xref: /linux/include/linux/list.h (revision d6fd48ef)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_LIST_H
3 #define _LINUX_LIST_H
4 
5 #include <linux/container_of.h>
6 #include <linux/types.h>
7 #include <linux/stddef.h>
8 #include <linux/poison.h>
9 #include <linux/const.h>
10 
11 #include <asm/barrier.h>
12 
13 /*
14  * Circular doubly linked list implementation.
15  *
16  * Some of the internal functions ("__xxx") are useful when
17  * manipulating whole lists rather than single entries, as
18  * sometimes we already know the next/prev entries and we can
19  * generate better code by using them directly rather than
20  * using the generic single-entry routines.
21  */
22 
23 #define LIST_HEAD_INIT(name) { &(name), &(name) }
24 
25 #define LIST_HEAD(name) \
26 	struct list_head name = LIST_HEAD_INIT(name)
27 
28 /**
29  * INIT_LIST_HEAD - Initialize a list_head structure
30  * @list: list_head structure to be initialized.
31  *
32  * Initializes the list_head to point to itself.  If it is a list header,
33  * the result is an empty list.
34  */
35 static inline void INIT_LIST_HEAD(struct list_head *list)
36 {
37 	WRITE_ONCE(list->next, list);
38 	WRITE_ONCE(list->prev, list);
39 }
40 
41 #ifdef CONFIG_DEBUG_LIST
42 extern bool __list_add_valid(struct list_head *new,
43 			      struct list_head *prev,
44 			      struct list_head *next);
45 extern bool __list_del_entry_valid(struct list_head *entry);
46 #else
47 static inline bool __list_add_valid(struct list_head *new,
48 				struct list_head *prev,
49 				struct list_head *next)
50 {
51 	return true;
52 }
53 static inline bool __list_del_entry_valid(struct list_head *entry)
54 {
55 	return true;
56 }
57 #endif
58 
59 /*
60  * Insert a new entry between two known consecutive entries.
61  *
62  * This is only for internal list manipulation where we know
63  * the prev/next entries already!
64  */
65 static inline void __list_add(struct list_head *new,
66 			      struct list_head *prev,
67 			      struct list_head *next)
68 {
69 	if (!__list_add_valid(new, prev, next))
70 		return;
71 
72 	next->prev = new;
73 	new->next = next;
74 	new->prev = prev;
75 	WRITE_ONCE(prev->next, new);
76 }
77 
78 /**
79  * list_add - add a new entry
80  * @new: new entry to be added
81  * @head: list head to add it after
82  *
83  * Insert a new entry after the specified head.
84  * This is good for implementing stacks.
85  */
86 static inline void list_add(struct list_head *new, struct list_head *head)
87 {
88 	__list_add(new, head, head->next);
89 }
90 
91 
92 /**
93  * list_add_tail - add a new entry
94  * @new: new entry to be added
95  * @head: list head to add it before
96  *
97  * Insert a new entry before the specified head.
98  * This is useful for implementing queues.
99  */
100 static inline void list_add_tail(struct list_head *new, struct list_head *head)
101 {
102 	__list_add(new, head->prev, head);
103 }
104 
105 /*
106  * Delete a list entry by making the prev/next entries
107  * point to each other.
108  *
109  * This is only for internal list manipulation where we know
110  * the prev/next entries already!
111  */
112 static inline void __list_del(struct list_head * prev, struct list_head * next)
113 {
114 	next->prev = prev;
115 	WRITE_ONCE(prev->next, next);
116 }
117 
118 /*
119  * Delete a list entry and clear the 'prev' pointer.
120  *
121  * This is a special-purpose list clearing method used in the networking code
122  * for lists allocated as per-cpu, where we don't want to incur the extra
123  * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this
124  * needs to check the node 'prev' pointer instead of calling list_empty().
125  */
126 static inline void __list_del_clearprev(struct list_head *entry)
127 {
128 	__list_del(entry->prev, entry->next);
129 	entry->prev = NULL;
130 }
131 
132 static inline void __list_del_entry(struct list_head *entry)
133 {
134 	if (!__list_del_entry_valid(entry))
135 		return;
136 
137 	__list_del(entry->prev, entry->next);
138 }
139 
140 /**
141  * list_del - deletes entry from list.
142  * @entry: the element to delete from the list.
143  * Note: list_empty() on entry does not return true after this, the entry is
144  * in an undefined state.
145  */
146 static inline void list_del(struct list_head *entry)
147 {
148 	__list_del_entry(entry);
149 	entry->next = LIST_POISON1;
150 	entry->prev = LIST_POISON2;
151 }
152 
153 /**
154  * list_replace - replace old entry by new one
155  * @old : the element to be replaced
156  * @new : the new element to insert
157  *
158  * If @old was empty, it will be overwritten.
