_t        lock;
792 		struct list_head  items;
793 		/* resampler_list update side is protected by resampler_lock. */
794 		struct list_head  resampler_list;
795 		struct mutex      resampler_lock;
796 	} irqfds;
797 #endif
798 	struct list_head ioeventfds;
799 	struct kvm_vm_stat stat;
800 	struct kvm_arch arch;
801 	refcount_t users_count;
802 #ifdef CONFIG_KVM_MMIO
803 	struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
804 	spinlock_t ring_lock;
805 	struct list_head coalesced_zones;
806 #endif
807 
808 	struct mutex irq_lock;
809 #ifdef CONFIG_HAVE_KVM_IRQCHIP
810 	/*
811 	 * Update side is protected by irq_lock.
812 	 */
813 	struct kvm_irq_routing_table __rcu *irq_routing;
814 
815 	struct hlist_head irq_ack_notifier_list;
816 #endif
817 
818 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
819 	struct mmu_notifier mmu_notifier;
820 	unsigned long mmu_invalidate_seq;
821 	long mmu_invalidate_in_progress;
822 	gfn_t mmu_invalidate_range_start;
823 	gfn_t mmu_invalidate_range_end;
824 #endif
825 	struct list_head devices;
826 	u64 manual_dirty_log_protect;
827 	struct dentry *debugfs_dentry;
828 	struct kvm_stat_data **debugfs_stat_data;
829 	struct srcu_struct srcu;
830 	struct srcu_struct irq_srcu;
831 	pid_t userspace_pid;
832 	bool override_halt_poll_ns;
833 	unsigned int max_halt_poll_ns;
834 	u32 dirty_ring_size;
835 	bool dirty_ring_with_bitmap;
836 	bool vm_bugged;
837 	bool vm_dead;
838 
839 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
840 	struct notifier_block pm_notifier;
841 #endif
842 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
843 	/* Protected by slots_locks (for writes) and RCU (for reads) */
844 	struct xarray mem_attr_array;
845 #endif
846 	char stats_id[KVM_STATS_NAME_SIZE];
847 };
848 
849 #define kvm_err(fmt, ...) \
850 	pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
851 #define kvm_info(fmt, ...) \
852 	pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
853 #define kvm_debug(fmt, ...) \
854 	pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
855 #define kvm_debug_ratelimited(fmt, ...) \
856 	pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
857 			     ## __VA_ARGS__)
858 #define kvm_pr_unimpl(fmt, ...) \
859 	pr_err_ratelimited("kvm [%i]: " fmt, \
860 			   task_tgid_nr(current), ## __VA_ARGS__)
861 
862 /* The guest did something we don't support. */
863 #define vcpu_unimpl(vcpu, fmt, ...)					\
864 	kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,			\
865 			(vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
866 
867 #define vcpu_debug(vcpu, fmt, ...)					\
868 	kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
869 #define vcpu_debug_ratelimited(vcpu, fmt, ...)				\
870 	kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
871 			      ## __VA_ARGS__)
872 #define vcpu_err(vcpu, fmt, ...)					\
873 	kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
874 
875 static inline void kvm_vm_dead(struct kvm *kvm)
876 {
877 	kvm->vm_dead = true;
878 	kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
879 }
880 
881 static inline void kvm_vm_bugged(struct kvm *kvm)
882 {
883 	kvm->vm_bugged = true;
884 	kvm_vm_dead(kvm);
885 }
886 
887 
888 #define KVM_BUG(cond, kvm, fmt...)				\
889 ({								\
890 	bool __ret = !!(cond);					\
891 								\
892 	if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))		\
893 		kvm_vm_bugged(kvm);				\
894 	unlikely(__ret);					\
895 })
896 
897 #define KVM_BUG_ON(cond, kvm)					\
898 ({								\
899 	bool __ret = !!(cond);					\
900 								\
901 	if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))		\
902 		kvm_vm_bugged(kvm);				\
903 	unlikely(__ret);					\
904 })
905 
906 /*
907  * Note, "data corruption" refers to corruption of host kernel data structures,
908  * not guest data.  Guest data corruption, suspected or confirmed, that is tied
909  * and contained to a single VM should *never* BUG() and potentially panic the
910  * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
911  * is corrupted and that corruption can have a cascading effect to other parts
912  * of the hosts and/or to other VMs.
