xref: /linux/include/linux/memcontrol.h (revision db10cb9b)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30 
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 	MEMCG_SOCK,
35 	MEMCG_PERCPU_B,
36 	MEMCG_VMALLOC,
37 	MEMCG_KMEM,
38 	MEMCG_ZSWAP_B,
39 	MEMCG_ZSWAPPED,
40 	MEMCG_NR_STAT,
41 };
42 
43 enum memcg_memory_event {
44 	MEMCG_LOW,
45 	MEMCG_HIGH,
46 	MEMCG_MAX,
47 	MEMCG_OOM,
48 	MEMCG_OOM_KILL,
49 	MEMCG_OOM_GROUP_KILL,
50 	MEMCG_SWAP_HIGH,
51 	MEMCG_SWAP_MAX,
52 	MEMCG_SWAP_FAIL,
53 	MEMCG_NR_MEMORY_EVENTS,
54 };
55 
56 struct mem_cgroup_reclaim_cookie {
57 	pg_data_t *pgdat;
58 	unsigned int generation;
59 };
60 
61 #ifdef CONFIG_MEMCG
62 
63 #define MEM_CGROUP_ID_SHIFT	16
64 
65 struct mem_cgroup_id {
66 	int id;
67 	refcount_t ref;
68 };
69 
70 /*
71  * Per memcg event counter is incremented at every pagein/pageout. With THP,
72  * it will be incremented by the number of pages. This counter is used
73  * to trigger some periodic events. This is straightforward and better
74  * than using jiffies etc. to handle periodic memcg event.
75  */
76 enum mem_cgroup_events_target {
77 	MEM_CGROUP_TARGET_THRESH,
78 	MEM_CGROUP_TARGET_SOFTLIMIT,
79 	MEM_CGROUP_NTARGETS,
80 };
81 
82 struct memcg_vmstats_percpu;
83 struct memcg_vmstats;
84 
85 struct mem_cgroup_reclaim_iter {
86 	struct mem_cgroup *position;
87 	/* scan generation, increased every round-trip */
88 	unsigned int generation;
89 };
90 
91 /*
92  * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
93  * shrinkers, which have elements charged to this memcg.
94  */
95 struct shrinker_info {
96 	struct rcu_head rcu;
97 	atomic_long_t *nr_deferred;
98 	unsigned long *map;
99 	int map_nr_max;
100 };
101 
102 struct lruvec_stats_percpu {
103 	/* Local (CPU and cgroup) state */
104 	long state[NR_VM_NODE_STAT_ITEMS];
105 
106 	/* Delta calculation for lockless upward propagation */
107 	long state_prev[NR_VM_NODE_STAT_ITEMS];
108 };
109 
110 struct lruvec_stats {
111 	/* Aggregated (CPU and subtree) state */
112 	long state[NR_VM_NODE_STAT_ITEMS];
113 
114 	/* Non-hierarchical (CPU aggregated) state */
115 	long state_local[NR_VM_NODE_STAT_ITEMS];
116 
117 	/* Pending child counts during tree propagation */
118 	long state_pending[NR_VM_NODE_STAT_ITEMS];
119 };
120 
121 /*
122  * per-node information in memory controller.
123  */
124 struct mem_cgroup_per_node {
125 	struct lruvec		lruvec;
126 
127 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
128 	struct lruvec_stats			lruvec_stats;
129 
130 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
131 
132 	struct mem_cgroup_reclaim_iter	iter;
133 
134 	struct shrinker_info __rcu	*shrinker_info;
135 
136 	struct rb_node		tree_node;	/* RB tree node */
137 	unsigned long		usage_in_excess;/* Set to the value by which */
138 						/* the soft limit is exceeded*/
139 	bool			on_tree;
140 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
141 						/* use container_of	   */
142 };
143 
144 struct mem_cgroup_threshold {
145 	struct eventfd_ctx *eventfd;
146 	unsigned long threshold;
147 };
148 
149 /* For threshold */
150 struct mem_cgroup_threshold_ary {
151 	/* An array index points to threshold just below or equal to usage. */
152 	int current_threshold;
153 	/* Size of entries[] */
154 	unsigned int size;
155 	/* Array of thresholds */
156 	struct mem_cgroup_threshold entries[];
157 };
158 
159 struct mem_cgroup_thresholds {
160 	/* Primary thresholds array */
161 	struct mem_cgroup_threshold_ary *primary;
162 	/*
163 	 * Spare threshold array.
164 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
165 	 * It must be able to store at least primary->size - 1 entries.
166 	 */
167 	struct mem_cgroup_threshold_ary *spare;
168 };
169 
170 /*
171  * Remember four most recent foreign writebacks with dirty pages in this
172  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
173  * one in a given round, we're likely to catch it later if it keeps
174  * foreign-dirtying, so a fairly low count should be enough.
175  *
176  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
177  */
178 #define MEMCG_CGWB_FRN_CNT	4
179 
180 struct memcg_cgwb_frn {
181 	u64 bdi_id;			/* bdi->id of the foreign inode */
182 	int memcg_id;			/* memcg->css.id of foreign inode */
183 	u64 at;				/* jiffies_64 at the time of dirtying */
184 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
185 };
186 
187 /*
188  * Bucket for arbitrarily byte-sized objects charged to a memory
189  * cgroup. The bucket can be reparented in one piece when the cgroup
190  * is destroyed, without having to round up the individual references
191  * of all live memory objects in the wild.
192  */
193 struct obj_cgroup {
194 	struct percpu_ref refcnt;
195 	struct mem_cgroup *memcg;
196 	atomic_t nr_charged_bytes;
197 	union {
198 		struct list_head list; /* protected by objcg_lock */
199 		struct rcu_head rcu;
200 	};
201 };
202 
203 /*
204  * The memory controller data structure. The memory controller controls both
205  * page cache and RSS per cgroup. We would eventually like to provide
206  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
207  * to help the administrator determine what knobs to tune.
