xref: /linux/include/linux/memcontrol.h (revision d6fd48ef)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30 
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 	MEMCG_SOCK,
35 	MEMCG_PERCPU_B,
36 	MEMCG_VMALLOC,
37 	MEMCG_KMEM,
38 	MEMCG_ZSWAP_B,
39 	MEMCG_ZSWAPPED,
40 	MEMCG_NR_STAT,
41 };
42 
43 enum memcg_memory_event {
44 	MEMCG_LOW,
45 	MEMCG_HIGH,
46 	MEMCG_MAX,
47 	MEMCG_OOM,
48 	MEMCG_OOM_KILL,
49 	MEMCG_OOM_GROUP_KILL,
50 	MEMCG_SWAP_HIGH,
51 	MEMCG_SWAP_MAX,
52 	MEMCG_SWAP_FAIL,
53 	MEMCG_NR_MEMORY_EVENTS,
54 };
55 
56 struct mem_cgroup_reclaim_cookie {
57 	pg_data_t *pgdat;
58 	unsigned int generation;
59 };
60 
61 #ifdef CONFIG_MEMCG
62 
63 #define MEM_CGROUP_ID_SHIFT	16
64 #define MEM_CGROUP_ID_MAX	USHRT_MAX
65 
66 struct mem_cgroup_id {
67 	int id;
68 	refcount_t ref;
69 };
70 
71 /*
72  * Per memcg event counter is incremented at every pagein/pageout. With THP,
73  * it will be incremented by the number of pages. This counter is used
74  * to trigger some periodic events. This is straightforward and better
75  * than using jiffies etc. to handle periodic memcg event.
76  */
77 enum mem_cgroup_events_target {
78 	MEM_CGROUP_TARGET_THRESH,
79 	MEM_CGROUP_TARGET_SOFTLIMIT,
80 	MEM_CGROUP_NTARGETS,
81 };
82 
83 struct memcg_vmstats_percpu;
84 struct memcg_vmstats;
85 
86 struct mem_cgroup_reclaim_iter {
87 	struct mem_cgroup *position;
88 	/* scan generation, increased every round-trip */
89 	unsigned int generation;
90 };
91 
92 /*
93  * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
94  * shrinkers, which have elements charged to this memcg.
95  */
96 struct shrinker_info {
97 	struct rcu_head rcu;
98 	atomic_long_t *nr_deferred;
99 	unsigned long *map;
100 };
101 
102 struct lruvec_stats_percpu {
103 	/* Local (CPU and cgroup) state */
104 	long state[NR_VM_NODE_STAT_ITEMS];
105 
106 	/* Delta calculation for lockless upward propagation */
107 	long state_prev[NR_VM_NODE_STAT_ITEMS];
108 };
109 
110 struct lruvec_stats {
111 	/* Aggregated (CPU and subtree) state */
112 	long state[NR_VM_NODE_STAT_ITEMS];
113 
114 	/* Pending child counts during tree propagation */
115 	long state_pending[NR_VM_NODE_STAT_ITEMS];
116 };
117 
118 /*
119  * per-node information in memory controller.
120  */
121 struct mem_cgroup_per_node {
122 	struct lruvec		lruvec;
123 
124 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
125 	struct lruvec_stats			lruvec_stats;
126 
127 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
128 
129 	struct mem_cgroup_reclaim_iter	iter;
130 
131 	struct shrinker_info __rcu	*shrinker_info;
132 
133 	struct rb_node		tree_node;	/* RB tree node */
134 	unsigned long		usage_in_excess;/* Set to the value by which */
135 						/* the soft limit is exceeded*/
136 	bool			on_tree;
137 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
138 						/* use container_of	   */
139 };
140 
141 struct mem_cgroup_threshold {
142 	struct eventfd_ctx *eventfd;
143 	unsigned long threshold;
144 };
145 
146 /* For threshold */
147 struct mem_cgroup_threshold_ary {
148 	/* An array index points to threshold just below or equal to usage. */
149 	int current_threshold;
150 	/* Size of entries[] */
151 	unsigned int size;
152 	/* Array of thresholds */
153 	struct mem_cgroup_threshold entries[];
154 };
155 
156 struct mem_cgroup_thresholds {
157 	/* Primary thresholds array */
158 	struct mem_cgroup_threshold_ary *primary;
159 	/*
160 	 * Spare threshold array.
161 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
162 	 * It must be able to store at least primary->size - 1 entries.
163 	 */
164 	struct mem_cgroup_threshold_ary *spare;
165 };
166 
167 /*
168  * Remember four most recent foreign writebacks with dirty pages in this
169  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
170  * one in a given round, we're likely to catch it later if it keeps
171  * foreign-dirtying, so a fairly low count should be enough.
172  *
173  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
174  */
175 #define MEMCG_CGWB_FRN_CNT	4
176 
177 struct memcg_cgwb_frn {
178 	u64 bdi_id;			/* bdi->id of the foreign inode */
179 	int memcg_id;			/* memcg->css.id of foreign inode */
180 	u64 at;				/* jiffies_64 at the time of dirtying */
181 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
182 };
183 
184 /*
185  * Bucket for arbitrarily byte-sized objects charged to a memory
186  * cgroup. The bucket can be reparented in one piece when the cgroup
187  * is destroyed, without having to round up the individual references
188  * of all live memory objects in the wild.
189  */
190 struct obj_cgroup {
191 	struct percpu_ref refcnt;
192 	struct mem_cgroup *memcg;
193 	atomic_t nr_charged_bytes;
194 	union {
195 		struct list_head list; /* protected by objcg_lock */
196 		struct rcu_head rcu;
197 	};
198 };
199 
200 /*
201  * The memory controller data structure. The memory controller controls both
202  * page cache and RSS per cgroup. We would eventually like to provide
203  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
204  * to help the administrator determine what knobs to tune.