913  */
914 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm)			\
915 ({								\
916 	bool __ret = !!(cond);					\
917 								\
918 	if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION))		\
919 		BUG_ON(__ret);					\
920 	else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))	\
921 		kvm_vm_bugged(kvm);				\
922 	unlikely(__ret);					\
923 })
924 
925 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
926 {
927 #ifdef CONFIG_PROVE_RCU
928 	WARN_ONCE(vcpu->srcu_depth++,
929 		  "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
930 #endif
931 	vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
932 }
933 
934 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
935 {
936 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
937 
938 #ifdef CONFIG_PROVE_RCU
939 	WARN_ONCE(--vcpu->srcu_depth,
940 		  "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
941 #endif
942 }
943 
944 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
945 {
946 	return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
947 }
948 
949 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
950 {
951 	return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
952 				      lockdep_is_held(&kvm->slots_lock) ||
953 				      !refcount_read(&kvm->users_count));
954 }
955 
956 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
957 {
958 	int num_vcpus = atomic_read(&kvm->online_vcpus);
959 	i = array_index_nospec(i, num_vcpus);
960 
961 	/* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
962 	smp_rmb();
963 	return xa_load(&kvm->vcpu_array, i);
964 }
965 
966 #define kvm_for_each_vcpu(idx, vcpup, kvm)		   \
967 	xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
968 			  (atomic_read(&kvm->online_vcpus) - 1))
969 
970 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
971 {
972 	struct kvm_vcpu *vcpu = NULL;
973 	unsigned long i;
974 
975 	if (id < 0)
976 		return NULL;
977 	if (id < KVM_MAX_VCPUS)
978 		vcpu = kvm_get_vcpu(kvm, id);
979 	if (vcpu && vcpu->vcpu_id == id)
980 		return vcpu;
981 	kvm_for_each_vcpu(i, vcpu, kvm)
982 		if (vcpu->vcpu_id == id)
983 			return vcpu;
984 	return NULL;
985 }
986 
987 void kvm_destroy_vcpus(struct kvm *kvm);
988 
989 void vcpu_load(struct kvm_vcpu *vcpu);
990 void vcpu_put(struct kvm_vcpu *vcpu);
991 
992 #ifdef __KVM_HAVE_IOAPIC
993 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
994 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
995 #else
996 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
997 {
998 }
999 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
1000 {
1001 }
1002 #endif
1003 
1004 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1005 int kvm_irqfd_init(void);
1006 void kvm_irqfd_exit(void);
1007 #else
1008 static inline int kvm_irqfd_init(void)
1009 {
1010 	return 0;
1011 }
1012 
1013 static inline void kvm_irqfd_exit(void)
1014 {
1015 }
1016 #endif
1017 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1018 void kvm_exit(void);
1019 
1020 void kvm_get_kvm(struct kvm *kvm);
1021 bool kvm_get_kvm_safe(struct kvm *kvm);
1022 void kvm_put_kvm(struct kvm *kvm);
1023 bool file_is_kvm(struct file *file);
1024 void kvm_put_kvm_no_destroy(struct kvm *kvm);
1025 
1026 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1027 {
1028 	as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1029 	return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1030 			lockdep_is_held(&kvm->slots_lock) ||
1031 			!refcount_read(&kvm->users_count));
1032 }
1033 
1034 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1035 {
1036 	return __kvm_memslots(kvm, 0);
1037 }
1038 
1039 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1040 {
1041 	int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1042 
1043 	return __kvm_memslots(vcpu->kvm, as_id);
1044 }
1045 
1046 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1047 {
1048 	return RB_EMPTY_ROOT(&slots->gfn_tree);
1049 }
1050 
1051 bool kvm_are_all_memslots_empty(struct kvm *kvm);
1052 
1053 #define kvm_for_each_memslot(memslot, bkt, slots)			      \
1054 	hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1055 		if (WARN_ON_ONCE(!memslot->npages)) {			      \
1056 		} else
1057 
1058 static inline
1059 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1060 {
1061 	struct kvm_memory_slot *slot;
1062 	int idx = slots->node_idx;
1063 
1064 	hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1065 		if (slot->id == id)
1066 			return slot;
1067 	}
1068 
1069 	return NULL;
1070 }
1071 
1072 /* Iterator used for walking memslots that overlap a gfn range. */
1073 struct kvm_memslot_iter {
1074 	struct kvm_memslots *slots;
1075 	struct rb_node *node;
1076 	struct kvm_memory_slot *slot;
1077 };
1078 
1079 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1080 {
1081 	iter->node = rb_next(iter->node);
1082 	if (!iter->node)
1083 		return;
1084 
1085 	iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1086 }
1087 
1088 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1089 					  struct kvm_memslots *slots,
1090 					  gfn_t start)
1091 {
1092 	int idx = slots->node_idx;
1093 	struct rb_node *tmp;
1094 	struct kvm_memory_slot *slot;
1095 
1096 	iter->slots = slots;
1097 
1098 	/*
1099 	 * Find the so called "upper bound" of a key - the first node that has
1100 	 * its key strictly greater than the searched one (the start gfn in our case).
1101 	 */
1102 	iter->node = NULL;
1103 	for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1104 		slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1105 		if (start < slot->base_gfn) {
1106 			iter->node = tmp;
1107 			tmp = tmp->rb_left;
1108 		} else {
1109 			tmp = tmp->rb_right;
1110 		}
1111 	}
1112 
1113 	/*
1114 	 * Find the slot with the lowest gfn that can possibly intersect with
1115 	 * the range, so we'll ideally have slot start <= range start
1116 	 */
1117 	if (iter->node) {
1118 		/*
1119 		 * A NULL previous node means that the very first slot
1120 		 * already has a higher start gfn.
1121 		 * In this case slot start > range start.
1122 		 */
1123 		tmp = rb_prev(iter->node);
1124 		if (tmp)
1125 			iter->node = tmp;
1126 	} else {
1127 		/* a NULL node below means no slots */
1128 		iter->node = rb_last(&slots->gfn_tree);
1129 	}
1130 
1131 	if (iter->node) {
1132 		iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1133 
1134 		/*
1135 		 * It is possible in the slot start < range start case that the
1136 		 * found slot ends before or at range start (slot end <= range start)
1137 		 * and so it does not overlap the requested range.
1138 		 *
1139 		 * In such non-overlapping case the next slot (if it exists) will
1140 		 * already have slot start > range start, otherwise the logic above
1141 		 * would have found it instead of the current slot.