159  */
160 static inline void list_replace(struct list_head *old,
161 				struct list_head *new)
162 {
163 	new->next = old->next;
164 	new->next->prev = new;
165 	new->prev = old->prev;
166 	new->prev->next = new;
167 }
168 
169 /**
170  * list_replace_init - replace old entry by new one and initialize the old one
171  * @old : the element to be replaced
172  * @new : the new element to insert
173  *
174  * If @old was empty, it will be overwritten.
175  */
176 static inline void list_replace_init(struct list_head *old,
177 				     struct list_head *new)
178 {
179 	list_replace(old, new);
180 	INIT_LIST_HEAD(old);
181 }
182 
183 /**
184  * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position
185  * @entry1: the location to place entry2
186  * @entry2: the location to place entry1
187  */
188 static inline void list_swap(struct list_head *entry1,
189 			     struct list_head *entry2)
190 {
191 	struct list_head *pos = entry2->prev;
192 
193 	list_del(entry2);
194 	list_replace(entry1, entry2);
195 	if (pos == entry1)
196 		pos = entry2;
197 	list_add(entry1, pos);
198 }
199 
200 /**
201  * list_del_init - deletes entry from list and reinitialize it.
202  * @entry: the element to delete from the list.
203  */
204 static inline void list_del_init(struct list_head *entry)
205 {
206 	__list_del_entry(entry);
207 	INIT_LIST_HEAD(entry);
208 }
209 
210 /**
211  * list_move - delete from one list and add as another's head
212  * @list: the entry to move
213  * @head: the head that will precede our entry
214  */
215 static inline void list_move(struct list_head *list, struct list_head *head)
216 {
217 	__list_del_entry(list);
218 	list_add(list, head);
219 }
220 
221 /**
222  * list_move_tail - delete from one list and add as another's tail
223  * @list: the entry to move
224  * @head: the head that will follow our entry
225  */
226 static inline void list_move_tail(struct list_head *list,
227 				  struct list_head *head)
228 {
229 	__list_del_entry(list);
230 	list_add_tail(list, head);
231 }
232 
233 /**
234  * list_bulk_move_tail - move a subsection of a list to its tail
235  * @head: the head that will follow our entry
236  * @first: first entry to move
237  * @last: last entry to move, can be the same as first
238  *
239  * Move all entries between @first and including @last before @head.
240  * All three entries must belong to the same linked list.
241  */
242 static inline void list_bulk_move_tail(struct list_head *head,
243 				       struct list_head *first,
244 				       struct list_head *last)
245 {
246 	first->prev->next = last->next;
247 	last->next->prev = first->prev;
248 
249 	head->prev->next = first;
250 	first->prev = head->prev;
251 
252 	last->next = head;
253 	head->prev = last;
254 }
255 
256 /**
257  * list_is_first -- tests whether @list is the first entry in list @head
258  * @list: the entry to test
259  * @head: the head of the list
260  */
261 static inline int list_is_first(const struct list_head *list, const struct list_head *head)
262 {
263 	return list->prev == head;
264 }
265 
266 /**
267  * list_is_last - tests whether @list is the last entry in list @head
268  * @list: the entry to test
269  * @head: the head of the list
270  */
271 static inline int list_is_last(const struct list_head *list, const struct list_head *head)
272 {
273 	return list->next == head;
274 }
275 
276 /**
277  * list_is_head - tests whether @list is the list @head
278  * @list: the entry to test
279  * @head: the head of the list
280  */
281 static inline int list_is_head(const struct list_head *list, const struct list_head *head)
282 {
283 	return list == head;
284 }
285 
286 /**
287  * list_empty - tests whether a list is empty
288  * @head: the list to test.
289  */
290 static inline int list_empty(const struct list_head *head)
291 {
292 	return READ_ONCE(head->next) == head;
293 }
294 
295 /**
296  * list_del_init_careful - deletes entry from list and reinitialize it.
297  * @entry: the element to delete from the list.
298  *
299  * This is the same as list_del_init(), except designed to be used
300  * together with list_empty_careful() in a way to guarantee ordering
301  * of other memory operations.
302  *
303  * Any memory operations done before a list_del_init_careful() are
304  * guaranteed to be visible after a list_empty_careful() test.