205  */
206 struct mem_cgroup {
207 	struct cgroup_subsys_state css;
208 
209 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
210 	struct mem_cgroup_id id;
211 
212 	/* Accounted resources */
213 	struct page_counter memory;		/* Both v1 & v2 */
214 
215 	union {
216 		struct page_counter swap;	/* v2 only */
217 		struct page_counter memsw;	/* v1 only */
218 	};
219 
220 	/* Legacy consumer-oriented counters */
221 	struct page_counter kmem;		/* v1 only */
222 	struct page_counter tcpmem;		/* v1 only */
223 
224 	/* Range enforcement for interrupt charges */
225 	struct work_struct high_work;
226 
227 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
228 	unsigned long zswap_max;
229 #endif
230 
231 	unsigned long soft_limit;
232 
233 	/* vmpressure notifications */
234 	struct vmpressure vmpressure;
235 
236 	/*
237 	 * Should the OOM killer kill all belonging tasks, had it kill one?
238 	 */
239 	bool oom_group;
240 
241 	/* protected by memcg_oom_lock */
242 	bool		oom_lock;
243 	int		under_oom;
244 
245 	int	swappiness;
246 	/* OOM-Killer disable */
247 	int		oom_kill_disable;
248 
249 	/* memory.events and memory.events.local */
250 	struct cgroup_file events_file;
251 	struct cgroup_file events_local_file;
252 
253 	/* handle for "memory.swap.events" */
254 	struct cgroup_file swap_events_file;
255 
256 	/* protect arrays of thresholds */
257 	struct mutex thresholds_lock;
258 
259 	/* thresholds for memory usage. RCU-protected */
260 	struct mem_cgroup_thresholds thresholds;
261 
262 	/* thresholds for mem+swap usage. RCU-protected */
263 	struct mem_cgroup_thresholds memsw_thresholds;
264 
265 	/* For oom notifier event fd */
266 	struct list_head oom_notify;
267 
268 	/*
269 	 * Should we move charges of a task when a task is moved into this
270 	 * mem_cgroup ? And what type of charges should we move ?
271 	 */
272 	unsigned long move_charge_at_immigrate;
273 	/* taken only while moving_account > 0 */
274 	spinlock_t		move_lock;
275 	unsigned long		move_lock_flags;
276 
277 	CACHELINE_PADDING(_pad1_);
278 
279 	/* memory.stat */
280 	struct memcg_vmstats	*vmstats;
281 
282 	/* memory.events */
283 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
284 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
285 
286 	unsigned long		socket_pressure;
287 
288 	/* Legacy tcp memory accounting */
289 	bool			tcpmem_active;
290 	int			tcpmem_pressure;
291 
292 #ifdef CONFIG_MEMCG_KMEM
293 	int kmemcg_id;
294 	struct obj_cgroup __rcu *objcg;
295 	/* list of inherited objcgs, protected by objcg_lock */
296 	struct list_head objcg_list;
297 #endif
298 
299 	CACHELINE_PADDING(_pad2_);
300 
301 	/*
302 	 * set > 0 if pages under this cgroup are moving to other cgroup.
303 	 */
304 	atomic_t		moving_account;
305 	struct task_struct	*move_lock_task;
306 
307 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
308 
309 #ifdef CONFIG_CGROUP_WRITEBACK
310 	struct list_head cgwb_list;
311 	struct wb_domain cgwb_domain;
312 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
313 #endif
314 
315 	/* List of events which userspace want to receive */
316 	struct list_head event_list;
317 	spinlock_t event_list_lock;
318 
319 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
320 	struct deferred_split deferred_split_queue;
321 #endif
322 
323 #ifdef CONFIG_LRU_GEN
324 	/* per-memcg mm_struct list */
325 	struct lru_gen_mm_list mm_list;
326 #endif
327 
328 	struct mem_cgroup_per_node *nodeinfo[];
329 };
330 
331 /*
332  * size of first charge trial.
333  * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
334  * workload.
335  */
336 #define MEMCG_CHARGE_BATCH 64U
337 
338 extern struct mem_cgroup *root_mem_cgroup;
339 
340 enum page_memcg_data_flags {
341 	/* page->memcg_data is a pointer to an objcgs vector */
342 	MEMCG_DATA_OBJCGS = (1UL << 0),
343 	/* page has been accounted as a non-slab kernel page */
344 	MEMCG_DATA_KMEM = (1UL << 1),
345 	/* the next bit after the last actual flag */
346 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
347 };
348 
349 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
350 
351 static inline bool folio_memcg_kmem(struct folio *folio);
352 
353 /*
354  * After the initialization objcg->memcg is always pointing at
355  * a valid memcg, but can be atomically swapped to the parent memcg.
356  *
357  * The caller must ensure that the returned memcg won't be released:
358  * e.g. acquire the rcu_read_lock or css_set_lock.
359  */
360 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
361 {
362 	return READ_ONCE(objcg->memcg);
363 }
364 
365 /*
366  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
367  * @folio: Pointer to the folio.
368  *
369  * Returns a pointer to the memory cgroup associated with the folio,
370  * or NULL. This function assumes that the folio is known to have a
371  * proper memory cgroup pointer. It's not safe to call this function
372  * against some type of folios, e.g. slab folios or ex-slab folios or
373  * kmem folios.
374  */
375 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
376 {
377 	unsigned long memcg_data = folio->memcg_data;
378 
379 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
380 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
381 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
382 
383 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
384 }
385 
386 /*
387  * __folio_objcg - get the object cgroup associated with a kmem folio.
388  * @folio: Pointer to the folio.
389  *
390  * Returns a pointer to the object cgroup associated with the folio,
391  * or NULL. This function assumes that the folio is known to have a
392  * proper object cgroup pointer. It's not safe to call this function
393  * against some type of folios, e.g. slab folios or ex-slab folios or
394  * LRU folios.
395  */
396 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
397 {
398 	unsigned long memcg_data = folio->memcg_data;
399 
400 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
401 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
402 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
403 
404 	return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
405 }
406 
407 /*
408  * folio_memcg - Get the memory cgroup associated with a folio.
409  * @folio: Pointer to the folio.
410  *
411  * Returns a pointer to the memory cgroup associated with the folio,
412  * or NULL. This function assumes that the folio is known to have a
413  * proper memory cgroup pointer. It's not safe to call this function
414  * against some type of folios, e.g. slab folios or ex-slab folios.
415  *
416  * For a non-kmem folio any of the following ensures folio and memcg binding
417  * stability:
418  *
419  * - the folio lock
420  * - LRU isolation
421  * - lock_page_memcg()
422  * - exclusive reference
423  * - mem_cgroup_trylock_pages()
424  *
425  * For a kmem folio a caller should hold an rcu read lock to protect memcg
426  * associated with a kmem folio from being released.
