xref: /linux/include/linux/mm.h (revision 44f57d78)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 #include <linux/overflow.h>
29 #include <linux/sizes.h>
30 
31 struct mempolicy;
32 struct anon_vma;
33 struct anon_vma_chain;
34 struct file_ra_state;
35 struct user_struct;
36 struct writeback_control;
37 struct bdi_writeback;
38 
39 void init_mm_internals(void);
40 
41 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
42 extern unsigned long max_mapnr;
43 
44 static inline void set_max_mapnr(unsigned long limit)
45 {
46 	max_mapnr = limit;
47 }
48 #else
49 static inline void set_max_mapnr(unsigned long limit) { }
50 #endif
51 
52 extern atomic_long_t _totalram_pages;
53 static inline unsigned long totalram_pages(void)
54 {
55 	return (unsigned long)atomic_long_read(&_totalram_pages);
56 }
57 
58 static inline void totalram_pages_inc(void)
59 {
60 	atomic_long_inc(&_totalram_pages);
61 }
62 
63 static inline void totalram_pages_dec(void)
64 {
65 	atomic_long_dec(&_totalram_pages);
66 }
67 
68 static inline void totalram_pages_add(long count)
69 {
70 	atomic_long_add(count, &_totalram_pages);
71 }
72 
73 static inline void totalram_pages_set(long val)
74 {
75 	atomic_long_set(&_totalram_pages, val);
76 }
77 
78 extern void * high_memory;
79 extern int page_cluster;
80 
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86 
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97 
98 #include <asm/page.h>
99 #include <asm/pgtable.h>
100 #include <asm/processor.h>
101 
102 /*
103  * Architectures that support memory tagging (assigning tags to memory regions,
104  * embedding these tags into addresses that point to these memory regions, and
105  * checking that the memory and the pointer tags match on memory accesses)
106  * redefine this macro to strip tags from pointers.
107  * It's defined as noop for arcitectures that don't support memory tagging.
108  */
109 #ifndef untagged_addr
110 #define untagged_addr(addr) (addr)
111 #endif
112 
113 #ifndef __pa_symbol
114 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
115 #endif
116 
117 #ifndef page_to_virt
118 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
119 #endif
120 
121 #ifndef lm_alias
122 #define lm_alias(x)	__va(__pa_symbol(x))
123 #endif
124 
125 /*
126  * To prevent common memory management code establishing
127  * a zero page mapping on a read fault.
128  * This macro should be defined within <asm/pgtable.h>.
129  * s390 does this to prevent multiplexing of hardware bits
130  * related to the physical page in case of virtualization.
131  */
132 #ifndef mm_forbids_zeropage
133 #define mm_forbids_zeropage(X)	(0)
134 #endif
135 
136 /*
137  * On some architectures it is expensive to call memset() for small sizes.
138  * If an architecture decides to implement their own version of
139  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
140  * define their own version of this macro in <asm/pgtable.h>
141  */
142 #if BITS_PER_LONG == 64
143 /* This function must be updated when the size of struct page grows above 80
144  * or reduces below 56. The idea that compiler optimizes out switch()
145  * statement, and only leaves move/store instructions. Also the compiler can
146  * combine write statments if they are both assignments and can be reordered,
147  * this can result in several of the writes here being dropped.
148  */
149 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
150 static inline void __mm_zero_struct_page(struct page *page)
151 {
152 	unsigned long *_pp = (void *)page;
153 
154 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
155 	BUILD_BUG_ON(sizeof(struct page) & 7);
156 	BUILD_BUG_ON(sizeof(struct page) < 56);
157 	BUILD_BUG_ON(sizeof(struct page) > 80);
158 
159 	switch (sizeof(struct page)) {
160 	case 80:
161 		_pp[9] = 0;	/* fallthrough */
162 	case 72:
163 		_pp[8] = 0;	/* fallthrough */
164 	case 64:
165 		_pp[7] = 0;	/* fallthrough */
166 	case 56:
167 		_pp[6] = 0;
168 		_pp[5] = 0;
169 		_pp[4] = 0;
170 		_pp[3] = 0;
171 		_pp[2] = 0;
172 		_pp[1] = 0;
173 		_pp[0] = 0;
174 	}
175 }
176 #else
177 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
178 #endif
179 
180 /*
181  * Default maximum number of active map areas, this limits the number of vmas
182  * per mm struct. Users can overwrite this number by sysctl but there is a
183  * problem.