305  */
306 static inline void list_del_init_careful(struct list_head *entry)
307 {
308 	__list_del_entry(entry);
309 	WRITE_ONCE(entry->prev, entry);
310 	smp_store_release(&entry->next, entry);
311 }
312 
313 /**
314  * list_empty_careful - tests whether a list is empty and not being modified
315  * @head: the list to test
316  *
317  * Description:
318  * tests whether a list is empty _and_ checks that no other CPU might be
319  * in the process of modifying either member (next or prev)
320  *
321  * NOTE: using list_empty_careful() without synchronization
322  * can only be safe if the only activity that can happen
323  * to the list entry is list_del_init(). Eg. it cannot be used
324  * if another CPU could re-list_add() it.
325  */
326 static inline int list_empty_careful(const struct list_head *head)
327 {
328 	struct list_head *next = smp_load_acquire(&head->next);
329 	return list_is_head(next, head) && (next == READ_ONCE(head->prev));
330 }
331 
332 /**
333  * list_rotate_left - rotate the list to the left
334  * @head: the head of the list
335  */
336 static inline void list_rotate_left(struct list_head *head)
337 {
338 	struct list_head *first;
339 
340 	if (!list_empty(head)) {
341 		first = head->next;
342 		list_move_tail(first, head);
343 	}
344 }
345 
346 /**
347  * list_rotate_to_front() - Rotate list to specific item.
348  * @list: The desired new front of the list.
349  * @head: The head of the list.
350  *
351  * Rotates list so that @list becomes the new front of the list.
352  */
353 static inline void list_rotate_to_front(struct list_head *list,
354 					struct list_head *head)
355 {
356 	/*
357 	 * Deletes the list head from the list denoted by @head and
358 	 * places it as the tail of @list, this effectively rotates the
359 	 * list so that @list is at the front.
360 	 */
361 	list_move_tail(head, list);
362 }
363 
364 /**
365  * list_is_singular - tests whether a list has just one entry.
366  * @head: the list to test.
367  */
368 static inline int list_is_singular(const struct list_head *head)
369 {
370 	return !list_empty(head) && (head->next == head->prev);
371 }
372 
373 static inline void __list_cut_position(struct list_head *list,
374 		struct list_head *head, struct list_head *entry)
375 {
376 	struct list_head *new_first = entry->next;
377 	list->next = head->next;
378 	list->next->prev = list;
379 	list->prev = entry;
380 	entry->next = list;
381 	head->next = new_first;
382 	new_first->prev = head;
383 }
384 
385 /**
386  * list_cut_position - cut a list into two
387  * @list: a new list to add all removed entries
388  * @head: a list with entries
389  * @entry: an entry within head, could be the head itself
390  *	and if so we won't cut the list
391  *
392  * This helper moves the initial part of @head, up to and
393  * including @entry, from @head to @list. You should
394  * pass on @entry an element you know is on @head. @list
395  * should be an empty list or a list you do not care about
396  * losing its data.
397  *
398  */
399 static inline void list_cut_position(struct list_head *list,
400 		struct list_head *head, struct list_head *entry)
401 {
402 	if (list_empty(head))
403 		return;
404 	if (list_is_singular(head) && !list_is_head(entry, head) && (entry != head->next))
405 		return;
406 	if (list_is_head(entry, head))
407 		INIT_LIST_HEAD(list);
408 	else
409 		__list_cut_position(list, head, entry);
410 }
411 
412 /**
413  * list_cut_before - cut a list into two, before given entry
414  * @list: a new list to add all removed entries
415  * @head: a list with entries
416  * @entry: an entry within head, could be the head itself
417  *
418  * This helper moves the initial part of @head, up to but
419  * excluding @entry, from @head to @list.  You should pass
420  * in @entry an element you know is on @head.  @list should
421  * be an empty list or a list you do not care about losing
422  * its data.
423  * If @entry == @head, all entries on @head are moved to
424  * @list.
425  */
426 static inline void list_cut_before(struct list_head *list,
427 				   struct list_head *head,
428 				   struct list_head *entry)
429 {
430 	if (head->next == entry) {
431 		INIT_LIST_HEAD(list);
432 		return;
433 	}
434 	list->next = head->next;
435 	list->next->prev = list;
436 	list->prev = entry->prev;
437 	list->prev->next = list;
438 	head->next = entry;
439 	entry->prev = head;
440 }
441 
442 static inline void __list_splice(const struct list_head *list,
443 				 struct list_head *prev,
444 				 struct list_head *next)
445 {
446 	struct list_head *first = list->next;
447 	struct list_head *last = list->prev;
448 
449 	first->prev = prev;
450 	prev->next = first;
451 
452 	last->next = next;
453 	next->prev = last;
454 }
455 
456 /**
457  * list_splice - join two lists, this is designed for stacks
458  * @list: the new list to add.