427  */
428 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
429 {
430 	if (folio_memcg_kmem(folio))
431 		return obj_cgroup_memcg(__folio_objcg(folio));
432 	return __folio_memcg(folio);
433 }
434 
435 static inline struct mem_cgroup *page_memcg(struct page *page)
436 {
437 	return folio_memcg(page_folio(page));
438 }
439 
440 /**
441  * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
442  * @folio: Pointer to the folio.
443  *
444  * This function assumes that the folio is known to have a
445  * proper memory cgroup pointer. It's not safe to call this function
446  * against some type of folios, e.g. slab folios or ex-slab folios.
447  *
448  * Return: A pointer to the memory cgroup associated with the folio,
449  * or NULL.
450  */
451 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
452 {
453 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
454 
455 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
456 	WARN_ON_ONCE(!rcu_read_lock_held());
457 
458 	if (memcg_data & MEMCG_DATA_KMEM) {
459 		struct obj_cgroup *objcg;
460 
461 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
462 		return obj_cgroup_memcg(objcg);
463 	}
464 
465 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
466 }
467 
468 /*
469  * folio_memcg_check - Get the memory cgroup associated with a folio.
470  * @folio: Pointer to the folio.
471  *
472  * Returns a pointer to the memory cgroup associated with the folio,
473  * or NULL. This function unlike folio_memcg() can take any folio
474  * as an argument. It has to be used in cases when it's not known if a folio
475  * has an associated memory cgroup pointer or an object cgroups vector or
476  * an object cgroup.
477  *
478  * For a non-kmem folio any of the following ensures folio and memcg binding
479  * stability:
480  *
481  * - the folio lock
482  * - LRU isolation
483  * - lock_folio_memcg()
484  * - exclusive reference
485  * - mem_cgroup_trylock_pages()
486  *
487  * For a kmem folio a caller should hold an rcu read lock to protect memcg
488  * associated with a kmem folio from being released.
489  */
490 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
491 {
492 	/*
493 	 * Because folio->memcg_data might be changed asynchronously
494 	 * for slabs, READ_ONCE() should be used here.
495 	 */
496 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
497 
498 	if (memcg_data & MEMCG_DATA_OBJCGS)
499 		return NULL;
500 
501 	if (memcg_data & MEMCG_DATA_KMEM) {
502 		struct obj_cgroup *objcg;
503 
504 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
505 		return obj_cgroup_memcg(objcg);
506 	}
507 
508 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
509 }
510 
511 static inline struct mem_cgroup *page_memcg_check(struct page *page)
512 {
513 	if (PageTail(page))
514 		return NULL;
515 	return folio_memcg_check((struct folio *)page);
516 }
517 
518 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
519 {
520 	struct mem_cgroup *memcg;
521 
522 	rcu_read_lock();
523 retry:
524 	memcg = obj_cgroup_memcg(objcg);
525 	if (unlikely(!css_tryget(&memcg->css)))
526 		goto retry;
527 	rcu_read_unlock();
528 
529 	return memcg;
530 }
531 
532 #ifdef CONFIG_MEMCG_KMEM
533 /*
534  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
535  * @folio: Pointer to the folio.
536  *
537  * Checks if the folio has MemcgKmem flag set. The caller must ensure
538  * that the folio has an associated memory cgroup. It's not safe to call
539  * this function against some types of folios, e.g. slab folios.
540  */
541 static inline bool folio_memcg_kmem(struct folio *folio)
542 {
543 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
544 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
545 	return folio->memcg_data & MEMCG_DATA_KMEM;
546 }
547 
548 
549 #else
550 static inline bool folio_memcg_kmem(struct folio *folio)
551 {
552 	return false;
553 }
554 
555 #endif
556 
557 static inline bool PageMemcgKmem(struct page *page)
558 {
559 	return folio_memcg_kmem(page_folio(page));
560 }
561 
562 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
563 {
564 	return (memcg == root_mem_cgroup);
565 }
566 
567 static inline bool mem_cgroup_disabled(void)
568 {
569 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
570 }
571 
572 static inline void mem_cgroup_protection(struct mem_cgroup *root,
573 					 struct mem_cgroup *memcg,
574 					 unsigned long *min,
575 					 unsigned long *low)
576 {
577 	*min = *low = 0;
578 
579 	if (mem_cgroup_disabled())
580 		return;
581 
582 	/*
583 	 * There is no reclaim protection applied to a targeted reclaim.
584 	 * We are special casing this specific case here because
585 	 * mem_cgroup_protected calculation is not robust enough to keep
586 	 * the protection invariant for calculated effective values for
587 	 * parallel reclaimers with different reclaim target. This is
588 	 * especially a problem for tail memcgs (as they have pages on LRU)
589 	 * which would want to have effective values 0 for targeted reclaim
590 	 * but a different value for external reclaim.
591 	 *
592 	 * Example
593 	 * Let's have global and A's reclaim in parallel:
594 	 *  |
595 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
596 	 *  |\
597 	 *  | C (low = 1G, usage = 2.5G)
598 	 *  B (low = 1G, usage = 0.5G)
599 	 *
600 	 * For the global reclaim
601 	 * A.elow = A.low
602 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
603 	 * C.elow = min(C.usage, C.low)
604 	 *
605 	 * With the effective values resetting we have A reclaim
606 	 * A.elow = 0
607 	 * B.elow = B.low
608 	 * C.elow = C.low
609 	 *
610 	 * If the global reclaim races with A's reclaim then
611 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
612 	 * is possible and reclaiming B would be violating the protection.