184  *
185  * When a program's coredump is generated as ELF format, a section is created
186  * per a vma. In ELF, the number of sections is represented in unsigned short.
187  * This means the number of sections should be smaller than 65535 at coredump.
188  * Because the kernel adds some informative sections to a image of program at
189  * generating coredump, we need some margin. The number of extra sections is
190  * 1-3 now and depends on arch. We use "5" as safe margin, here.
191  *
192  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193  * not a hard limit any more. Although some userspace tools can be surprised by
194  * that.
195  */
196 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
197 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198 
199 extern int sysctl_max_map_count;
200 
201 extern unsigned long sysctl_user_reserve_kbytes;
202 extern unsigned long sysctl_admin_reserve_kbytes;
203 
204 extern int sysctl_overcommit_memory;
205 extern int sysctl_overcommit_ratio;
206 extern unsigned long sysctl_overcommit_kbytes;
207 
208 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
209 				    size_t *, loff_t *);
210 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
211 				    size_t *, loff_t *);
212 
213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214 
215 /* to align the pointer to the (next) page boundary */
216 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
217 
218 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
219 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
220 
221 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
222 
223 /*
224  * Linux kernel virtual memory manager primitives.
225  * The idea being to have a "virtual" mm in the same way
226  * we have a virtual fs - giving a cleaner interface to the
227  * mm details, and allowing different kinds of memory mappings
228  * (from shared memory to executable loading to arbitrary
229  * mmap() functions).
230  */
231 
232 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
233 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
234 void vm_area_free(struct vm_area_struct *);
235 
236 #ifndef CONFIG_MMU
237 extern struct rb_root nommu_region_tree;
238 extern struct rw_semaphore nommu_region_sem;
239 
240 extern unsigned int kobjsize(const void *objp);
241 #endif
242 
243 /*
244  * vm_flags in vm_area_struct, see mm_types.h.
245  * When changing, update also include/trace/events/mmflags.h
246  */
247 #define VM_NONE		0x00000000
248 
249 #define VM_READ		0x00000001	/* currently active flags */
250 #define VM_WRITE	0x00000002
251 #define VM_EXEC		0x00000004
252 #define VM_SHARED	0x00000008
253 
254 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
255 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
256 #define VM_MAYWRITE	0x00000020
257 #define VM_MAYEXEC	0x00000040
258 #define VM_MAYSHARE	0x00000080
259 
260 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
261 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
262 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
263 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
264 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
265 
266 #define VM_LOCKED	0x00002000
267 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
268 
269 					/* Used by sys_madvise() */
270 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
271 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
272 
273 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
274 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
275 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
276 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
277 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
278 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
279 #define VM_SYNC		0x00800000	/* Synchronous page faults */
280 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
281 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
282 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
283 
284 #ifdef CONFIG_MEM_SOFT_DIRTY
285 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
286 #else
287 # define VM_SOFTDIRTY	0
288 #endif
289 
290 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
291 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
292 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
293 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
294 
295 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
296 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
297 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
298 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
299 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
300 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
301 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
302 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
303 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
304 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
305 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
306 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
307 
308 #ifdef CONFIG_ARCH_HAS_PKEYS
309 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
310 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
311 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
312 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
313 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
314 #ifdef CONFIG_PPC
315 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
316 #else
317 # define VM_PKEY_BIT4  0
318 #endif
319 #endif /* CONFIG_ARCH_HAS_PKEYS */
320 
321 #if defined(CONFIG_X86)
322 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
323 #elif defined(CONFIG_PPC)
324 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
325 #elif defined(CONFIG_PARISC)
326 # define VM_GROWSUP	VM_ARCH_1
327 #elif defined(CONFIG_IA64)
328 # define VM_GROWSUP	VM_ARCH_1
329 #elif defined(CONFIG_SPARC64)
330 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
331 # define VM_ARCH_CLEAR	VM_SPARC_ADI
332 #elif !defined(CONFIG_MMU)
333 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
334 #endif
335 
336 #if defined(CONFIG_X86_INTEL_MPX)
337 /* MPX specific bounds table or bounds directory */
338 # define VM_MPX		VM_HIGH_ARCH_4
339 #else
340 # define VM_MPX		VM_NONE
341 #endif
342 
343 #ifndef VM_GROWSUP
344 # define VM_GROWSUP	VM_NONE
345 #endif
346 
347 /* Bits set in the VMA until the stack is in its final location */
348 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
349 
350 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
351 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
352 #endif
353 
354 #ifdef CONFIG_STACK_GROWSUP
355 #define VM_STACK	VM_GROWSUP
356 #else
357 #define VM_STACK	VM_GROWSDOWN
358 #endif
359 
360 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
361 
362 /*
363  * Special vmas that are non-mergable, non-mlock()able.