208  */
209 struct mem_cgroup {
210 	struct cgroup_subsys_state css;
211 
212 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
213 	struct mem_cgroup_id id;
214 
215 	/* Accounted resources */
216 	struct page_counter memory;		/* Both v1 & v2 */
217 
218 	union {
219 		struct page_counter swap;	/* v2 only */
220 		struct page_counter memsw;	/* v1 only */
221 	};
222 
223 	/* Legacy consumer-oriented counters */
224 	struct page_counter kmem;		/* v1 only */
225 	struct page_counter tcpmem;		/* v1 only */
226 
227 	/* Range enforcement for interrupt charges */
228 	struct work_struct high_work;
229 
230 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
231 	unsigned long zswap_max;
232 #endif
233 
234 	unsigned long soft_limit;
235 
236 	/* vmpressure notifications */
237 	struct vmpressure vmpressure;
238 
239 	/*
240 	 * Should the OOM killer kill all belonging tasks, had it kill one?
241 	 */
242 	bool oom_group;
243 
244 	/* protected by memcg_oom_lock */
245 	bool		oom_lock;
246 	int		under_oom;
247 
248 	int	swappiness;
249 	/* OOM-Killer disable */
250 	int		oom_kill_disable;
251 
252 	/* memory.events and memory.events.local */
253 	struct cgroup_file events_file;
254 	struct cgroup_file events_local_file;
255 
256 	/* handle for "memory.swap.events" */
257 	struct cgroup_file swap_events_file;
258 
259 	/* protect arrays of thresholds */
260 	struct mutex thresholds_lock;
261 
262 	/* thresholds for memory usage. RCU-protected */
263 	struct mem_cgroup_thresholds thresholds;
264 
265 	/* thresholds for mem+swap usage. RCU-protected */
266 	struct mem_cgroup_thresholds memsw_thresholds;
267 
268 	/* For oom notifier event fd */
269 	struct list_head oom_notify;
270 
271 	/*
272 	 * Should we move charges of a task when a task is moved into this
273 	 * mem_cgroup ? And what type of charges should we move ?
274 	 */
275 	unsigned long move_charge_at_immigrate;
276 	/* taken only while moving_account > 0 */
277 	spinlock_t		move_lock;
278 	unsigned long		move_lock_flags;
279 
280 	CACHELINE_PADDING(_pad1_);
281 
282 	/* memory.stat */
283 	struct memcg_vmstats	*vmstats;
284 
285 	/* memory.events */
286 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
287 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
288 
289 	/*
290 	 * Hint of reclaim pressure for socket memroy management. Note
291 	 * that this indicator should NOT be used in legacy cgroup mode
292 	 * where socket memory is accounted/charged separately.
293 	 */
294 	unsigned long		socket_pressure;
295 
296 	/* Legacy tcp memory accounting */
297 	bool			tcpmem_active;
298 	int			tcpmem_pressure;
299 
300 #ifdef CONFIG_MEMCG_KMEM
301 	int kmemcg_id;
302 	struct obj_cgroup __rcu *objcg;
303 	/* list of inherited objcgs, protected by objcg_lock */
304 	struct list_head objcg_list;
305 #endif
306 
307 	CACHELINE_PADDING(_pad2_);
308 
309 	/*
310 	 * set > 0 if pages under this cgroup are moving to other cgroup.
311 	 */
312 	atomic_t		moving_account;
313 	struct task_struct	*move_lock_task;
314 
315 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
316 
317 #ifdef CONFIG_CGROUP_WRITEBACK
318 	struct list_head cgwb_list;
319 	struct wb_domain cgwb_domain;
320 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
321 #endif
322 
323 	/* List of events which userspace want to receive */
324 	struct list_head event_list;
325 	spinlock_t event_list_lock;
326 
327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
328 	struct deferred_split deferred_split_queue;
329 #endif
330 
331 #ifdef CONFIG_LRU_GEN
332 	/* per-memcg mm_struct list */
333 	struct lru_gen_mm_list mm_list;
334 #endif
335 
336 	struct mem_cgroup_per_node *nodeinfo[];
337 };
338 
339 /*
340  * size of first charge trial.
341  * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
342  * workload.
343  */
344 #define MEMCG_CHARGE_BATCH 64U
345 
346 extern struct mem_cgroup *root_mem_cgroup;
347 
348 enum page_memcg_data_flags {
349 	/* page->memcg_data is a pointer to an objcgs vector */
350 	MEMCG_DATA_OBJCGS = (1UL << 0),
351 	/* page has been accounted as a non-slab kernel page */
352 	MEMCG_DATA_KMEM = (1UL << 1),
353 	/* the next bit after the last actual flag */
354 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
355 };
356 
357 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
358 
359 static inline bool folio_memcg_kmem(struct folio *folio);
360 
361 /*
362  * After the initialization objcg->memcg is always pointing at
363  * a valid memcg, but can be atomically swapped to the parent memcg.
364  *
365  * The caller must ensure that the returned memcg won't be released:
366  * e.g. acquire the rcu_read_lock or css_set_lock.
367  */
368 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
369 {
370 	return READ_ONCE(objcg->memcg);
371 }
372 
373 /*
374  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
375  * @folio: Pointer to the folio.
376  *
377  * Returns a pointer to the memory cgroup associated with the folio,
378  * or NULL. This function assumes that the folio is known to have a
379  * proper memory cgroup pointer. It's not safe to call this function
380  * against some type of folios, e.g. slab folios or ex-slab folios or
381  * kmem folios.
382  */
383 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
384 {
385 	unsigned long memcg_data = folio->memcg_data;
386 
387 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
388 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
389 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
390 
391 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
392 }
393 
394 /*
395  * __folio_objcg - get the object cgroup associated with a kmem folio.
396  * @folio: Pointer to the folio.
397  *
398  * Returns a pointer to the object cgroup associated with the folio,
399  * or NULL. This function assumes that the folio is known to have a
400  * proper object cgroup pointer. It's not safe to call this function
401  * against some type of folios, e.g. slab folios or ex-slab folios or
402  * LRU folios.
403  */
404 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
405 {
406 	unsigned long memcg_data = folio->memcg_data;
407 
408 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
409 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
410 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
411 
412 	return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
413 }
414 
415 /*
416  * folio_memcg - Get the memory cgroup associated with a folio.
417  * @folio: Pointer to the folio.
418  *
419  * Returns a pointer to the memory cgroup associated with the folio,
420  * or NULL. This function assumes that the folio is known to have a
421  * proper memory cgroup pointer. It's not safe to call this function
422  * against some type of folios, e.g. slab folios or ex-slab folios.