613 	 *
614 	 */
615 	if (root == memcg)
616 		return;
617 
618 	*min = READ_ONCE(memcg->memory.emin);
619 	*low = READ_ONCE(memcg->memory.elow);
620 }
621 
622 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
623 				     struct mem_cgroup *memcg);
624 
625 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
626 					  struct mem_cgroup *memcg)
627 {
628 	/*
629 	 * The root memcg doesn't account charges, and doesn't support
630 	 * protection. The target memcg's protection is ignored, see
631 	 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
632 	 */
633 	return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
634 		memcg == target;
635 }
636 
637 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
638 					struct mem_cgroup *memcg)
639 {
640 	if (mem_cgroup_unprotected(target, memcg))
641 		return false;
642 
643 	return READ_ONCE(memcg->memory.elow) >=
644 		page_counter_read(&memcg->memory);
645 }
646 
647 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
648 					struct mem_cgroup *memcg)
649 {
650 	if (mem_cgroup_unprotected(target, memcg))
651 		return false;
652 
653 	return READ_ONCE(memcg->memory.emin) >=
654 		page_counter_read(&memcg->memory);
655 }
656 
657 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
658 
659 /**
660  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
661  * @folio: Folio to charge.
662  * @mm: mm context of the allocating task.
663  * @gfp: Reclaim mode.
664  *
665  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
666  * pages according to @gfp if necessary.  If @mm is NULL, try to
667  * charge to the active memcg.
668  *
669  * Do not use this for folios allocated for swapin.
670  *
671  * Return: 0 on success. Otherwise, an error code is returned.
672  */
673 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
674 				    gfp_t gfp)
675 {
676 	if (mem_cgroup_disabled())
677 		return 0;
678 	return __mem_cgroup_charge(folio, mm, gfp);
679 }
680 
681 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
682 				  gfp_t gfp, swp_entry_t entry);
683 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
684 
685 void __mem_cgroup_uncharge(struct folio *folio);
686 
687 /**
688  * mem_cgroup_uncharge - Uncharge a folio.
689  * @folio: Folio to uncharge.
690  *
691  * Uncharge a folio previously charged with mem_cgroup_charge().
692  */
693 static inline void mem_cgroup_uncharge(struct folio *folio)
694 {
695 	if (mem_cgroup_disabled())
696 		return;
697 	__mem_cgroup_uncharge(folio);
698 }
699 
700 void __mem_cgroup_uncharge_list(struct list_head *page_list);
701 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
702 {
703 	if (mem_cgroup_disabled())
704 		return;
705 	__mem_cgroup_uncharge_list(page_list);
706 }
707 
708 void mem_cgroup_migrate(struct folio *old, struct folio *new);
709 
710 /**
711  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
712  * @memcg: memcg of the wanted lruvec
713  * @pgdat: pglist_data
714  *
715  * Returns the lru list vector holding pages for a given @memcg &
716  * @pgdat combination. This can be the node lruvec, if the memory
717  * controller is disabled.
718  */
719 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
720 					       struct pglist_data *pgdat)
721 {
722 	struct mem_cgroup_per_node *mz;
723 	struct lruvec *lruvec;
724 
725 	if (mem_cgroup_disabled()) {
726 		lruvec = &pgdat->__lruvec;
727 		goto out;
728 	}
729 
730 	if (!memcg)
731 		memcg = root_mem_cgroup;
732 
733 	mz = memcg->nodeinfo[pgdat->node_id];
734 	lruvec = &mz->lruvec;
735 out:
736 	/*
737 	 * Since a node can be onlined after the mem_cgroup was created,
738 	 * we have to be prepared to initialize lruvec->pgdat here;
739 	 * and if offlined then reonlined, we need to reinitialize it.
740 	 */
741 	if (unlikely(lruvec->pgdat != pgdat))
742 		lruvec->pgdat = pgdat;
743 	return lruvec;
744 }
745 
746 /**
747  * folio_lruvec - return lruvec for isolating/putting an LRU folio
748  * @folio: Pointer to the folio.
749  *
750  * This function relies on folio->mem_cgroup being stable.
751  */
752 static inline struct lruvec *folio_lruvec(struct folio *folio)
753 {
754 	struct mem_cgroup *memcg = folio_memcg(folio);
755 
756 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
757 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
758 }
759 
760 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
761 
762 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
763 
764 struct lruvec *folio_lruvec_lock(struct folio *folio);
765 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
766 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
767 						unsigned long *flags);
768 
769 #ifdef CONFIG_DEBUG_VM
770 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
771 #else
772 static inline
773 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
774 {
775 }
776 #endif
777 
778 static inline
779 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
780 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
781 }
782 
783 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
784 {
785 	return percpu_ref_tryget(&objcg->refcnt);
786 }
787 
788 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
789 {
790 	percpu_ref_get(&objcg->refcnt);
791 }
792 
793 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
794 				       unsigned long nr)
795 {
796 	percpu_ref_get_many(&objcg->refcnt, nr);
797 }
798 
799 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
800 {
801 	percpu_ref_put(&objcg->refcnt);
802 }
803 
804 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
805 {
806 	return !memcg || css_tryget(&memcg->css);
807 }
808 
809 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
810 {
811 	if (memcg)
812 		css_put(&memcg->css);
813 }
814 
815 #define mem_cgroup_from_counter(counter, member)	\
816 	container_of(counter, struct mem_cgroup, member)
817 
818 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
819 				   struct mem_cgroup *,
820 				   struct mem_cgroup_reclaim_cookie *);
821 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
822 int mem_cgroup_scan_tasks(struct mem_cgroup *,
823 			  int (*)(struct task_struct *, void *), void *);
824 
825 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
826 {
827 	if (mem_cgroup_disabled())
828 		return 0;
829 
830 	return memcg->id.id;
831 }
832 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
833 
834 #ifdef CONFIG_SHRINKER_DEBUG
835 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
836 {
837 	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
838 }
839 
840 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
841 #endif
842 
843 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
844 {
845 	return mem_cgroup_from_css(seq_css(m));
846 }
847 
848 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
849 {
850 	struct mem_cgroup_per_node *mz;
851 
852 	if (mem_cgroup_disabled())
853 		return NULL;
854 
855 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
856 	return mz->memcg;
857 }
858 
859 /**
860  * parent_mem_cgroup - find the accounting parent of a memcg
861  * @memcg: memcg whose parent to find
862  *
863  * Returns the parent memcg, or NULL if this is the root or the memory
864  * controller is in legacy no-hierarchy mode.