459  * @head: the place to add it in the first list.
460  */
461 static inline void list_splice(const struct list_head *list,
462 				struct list_head *head)
463 {
464 	if (!list_empty(list))
465 		__list_splice(list, head, head->next);
466 }
467 
468 /**
469  * list_splice_tail - join two lists, each list being a queue
470  * @list: the new list to add.
471  * @head: the place to add it in the first list.
472  */
473 static inline void list_splice_tail(struct list_head *list,
474 				struct list_head *head)
475 {
476 	if (!list_empty(list))
477 		__list_splice(list, head->prev, head);
478 }
479 
480 /**
481  * list_splice_init - join two lists and reinitialise the emptied list.
482  * @list: the new list to add.
483  * @head: the place to add it in the first list.
484  *
485  * The list at @list is reinitialised
486  */
487 static inline void list_splice_init(struct list_head *list,
488 				    struct list_head *head)
489 {
490 	if (!list_empty(list)) {
491 		__list_splice(list, head, head->next);
492 		INIT_LIST_HEAD(list);
493 	}
494 }
495 
496 /**
497  * list_splice_tail_init - join two lists and reinitialise the emptied list
498  * @list: the new list to add.
499  * @head: the place to add it in the first list.
500  *
501  * Each of the lists is a queue.
502  * The list at @list is reinitialised
503  */
504 static inline void list_splice_tail_init(struct list_head *list,
505 					 struct list_head *head)
506 {
507 	if (!list_empty(list)) {
508 		__list_splice(list, head->prev, head);
509 		INIT_LIST_HEAD(list);
510 	}
511 }
512 
513 /**
514  * list_entry - get the struct for this entry
515  * @ptr:	the &struct list_head pointer.
516  * @type:	the type of the struct this is embedded in.
517  * @member:	the name of the list_head within the struct.
518  */
519 #define list_entry(ptr, type, member) \
520 	container_of(ptr, type, member)
521 
522 /**
523  * list_first_entry - get the first element from a list
524  * @ptr:	the list head to take the element from.
525  * @type:	the type of the struct this is embedded in.
526  * @member:	the name of the list_head within the struct.
527  *
528  * Note, that list is expected to be not empty.
529  */
530 #define list_first_entry(ptr, type, member) \
531 	list_entry((ptr)->next, type, member)
532 
533 /**
534  * list_last_entry - get the last element from a list
535  * @ptr:	the list head to take the element from.
536  * @type:	the type of the struct this is embedded in.
537  * @member:	the name of the list_head within the struct.
538  *
539  * Note, that list is expected to be not empty.
540  */
541 #define list_last_entry(ptr, type, member) \
542 	list_entry((ptr)->prev, type, member)
543 
544 /**
545  * list_first_entry_or_null - get the first element from a list
546  * @ptr:	the list head to take the element from.
547  * @type:	the type of the struct this is embedded in.
548  * @member:	the name of the list_head within the struct.
549  *
550  * Note that if the list is empty, it returns NULL.
551  */
552 #define list_first_entry_or_null(ptr, type, member) ({ \
553 	struct list_head *head__ = (ptr); \
554 	struct list_head *pos__ = READ_ONCE(head__->next); \
555 	pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
556 })
557 
558 /**
559  * list_next_entry - get the next element in list
560  * @pos:	the type * to cursor
561  * @member:	the name of the list_head within the struct.
562  */
563 #define list_next_entry(pos, member) \
564 	list_entry((pos)->member.next, typeof(*(pos)), member)
565 
566 /**
567  * list_next_entry_circular - get the next element in list
568  * @pos:	the type * to cursor.
569  * @head:	the list head to take the element from.
570  * @member:	the name of the list_head within the struct.
571  *
572  * Wraparound if pos is the last element (return the first element).
573  * Note, that list is expected to be not empty.
574  */
575 #define list_next_entry_circular(pos, head, member) \
576 	(list_is_last(&(pos)->member, head) ? \
577 	list_first_entry(head, typeof(*(pos)), member) : list_next_entry(pos, member))
578 
579 /**
580  * list_prev_entry - get the prev element in list
581  * @pos:	the type * to cursor
582  * @member:	the name of the list_head within the struct.
583  */
584 #define list_prev_entry(pos, member) \
585 	list_entry((pos)->member.prev, typeof(*(pos)), member)
586 
587 /**
588  * list_prev_entry_circular - get the prev element in list
589  * @pos:	the type * to cursor.
590  * @head:	the list head to take the element from.
591  * @member:	the name of the list_head within the struct.