1142 		 */
1143 		if (iter->slot->base_gfn + iter->slot->npages <= start)
1144 			kvm_memslot_iter_next(iter);
1145 	}
1146 }
1147 
1148 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1149 {
1150 	if (!iter->node)
1151 		return false;
1152 
1153 	/*
1154 	 * If this slot starts beyond or at the end of the range so does
1155 	 * every next one
1156 	 */
1157 	return iter->slot->base_gfn < end;
1158 }
1159 
1160 /* Iterate over each memslot at least partially intersecting [start, end) range */
1161 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)	\
1162 	for (kvm_memslot_iter_start(iter, slots, start);		\
1163 	     kvm_memslot_iter_is_valid(iter, end);			\
1164 	     kvm_memslot_iter_next(iter))
1165 
1166 /*
1167  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1168  * - create a new memory slot
1169  * - delete an existing memory slot
1170  * - modify an existing memory slot
1171  *   -- move it in the guest physical memory space
1172  *   -- just change its flags
1173  *
1174  * Since flags can be changed by some of these operations, the following
1175  * differentiation is the best we can do for __kvm_set_memory_region():
1176  */
1177 enum kvm_mr_change {
1178 	KVM_MR_CREATE,
1179 	KVM_MR_DELETE,
1180 	KVM_MR_MOVE,
1181 	KVM_MR_FLAGS_ONLY,
1182 };
1183 
1184 int kvm_set_memory_region(struct kvm *kvm,
1185 			  const struct kvm_userspace_memory_region2 *mem);
1186 int __kvm_set_memory_region(struct kvm *kvm,
1187 			    const struct kvm_userspace_memory_region2 *mem);
1188 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1189 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1190 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1191 				const struct kvm_memory_slot *old,
1192 				struct kvm_memory_slot *new,
1193 				enum kvm_mr_change change);
1194 void kvm_arch_commit_memory_region(struct kvm *kvm,
1195 				struct kvm_memory_slot *old,
1196 				const struct kvm_memory_slot *new,
1197 				enum kvm_mr_change change);
1198 /* flush all memory translations */
1199 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1200 /* flush memory translations pointing to 'slot' */
1201 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1202 				   struct kvm_memory_slot *slot);
1203 
1204 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1205 			    struct page **pages, int nr_pages);
1206 
1207 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1208 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1209 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1210 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1211 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1212 				      bool *writable);
1213 void kvm_release_page_clean(struct page *page);
1214 void kvm_release_page_dirty(struct page *page);
1215 
1216 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1217 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1218 		      bool *writable);
1219 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1220 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1221 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1222 			       bool atomic, bool interruptible, bool *async,
1223 			       bool write_fault, bool *writable, hva_t *hva);
1224 
1225 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1226 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1227 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1228 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1229 
1230 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1231 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1232 			int len);
1233 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1234 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1235 			   void *data, unsigned long len);
1236 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1237 				 void *data, unsigned int offset,
1238 				 unsigned long len);
1239 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1240 			 int offset, int len);
1241 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1242 		    unsigned long len);
1243 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1244 			   void *data, unsigned long len);
1245 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1246 				  void *data, unsigned int offset,
1247 				  unsigned long len);
1248 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1249 			      gpa_t gpa, unsigned long len);
1250 
1251 #define __kvm_get_guest(kvm, gfn, offset, v)				\
1252 ({									\
1253 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1254 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1255 	int __ret = -EFAULT;						\
1256 									\
1257 	if (!kvm_is_error_hva(__addr))					\
1258 		__ret = get_user(v, __uaddr);				\
1259 	__ret;								\
1260 })
1261 
1262 #define kvm_get_guest(kvm, gpa, v)					\
1263 ({									\
1264 	gpa_t __gpa = gpa;						\
1265 	struct kvm *__kvm = kvm;					\
1266 									\
1267 	__kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1268 			offset_in_page(__gpa), v);			\
1269 })
1270 
1271 #define __kvm_put_guest(kvm, gfn, offset, v)				\
1272 ({									\
1273 	unsigned long __addr = gfn_to_hva(kvm, gfn);			\
1274 	typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset);	\
1275 	int __ret = -EFAULT;						\
1276 									\
1277 	if (!kvm_is_error_hva(__addr))					\
1278 		__ret = put_user(v, __uaddr);				\
1279 	if (!__ret)							\
1280 		mark_page_dirty(kvm, gfn);				\
1281 	__ret;								\
1282 })
1283 
1284 #define kvm_put_guest(kvm, gpa, v)					\
1285 ({									\
1286 	gpa_t __gpa = gpa;						\
1287 	struct kvm *__kvm = kvm;					\
1288 									\
1289 	__kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,			\
1290 			offset_in_page(__gpa), v);			\
1291 })
1292 
1293 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1294 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1295 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1296 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1297 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1298 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1299 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1300 
1301 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1302 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1303 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1304 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1305 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1306 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1307 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1308 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1309 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1310 			     int len);
1311 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1312 			       unsigned long len);
1313 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1314 			unsigned long len);
1315 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1316 			      int offset, int len);
1317 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1318 			 unsigned long len);
1319 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1320 
1321 /**
1322  * kvm_gpc_init - initialize gfn_to_pfn_cache.
1323  *
1324  * @gpc:	   struct gfn_to_pfn_cache object.
1325  * @kvm:	   pointer to kvm instance.
1326  *
1327  * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1328  * immutable attributes.  Note, the cache must be zero-allocated (or zeroed by
1329  * the caller before init).
1330  */
1331 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1332 
1333 /**
1334  * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1335  *                    physical address.
1336  *
1337  * @gpc:	   struct gfn_to_pfn_cache object.
1338  * @gpa:	   guest physical address to map.
1339  * @len:	   sanity check; the range being access must fit a single page.
1340  *
1341  * @return:	   0 for success.
1342  *		   -EINVAL for a mapping which would cross a page boundary.
1343  *		   -EFAULT for an untranslatable guest physical address.
1344  *
1345  * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1346  * invalidations to be processed.  Callers are required to use kvm_gpc_check()
1347  * to ensure that the cache is valid before accessing the target page.
1348  */
1349 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1350 
1351 /**
1352  * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1353  *
1354  * @gpc:          struct gfn_to_pfn_cache object.
1355  * @hva:          userspace virtual address to map.
1356  * @len:          sanity check; the range being access must fit a single page.
1357  *
1358  * @return:       0 for success.
1359  *                -EINVAL for a mapping which would cross a page boundary.
1360  *                -EFAULT for an untranslatable guest physical address.
1361  *
1362  * The semantics of this function are the same as those of kvm_gpc_activate(). It
1363  * merely bypasses a layer of address translation.