865  */
866 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
867 {
868 	return mem_cgroup_from_css(memcg->css.parent);
869 }
870 
871 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
872 			      struct mem_cgroup *root)
873 {
874 	if (root == memcg)
875 		return true;
876 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
877 }
878 
879 static inline bool mm_match_cgroup(struct mm_struct *mm,
880 				   struct mem_cgroup *memcg)
881 {
882 	struct mem_cgroup *task_memcg;
883 	bool match = false;
884 
885 	rcu_read_lock();
886 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
887 	if (task_memcg)
888 		match = mem_cgroup_is_descendant(task_memcg, memcg);
889 	rcu_read_unlock();
890 	return match;
891 }
892 
893 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
894 ino_t page_cgroup_ino(struct page *page);
895 
896 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
897 {
898 	if (mem_cgroup_disabled())
899 		return true;
900 	return !!(memcg->css.flags & CSS_ONLINE);
901 }
902 
903 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
904 		int zid, int nr_pages);
905 
906 static inline
907 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
908 		enum lru_list lru, int zone_idx)
909 {
910 	struct mem_cgroup_per_node *mz;
911 
912 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
913 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
914 }
915 
916 void mem_cgroup_handle_over_high(void);
917 
918 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
919 
920 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
921 
922 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
923 				struct task_struct *p);
924 
925 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
926 
927 static inline void mem_cgroup_enter_user_fault(void)
928 {
929 	WARN_ON(current->in_user_fault);
930 	current->in_user_fault = 1;
931 }
932 
933 static inline void mem_cgroup_exit_user_fault(void)
934 {
935 	WARN_ON(!current->in_user_fault);
936 	current->in_user_fault = 0;
937 }
938 
939 static inline bool task_in_memcg_oom(struct task_struct *p)
940 {
941 	return p->memcg_in_oom;
942 }
943 
944 bool mem_cgroup_oom_synchronize(bool wait);
945 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
946 					    struct mem_cgroup *oom_domain);
947 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
948 
949 void folio_memcg_lock(struct folio *folio);
950 void folio_memcg_unlock(struct folio *folio);
951 void lock_page_memcg(struct page *page);
952 void unlock_page_memcg(struct page *page);
953 
954 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
955 
956 /* try to stablize folio_memcg() for all the pages in a memcg */
957 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
958 {
959 	rcu_read_lock();
960 
961 	if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
962 		return true;
963 
964 	rcu_read_unlock();
965 	return false;
966 }
967 
968 static inline void mem_cgroup_unlock_pages(void)
969 {
970 	rcu_read_unlock();
971 }
972 
973 /* idx can be of type enum memcg_stat_item or node_stat_item */
974 static inline void mod_memcg_state(struct mem_cgroup *memcg,
975 				   int idx, int val)
976 {
977 	unsigned long flags;
978 
979 	local_irq_save(flags);
980 	__mod_memcg_state(memcg, idx, val);
981 	local_irq_restore(flags);
982 }
983 
984 static inline void mod_memcg_page_state(struct page *page,
985 					int idx, int val)
986 {
987 	struct mem_cgroup *memcg;
988 
989 	if (mem_cgroup_disabled())
990 		return;
991 
992 	rcu_read_lock();
993 	memcg = page_memcg(page);
994 	if (memcg)
995 		mod_memcg_state(memcg, idx, val);
996 	rcu_read_unlock();
997 }
998 
999 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
1000 
1001 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1002 					      enum node_stat_item idx)
1003 {
1004 	struct mem_cgroup_per_node *pn;
1005 	long x;
1006 
1007 	if (mem_cgroup_disabled())
1008 		return node_page_state(lruvec_pgdat(lruvec), idx);
1009 
1010 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1011 	x = READ_ONCE(pn->lruvec_stats.state[idx]);
1012 #ifdef CONFIG_SMP
1013 	if (x < 0)
1014 		x = 0;
1015 #endif
1016 	return x;
1017 }
1018 
1019 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1020 						    enum node_stat_item idx)
1021 {
1022 	struct mem_cgroup_per_node *pn;
1023 	long x = 0;
1024 	int cpu;
1025 
1026 	if (mem_cgroup_disabled())
1027 		return node_page_state(lruvec_pgdat(lruvec), idx);
1028 
1029 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1030 	for_each_possible_cpu(cpu)
1031 		x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
1032 #ifdef CONFIG_SMP
1033 	if (x < 0)
1034 		x = 0;
1035 #endif
1036 	return x;
1037 }
1038 
1039 void mem_cgroup_flush_stats(void);
1040 void mem_cgroup_flush_stats_delayed(void);
1041 
1042 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1043 			      int val);
1044 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1045 
1046 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1047 					 int val)
1048 {
1049 	unsigned long flags;
1050 
1051 	local_irq_save(flags);
1052 	__mod_lruvec_kmem_state(p, idx, val);
1053 	local_irq_restore(flags);
1054 }
1055 
1056 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1057 					  enum node_stat_item idx, int val)
1058 {
1059 	unsigned long flags;
1060 
1061 	local_irq_save(flags);
1062 	__mod_memcg_lruvec_state(lruvec, idx, val);
1063 	local_irq_restore(flags);
1064 }
1065 
1066 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1067 			  unsigned long count);
1068 
1069 static inline void count_memcg_events(struct mem_cgroup *memcg,
1070 				      enum vm_event_item idx,
1071 				      unsigned long count)
1072 {
1073 	unsigned long flags;
1074 
1075 	local_irq_save(flags);
1076 	__count_memcg_events(memcg, idx, count);
1077 	local_irq_restore(flags);
1078 }
1079 
1080 static inline void count_memcg_page_event(struct page *page,
1081 					  enum vm_event_item idx)
1082 {
1083 	struct mem_cgroup *memcg = page_memcg(page);
1084 
1085 	if (memcg)
1086 		count_memcg_events(memcg, idx, 1);
1087 }
1088 
1089 static inline void count_memcg_folio_events(struct folio *folio,
1090 		enum vm_event_item idx, unsigned long nr)
1091 {
1092 	struct mem_cgroup *memcg = folio_memcg(folio);
1093 
1094 	if (memcg)
1095 		count_memcg_events(memcg, idx, nr);
1096 }
1097 
1098 static inline void count_memcg_event_mm(struct mm_struct *mm,
1099 					enum vm_event_item idx)
1100 {
1101 	struct mem_cgroup *memcg;
1102 
1103 	if (mem_cgroup_disabled())
1104 		return;
1105 
1106 	rcu_read_lock();
1107 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1108 	if (likely(memcg))
1109 		count_memcg_events(memcg, idx, 1);