592  *
593  * Wraparound if pos is the first element (return the last element).
594  * Note, that list is expected to be not empty.
595  */
596 #define list_prev_entry_circular(pos, head, member) \
597 	(list_is_first(&(pos)->member, head) ? \
598 	list_last_entry(head, typeof(*(pos)), member) : list_prev_entry(pos, member))
599 
600 /**
601  * list_for_each	-	iterate over a list
602  * @pos:	the &struct list_head to use as a loop cursor.
603  * @head:	the head for your list.
604  */
605 #define list_for_each(pos, head) \
606 	for (pos = (head)->next; !list_is_head(pos, (head)); pos = pos->next)
607 
608 /**
609  * list_for_each_rcu - Iterate over a list in an RCU-safe fashion
610  * @pos:	the &struct list_head to use as a loop cursor.
611  * @head:	the head for your list.
612  */
613 #define list_for_each_rcu(pos, head)		  \
614 	for (pos = rcu_dereference((head)->next); \
615 	     !list_is_head(pos, (head)); \
616 	     pos = rcu_dereference(pos->next))
617 
618 /**
619  * list_for_each_continue - continue iteration over a list
620  * @pos:	the &struct list_head to use as a loop cursor.
621  * @head:	the head for your list.
622  *
623  * Continue to iterate over a list, continuing after the current position.
624  */
625 #define list_for_each_continue(pos, head) \
626 	for (pos = pos->next; !list_is_head(pos, (head)); pos = pos->next)
627 
628 /**
629  * list_for_each_prev	-	iterate over a list backwards
630  * @pos:	the &struct list_head to use as a loop cursor.
631  * @head:	the head for your list.
632  */
633 #define list_for_each_prev(pos, head) \
634 	for (pos = (head)->prev; !list_is_head(pos, (head)); pos = pos->prev)
635 
636 /**
637  * list_for_each_safe - iterate over a list safe against removal of list entry
638  * @pos:	the &struct list_head to use as a loop cursor.
639  * @n:		another &struct list_head to use as temporary storage
640  * @head:	the head for your list.
641  */
642 #define list_for_each_safe(pos, n, head) \
643 	for (pos = (head)->next, n = pos->next; \
644 	     !list_is_head(pos, (head)); \
645 	     pos = n, n = pos->next)
646 
647 /**
648  * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
649  * @pos:	the &struct list_head to use as a loop cursor.
650  * @n:		another &struct list_head to use as temporary storage
651  * @head:	the head for your list.
652  */
653 #define list_for_each_prev_safe(pos, n, head) \
654 	for (pos = (head)->prev, n = pos->prev; \
655 	     !list_is_head(pos, (head)); \
656 	     pos = n, n = pos->prev)
657 
658 /**
659  * list_count_nodes - count nodes in the list
660  * @head:	the head for your list.
661  */
662 static inline size_t list_count_nodes(struct list_head *head)
663 {
664 	struct list_head *pos;
665 	size_t count = 0;
666 
667 	list_for_each(pos, head)
668 		count++;
669 
670 	return count;
671 }
672 
673 /**
674  * list_entry_is_head - test if the entry points to the head of the list
675  * @pos:	the type * to cursor
676  * @head:	the head for your list.
677  * @member:	the name of the list_head within the struct.
678  */
679 #define list_entry_is_head(pos, head, member)				\
680 	(&pos->member == (head))
681 
682 /**
683  * list_for_each_entry	-	iterate over list of given type
684  * @pos:	the type * to use as a loop cursor.
685  * @head:	the head for your list.
686  * @member:	the name of the list_head within the struct.
687  */
688 #define list_for_each_entry(pos, head, member)				\
689 	for (pos = list_first_entry(head, typeof(*pos), member);	\
690 	     !list_entry_is_head(pos, head, member);			\
691 	     pos = list_next_entry(pos, member))
692 
693 /**
694  * list_for_each_entry_reverse - iterate backwards over list of given type.
695  * @pos:	the type * to use as a loop cursor.
696  * @head:	the head for your list.
697  * @member:	the name of the list_head within the struct.
698  */
699 #define list_for_each_entry_reverse(pos, head, member)			\
700 	for (pos = list_last_entry(head, typeof(*pos), member);		\
701 	     !list_entry_is_head(pos, head, member); 			\
702 	     pos = list_prev_entry(pos, member))
703 
704 /**
705  * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
706  * @pos:	the type * to use as a start point
707  * @head:	the head of the list
708  * @member:	the name of the list_head within the struct.