364  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
365  */
366 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
367 
368 /* This mask defines which mm->def_flags a process can inherit its parent */
369 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
370 
371 /* This mask is used to clear all the VMA flags used by mlock */
372 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
373 
374 /* Arch-specific flags to clear when updating VM flags on protection change */
375 #ifndef VM_ARCH_CLEAR
376 # define VM_ARCH_CLEAR	VM_NONE
377 #endif
378 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
379 
380 /*
381  * mapping from the currently active vm_flags protection bits (the
382  * low four bits) to a page protection mask..
383  */
384 extern pgprot_t protection_map[16];
385 
386 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
387 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
388 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
389 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
390 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
391 #define FAULT_FLAG_TRIED	0x20	/* Second try */
392 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
393 #define FAULT_FLAG_REMOTE	0x80	/* faulting for non current tsk/mm */
394 #define FAULT_FLAG_INSTRUCTION  0x100	/* The fault was during an instruction fetch */
395 
396 #define FAULT_FLAG_TRACE \
397 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
398 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
399 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
400 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
401 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
402 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
403 	{ FAULT_FLAG_USER,		"USER" }, \
404 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
405 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }
406 
407 /*
408  * vm_fault is filled by the the pagefault handler and passed to the vma's
409  * ->fault function. The vma's ->fault is responsible for returning a bitmask
410  * of VM_FAULT_xxx flags that give details about how the fault was handled.
411  *
412  * MM layer fills up gfp_mask for page allocations but fault handler might
413  * alter it if its implementation requires a different allocation context.
414  *
415  * pgoff should be used in favour of virtual_address, if possible.
416  */
417 struct vm_fault {
418 	struct vm_area_struct *vma;	/* Target VMA */
419 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
420 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
421 	pgoff_t pgoff;			/* Logical page offset based on vma */
422 	unsigned long address;		/* Faulting virtual address */
423 	pmd_t *pmd;			/* Pointer to pmd entry matching
424 					 * the 'address' */
425 	pud_t *pud;			/* Pointer to pud entry matching
426 					 * the 'address'
427 					 */
428 	pte_t orig_pte;			/* Value of PTE at the time of fault */
429 
430 	struct page *cow_page;		/* Page handler may use for COW fault */
431 	struct mem_cgroup *memcg;	/* Cgroup cow_page belongs to */
432 	struct page *page;		/* ->fault handlers should return a
433 					 * page here, unless VM_FAULT_NOPAGE
434 					 * is set (which is also implied by
435 					 * VM_FAULT_ERROR).
436 					 */
437 	/* These three entries are valid only while holding ptl lock */
438 	pte_t *pte;			/* Pointer to pte entry matching
439 					 * the 'address'. NULL if the page
440 					 * table hasn't been allocated.
441 					 */
442 	spinlock_t *ptl;		/* Page table lock.
443 					 * Protects pte page table if 'pte'
444 					 * is not NULL, otherwise pmd.
445 					 */
446 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
447 					 * vm_ops->map_pages() calls
448 					 * alloc_set_pte() from atomic context.
449 					 * do_fault_around() pre-allocates
450 					 * page table to avoid allocation from
451 					 * atomic context.
452 					 */
453 };
454 
455 /* page entry size for vm->huge_fault() */
456 enum page_entry_size {
457 	PE_SIZE_PTE = 0,
458 	PE_SIZE_PMD,
459 	PE_SIZE_PUD,
460 };
461 
462 /*
463  * These are the virtual MM functions - opening of an area, closing and
464  * unmapping it (needed to keep files on disk up-to-date etc), pointer
465  * to the functions called when a no-page or a wp-page exception occurs.