1110 	rcu_read_unlock();
1111 }
1112 
1113 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1114 				      enum memcg_memory_event event)
1115 {
1116 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1117 			  event == MEMCG_SWAP_FAIL;
1118 
1119 	atomic_long_inc(&memcg->memory_events_local[event]);
1120 	if (!swap_event)
1121 		cgroup_file_notify(&memcg->events_local_file);
1122 
1123 	do {
1124 		atomic_long_inc(&memcg->memory_events[event]);
1125 		if (swap_event)
1126 			cgroup_file_notify(&memcg->swap_events_file);
1127 		else
1128 			cgroup_file_notify(&memcg->events_file);
1129 
1130 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1131 			break;
1132 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1133 			break;
1134 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1135 		 !mem_cgroup_is_root(memcg));
1136 }
1137 
1138 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1139 					 enum memcg_memory_event event)
1140 {
1141 	struct mem_cgroup *memcg;
1142 
1143 	if (mem_cgroup_disabled())
1144 		return;
1145 
1146 	rcu_read_lock();
1147 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1148 	if (likely(memcg))
1149 		memcg_memory_event(memcg, event);
1150 	rcu_read_unlock();
1151 }
1152 
1153 void split_page_memcg(struct page *head, unsigned int nr);
1154 
1155 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1156 						gfp_t gfp_mask,
1157 						unsigned long *total_scanned);
1158 
1159 #else /* CONFIG_MEMCG */
1160 
1161 #define MEM_CGROUP_ID_SHIFT	0
1162 #define MEM_CGROUP_ID_MAX	0
1163 
1164 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1165 {
1166 	return NULL;
1167 }
1168 
1169 static inline struct mem_cgroup *page_memcg(struct page *page)
1170 {
1171 	return NULL;
1172 }
1173 
1174 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1175 {
1176 	WARN_ON_ONCE(!rcu_read_lock_held());
1177 	return NULL;
1178 }
1179 
1180 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1181 {
1182 	return NULL;
1183 }
1184 
1185 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1186 {
1187 	return NULL;
1188 }
1189 
1190 static inline bool folio_memcg_kmem(struct folio *folio)
1191 {
1192 	return false;
1193 }
1194 
1195 static inline bool PageMemcgKmem(struct page *page)
1196 {
1197 	return false;
1198 }
1199 
1200 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1201 {
1202 	return true;
1203 }
1204 
1205 static inline bool mem_cgroup_disabled(void)
1206 {
1207 	return true;
1208 }
1209 
1210 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1211 				      enum memcg_memory_event event)
1212 {
1213 }
1214 
1215 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1216 					 enum memcg_memory_event event)
1217 {
1218 }
1219 
1220 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1221 					 struct mem_cgroup *memcg,
1222 					 unsigned long *min,
1223 					 unsigned long *low)
1224 {
1225 	*min = *low = 0;
1226 }
1227 
1228 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1229 						   struct mem_cgroup *memcg)
1230 {
1231 }
1232 
1233 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1234 					  struct mem_cgroup *memcg)
1235 {
1236 	return true;
1237 }
1238 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1239 					struct mem_cgroup *memcg)
1240 {
1241 	return false;
1242 }
1243 
1244 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1245 					struct mem_cgroup *memcg)
1246 {
1247 	return false;
1248 }
1249 
1250 static inline int mem_cgroup_charge(struct folio *folio,
1251 		struct mm_struct *mm, gfp_t gfp)
1252 {
1253 	return 0;
1254 }
1255 
1256 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1257 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1258 {
1259 	return 0;
1260 }
1261 
1262 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1263 {
1264 }
1265 
1266 static inline void mem_cgroup_uncharge(struct folio *folio)
1267 {
1268 }
1269 
1270 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1271 {
1272 }
1273 
1274 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1275 {
1276 }
1277 
1278 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1279 					       struct pglist_data *pgdat)
1280 {
1281 	return &pgdat->__lruvec;
1282 }
1283 
1284 static inline struct lruvec *folio_lruvec(struct folio *folio)
1285 {
1286 	struct pglist_data *pgdat = folio_pgdat(folio);
1287 	return &pgdat->__lruvec;
1288 }
1289 
1290 static inline
1291 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1292 {
1293 }
1294 
1295 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1296 {
1297 	return NULL;
1298 }
1299 
1300 static inline bool mm_match_cgroup(struct mm_struct *mm,
1301 		struct mem_cgroup *memcg)
1302 {
1303 	return true;
1304 }
1305 
1306 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1307 {
1308 	return NULL;
1309 }
1310 
1311 static inline
1312 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1313 {
1314 	return NULL;
1315 }
1316 
1317 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1318 {
1319 }
1320 
1321 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1322 {
1323 	return true;
1324 }
1325 
1326 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1327 {
1328 }
1329 
1330 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1331 {
1332 	struct pglist_data *pgdat = folio_pgdat(folio);
1333 
1334 	spin_lock(&pgdat->__lruvec.lru_lock);
1335 	return &pgdat->__lruvec;
1336 }
1337 
1338 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1339 {
1340 	struct pglist_data *pgdat = folio_pgdat(folio);
1341 
1342 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1343 	return &pgdat->__lruvec;
1344 }
1345 
1346 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1347 		unsigned long *flagsp)
1348 {
1349 	struct pglist_data *pgdat = folio_pgdat(folio);
1350 
1351 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1352 	return &pgdat->__lruvec;
1353 }
1354 
1355 static inline struct mem_cgroup *
1356 mem_cgroup_iter(struct mem_cgroup *root,
1357 		struct mem_cgroup *prev,
1358 		struct mem_cgroup_reclaim_cookie *reclaim)
1359 {
1360 	return NULL;
1361 }
1362 
1363 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1364 					 struct mem_cgroup *prev)
1365 {
1366 }
1367 
1368 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1369 		int (*fn)(struct task_struct *, void *), void *arg)
1370 {
1371 	return 0;
1372 }
1373 
1374 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1375 {
1376 	return 0;
1377 }
1378 
1379 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1380 {
1381 	WARN_ON_ONCE(id);
1382 	/* XXX: This should always return root_mem_cgroup */
1383 	return NULL;
1384 }
1385 
1386 #ifdef CONFIG_SHRINKER_DEBUG