1364  */
1365 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1366 
1367 /**
1368  * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1369  *
1370  * @gpc:	   struct gfn_to_pfn_cache object.
1371  * @len:	   sanity check; the range being access must fit a single page.
1372  *
1373  * @return:	   %true if the cache is still valid and the address matches.
1374  *		   %false if the cache is not valid.
1375  *
1376  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1377  * while calling this function, and then continue to hold the lock until the
1378  * access is complete.
1379  *
1380  * Callers in IN_GUEST_MODE may do so without locking, although they should
1381  * still hold a read lock on kvm->scru for the memslot checks.
1382  */
1383 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1384 
1385 /**
1386  * kvm_gpc_refresh - update a previously initialized cache.
1387  *
1388  * @gpc:	   struct gfn_to_pfn_cache object.
1389  * @len:	   sanity check; the range being access must fit a single page.
1390  *
1391  * @return:	   0 for success.
1392  *		   -EINVAL for a mapping which would cross a page boundary.
1393  *		   -EFAULT for an untranslatable guest physical address.
1394  *
1395  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1396  * return from this function does not mean the page can be immediately
1397  * accessed because it may have raced with an invalidation. Callers must
1398  * still lock and check the cache status, as this function does not return
1399  * with the lock still held to permit access.
1400  */
1401 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1402 
1403 /**
1404  * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1405  *
1406  * @gpc:	   struct gfn_to_pfn_cache object.
1407  *
1408  * This removes a cache from the VM's list to be processed on MMU notifier
1409  * invocation.
1410  */
1411 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1412 
1413 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1414 {
1415 	return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1416 }
1417 
1418 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1419 {
1420 	return gpc->active && kvm_is_error_gpa(gpc->gpa);
1421 }
1422 
1423 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1424 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1425 
1426 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1427 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1428 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1429 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1430 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1431 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1432 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1433 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1434 
1435 void kvm_flush_remote_tlbs(struct kvm *kvm);
1436 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1437 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1438 				   const struct kvm_memory_slot *memslot);
1439 
1440 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1441 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1442 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1443 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1444 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1445 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1446 #endif
1447 
1448 void kvm_mmu_invalidate_begin(struct kvm *kvm);
1449 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1450 void kvm_mmu_invalidate_end(struct kvm *kvm);
1451 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1452 
1453 long kvm_arch_dev_ioctl(struct file *filp,
1454 			unsigned int ioctl, unsigned long arg);
1455 long kvm_arch_vcpu_ioctl(struct file *filp,
1456 			 unsigned int ioctl, unsigned long arg);
1457 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1458 
1459 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1460 
1461 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1462 					struct kvm_memory_slot *slot,
1463 					gfn_t gfn_offset,
1464 					unsigned long mask);
1465 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1466 
1467 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1468 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1469 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1470 		      int *is_dirty, struct kvm_memory_slot **memslot);
1471 #endif
1472 
1473 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1474 			bool line_status);
1475 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1476 			    struct kvm_enable_cap *cap);
1477 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1478 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1479 			      unsigned long arg);
1480 
1481 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1482 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1483 
1484 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1485 				    struct kvm_translation *tr);
1486 
1487 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1488 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1489 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1490 				  struct kvm_sregs *sregs);
1491 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1492 				  struct kvm_sregs *sregs);
1493 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1494 				    struct kvm_mp_state *mp_state);
1495 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1496 				    struct kvm_mp_state *mp_state);
1497 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1498 					struct kvm_guest_debug *dbg);
1499 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1500 
1501 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1502 
1503 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1504 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1505 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1506 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1507 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1508 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1509 
1510 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1511 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1512 #endif
1513 
1514 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1515 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1516 #else
1517 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1518 #endif
1519 
1520 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1521 int kvm_arch_hardware_enable(void);
1522 void kvm_arch_hardware_disable(void);
1523 #endif
1524 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1525 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1526 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1527 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1528 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1529 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1530 int kvm_arch_post_init_vm(struct kvm *kvm);
1531 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1532 void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1533 
1534 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1535 /*
1536  * All architectures that want to use vzalloc currently also
1537  * need their own kvm_arch_alloc_vm implementation.
1538  */
1539 static inline struct kvm *kvm_arch_alloc_vm(void)
1540 {
1541 	return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1542 }
1543 #endif
1544 
1545 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1546 {
1547 	kvfree(kvm);
1548 }
1549 
1550 #ifndef __KVM_HAVE_ARCH_VM_FREE
1551 static inline void kvm_arch_free_vm(struct kvm *kvm)
1552 {
1553 	__kvm_arch_free_vm(kvm);
1554 }
1555 #endif
1556 
1557 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1558 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1559 {
1560 	return -ENOTSUPP;
1561 }
1562 #else
1563 int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1564 #endif
1565 
1566 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1567 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1568 						    gfn_t gfn, u64 nr_pages)
1569 {
1570 	return -EOPNOTSUPP;
1571 }
1572 #else
1573 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1574 #endif
1575 
1576 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1577 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1578 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1579 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1580 #else
1581 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1582 {
1583 }
1584 
1585 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1586 {
1587 }
1588 
1589 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1590 {
1591 	return false;
1592 }
1593 #endif
1594 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1595 void kvm_arch_start_assignment(struct kvm *kvm);
1596 void kvm_arch_end_assignment(struct kvm *kvm);
1597 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1598 #else
1599 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1600 {
1601 }
1602 
1603 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1604 {
1605 }
1606 
1607 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1608 {
1609 	return false;
1610 }
1611 #endif
1612 
1613 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1614 {
1615 #ifdef __KVM_HAVE_ARCH_WQP
1616 	return vcpu->arch.waitp;
1617 #else
1618 	return &vcpu->wait;
1619 #endif
1620 }
1621 
1622 /*
1623  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1624  * true if the vCPU was blocking and was awakened, false otherwise.