466  */
467 struct vm_operations_struct {
468 	void (*open)(struct vm_area_struct * area);
469 	void (*close)(struct vm_area_struct * area);
470 	int (*split)(struct vm_area_struct * area, unsigned long addr);
471 	int (*mremap)(struct vm_area_struct * area);
472 	vm_fault_t (*fault)(struct vm_fault *vmf);
473 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
474 			enum page_entry_size pe_size);
475 	void (*map_pages)(struct vm_fault *vmf,
476 			pgoff_t start_pgoff, pgoff_t end_pgoff);
477 	unsigned long (*pagesize)(struct vm_area_struct * area);
478 
479 	/* notification that a previously read-only page is about to become
480 	 * writable, if an error is returned it will cause a SIGBUS */
481 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
482 
483 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
484 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
485 
486 	/* called by access_process_vm when get_user_pages() fails, typically
487 	 * for use by special VMAs that can switch between memory and hardware
488 	 */
489 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
490 		      void *buf, int len, int write);
491 
492 	/* Called by the /proc/PID/maps code to ask the vma whether it
493 	 * has a special name.  Returning non-NULL will also cause this
494 	 * vma to be dumped unconditionally. */
495 	const char *(*name)(struct vm_area_struct *vma);
496 
497 #ifdef CONFIG_NUMA
498 	/*
499 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
500 	 * to hold the policy upon return.  Caller should pass NULL @new to
501 	 * remove a policy and fall back to surrounding context--i.e. do not
502 	 * install a MPOL_DEFAULT policy, nor the task or system default
503 	 * mempolicy.
504 	 */
505 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
506 
507 	/*
508 	 * get_policy() op must add reference [mpol_get()] to any policy at
509 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
510 	 * in mm/mempolicy.c will do this automatically.
511 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
512 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
513 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
514 	 * must return NULL--i.e., do not "fallback" to task or system default
515 	 * policy.
516 	 */
517 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
518 					unsigned long addr);
519 #endif
520 	/*
521 	 * Called by vm_normal_page() for special PTEs to find the
522 	 * page for @addr.  This is useful if the default behavior
523 	 * (using pte_page()) would not find the correct page.
524 	 */
525 	struct page *(*find_special_page)(struct vm_area_struct *vma,
526 					  unsigned long addr);
527 };
528 
529 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
530 {
531 	static const struct vm_operations_struct dummy_vm_ops = {};
532 
533 	memset(vma, 0, sizeof(*vma));
534 	vma->vm_mm = mm;
535 	vma->vm_ops = &dummy_vm_ops;
536 	INIT_LIST_HEAD(&vma->anon_vma_chain);
537 }
538 
539 static inline void vma_set_anonymous(struct vm_area_struct *vma)
540 {
541 	vma->vm_ops = NULL;
542 }
543 
544 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
545 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
546 
547 struct mmu_gather;
548 struct inode;
549 
550 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
551 static inline int pmd_devmap(pmd_t pmd)
552 {
553 	return 0;
554 }
555 static inline int pud_devmap(pud_t pud)
556 {
557 	return 0;
558 }
559 static inline int pgd_devmap(pgd_t pgd)
560 {
561 	return 0;
562 }
563 #endif
564 
565 /*
566  * FIXME: take this include out, include page-flags.h in
567  * files which need it (119 of them)
568  */
569 #include <linux/page-flags.h>
570 #include <linux/huge_mm.h>
571 
572 /*
573  * Methods to modify the page usage count.
574  *
575  * What counts for a page usage:
576  * - cache mapping   (page->mapping)
577  * - private data    (page->private)
578  * - page mapped in a task's page tables, each mapping
579  *   is counted separately
580  *
581  * Also, many kernel routines increase the page count before a critical
582  * routine so they can be sure the page doesn't go away from under them.
583  */
584 
585 /*
586  * Drop a ref, return true if the refcount fell to zero (the page has no users)
587  */
588 static inline int put_page_testzero(struct page *page)
589 {
590 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
591 	return page_ref_dec_and_test(page);
592 }
593 
594 /*
595  * Try to grab a ref unless the page has a refcount of zero, return false if
596  * that is the case.
597  * This can be called when MMU is off so it must not access
598  * any of the virtual mappings.