423  *
424  * For a non-kmem folio any of the following ensures folio and memcg binding
425  * stability:
426  *
427  * - the folio lock
428  * - LRU isolation
429  * - folio_memcg_lock()
430  * - exclusive reference
431  * - mem_cgroup_trylock_pages()
432  *
433  * For a kmem folio a caller should hold an rcu read lock to protect memcg
434  * associated with a kmem folio from being released.
435  */
436 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
437 {
438 	if (folio_memcg_kmem(folio))
439 		return obj_cgroup_memcg(__folio_objcg(folio));
440 	return __folio_memcg(folio);
441 }
442 
443 static inline struct mem_cgroup *page_memcg(struct page *page)
444 {
445 	return folio_memcg(page_folio(page));
446 }
447 
448 /**
449  * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
450  * @folio: Pointer to the folio.
451  *
452  * This function assumes that the folio is known to have a
453  * proper memory cgroup pointer. It's not safe to call this function
454  * against some type of folios, e.g. slab folios or ex-slab folios.
455  *
456  * Return: A pointer to the memory cgroup associated with the folio,
457  * or NULL.
458  */
459 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
460 {
461 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
462 
463 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
464 	WARN_ON_ONCE(!rcu_read_lock_held());
465 
466 	if (memcg_data & MEMCG_DATA_KMEM) {
467 		struct obj_cgroup *objcg;
468 
469 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
470 		return obj_cgroup_memcg(objcg);
471 	}
472 
473 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
474 }
475 
476 /*
477  * folio_memcg_check - Get the memory cgroup associated with a folio.
478  * @folio: Pointer to the folio.
479  *
480  * Returns a pointer to the memory cgroup associated with the folio,
481  * or NULL. This function unlike folio_memcg() can take any folio
482  * as an argument. It has to be used in cases when it's not known if a folio
483  * has an associated memory cgroup pointer or an object cgroups vector or
484  * an object cgroup.
485  *
486  * For a non-kmem folio any of the following ensures folio and memcg binding
487  * stability:
488  *
489  * - the folio lock
490  * - LRU isolation
491  * - lock_folio_memcg()
492  * - exclusive reference
493  * - mem_cgroup_trylock_pages()
494  *
495  * For a kmem folio a caller should hold an rcu read lock to protect memcg
496  * associated with a kmem folio from being released.
497  */
498 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
499 {
500 	/*
501 	 * Because folio->memcg_data might be changed asynchronously
502 	 * for slabs, READ_ONCE() should be used here.
503 	 */
504 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
505 
506 	if (memcg_data & MEMCG_DATA_OBJCGS)
507 		return NULL;
508 
509 	if (memcg_data & MEMCG_DATA_KMEM) {
510 		struct obj_cgroup *objcg;
511 
512 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
513 		return obj_cgroup_memcg(objcg);
514 	}
515 
516 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
517 }
518 
519 static inline struct mem_cgroup *page_memcg_check(struct page *page)
520 {
521 	if (PageTail(page))
522 		return NULL;
523 	return folio_memcg_check((struct folio *)page);
524 }
525 
526 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
527 {
528 	struct mem_cgroup *memcg;
529 
530 	rcu_read_lock();
531 retry:
532 	memcg = obj_cgroup_memcg(objcg);
533 	if (unlikely(!css_tryget(&memcg->css)))
534 		goto retry;
535 	rcu_read_unlock();
536 
537 	return memcg;
538 }
539 
540 #ifdef CONFIG_MEMCG_KMEM
541 /*
542  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
543  * @folio: Pointer to the folio.
544  *
545  * Checks if the folio has MemcgKmem flag set. The caller must ensure
546  * that the folio has an associated memory cgroup. It's not safe to call
547  * this function against some types of folios, e.g. slab folios.
548  */
549 static inline bool folio_memcg_kmem(struct folio *folio)
550 {
551 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
552 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
553 	return folio->memcg_data & MEMCG_DATA_KMEM;
554 }
555 
556 
557 #else
558 static inline bool folio_memcg_kmem(struct folio *folio)
559 {
560 	return false;
561 }
562 
563 #endif
564 
565 static inline bool PageMemcgKmem(struct page *page)
566 {
567 	return folio_memcg_kmem(page_folio(page));
568 }
569 
570 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
571 {
572 	return (memcg == root_mem_cgroup);
573 }
574 
575 static inline bool mem_cgroup_disabled(void)
576 {
577 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
578 }
579 
580 static inline void mem_cgroup_protection(struct mem_cgroup *root,
581 					 struct mem_cgroup *memcg,
582 					 unsigned long *min,
583 					 unsigned long *low)
584 {
585 	*min = *low = 0;
586 
587 	if (mem_cgroup_disabled())
588 		return;
589 
590 	/*
591 	 * There is no reclaim protection applied to a targeted reclaim.
592 	 * We are special casing this specific case here because
593 	 * mem_cgroup_calculate_protection is not robust enough to keep
594 	 * the protection invariant for calculated effective values for
595 	 * parallel reclaimers with different reclaim target. This is
596 	 * especially a problem for tail memcgs (as they have pages on LRU)
597 	 * which would want to have effective values 0 for targeted reclaim
598 	 * but a different value for external reclaim.
599 	 *
600 	 * Example
601 	 * Let's have global and A's reclaim in parallel:
602 	 *  |
603 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
604 	 *  |\
605 	 *  | C (low = 1G, usage = 2.5G)
606 	 *  B (low = 1G, usage = 0.5G)
607 	 *
608 	 * For the global reclaim
609 	 * A.elow = A.low
610 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
611 	 * C.elow = min(C.usage, C.low)
612 	 *
613 	 * With the effective values resetting we have A reclaim
614 	 * A.elow = 0
615 	 * B.elow = B.low
616 	 * C.elow = C.low
617 	 *
618 	 * If the global reclaim races with A's reclaim then
619 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
620 	 * is possible and reclaiming B would be violating the protection.