1625  */
1626 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1627 {
1628 	return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1629 }
1630 
1631 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1632 {
1633 	return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1634 }
1635 
1636 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1637 /*
1638  * returns true if the virtual interrupt controller is initialized and
1639  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1640  * controller is dynamically instantiated and this is not always true.
1641  */
1642 bool kvm_arch_intc_initialized(struct kvm *kvm);
1643 #else
1644 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1645 {
1646 	return true;
1647 }
1648 #endif
1649 
1650 #ifdef CONFIG_GUEST_PERF_EVENTS
1651 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1652 
1653 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1654 void kvm_unregister_perf_callbacks(void);
1655 #else
1656 static inline void kvm_register_perf_callbacks(void *ign) {}
1657 static inline void kvm_unregister_perf_callbacks(void) {}
1658 #endif /* CONFIG_GUEST_PERF_EVENTS */
1659 
1660 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1661 void kvm_arch_destroy_vm(struct kvm *kvm);
1662 void kvm_arch_sync_events(struct kvm *kvm);
1663 
1664 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1665 
1666 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1667 bool kvm_is_zone_device_page(struct page *page);
1668 
1669 struct kvm_irq_ack_notifier {
1670 	struct hlist_node link;
1671 	unsigned gsi;
1672 	void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1673 };
1674 
1675 int kvm_irq_map_gsi(struct kvm *kvm,
1676 		    struct kvm_kernel_irq_routing_entry *entries, int gsi);
1677 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1678 
1679 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1680 		bool line_status);
1681 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1682 		int irq_source_id, int level, bool line_status);
1683 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1684 			       struct kvm *kvm, int irq_source_id,
1685 			       int level, bool line_status);
1686 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1687 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1688 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1689 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1690 				   struct kvm_irq_ack_notifier *kian);
1691 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1692 				   struct kvm_irq_ack_notifier *kian);
1693 int kvm_request_irq_source_id(struct kvm *kvm);
1694 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1695 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1696 
1697 /*
1698  * Returns a pointer to the memslot if it contains gfn.
1699  * Otherwise returns NULL.
1700  */
1701 static inline struct kvm_memory_slot *
1702 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1703 {
1704 	if (!slot)
1705 		return NULL;
1706 
1707 	if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1708 		return slot;
1709 	else
1710 		return NULL;
1711 }
1712 
1713 /*
1714  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1715  *
1716  * With "approx" set returns the memslot also when the address falls
1717  * in a hole. In that case one of the memslots bordering the hole is
1718  * returned.
1719  */
1720 static inline struct kvm_memory_slot *
1721 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1722 {
1723 	struct kvm_memory_slot *slot;
1724 	struct rb_node *node;
1725 	int idx = slots->node_idx;
1726 
1727 	slot = NULL;
1728 	for (node = slots->gfn_tree.rb_node; node; ) {
1729 		slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1730 		if (gfn >= slot->base_gfn) {
1731 			if (gfn < slot->base_gfn + slot->npages)
1732 				return slot;
1733 			node = node->rb_right;
1734 		} else
1735 			node = node->rb_left;
1736 	}
1737 
1738 	return approx ? slot : NULL;
1739 }
1740 
1741 static inline struct kvm_memory_slot *
1742 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1743 {
1744 	struct kvm_memory_slot *slot;
1745 
1746 	slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1747 	slot = try_get_memslot(slot, gfn);
1748 	if (slot)
1749 		return slot;
1750 
1751 	slot = search_memslots(slots, gfn, approx);
1752 	if (slot) {
1753 		atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1754 		return slot;
1755 	}
1756 
1757 	return NULL;
1758 }
1759 
1760 /*
1761  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1762  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1763  * because that would bloat other code too much.
1764  */
1765 static inline struct kvm_memory_slot *
1766 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1767 {
1768 	return ____gfn_to_memslot(slots, gfn, false);
1769 }
1770 
1771 static inline unsigned long
1772 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1773 {
1774 	/*
1775 	 * The index was checked originally in search_memslots.  To avoid
1776 	 * that a malicious guest builds a Spectre gadget out of e.g. page
1777 	 * table walks, do not let the processor speculate loads outside
1778 	 * the guest's registered memslots.