1387 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1388 {
1389 	return 0;
1390 }
1391 
1392 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1393 {
1394 	return NULL;
1395 }
1396 #endif
1397 
1398 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1399 {
1400 	return NULL;
1401 }
1402 
1403 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1404 {
1405 	return NULL;
1406 }
1407 
1408 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1409 {
1410 	return true;
1411 }
1412 
1413 static inline
1414 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1415 		enum lru_list lru, int zone_idx)
1416 {
1417 	return 0;
1418 }
1419 
1420 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1421 {
1422 	return 0;
1423 }
1424 
1425 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1426 {
1427 	return 0;
1428 }
1429 
1430 static inline void
1431 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1432 {
1433 }
1434 
1435 static inline void
1436 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1437 {
1438 }
1439 
1440 static inline void lock_page_memcg(struct page *page)
1441 {
1442 }
1443 
1444 static inline void unlock_page_memcg(struct page *page)
1445 {
1446 }
1447 
1448 static inline void folio_memcg_lock(struct folio *folio)
1449 {
1450 }
1451 
1452 static inline void folio_memcg_unlock(struct folio *folio)
1453 {
1454 }
1455 
1456 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1457 {
1458 	/* to match folio_memcg_rcu() */
1459 	rcu_read_lock();
1460 	return true;
1461 }
1462 
1463 static inline void mem_cgroup_unlock_pages(void)
1464 {
1465 	rcu_read_unlock();
1466 }
1467 
1468 static inline void mem_cgroup_handle_over_high(void)
1469 {
1470 }
1471 
1472 static inline void mem_cgroup_enter_user_fault(void)
1473 {
1474 }
1475 
1476 static inline void mem_cgroup_exit_user_fault(void)
1477 {
1478 }
1479 
1480 static inline bool task_in_memcg_oom(struct task_struct *p)
1481 {
1482 	return false;
1483 }
1484 
1485 static inline bool mem_cgroup_oom_synchronize(bool wait)
1486 {
1487 	return false;
1488 }
1489 
1490 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1491 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1492 {
1493 	return NULL;
1494 }
1495 
1496 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1497 {
1498 }
1499 
1500 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1501 				     int idx,
1502 				     int nr)
1503 {
1504 }
1505 
1506 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1507 				   int idx,
1508 				   int nr)
1509 {
1510 }
1511 
1512 static inline void mod_memcg_page_state(struct page *page,
1513 					int idx, int val)
1514 {
1515 }
1516 
1517 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1518 {
1519 	return 0;
1520 }
1521 
1522 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1523 					      enum node_stat_item idx)
1524 {
1525 	return node_page_state(lruvec_pgdat(lruvec), idx);
1526 }
1527 
1528 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1529 						    enum node_stat_item idx)
1530 {
1531 	return node_page_state(lruvec_pgdat(lruvec), idx);
1532 }
1533 
1534 static inline void mem_cgroup_flush_stats(void)
1535 {
1536 }
1537 
1538 static inline void mem_cgroup_flush_stats_delayed(void)
1539 {
1540 }
1541 
1542 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1543 					    enum node_stat_item idx, int val)
1544 {
1545 }
1546 
1547 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1548 					   int val)
1549 {
1550 	struct page *page = virt_to_head_page(p);
1551 
1552 	__mod_node_page_state(page_pgdat(page), idx, val);
1553 }
1554 
1555 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1556 					 int val)
1557 {
1558 	struct page *page = virt_to_head_page(p);
1559 
1560 	mod_node_page_state(page_pgdat(page), idx, val);
1561 }
1562 
1563 static inline void count_memcg_events(struct mem_cgroup *memcg,
1564 				      enum vm_event_item idx,
1565 				      unsigned long count)
1566 {
1567 }
1568 
1569 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1570 					enum vm_event_item idx,
1571 					unsigned long count)
1572 {
1573 }
1574 
1575 static inline void count_memcg_page_event(struct page *page,
1576 					  int idx)
1577 {
1578 }
1579 
1580 static inline void count_memcg_folio_events(struct folio *folio,
1581 		enum vm_event_item idx, unsigned long nr)
1582 {
1583 }
1584 
1585 static inline
1586 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1587 {
1588 }
1589 
1590 static inline void split_page_memcg(struct page *head, unsigned int nr)
1591 {
1592 }
1593 
1594 static inline
1595 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1596 					    gfp_t gfp_mask,
1597 					    unsigned long *total_scanned)
1598 {
1599 	return 0;
1600 }
1601 #endif /* CONFIG_MEMCG */
1602 
1603 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1604 {
1605 	__mod_lruvec_kmem_state(p, idx, 1);
1606 }
1607 
1608 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1609 {
1610 	__mod_lruvec_kmem_state(p, idx, -1);
1611 }
1612 
1613 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1614 {
1615 	struct mem_cgroup *memcg;
1616 
1617 	memcg = lruvec_memcg(lruvec);
1618 	if (!memcg)
1619 		return NULL;
1620 	memcg = parent_mem_cgroup(memcg);
1621 	if (!memcg)
1622 		return NULL;
1623 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1624 }
1625 
1626 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1627 {
1628 	spin_unlock(&lruvec->lru_lock);
1629 }
1630 
1631 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1632 {
1633 	spin_unlock_irq(&lruvec->lru_lock);
1634 }
1635 
1636 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1637 		unsigned long flags)
1638 {
1639 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1640 }
1641 
1642 /* Test requires a stable page->memcg binding, see page_memcg() */
1643 static inline bool folio_matches_lruvec(struct folio *folio,
1644 		struct lruvec *lruvec)
1645 {
1646 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1647 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1648 }
1649 
1650 /* Don't lock again iff page's lruvec locked */
1651 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1652 		struct lruvec *locked_lruvec)
1653 {
1654 	if (locked_lruvec) {
1655 		if (folio_matches_lruvec(folio, locked_lruvec))
1656 			return locked_lruvec;
1657 
1658 		unlock_page_lruvec_irq(locked_lruvec);
1659 	}
1660 
1661 	return folio_lruvec_lock_irq(folio);
1662 }
1663 
1664 /* Don't lock again iff page's lruvec locked */
1665 static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1666 		struct lruvec *locked_lruvec, unsigned long *flags)
1667 {
1668 	if (locked_lruvec) {
1669 		if (folio_matches_lruvec(folio, locked_lruvec))