709  *
710  * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
711  */
712 #define list_prepare_entry(pos, head, member) \
713 	((pos) ? : list_entry(head, typeof(*pos), member))
714 
715 /**
716  * list_for_each_entry_continue - continue iteration over list of given type
717  * @pos:	the type * to use as a loop cursor.
718  * @head:	the head for your list.
719  * @member:	the name of the list_head within the struct.
720  *
721  * Continue to iterate over list of given type, continuing after
722  * the current position.
723  */
724 #define list_for_each_entry_continue(pos, head, member) 		\
725 	for (pos = list_next_entry(pos, member);			\
726 	     !list_entry_is_head(pos, head, member);			\
727 	     pos = list_next_entry(pos, member))
728 
729 /**
730  * list_for_each_entry_continue_reverse - iterate backwards from the given point
731  * @pos:	the type * to use as a loop cursor.
732  * @head:	the head for your list.
733  * @member:	the name of the list_head within the struct.
734  *
735  * Start to iterate over list of given type backwards, continuing after
736  * the current position.
737  */
738 #define list_for_each_entry_continue_reverse(pos, head, member)		\
739 	for (pos = list_prev_entry(pos, member);			\
740 	     !list_entry_is_head(pos, head, member);			\
741 	     pos = list_prev_entry(pos, member))
742 
743 /**
744  * list_for_each_entry_from - iterate over list of given type from the current point
745  * @pos:	the type * to use as a loop cursor.
746  * @head:	the head for your list.
747  * @member:	the name of the list_head within the struct.
748  *
749  * Iterate over list of given type, continuing from current position.
750  */
751 #define list_for_each_entry_from(pos, head, member) 			\
752 	for (; !list_entry_is_head(pos, head, member);			\
753 	     pos = list_next_entry(pos, member))
754 
755 /**
756  * list_for_each_entry_from_reverse - iterate backwards over list of given type
757  *                                    from the current point
758  * @pos:	the type * to use as a loop cursor.
759  * @head:	the head for your list.
760  * @member:	the name of the list_head within the struct.
761  *
762  * Iterate backwards over list of given type, continuing from current position.
763  */
764 #define list_for_each_entry_from_reverse(pos, head, member)		\
765 	for (; !list_entry_is_head(pos, head, member);			\
766 	     pos = list_prev_entry(pos, member))
767 
768 /**
769  * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
770  * @pos:	the type * to use as a loop cursor.
771  * @n:		another type * to use as temporary storage
772  * @head:	the head for your list.
773  * @member:	the name of the list_head within the struct.
774  */
775 #define list_for_each_entry_safe(pos, n, head, member)			\
776 	for (pos = list_first_entry(head, typeof(*pos), member),	\
777 		n = list_next_entry(pos, member);			\
778 	     !list_entry_is_head(pos, head, member); 			\
779 	     pos = n, n = list_next_entry(n, member))
780 
781 /**
782  * list_for_each_entry_safe_continue - continue list iteration safe against removal
783  * @pos:	the type * to use as a loop cursor.
784  * @n:		another type * to use as temporary storage
785  * @head:	the head for your list.
786  * @member:	the name of the list_head within the struct.
787  *
788  * Iterate over list of given type, continuing after current point,
789  * safe against removal of list entry.
790  */
791 #define list_for_each_entry_safe_continue(pos, n, head, member) 		\
792 	for (pos = list_next_entry(pos, member), 				\
793 		n = list_next_entry(pos, member);				\
794 	     !list_entry_is_head(pos, head, member);				\
795 	     pos = n, n = list_next_entry(n, member))
796 
797 /**
798  * list_for_each_entry_safe_from - iterate over list from current point safe against removal
799  * @pos:	the type * to use as a loop cursor.
800  * @n:		another type * to use as temporary storage
801  * @head:	the head for your list.
802  * @member:	the name of the list_head within the struct.
803  *
804  * Iterate over list of given type from current point, safe against
805  * removal of list entry.
806  */
807 #define list_for_each_entry_safe_from(pos, n, head, member) 			\
808 	for (n = list_next_entry(pos, member);					\
809 	     !list_entry_is_head(pos, head, member);				\
810 	     pos = n, n = list_next_entry(n, member))
811 
812 /**
813  * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
814  * @pos:	the type * to use as a loop cursor.
815  * @n:		another type * to use as temporary storage
816  * @head:	the head for your list.
817  * @member:	the name of the list_head within the struct.
818  *
819  * Iterate backwards over list of given type, safe against removal
820  * of list entry.