1779 	 */
1780 	unsigned long offset = gfn - slot->base_gfn;
1781 	offset = array_index_nospec(offset, slot->npages);
1782 	return slot->userspace_addr + offset * PAGE_SIZE;
1783 }
1784 
1785 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1786 {
1787 	return gfn_to_memslot(kvm, gfn)->id;
1788 }
1789 
1790 static inline gfn_t
1791 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1792 {
1793 	gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1794 
1795 	return slot->base_gfn + gfn_offset;
1796 }
1797 
1798 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1799 {
1800 	return (gpa_t)gfn << PAGE_SHIFT;
1801 }
1802 
1803 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1804 {
1805 	return (gfn_t)(gpa >> PAGE_SHIFT);
1806 }
1807 
1808 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1809 {
1810 	return (hpa_t)pfn << PAGE_SHIFT;
1811 }
1812 
1813 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1814 {
1815 	unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1816 
1817 	return !kvm_is_error_hva(hva);
1818 }
1819 
1820 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1821 {
1822 	lockdep_assert_held(&gpc->lock);
1823 
1824 	if (!gpc->memslot)
1825 		return;
1826 
1827 	mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1828 }
1829 
1830 enum kvm_stat_kind {
1831 	KVM_STAT_VM,
1832 	KVM_STAT_VCPU,
1833 };
1834 
1835 struct kvm_stat_data {
1836 	struct kvm *kvm;
1837 	const struct _kvm_stats_desc *desc;
1838 	enum kvm_stat_kind kind;
1839 };
1840 
1841 struct _kvm_stats_desc {
1842 	struct kvm_stats_desc desc;
1843 	char name[KVM_STATS_NAME_SIZE];
1844 };
1845 
1846 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)		       \
1847 	.flags = type | unit | base |					       \
1848 		 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |	       \
1849 		 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |	       \
1850 		 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),	       \
1851 	.exponent = exp,						       \
1852 	.size = sz,							       \
1853 	.bucket_size = bsz
1854 
1855 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1856 	{								       \
1857 		{							       \
1858 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1859 			.offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1860 		},							       \
1861 		.name = #stat,						       \
1862 	}
1863 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)	       \
1864 	{								       \
1865 		{							       \
1866 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1867 			.offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1868 		},							       \
1869 		.name = #stat,						       \
1870 	}
1871 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1872 	{								       \
1873 		{							       \
1874 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1875 			.offset = offsetof(struct kvm_vm_stat, stat)	       \
1876 		},							       \
1877 		.name = #stat,						       \
1878 	}
1879 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)		       \
1880 	{								       \
1881 		{							       \
1882 			STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1883 			.offset = offsetof(struct kvm_vcpu_stat, stat)	       \
1884 		},							       \
1885 		.name = #stat,						       \
1886 	}
1887 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1888 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)		       \
1889 	SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1890 
1891 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)	       \
1892 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,		       \
1893 		unit, base, exponent, 1, 0)
1894 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)		       \
1895 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,			       \
1896 		unit, base, exponent, 1, 0)
1897 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)		       \
1898 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,			       \
1899 		unit, base, exponent, 1, 0)
1900 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1901 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,		       \
1902 		unit, base, exponent, sz, bsz)
1903 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)	       \
1904 	STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,		       \
1905 		unit, base, exponent, sz, 0)
1906 
1907 /* Cumulative counter, read/write */
1908 #define STATS_DESC_COUNTER(SCOPE, name)					       \
1909 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1910 		KVM_STATS_BASE_POW10, 0)
1911 /* Instantaneous counter, read only */
1912 #define STATS_DESC_ICOUNTER(SCOPE, name)				       \
1913 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1914 		KVM_STATS_BASE_POW10, 0)
1915 /* Peak counter, read/write */
1916 #define STATS_DESC_PCOUNTER(SCOPE, name)				       \
1917 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,		       \
1918 		KVM_STATS_BASE_POW10, 0)
1919 
1920 /* Instantaneous boolean value, read only */
1921 #define STATS_DESC_IBOOLEAN(SCOPE, name)				       \
1922 	STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1923 		KVM_STATS_BASE_POW10, 0)
1924 /* Peak (sticky) boolean value, read/write */
1925 #define STATS_DESC_PBOOLEAN(SCOPE, name)				       \
1926 	STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,		       \
1927 		KVM_STATS_BASE_POW10, 0)
1928 
1929 /* Cumulative time in nanosecond */
1930 #define STATS_DESC_TIME_NSEC(SCOPE, name)				       \
1931 	STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1932 		KVM_STATS_BASE_POW10, -9)
1933 /* Linear histogram for time in nanosecond */
1934 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)		       \
1935 	STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1936 		KVM_STATS_BASE_POW10, -9, sz, bsz)
1937 /* Logarithmic histogram for time in nanosecond */
1938 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)			       \
1939 	STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,	       \
1940 		KVM_STATS_BASE_POW10, -9, sz)
1941 
1942 #define KVM_GENERIC_VM_STATS()						       \
1943 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),		       \
1944 	STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1945 
1946 #define KVM_GENERIC_VCPU_STATS()					       \
1947 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),		       \
1948 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),		       \
1949 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),		       \
1950 	STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),			       \
1951 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),	       \
1952 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),		       \
1953 	STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),		       \
1954 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
1955 			HALT_POLL_HIST_COUNT),				       \
1956 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,	       \
1957 			HALT_POLL_HIST_COUNT),				       \
1958 	STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,	       \
1959 			HALT_POLL_HIST_COUNT),				       \
1960 	STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1961 
1962 extern struct dentry *kvm_debugfs_dir;
1963 
1964 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1965 		       const struct _kvm_stats_desc *desc,
1966 		       void *stats, size_t size_stats,
1967 		       char __user *user_buffer, size_t size, loff_t *offset);
1968 
1969 /**
1970  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1971  * statistics data.
1972  *
1973  * @data: start address of the stats data
1974  * @size: the number of bucket of the stats data
1975  * @value: the new value used to update the linear histogram's bucket
1976  * @bucket_size: the size (width) of a bucket
1977  */
1978 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1979 						u64 value, size_t bucket_size)
1980 {
1981 	size_t index = div64_u64(value, bucket_size);
1982 
1983 	index = min(index, size - 1);
1984 	++data[index];
1985 }
1986 
1987 /**
1988  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1989  * statistics data.
1990  *
1991  * @data: start address of the stats data
1992  * @size: the number of bucket of the stats data
1993  * @value: the new value used to update the logarithmic histogram's bucket
1994  */
1995 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1996 {
1997 	size_t index = fls64(value);
1998 
1999 	index = min(index, size - 1);
2000 	++data[index];
2001 }
2002 
2003 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)		       \
2004 	kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2005 #define KVM_STATS_LOG_HIST_UPDATE(array, value)				       \
2006 	kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2007 
2008 
2009 extern const struct kvm_stats_header kvm_vm_stats_header;
2010 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2011 extern const struct kvm_stats_header kvm_vcpu_stats_header;
2012 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2013 
2014 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
2015 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2016 {
2017 	if (unlikely(kvm->mmu_invalidate_in_progress))
2018 		return 1;
2019 	/*
2020 	 * Ensure the read of mmu_invalidate_in_progress happens before
2021 	 * the read of mmu_invalidate_seq.  This interacts with the
2022 	 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2023 	 * that the caller either sees the old (non-zero) value of
2024 	 * mmu_invalidate_in_progress or the new (incremented) value of
2025 	 * mmu_invalidate_seq.