1670 			return locked_lruvec;
1671 
1672 		unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1673 	}
1674 
1675 	return folio_lruvec_lock_irqsave(folio, flags);
1676 }
1677 
1678 #ifdef CONFIG_CGROUP_WRITEBACK
1679 
1680 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1681 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1682 			 unsigned long *pheadroom, unsigned long *pdirty,
1683 			 unsigned long *pwriteback);
1684 
1685 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1686 					     struct bdi_writeback *wb);
1687 
1688 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1689 						  struct bdi_writeback *wb)
1690 {
1691 	struct mem_cgroup *memcg;
1692 
1693 	if (mem_cgroup_disabled())
1694 		return;
1695 
1696 	memcg = folio_memcg(folio);
1697 	if (unlikely(memcg && &memcg->css != wb->memcg_css))
1698 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1699 }
1700 
1701 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1702 
1703 #else	/* CONFIG_CGROUP_WRITEBACK */
1704 
1705 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1706 {
1707 	return NULL;
1708 }
1709 
1710 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1711 				       unsigned long *pfilepages,
1712 				       unsigned long *pheadroom,
1713 				       unsigned long *pdirty,
1714 				       unsigned long *pwriteback)
1715 {
1716 }
1717 
1718 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1719 						  struct bdi_writeback *wb)
1720 {
1721 }
1722 
1723 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1724 {
1725 }
1726 
1727 #endif	/* CONFIG_CGROUP_WRITEBACK */
1728 
1729 struct sock;
1730 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1731 			     gfp_t gfp_mask);
1732 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1733 #ifdef CONFIG_MEMCG
1734 extern struct static_key_false memcg_sockets_enabled_key;
1735 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1736 void mem_cgroup_sk_alloc(struct sock *sk);
1737 void mem_cgroup_sk_free(struct sock *sk);
1738 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1739 {
1740 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1741 		return true;
1742 	do {
1743 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1744 			return true;
1745 	} while ((memcg = parent_mem_cgroup(memcg)));
1746 	return false;
1747 }
1748 
1749 int alloc_shrinker_info(struct mem_cgroup *memcg);
1750 void free_shrinker_info(struct mem_cgroup *memcg);
1751 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1752 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1753 #else
1754 #define mem_cgroup_sockets_enabled 0
1755 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1756 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1757 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1758 {
1759 	return false;
1760 }
1761 
1762 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1763 				    int nid, int shrinker_id)
1764 {
1765 }
1766 #endif
1767 
1768 #ifdef CONFIG_MEMCG_KMEM
1769 bool mem_cgroup_kmem_disabled(void);
1770 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1771 void __memcg_kmem_uncharge_page(struct page *page, int order);
1772 
1773 struct obj_cgroup *get_obj_cgroup_from_current(void);
1774 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page);
1775 
1776 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1777 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1778 
1779 extern struct static_key_false memcg_bpf_enabled_key;
1780 static inline bool memcg_bpf_enabled(void)
1781 {
1782 	return static_branch_likely(&memcg_bpf_enabled_key);
1783 }
1784 
1785 extern struct static_key_false memcg_kmem_online_key;
1786 
1787 static inline bool memcg_kmem_online(void)
1788 {
1789 	return static_branch_likely(&memcg_kmem_online_key);
1790 }
1791 
1792 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1793 					 int order)
1794 {
1795 	if (memcg_kmem_online())
1796 		return __memcg_kmem_charge_page(page, gfp, order);
1797 	return 0;
1798 }
1799 
1800 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1801 {
1802 	if (memcg_kmem_online())
1803 		__memcg_kmem_uncharge_page(page, order);
1804 }
1805 
1806 /*
1807  * A helper for accessing memcg's kmem_id, used for getting
1808  * corresponding LRU lists.
1809  */
1810 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1811 {
1812 	return memcg ? memcg->kmemcg_id : -1;
1813 }
1814 
1815 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1816 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1817 
1818 static inline void count_objcg_event(struct obj_cgroup *objcg,
1819 				     enum vm_event_item idx)
1820 {
1821 	struct mem_cgroup *memcg;
1822 
1823 	if (!memcg_kmem_online())
1824 		return;
1825 
1826 	rcu_read_lock();
1827 	memcg = obj_cgroup_memcg(objcg);
1828 	count_memcg_events(memcg, idx, 1);
1829 	rcu_read_unlock();
1830 }
1831 
1832 #else
1833 static inline bool mem_cgroup_kmem_disabled(void)
1834 {
1835 	return true;
1836 }
1837 
1838 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1839 					 int order)
1840 {
1841 	return 0;
1842 }
1843 
1844 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1845 {
1846 }
1847 
1848 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1849 					   int order)
1850 {
1851 	return 0;
1852 }
1853 
1854 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1855 {
1856 }
1857 
1858 static inline struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
1859 {
1860 	return NULL;
1861 }
1862 
1863 static inline bool memcg_bpf_enabled(void)
1864 {
1865 	return false;
1866 }
1867 
1868 static inline bool memcg_kmem_online(void)
1869 {
1870 	return false;
1871 }
1872 
1873 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1874 {
1875 	return -1;
1876 }
1877 
1878 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1879 {
1880 	return NULL;
1881 }
1882 
1883 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1884 {
1885 	return NULL;
1886 }
1887 
1888 static inline void count_objcg_event(struct obj_cgroup *objcg,
1889 				     enum vm_event_item idx)
1890 {
1891 }
1892 
1893 #endif /* CONFIG_MEMCG_KMEM */
1894 
1895 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1896 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1897 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1898 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1899 #else
1900 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1901 {
1902 	return true;
1903 }
1904 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1905 					   size_t size)
1906 {
1907 }
1908 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1909 					     size_t size)
1910 {
1911 }
1912 #endif
1913 
1914 #endif /* _LINUX_MEMCONTROL_H */
1915