821  */
822 #define list_for_each_entry_safe_reverse(pos, n, head, member)		\
823 	for (pos = list_last_entry(head, typeof(*pos), member),		\
824 		n = list_prev_entry(pos, member);			\
825 	     !list_entry_is_head(pos, head, member); 			\
826 	     pos = n, n = list_prev_entry(n, member))
827 
828 /**
829  * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
830  * @pos:	the loop cursor used in the list_for_each_entry_safe loop
831  * @n:		temporary storage used in list_for_each_entry_safe
832  * @member:	the name of the list_head within the struct.
833  *
834  * list_safe_reset_next is not safe to use in general if the list may be
835  * modified concurrently (eg. the lock is dropped in the loop body). An
836  * exception to this is if the cursor element (pos) is pinned in the list,
837  * and list_safe_reset_next is called after re-taking the lock and before
838  * completing the current iteration of the loop body.
839  */
840 #define list_safe_reset_next(pos, n, member)				\
841 	n = list_next_entry(pos, member)
842 
843 /*
844  * Double linked lists with a single pointer list head.
845  * Mostly useful for hash tables where the two pointer list head is
846  * too wasteful.
847  * You lose the ability to access the tail in O(1).
848  */
849 
850 #define HLIST_HEAD_INIT { .first = NULL }
851 #define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
852 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
853 static inline void INIT_HLIST_NODE(struct hlist_node *h)
854 {
855 	h->next = NULL;
856 	h->pprev = NULL;
857 }
858 
859 /**
860  * hlist_unhashed - Has node been removed from list and reinitialized?
861  * @h: Node to be checked
862  *
863  * Not that not all removal functions will leave a node in unhashed
864  * state.  For example, hlist_nulls_del_init_rcu() does leave the
865  * node in unhashed state, but hlist_nulls_del() does not.
866  */
867 static inline int hlist_unhashed(const struct hlist_node *h)
868 {
869 	return !h->pprev;
870 }
871 
872 /**
873  * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use
874  * @h: Node to be checked
875  *
876  * This variant of hlist_unhashed() must be used in lockless contexts
877  * to avoid potential load-tearing.  The READ_ONCE() is paired with the
878  * various WRITE_ONCE() in hlist helpers that are defined below.
879  */
880 static inline int hlist_unhashed_lockless(const struct hlist_node *h)
881 {
882 	return !READ_ONCE(h->pprev);
883 }
884 
885 /**
886  * hlist_empty - Is the specified hlist_head structure an empty hlist?
887  * @h: Structure to check.
888  */
889 static inline int hlist_empty(const struct hlist_head *h)
890 {
891 	return !READ_ONCE(h->first);
892 }
893 
894 static inline void __hlist_del(struct hlist_node *n)
895 {
896 	struct hlist_node *next = n->next;
897 	struct hlist_node **pprev = n->pprev;
898 
899 	WRITE_ONCE(*pprev, next);
900 	if (next)
901 		WRITE_ONCE(next->pprev, pprev);
902 }
903 
904 /**
905  * hlist_del - Delete the specified hlist_node from its list
906  * @n: Node to delete.
907  *
908  * Note that this function leaves the node in hashed state.  Use
909  * hlist_del_init() or similar instead to unhash @n.
910  */
911 static inline void hlist_del(struct hlist_node *n)
912 {
913 	__hlist_del(n);
914 	n->next = LIST_POISON1;
915 	n->pprev = LIST_POISON2;
916 }
917 
918 /**
919  * hlist_del_init - Delete the specified hlist_node from its list and initialize
920  * @n: Node to delete.
921  *
922  * Note that this function leaves the node in unhashed state.
923  */
924 static inline void hlist_del_init(struct hlist_node *n)
925 {
926 	if (!hlist_unhashed(n)) {
927 		__hlist_del(n);
928 		INIT_HLIST_NODE(n);
929 	}
930 }
931 
932 /**
933  * hlist_add_head - add a new entry at the beginning of the hlist
934  * @n: new entry to be added
935  * @h: hlist head to add it after
936  *
937  * Insert a new entry after the specified head.
938  * This is good for implementing stacks.