2026 	 *
2027 	 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2028 	 * than under kvm->mmu_lock, for scalability, so can't rely on
2029 	 * kvm->mmu_lock to keep things ordered.
2030 	 */
2031 	smp_rmb();
2032 	if (kvm->mmu_invalidate_seq != mmu_seq)
2033 		return 1;
2034 	return 0;
2035 }
2036 
2037 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2038 					   unsigned long mmu_seq,
2039 					   gfn_t gfn)
2040 {
2041 	lockdep_assert_held(&kvm->mmu_lock);
2042 	/*
2043 	 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2044 	 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2045 	 * that might be being invalidated. Note that it may include some false
2046 	 * positives, due to shortcuts when handing concurrent invalidations.
2047 	 */
2048 	if (unlikely(kvm->mmu_invalidate_in_progress)) {
2049 		/*
2050 		 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2051 		 * but before updating the range is a KVM bug.
2052 		 */
2053 		if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2054 				 kvm->mmu_invalidate_range_end == INVALID_GPA))
2055 			return 1;
2056 
2057 		if (gfn >= kvm->mmu_invalidate_range_start &&
2058 		    gfn < kvm->mmu_invalidate_range_end)
2059 			return 1;
2060 	}
2061 
2062 	if (kvm->mmu_invalidate_seq != mmu_seq)
2063 		return 1;
2064 	return 0;
2065 }
2066 
2067 /*
2068  * This lockless version of the range-based retry check *must* be paired with a
2069  * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2070  * use only as a pre-check to avoid contending mmu_lock.  This version *will*
2071  * get false negatives and false positives.
2072  */
2073 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2074 						   unsigned long mmu_seq,
2075 						   gfn_t gfn)
2076 {
2077 	/*
2078 	 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2079 	 * are always read from memory, e.g. so that checking for retry in a
2080 	 * loop won't result in an infinite retry loop.  Don't force loads for
2081 	 * start+end, as the key to avoiding infinite retry loops is observing
2082 	 * the 1=>0 transition of in-progress, i.e. getting false negatives
2083 	 * due to stale start+end values is acceptable.
2084 	 */
2085 	if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2086 	    gfn >= kvm->mmu_invalidate_range_start &&
2087 	    gfn < kvm->mmu_invalidate_range_end)
2088 		return true;
2089 
2090 	return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2091 }
2092 #endif
2093 
2094 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2095 
2096 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2097 
2098 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2099 int kvm_set_irq_routing(struct kvm *kvm,
2100 			const struct kvm_irq_routing_entry *entries,
2101 			unsigned nr,
2102 			unsigned flags);
2103 int kvm_set_routing_entry(struct kvm *kvm,
2104 			  struct kvm_kernel_irq_routing_entry *e,
2105 			  const struct kvm_irq_routing_entry *ue);
2106 void kvm_free_irq_routing(struct kvm *kvm);
2107 
2108 #else
2109 
2110 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2111 
2112 #endif
2113 
2114 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2115 
2116 void kvm_eventfd_init(struct kvm *kvm);
2117 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2118 
2119 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2120 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2121 void kvm_irqfd_release(struct kvm *kvm);
2122 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2123 				unsigned int irqchip,
2124 				unsigned int pin);
2125 void kvm_irq_routing_update(struct kvm *);
2126 #else
2127 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2128 {
2129 	return -EINVAL;
2130 }
2131 
2132 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2133 
2134 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2135 					      unsigned int irqchip,
2136 					      unsigned int pin)
2137 {
2138 	return false;
2139 }
2140 #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2141 
2142 void kvm_arch_irq_routing_update(struct kvm *kvm);
2143 
2144 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2145 {
2146 	/*
2147 	 * Ensure the rest of the request is published to kvm_check_request's
2148 	 * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2149 	 */
2150 	smp_wmb();
2151 	set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2152 }
2153 
2154 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2155 {
2156 	/*
2157 	 * Request that don't require vCPU action should never be logged in
2158 	 * vcpu->requests.  The vCPU won't clear the request, so it will stay
2159 	 * logged indefinitely and prevent the vCPU from entering the guest.
2160 	 */
2161 	BUILD_BUG_ON(!__builtin_constant_p(req) ||
2162 		     (req & KVM_REQUEST_NO_ACTION));
2163 
2164 	__kvm_make_request(req, vcpu);
2165 }
2166 
2167 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2168 {
2169 	return READ_ONCE(vcpu->requests);
2170 }
2171 
2172 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2173 {
2174 	return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2175 }
2176 
2177 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2178 {
2179 	clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2180 }
2181 
2182 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2183 {
2184 	if (kvm_test_request(req, vcpu)) {
2185 		kvm_clear_request(req, vcpu);
2186 
2187 		/*
2188 		 * Ensure the rest of the request is visible to kvm_check_request's
2189 		 * caller.  Paired with the smp_wmb in kvm_make_request.
2190 		 */
2191 		smp_mb__after_atomic();
2192 		return true;
2193 	} else {
2194 		return false;
2195 	}
2196 }
2197 
2198 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2199 extern bool kvm_rebooting;
2200 #endif
2201 
2202 extern unsigned int halt_poll_ns;
2203 extern unsigned int halt_poll_ns_grow;
2204 extern unsigned int halt_poll_ns_grow_start;
2205 extern unsigned int halt_poll_ns_shrink;
2206 
2207 struct kvm_device {
2208 	const struct kvm_device_ops *ops;
2209 	struct kvm *kvm;
2210 	void *private;
2211 	struct list_head vm_node;
2212 };
2213 
2214 /* create, destroy, and name are mandatory */
2215 struct kvm_device_ops {
2216 	const char *name;
2217 
2218 	/*
2219 	 * create is called holding kvm->lock and any operations not suitable
2220 	 * to do while holding the lock should be deferred to init (see
2221 	 * below).