621 	 *
622 	 */
623 	if (root == memcg)
624 		return;
625 
626 	*min = READ_ONCE(memcg->memory.emin);
627 	*low = READ_ONCE(memcg->memory.elow);
628 }
629 
630 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
631 				     struct mem_cgroup *memcg);
632 
633 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
634 					  struct mem_cgroup *memcg)
635 {
636 	/*
637 	 * The root memcg doesn't account charges, and doesn't support
638 	 * protection. The target memcg's protection is ignored, see
639 	 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
640 	 */
641 	return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
642 		memcg == target;
643 }
644 
645 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
646 					struct mem_cgroup *memcg)
647 {
648 	if (mem_cgroup_unprotected(target, memcg))
649 		return false;
650 
651 	return READ_ONCE(memcg->memory.elow) >=
652 		page_counter_read(&memcg->memory);
653 }
654 
655 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
656 					struct mem_cgroup *memcg)
657 {
658 	if (mem_cgroup_unprotected(target, memcg))
659 		return false;
660 
661 	return READ_ONCE(memcg->memory.emin) >=
662 		page_counter_read(&memcg->memory);
663 }
664 
665 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
666 
667 /**
668  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
669  * @folio: Folio to charge.
670  * @mm: mm context of the allocating task.
671  * @gfp: Reclaim mode.
672  *
673  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
674  * pages according to @gfp if necessary.  If @mm is NULL, try to
675  * charge to the active memcg.
676  *
677  * Do not use this for folios allocated for swapin.
678  *
679  * Return: 0 on success. Otherwise, an error code is returned.
680  */
681 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
682 				    gfp_t gfp)
683 {
684 	if (mem_cgroup_disabled())
685 		return 0;
686 	return __mem_cgroup_charge(folio, mm, gfp);
687 }
688 
689 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
690 				  gfp_t gfp, swp_entry_t entry);
691 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
692 
693 void __mem_cgroup_uncharge(struct folio *folio);
694 
695 /**
696  * mem_cgroup_uncharge - Uncharge a folio.
697  * @folio: Folio to uncharge.
698  *
699  * Uncharge a folio previously charged with mem_cgroup_charge().
700  */
701 static inline void mem_cgroup_uncharge(struct folio *folio)
702 {
703 	if (mem_cgroup_disabled())
704 		return;
705 	__mem_cgroup_uncharge(folio);
706 }
707 
708 void __mem_cgroup_uncharge_list(struct list_head *page_list);
709 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
710 {
711 	if (mem_cgroup_disabled())
712 		return;
713 	__mem_cgroup_uncharge_list(page_list);
714 }
715 
716 void mem_cgroup_migrate(struct folio *old, struct folio *new);
717 
718 /**
719  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
720  * @memcg: memcg of the wanted lruvec
721  * @pgdat: pglist_data
722  *
723  * Returns the lru list vector holding pages for a given @memcg &
724  * @pgdat combination. This can be the node lruvec, if the memory
725  * controller is disabled.
726  */
727 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
728 					       struct pglist_data *pgdat)
729 {
730 	struct mem_cgroup_per_node *mz;
731 	struct lruvec *lruvec;
732 
733 	if (mem_cgroup_disabled()) {
734 		lruvec = &pgdat->__lruvec;
735 		goto out;
736 	}
737 
738 	if (!memcg)
739 		memcg = root_mem_cgroup;
740 
741 	mz = memcg->nodeinfo[pgdat->node_id];
742 	lruvec = &mz->lruvec;
743 out:
744 	/*
745 	 * Since a node can be onlined after the mem_cgroup was created,
746 	 * we have to be prepared to initialize lruvec->pgdat here;
747 	 * and if offlined then reonlined, we need to reinitialize it.
748 	 */
749 	if (unlikely(lruvec->pgdat != pgdat))
750 		lruvec->pgdat = pgdat;
751 	return lruvec;
752 }
753 
754 /**
755  * folio_lruvec - return lruvec for isolating/putting an LRU folio
756  * @folio: Pointer to the folio.
757  *
758  * This function relies on folio->mem_cgroup being stable.
759  */
760 static inline struct lruvec *folio_lruvec(struct folio *folio)
761 {
762 	struct mem_cgroup *memcg = folio_memcg(folio);
763 
764 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
765 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
766 }
767 
768 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
769 
770 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
771 
772 struct lruvec *folio_lruvec_lock(struct folio *folio);
773 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
774 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
775 						unsigned long *flags);
776 
777 #ifdef CONFIG_DEBUG_VM
778 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
779 #else
780 static inline
781 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
782 {
783 }
784 #endif
785 
786 static inline
787 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
788 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
789 }
790 
791 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
792 {
793 	return percpu_ref_tryget(&objcg->refcnt);
794 }
795 
796 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
797 {
798 	percpu_ref_get(&objcg->refcnt);
799 }
800 
801 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
802 				       unsigned long nr)
803 {
804 	percpu_ref_get_many(&objcg->refcnt, nr);
805 }
806 
807 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
808 {
809 	percpu_ref_put(&objcg->refcnt);
810 }
811 
812 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
813 {
814 	return !memcg || css_tryget(&memcg->css);
815 }
816 
817 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
818 {
819 	if (memcg)
820 		css_put(&memcg->css);
821 }
822 
823 #define mem_cgroup_from_counter(counter, member)	\
824 	container_of(counter, struct mem_cgroup, member)
825 
826 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
827 				   struct mem_cgroup *,
828 				   struct mem_cgroup_reclaim_cookie *);
829 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
830 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
831 			   int (*)(struct task_struct *, void *), void *arg);
832 
833 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
834 {
835 	if (mem_cgroup_disabled())
836 		return 0;
837 
838 	return memcg->id.id;
839 }
840 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
841 
842 #ifdef CONFIG_SHRINKER_DEBUG
843 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
844 {
845 	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
846 }
847 
848 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
849 #endif
850 
851 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
852 {
853 	return mem_cgroup_from_css(seq_css(m));
854 }
855 
856 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
857 {
858 	struct mem_cgroup_per_node *mz;
859 
860 	if (mem_cgroup_disabled())
861 		return NULL;
862 
863 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
864 	return mz->memcg;
865 }
866 
867 /**
868  * parent_mem_cgroup - find the accounting parent of a memcg
869  * @memcg: memcg whose parent to find
870  *
871  * Returns the parent memcg, or NULL if this is the root.