939  */
940 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
941 {
942 	struct hlist_node *first = h->first;
943 	WRITE_ONCE(n->next, first);
944 	if (first)
945 		WRITE_ONCE(first->pprev, &n->next);
946 	WRITE_ONCE(h->first, n);
947 	WRITE_ONCE(n->pprev, &h->first);
948 }
949 
950 /**
951  * hlist_add_before - add a new entry before the one specified
952  * @n: new entry to be added
953  * @next: hlist node to add it before, which must be non-NULL
954  */
955 static inline void hlist_add_before(struct hlist_node *n,
956 				    struct hlist_node *next)
957 {
958 	WRITE_ONCE(n->pprev, next->pprev);
959 	WRITE_ONCE(n->next, next);
960 	WRITE_ONCE(next->pprev, &n->next);
961 	WRITE_ONCE(*(n->pprev), n);
962 }
963 
964 /**
965  * hlist_add_behind - add a new entry after the one specified
966  * @n: new entry to be added
967  * @prev: hlist node to add it after, which must be non-NULL
968  */
969 static inline void hlist_add_behind(struct hlist_node *n,
970 				    struct hlist_node *prev)
971 {
972 	WRITE_ONCE(n->next, prev->next);
973 	WRITE_ONCE(prev->next, n);
974 	WRITE_ONCE(n->pprev, &prev->next);
975 
976 	if (n->next)
977 		WRITE_ONCE(n->next->pprev, &n->next);
978 }
979 
980 /**
981  * hlist_add_fake - create a fake hlist consisting of a single headless node
982  * @n: Node to make a fake list out of
983  *
984  * This makes @n appear to be its own predecessor on a headless hlist.
985  * The point of this is to allow things like hlist_del() to work correctly
986  * in cases where there is no list.
987  */
988 static inline void hlist_add_fake(struct hlist_node *n)
989 {
990 	n->pprev = &n->next;
991 }
992 
993 /**
994  * hlist_fake: Is this node a fake hlist?
995  * @h: Node to check for being a self-referential fake hlist.
996  */
997 static inline bool hlist_fake(struct hlist_node *h)
998 {
999 	return h->pprev == &h->next;
1000 }
1001 
1002 /**
1003  * hlist_is_singular_node - is node the only element of the specified hlist?
1004  * @n: Node to check for singularity.
1005  * @h: Header for potentially singular list.
1006  *
1007  * Check whether the node is the only node of the head without
1008  * accessing head, thus avoiding unnecessary cache misses.
1009  */
1010 static inline bool
1011 hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h)
1012 {
1013 	return !n->next && n->pprev == &h->first;
1014 }
1015 
1016 /**
1017  * hlist_move_list - Move an hlist
1018  * @old: hlist_head for old list.
1019  * @new: hlist_head for new list.
1020  *
1021  * Move a list from one list head to another. Fixup the pprev
1022  * reference of the first entry if it exists.
1023  */
1024 static inline void hlist_move_list(struct hlist_head *old,
1025 				   struct hlist_head *new)
1026 {
1027 	new->first = old->first;
1028 	if (new->first)
1029 		new->first->pprev = &new->first;
1030 	old->first = NULL;
1031 }
1032 
1033 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
1034 
1035 #define hlist_for_each(pos, head) \
1036 	for (pos = (head)->first; pos ; pos = pos->next)
1037 
1038 #define hlist_for_each_safe(pos, n, head) \
1039 	for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
1040 	     pos = n)
1041 
1042 #define hlist_entry_safe(ptr, type, member) \
1043 	({ typeof(ptr) ____ptr = (ptr); \
1044 	   ____ptr ? hlist_entry(____ptr, type, member) : NULL; \
1045 	})
1046 
1047 /**
1048  * hlist_for_each_entry	- iterate over list of given type
1049  * @pos:	the type * to use as a loop cursor.
1050  * @head:	the head for your list.
1051  * @member:	the name of the hlist_node within the struct.
1052  */
1053 #define hlist_for_each_entry(pos, head, member)				\
1054 	for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\
1055 	     pos;							\
1056 	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1057 
1058 /**
1059  * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
1060  * @pos:	the type * to use as a loop cursor.
1061  * @member:	the name of the hlist_node within the struct.
1062  */
1063 #define hlist_for_each_entry_continue(pos, member)			\
1064 	for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\
1065 	     pos;							\
1066 	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1067 
1068 /**
1069  * hlist_for_each_entry_from - iterate over a hlist continuing from current point
1070  * @pos:	the type * to use as a loop cursor.
1071  * @member:	the name of the hlist_node within the struct.
1072  */
1073 #define hlist_for_each_entry_from(pos, member)				\
1074 	for (; pos;							\
1075 	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1076 
1077 /**
1078  * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
1079  * @pos:	the type * to use as a loop cursor.
1080  * @n:		a &struct hlist_node to use as temporary storage
1081  * @head:	the head for your list.
1082  * @member:	the name of the hlist_node within the struct.
1083  */
1084 #define hlist_for_each_entry_safe(pos, n, head, member) 		\
1085 	for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\
1086 	     pos && ({ n = pos->member.next; 1; });			\
1087 	     pos = hlist_entry_safe(n, typeof(*pos), member))
1088 
1089 #endif
1090