2222 	 */
2223 	int (*create)(struct kvm_device *dev, u32 type);
2224 
2225 	/*
2226 	 * init is called after create if create is successful and is called
2227 	 * outside of holding kvm->lock.
2228 	 */
2229 	void (*init)(struct kvm_device *dev);
2230 
2231 	/*
2232 	 * Destroy is responsible for freeing dev.
2233 	 *
2234 	 * Destroy may be called before or after destructors are called
2235 	 * on emulated I/O regions, depending on whether a reference is
2236 	 * held by a vcpu or other kvm component that gets destroyed
2237 	 * after the emulated I/O.
2238 	 */
2239 	void (*destroy)(struct kvm_device *dev);
2240 
2241 	/*
2242 	 * Release is an alternative method to free the device. It is
2243 	 * called when the device file descriptor is closed. Once
2244 	 * release is called, the destroy method will not be called
2245 	 * anymore as the device is removed from the device list of
2246 	 * the VM. kvm->lock is held.
2247 	 */
2248 	void (*release)(struct kvm_device *dev);
2249 
2250 	int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2251 	int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2252 	int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2253 	long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2254 		      unsigned long arg);
2255 	int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2256 };
2257 
2258 struct kvm_device *kvm_device_from_filp(struct file *filp);
2259 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2260 void kvm_unregister_device_ops(u32 type);
2261 
2262 extern struct kvm_device_ops kvm_mpic_ops;
2263 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2264 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2265 
2266 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2267 
2268 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2269 {
2270 	vcpu->spin_loop.in_spin_loop = val;
2271 }
2272 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2273 {
2274 	vcpu->spin_loop.dy_eligible = val;
2275 }
2276 
2277 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2278 
2279 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2280 {
2281 }
2282 
2283 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2284 {
2285 }
2286 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2287 
2288 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2289 {
2290 	return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2291 		!(memslot->flags & KVM_MEMSLOT_INVALID));
2292 }
2293 
2294 struct kvm_vcpu *kvm_get_running_vcpu(void);
2295 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2296 
2297 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2298 bool kvm_arch_has_irq_bypass(void);
2299 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2300 			   struct irq_bypass_producer *);
2301 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2302 			   struct irq_bypass_producer *);
2303 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2304 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2305 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2306 				  uint32_t guest_irq, bool set);
2307 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2308 				  struct kvm_kernel_irq_routing_entry *);
2309 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2310 
2311 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2312 /* If we wakeup during the poll time, was it a sucessful poll? */
2313 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2314 {
2315 	return vcpu->valid_wakeup;
2316 }
2317 
2318 #else
2319 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2320 {
2321 	return true;
2322 }
2323 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2324 
2325 #ifdef CONFIG_HAVE_KVM_NO_POLL
2326 /* Callback that tells if we must not poll */
2327 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2328 #else
2329 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2330 {
2331 	return false;
2332 }
2333 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2334 
2335 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2336 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2337 			       unsigned int ioctl, unsigned long arg);
2338 #else
2339 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2340 					     unsigned int ioctl,
2341 					     unsigned long arg)
2342 {
2343 	return -ENOIOCTLCMD;
2344 }
2345 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2346 
2347 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2348 
2349 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2350 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2351 #else
2352 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2353 {
2354 	return 0;
2355 }
2356 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2357 
2358 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2359 
2360 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2361 				uintptr_t data, const char *name,
2362 				struct task_struct **thread_ptr);
2363 
2364 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2365 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2366 {
2367 	vcpu->run->exit_reason = KVM_EXIT_INTR;
2368 	vcpu->stat.signal_exits++;
2369 }
2370 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2371 
2372 /*
2373  * If more than one page is being (un)accounted, @virt must be the address of
2374  * the first page of a block of pages what were allocated together (i.e
2375  * accounted together).
2376  *
2377  * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2378  * is thread-safe.
2379  */
2380 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2381 {
2382 	mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2383 }
2384 
2385 /*
2386  * This defines how many reserved entries we want to keep before we
2387  * kick the vcpu to the userspace to avoid dirty ring full.  This
2388  * value can be tuned to higher if e.g. PML is enabled on the host.
2389  */
2390 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2391 
2392 /* Max number of entries allowed for each kvm dirty ring */
2393 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2394 
2395 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2396 						 gpa_t gpa, gpa_t size,
2397 						 bool is_write, bool is_exec,
2398 						 bool is_private)
2399 {
2400 	vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2401 	vcpu->run->memory_fault.gpa = gpa;
2402 	vcpu->run->memory_fault.size = size;
2403 
2404 	/* RWX flags are not (yet) defined or communicated to userspace. */
2405 	vcpu->run->memory_fault.flags = 0;
2406 	if (is_private)
2407 		vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2408 }
2409 
2410 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2411 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2412 {
2413 	return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2414 }
2415 
2416 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2417 				     unsigned long attrs);
2418 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2419 					struct kvm_gfn_range *range);
2420 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2421 					 struct kvm_gfn_range *range);
2422 
2423 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2424 {
2425 	return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2426 	       kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2427 }
2428 #else
2429 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2430 {
2431 	return false;
2432 }
2433 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2434 
2435 #ifdef CONFIG_KVM_PRIVATE_MEM
2436 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2437 		     gfn_t gfn, kvm_pfn_t *pfn, int *max_order);
2438 #else
2439 static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2440 				   struct kvm_memory_slot *slot, gfn_t gfn,
2441 				   kvm_pfn_t *pfn, int *max_order)
2442 {
2443 	KVM_BUG_ON(1, kvm);
2444 	return -EIO;
2445 }
2446 #endif /* CONFIG_KVM_PRIVATE_MEM */
2447 
2448 #endif
2449