872  */
873 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
874 {
875 	return mem_cgroup_from_css(memcg->css.parent);
876 }
877 
878 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
879 			      struct mem_cgroup *root)
880 {
881 	if (root == memcg)
882 		return true;
883 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
884 }
885 
886 static inline bool mm_match_cgroup(struct mm_struct *mm,
887 				   struct mem_cgroup *memcg)
888 {
889 	struct mem_cgroup *task_memcg;
890 	bool match = false;
891 
892 	rcu_read_lock();
893 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
894 	if (task_memcg)
895 		match = mem_cgroup_is_descendant(task_memcg, memcg);
896 	rcu_read_unlock();
897 	return match;
898 }
899 
900 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
901 ino_t page_cgroup_ino(struct page *page);
902 
903 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
904 {
905 	if (mem_cgroup_disabled())
906 		return true;
907 	return !!(memcg->css.flags & CSS_ONLINE);
908 }
909 
910 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
911 		int zid, int nr_pages);
912 
913 static inline
914 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
915 		enum lru_list lru, int zone_idx)
916 {
917 	struct mem_cgroup_per_node *mz;
918 
919 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
920 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
921 }
922 
923 void mem_cgroup_handle_over_high(gfp_t gfp_mask);
924 
925 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
926 
927 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
928 
929 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
930 				struct task_struct *p);
931 
932 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
933 
934 static inline void mem_cgroup_enter_user_fault(void)
935 {
936 	WARN_ON(current->in_user_fault);
937 	current->in_user_fault = 1;
938 }
939 
940 static inline void mem_cgroup_exit_user_fault(void)
941 {
942 	WARN_ON(!current->in_user_fault);
943 	current->in_user_fault = 0;
944 }
945 
946 static inline bool task_in_memcg_oom(struct task_struct *p)
947 {
948 	return p->memcg_in_oom;
949 }
950 
951 bool mem_cgroup_oom_synchronize(bool wait);
952 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
953 					    struct mem_cgroup *oom_domain);
954 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
955 
956 void folio_memcg_lock(struct folio *folio);
957 void folio_memcg_unlock(struct folio *folio);
958 
959 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
960 
961 /* try to stablize folio_memcg() for all the pages in a memcg */
962 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
963 {
964 	rcu_read_lock();
965 
966 	if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
967 		return true;
968 
969 	rcu_read_unlock();
970 	return false;
971 }
972 
973 static inline void mem_cgroup_unlock_pages(void)
974 {
975 	rcu_read_unlock();
976 }
977 
978 /* idx can be of type enum memcg_stat_item or node_stat_item */
979 static inline void mod_memcg_state(struct mem_cgroup *memcg,
980 				   int idx, int val)
981 {
982 	unsigned long flags;
983 
984 	local_irq_save(flags);
985 	__mod_memcg_state(memcg, idx, val);
986 	local_irq_restore(flags);
987 }
988 
989 static inline void mod_memcg_page_state(struct page *page,
990 					int idx, int val)
991 {
992 	struct mem_cgroup *memcg;
993 
994 	if (mem_cgroup_disabled())
995 		return;
996 
997 	rcu_read_lock();
998 	memcg = page_memcg(page);
999 	if (memcg)
1000 		mod_memcg_state(memcg, idx, val);
1001 	rcu_read_unlock();
1002 }
1003 
1004 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
1005 
1006 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1007 					      enum node_stat_item idx)
1008 {
1009 	struct mem_cgroup_per_node *pn;
1010 	long x;
1011 
1012 	if (mem_cgroup_disabled())
1013 		return node_page_state(lruvec_pgdat(lruvec), idx);
1014 
1015 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1016 	x = READ_ONCE(pn->lruvec_stats.state[idx]);
1017 #ifdef CONFIG_SMP
1018 	if (x < 0)
1019 		x = 0;
1020 #endif
1021 	return x;
1022 }
1023 
1024 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1025 						    enum node_stat_item idx)
1026 {
1027 	struct mem_cgroup_per_node *pn;
1028 	long x = 0;
1029 
1030 	if (mem_cgroup_disabled())
1031 		return node_page_state(lruvec_pgdat(lruvec), idx);
1032 
1033 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1034 	x = READ_ONCE(pn->lruvec_stats.state_local[idx]);
1035 #ifdef CONFIG_SMP
1036 	if (x < 0)
1037 		x = 0;
1038 #endif
1039 	return x;
1040 }
1041 
1042 void mem_cgroup_flush_stats(void);
1043 void mem_cgroup_flush_stats_ratelimited(void);
1044 
1045 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1046 			      int val);
1047 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1048 
1049 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1050 					 int val)
1051 {
1052 	unsigned long flags;
1053 
1054 	local_irq_save(flags);
1055 	__mod_lruvec_kmem_state(p, idx, val);
1056 	local_irq_restore(flags);
1057 }
1058 
1059 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1060 					  enum node_stat_item idx, int val)
1061 {
1062 	unsigned long flags;
1063 
1064 	local_irq_save(flags);
1065 	__mod_memcg_lruvec_state(lruvec, idx, val);
1066 	local_irq_restore(flags);
1067 }
1068 
1069 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1070 			  unsigned long count);
1071 
1072 static inline void count_memcg_events(struct mem_cgroup *memcg,
1073 				      enum vm_event_item idx,
1074 				      unsigned long count)
1075 {
1076 	unsigned long flags;
1077 
1078 	local_irq_save(flags);
1079 	__count_memcg_events(memcg, idx, count);
1080 	local_irq_restore(flags);
1081 }
1082 
1083 static inline void count_memcg_page_event(struct page *page,
1084 					  enum vm_event_item idx)
1085 {
1086 	struct mem_cgroup *memcg = page_memcg(page);
1087 
1088 	if (memcg)
1089 		count_memcg_events(memcg, idx, 1);
1090 }
1091 
1092 static inline void count_memcg_folio_events(struct folio *folio,
1093 		enum vm_event_item idx, unsigned long nr)
1094 {
1095 	struct mem_cgroup *memcg = folio_memcg(folio);
1096 
1097 	if (memcg)
1098 		count_memcg_events(memcg, idx, nr);
1099 }
1100 
1101 static inline void count_memcg_event_mm(struct mm_struct *mm,
1102 					enum vm_event_item idx)
1103 {
1104 	struct mem_cgroup *memcg;
1105 
1106 	if (mem_cgroup_disabled())
1107 		return;
1108 
1109 	rcu_read_lock();
1110 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1111 	if (likely(memcg))
1112 		count_memcg_events(memcg, idx, 1);
1113 	rcu_read_unlock();
1114 }
1115 
1116 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1117 				      enum memcg_memory_event event)
1118 {
1119 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1120 			  event == MEMCG_SWAP_FAIL;
1121 
1122 	atomic_long_inc(&memcg->memory_events_local[event]);
1123 	if (!swap_event)
1124 		cgroup_file_notify(&memcg->events_local_file);
1125 
1126 	do {
1127 		atomic_long_inc(&memcg->memory_events[event]);
1128 		if (swap_event)
1129 			cgroup_file_notify(&memcg->swap_events_file);
1130 		else
1131 			cgroup_file_notify(&memcg->events_file);
1132 
1133 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1134 			break;
1135 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1136 			break;
1137 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1138 		 !mem_cgroup_is_root(memcg));
1139 }
1140 
1141 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1142 					 enum memcg_memory_event event)
1143 {
1144 	struct mem_cgroup *memcg;
1145 
1146 	if (mem_cgroup_disabled())
1147 		return;
1148 
1149 	rcu_read_lock();
1150 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1151 	if (likely(memcg))
1152 		memcg_memory_event(memcg, event);
1153 	rcu_read_unlock();
1154 }
1155 
1156 void split_page_memcg(struct page *head, unsigned int nr);
1157 
1158 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1159 						gfp_t gfp_mask,
1160 						unsigned long *total_scanned);
1161 
1162 #else /* CONFIG_MEMCG */
1163 
1164 #define MEM_CGROUP_ID_SHIFT	0
1165 
1166 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1167 {
1168 	return NULL;
1169 }
1170 
1171 static inline struct mem_cgroup *page_memcg(struct page *page)
1172 {
1173 	return NULL;
1174 }
1175 
1176 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1177 {
1178 	WARN_ON_ONCE(!rcu_read_lock_held());
1179 	return NULL;
1180 }
1181 
1182 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1183 {
1184 	return NULL;
1185 }
1186 
1187 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1188 {
1189 	return NULL;
1190 }
1191 
1192 static inline bool folio_memcg_kmem(struct folio *folio)
1193 {
1194 	return false;
1195 }
1196 
1197 static inline bool PageMemcgKmem(struct page *page)
1198 {
1199 	return false;
1200 }
1201 
1202 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1203 {
1204 	return true;
1205 }
1206 
1207 static inline bool mem_cgroup_disabled(void)
1208 {
1209 	return true;
1210 }
1211 
1212 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1213 				      enum memcg_memory_event event)
1214 {
1215 }
1216 
1217 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1218 					 enum memcg_memory_event event)
1219 {
1220 }
1221 
1222 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1223 					 struct mem_cgroup *memcg,
1224 					 unsigned long *min,
1225 					 unsigned long *low)
1226 {
1227 	*min = *low = 0;
1228 }
1229 
1230 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1231 						   struct mem_cgroup *memcg)
1232 {
1233 }
1234 
1235 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1236 					  struct mem_cgroup *memcg)
1237 {
1238 	return true;
1239 }
1240 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1241 					struct mem_cgroup *memcg)
1242 {
1243 	return false;
1244 }
1245 
1246 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1247 					struct mem_cgroup *memcg)
1248 {
1249 	return false;
1250 }
1251 
1252 static inline int mem_cgroup_charge(struct folio *folio,
1253 		struct mm_struct *mm, gfp_t gfp)
1254 {
1255 	return 0;
1256 }
1257 
1258 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1259 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1260 {
1261 	return 0;
1262 }
1263 
1264 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1265 {
1266 }
1267 
1268 static inline void mem_cgroup_uncharge(struct folio *folio)
1269 {
1270 }
1271 
1272 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1273 {
1274 }
1275 
1276 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1277 {
1278 }
1279 
1280 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1281 					       struct pglist_data *pgdat)
1282 {
1283 	return &pgdat->__lruvec;
1284 }
1285 
1286 static inline struct lruvec *folio_lruvec(struct folio *folio)
1287 {
1288 	struct pglist_data *pgdat = folio_pgdat(folio);
1289 	return &pgdat->__lruvec;
1290 }
1291 
1292 static inline
1293 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1294 {
1295 }
1296 
1297 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1298 {
1299 	return NULL;
1300 }
1301 
1302 static inline bool mm_match_cgroup(struct mm_struct *mm,
1303 		struct mem_cgroup *memcg)
1304 {
1305 	return true;
1306 }
1307 
1308 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1309 {
1310 	return NULL;
1311 }
1312 
1313 static inline
1314 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1315 {
1316 	return NULL;
1317 }
1318 
1319 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1320 {
1321 }
1322 
1323 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1324 {
1325 	return true;
1326 }
1327 
1328 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1329 {
1330 }
1331 
1332 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1333 {
1334 	struct pglist_data *pgdat = folio_pgdat(folio);
1335 
1336 	spin_lock(&pgdat->__lruvec.lru_lock);
1337 	return &pgdat->__lruvec;
1338 }
1339 
1340 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1341 {
1342 	struct pglist_data *pgdat = folio_pgdat(folio);
1343 
1344 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1345 	return &pgdat->__lruvec;
1346 }
1347 
1348 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1349 		unsigned long *flagsp)
1350 {
1351 	struct pglist_data *pgdat = folio_pgdat(folio);
1352 
1353 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1354 	return &pgdat->__lruvec;
1355 }
1356 
1357 static inline struct mem_cgroup *
1358 mem_cgroup_iter(struct mem_cgroup *root,
1359 		struct mem_cgroup *prev,
1360 		struct mem_cgroup_reclaim_cookie *reclaim)
1361 {
1362 	return NULL;
1363 }
1364 
1365 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1366 					 struct mem_cgroup *prev)
1367 {
1368 }
1369 
1370 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1371 		int (*fn)(struct task_struct *, void *), void *arg)
1372 {
1373 }
1374 
1375 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1376 {
1377 	return 0;
1378 }
1379 
1380 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1381 {
1382 	WARN_ON_ONCE(id);
1383 	/* XXX: This should always return root_mem_cgroup */
1384 	return NULL;
1385 }
1386 
1387 #ifdef CONFIG_SHRINKER_DEBUG
1388 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1389 {
1390 	return 0;
1391 }
1392 
1393 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1394 {
1395 	return NULL;
1396 }
1397 #endif
1398 
1399 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1400 {
1401 	return NULL;
1402 }
1403 
1404 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1405 {
1406 	return NULL;
1407 }
1408 
1409 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1410 {
1411 	return true;
1412 }
1413 
1414 static inline
1415 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1416 		enum lru_list lru, int zone_idx)
1417 {
1418 	return 0;
1419 }
1420 
1421 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1422 {
1423 	return 0;
1424 }
1425 
1426 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1427 {
1428 	return 0;
1429 }
1430 
1431 static inline void
1432 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1433 {
1434 }
1435 
1436 static inline void
1437 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1438 {
1439 }
1440 
1441 static inline void folio_memcg_lock(struct folio *folio)
1442 {
1443 }
1444 
1445 static inline void folio_memcg_unlock(struct folio *folio)
1446 {
1447 }
1448 
1449 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1450 {
1451 	/* to match folio_memcg_rcu() */
1452 	rcu_read_lock();
1453 	return true;
1454 }
1455 
1456 static inline void mem_cgroup_unlock_pages(void)
1457 {
1458 	rcu_read_unlock();
1459 }
1460 
1461 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1462 {
1463 }
1464 
1465 static inline void mem_cgroup_enter_user_fault(void)
1466 {
1467 }
1468 
1469 static inline void mem_cgroup_exit_user_fault(void)
1470 {
1471 }
1472 
1473 static inline bool task_in_memcg_oom(struct task_struct *p)
1474 {
1475 	return false;
1476 }
1477 
1478 static inline bool mem_cgroup_oom_synchronize(bool wait)
1479 {
1480 	return false;
1481 }
1482 
1483 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1484 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1485 {
1486 	return NULL;
1487 }
1488 
1489 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1490 {
1491 }
1492 
1493 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1494 				     int idx,
1495 				     int nr)
1496 {
1497 }
1498 
1499 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1500 				   int idx,
1501 				   int nr)
1502 {
1503 }
1504 
1505 static inline void mod_memcg_page_state(struct page *page,
1506 					int idx, int val)
1507 {
1508 }
1509 
1510 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1511 {
1512 	return 0;
1513 }
1514 
1515 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1516 					      enum node_stat_item idx)
1517 {
1518 	return node_page_state(lruvec_pgdat(lruvec), idx);
1519 }
1520 
1521 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1522 						    enum node_stat_item idx)
1523 {
1524 	return node_page_state(lruvec_pgdat(lruvec), idx);
1525 }
1526 
1527 static inline void mem_cgroup_flush_stats(void)
1528 {
1529 }
1530 
1531 static inline void mem_cgroup_flush_stats_ratelimited(void)
1532 {
1533 }
1534 
1535 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1536 					    enum node_stat_item idx, int val)
1537 {
1538 }
1539 
1540 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1541 					   int val)
1542 {
1543 	struct page *page = virt_to_head_page(p);
1544 
1545 	__mod_node_page_state(page_pgdat(page), idx, val);
1546 }
1547 
1548 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1549 					 int val)
1550 {
1551 	struct page *page = virt_to_head_page(p);
1552 
1553 	mod_node_page_state(page_pgdat(page), idx, val);
1554 }
1555 
1556 static inline void count_memcg_events(struct mem_cgroup *memcg,
1557 				      enum vm_event_item idx,
1558 				      unsigned long count)
1559 {
1560 }
1561 
1562 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1563 					enum vm_event_item idx,
1564 					unsigned long count)
1565 {
1566 }
1567 
1568 static inline void count_memcg_page_event(struct page *page,
1569 					  int idx)
1570 {
1571 }
1572 
1573 static inline void count_memcg_folio_events(struct folio *folio,
1574 		enum vm_event_item idx, unsigned long nr)
1575 {
1576 }
1577 
1578 static inline
1579 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1580 {
1581 }
1582 
1583 static inline void split_page_memcg(struct page *head, unsigned int nr)
1584 {
1585 }
1586 
1587 static inline
1588 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1589 					    gfp_t gfp_mask,
1590 					    unsigned long *total_scanned)
1591 {
1592 	return 0;
1593 }
1594 #endif /* CONFIG_MEMCG */
1595 
1596 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1597 {
1598 	__mod_lruvec_kmem_state(p, idx, 1);
1599 }
1600 
1601 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1602 {
1603 	__mod_lruvec_kmem_state(p, idx, -1);
1604 }
1605 
1606 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1607 {
1608 	struct mem_cgroup *memcg;
1609 
1610 	memcg = lruvec_memcg(lruvec);
1611 	if (!memcg)
1612 		return NULL;
1613 	memcg = parent_mem_cgroup(memcg);
1614 	if (!memcg)
1615 		return NULL;
1616 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1617 }
1618 
1619 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1620 {
1621 	spin_unlock(&lruvec->lru_lock);
1622 }
1623 
1624 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1625 {
1626 	spin_unlock_irq(&lruvec->lru_lock);
1627 }
1628 
1629 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1630 		unsigned long flags)
1631 {
1632 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1633 }
1634 
1635 /* Test requires a stable page->memcg binding, see page_memcg() */
1636 static inline bool folio_matches_lruvec(struct folio *folio,
1637 		struct lruvec *lruvec)
1638 {
1639 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1640 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1641 }
1642 
1643 /* Don't lock again iff page's lruvec locked */
1644 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1645 		struct lruvec *locked_lruvec)
1646 {
1647 	if (locked_lruvec) {
1648 		if (folio_matches_lruvec(folio, locked_lruvec))
1649 			return locked_lruvec;
1650 
1651 		unlock_page_lruvec_irq(locked_lruvec);
1652 	}
1653 
1654 	return folio_lruvec_lock_irq(folio);
1655 }
1656 
1657 /* Don't lock again iff page's lruvec locked */
1658 static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1659 		struct lruvec *locked_lruvec, unsigned long *flags)
1660 {
1661 	if (locked_lruvec) {
1662 		if (folio_matches_lruvec(folio, locked_lruvec))
1663 			return locked_lruvec;
1664 
1665 		unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1666 	}
1667 
1668 	return folio_lruvec_lock_irqsave(folio, flags);
1669 }
1670 
1671 #ifdef CONFIG_CGROUP_WRITEBACK
1672 
1673 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1674 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1675 			 unsigned long *pheadroom, unsigned long *pdirty,
1676 			 unsigned long *pwriteback);
1677 
1678 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1679 					     struct bdi_writeback *wb);
1680 
1681 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1682 						  struct bdi_writeback *wb)
1683 {
1684 	struct mem_cgroup *memcg;
1685 
1686 	if (mem_cgroup_disabled())
1687 		return;
1688 
1689 	memcg = folio_memcg(folio);
1690 	if (unlikely(memcg && &memcg->css != wb->memcg_css))
1691 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1692 }
1693 
1694 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1695 
1696 #else	/* CONFIG_CGROUP_WRITEBACK */
1697 
1698 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1699 {
1700 	return NULL;
1701 }
1702 
1703 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1704 				       unsigned long *pfilepages,
1705 				       unsigned long *pheadroom,
1706 				       unsigned long *pdirty,
1707 				       unsigned long *pwriteback)
1708 {
1709 }
1710 
1711 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1712 						  struct bdi_writeback *wb)
1713 {
1714 }
1715 
1716 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1717 {
1718 }
1719 
1720 #endif	/* CONFIG_CGROUP_WRITEBACK */
1721 
1722 struct sock;
1723 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1724 			     gfp_t gfp_mask);
1725 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1726 #ifdef CONFIG_MEMCG
1727 extern struct static_key_false memcg_sockets_enabled_key;
1728 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1729 void mem_cgroup_sk_alloc(struct sock *sk);
1730 void mem_cgroup_sk_free(struct sock *sk);
1731 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1732 {
1733 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1734 		return !!memcg->tcpmem_pressure;
1735 	do {
1736 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1737 			return true;
1738 	} while ((memcg = parent_mem_cgroup(memcg)));
1739 	return false;
1740 }
1741 
1742 int alloc_shrinker_info(struct mem_cgroup *memcg);
1743 void free_shrinker_info(struct mem_cgroup *memcg);
1744 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1745 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1746 #else
1747 #define mem_cgroup_sockets_enabled 0
1748 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1749 static inline void mem_cgroup_sk_free(struct sock *sk) { };
1750 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1751 {
1752 	return false;
1753 }
1754 
1755 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1756 				    int nid, int shrinker_id)
1757 {
1758 }
1759 #endif
1760 
1761 #ifdef CONFIG_MEMCG_KMEM
1762 bool mem_cgroup_kmem_disabled(void);
1763 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1764 void __memcg_kmem_uncharge_page(struct page *page, int order);
1765 
1766 struct obj_cgroup *get_obj_cgroup_from_current(void);
1767 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1768 
1769 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1770 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1771 
1772 extern struct static_key_false memcg_bpf_enabled_key;
1773 static inline bool memcg_bpf_enabled(void)
1774 {
1775 	return static_branch_likely(&memcg_bpf_enabled_key);
1776 }
1777 
1778 extern struct static_key_false memcg_kmem_online_key;
1779 
1780 static inline bool memcg_kmem_online(void)
1781 {
1782 	return static_branch_likely(&memcg_kmem_online_key);
1783 }
1784 
1785 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1786 					 int order)
1787 {
1788 	if (memcg_kmem_online())
1789 		return __memcg_kmem_charge_page(page, gfp, order);
1790 	return 0;
1791 }
1792 
1793 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1794 {
1795 	if (memcg_kmem_online())
1796 		__memcg_kmem_uncharge_page(page, order);
1797 }
1798 
1799 /*
1800  * A helper for accessing memcg's kmem_id, used for getting
1801  * corresponding LRU lists.
1802  */
1803 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1804 {
1805 	return memcg ? memcg->kmemcg_id : -1;
1806 }
1807 
1808 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1809 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1810 
1811 static inline void count_objcg_event(struct obj_cgroup *objcg,
1812 				     enum vm_event_item idx)
1813 {
1814 	struct mem_cgroup *memcg;
1815 
1816 	if (!memcg_kmem_online())
1817 		return;
1818 
1819 	rcu_read_lock();
1820 	memcg = obj_cgroup_memcg(objcg);
1821 	count_memcg_events(memcg, idx, 1);
1822 	rcu_read_unlock();
1823 }
1824 
1825 #else
1826 static inline bool mem_cgroup_kmem_disabled(void)
1827 {
1828 	return true;
1829 }
1830 
1831 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1832 					 int order)
1833 {
1834 	return 0;
1835 }
1836 
1837 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1838 {
1839 }
1840 
1841 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1842 					   int order)
1843 {
1844 	return 0;
1845 }
1846 
1847 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1848 {
1849 }
1850 
1851 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1852 {
1853 	return NULL;
1854 }
1855 
1856 static inline bool memcg_bpf_enabled(void)
1857 {
1858 	return false;
1859 }
1860 
1861 static inline bool memcg_kmem_online(void)
1862 {
1863 	return false;
1864 }
1865 
1866 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1867 {
1868 	return -1;
1869 }
1870 
1871 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1872 {
1873 	return NULL;
1874 }
1875 
1876 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1877 {
1878 	return NULL;
1879 }
1880 
1881 static inline void count_objcg_event(struct obj_cgroup *objcg,
1882 				     enum vm_event_item idx)
1883 {
1884 }
1885 
1886 #endif /* CONFIG_MEMCG_KMEM */
1887 
1888 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1889 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1890 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1891 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1892 #else
1893 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1894 {
1895 	return true;
1896 }
1897 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1898 					   size_t size)
1899 {
1900 }
1901 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1902 					     size_t size)
1903 {
1904 }
1905 #endif
1906 
1907 #endif /* _LINUX_MEMCONTROL_H */
1908