599  */
600 static inline int get_page_unless_zero(struct page *page)
601 {
602 	return page_ref_add_unless(page, 1, 0);
603 }
604 
605 extern int page_is_ram(unsigned long pfn);
606 
607 enum {
608 	REGION_INTERSECTS,
609 	REGION_DISJOINT,
610 	REGION_MIXED,
611 };
612 
613 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
614 		      unsigned long desc);
615 
616 /* Support for virtually mapped pages */
617 struct page *vmalloc_to_page(const void *addr);
618 unsigned long vmalloc_to_pfn(const void *addr);
619 
620 /*
621  * Determine if an address is within the vmalloc range
622  *
623  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
624  * is no special casing required.
625  */
626 static inline bool is_vmalloc_addr(const void *x)
627 {
628 #ifdef CONFIG_MMU
629 	unsigned long addr = (unsigned long)x;
630 
631 	return addr >= VMALLOC_START && addr < VMALLOC_END;
632 #else
633 	return false;
634 #endif
635 }
636 #ifdef CONFIG_MMU
637 extern int is_vmalloc_or_module_addr(const void *x);
638 #else
639 static inline int is_vmalloc_or_module_addr(const void *x)
640 {
641 	return 0;
642 }
643 #endif
644 
645 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
646 static inline void *kvmalloc(size_t size, gfp_t flags)
647 {
648 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
649 }
650 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
651 {
652 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
653 }
654 static inline void *kvzalloc(size_t size, gfp_t flags)
655 {
656 	return kvmalloc(size, flags | __GFP_ZERO);
657 }
658 
659 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
660 {
661 	size_t bytes;
662 
663 	if (unlikely(check_mul_overflow(n, size, &bytes)))
664 		return NULL;
665 
666 	return kvmalloc(bytes, flags);
667 }
668 
669 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
670 {
671 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
672 }
673 
674 extern void kvfree(const void *addr);
675 
676 static inline atomic_t *compound_mapcount_ptr(struct page *page)
677 {
678 	return &page[1].compound_mapcount;
679 }
680 
681 static inline int compound_mapcount(struct page *page)
682 {
683 	VM_BUG_ON_PAGE(!PageCompound(page), page);
684 	page = compound_head(page);
685 	return atomic_read(compound_mapcount_ptr(page)) + 1;
686 }
687 
688 /*
689  * The atomic page->_mapcount, starts from -1: so that transitions
690  * both from it and to it can be tracked, using atomic_inc_and_test
691  * and atomic_add_negative(-1).
692  */
693 static inline void page_mapcount_reset(struct page *page)
694 {
695 	atomic_set(&(page)->_mapcount, -1);
696 }
697 
698 int __page_mapcount(struct page *page);
699 
700 static inline int page_mapcount(struct page *page)
701 {
702 	VM_BUG_ON_PAGE(PageSlab(page), page);
703 
704 	if (unlikely(PageCompound(page)))
705 		return __page_mapcount(page);
706 	return atomic_read(&page->_mapcount) + 1;
707 }
708 
709 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
710 int total_mapcount(struct page *page);
711 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
712 #else
713 static inline int total_mapcount(struct page *page)
714 {
715 	return page_mapcount(page);
716 }
717 static inline int page_trans_huge_mapcount(struct page *page,
718 					   int *total_mapcount)
719 {
720 	int mapcount = page_mapcount(page);
721 	if (total_mapcount)
722 		*total_mapcount = mapcount;
723 	return mapcount;
724 }
725 #endif
726 
727 static inline struct page *virt_to_head_page(const void *x)
728 {
729 	struct page *page = virt_to_page(x);
730 
731 	return compound_head(page);
732 }
733 
734 void __put_page(struct page *page);
735 
736 void put_pages_list(struct list_head *pages);
737 
738 void split_page(struct page *page, unsigned int order);
739 
740 /*
741  * Compound pages have a destructor function.  Provide a
742  * prototype for that function and accessor functions.
743  * These are _only_ valid on the head of a compound page.
744  */
745 typedef void compound_page_dtor(struct page *);
746 
747 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
748 enum compound_dtor_id {
749 	NULL_COMPOUND_DTOR,
750 	COMPOUND_PAGE_DTOR,
751 #ifdef CONFIG_HUGETLB_PAGE
752 	HUGETLB_PAGE_DTOR,
753 #endif
754 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
755 	TRANSHUGE_PAGE_DTOR,
756 #endif
757 	NR_COMPOUND_DTORS,
758 };
759 extern compound_page_dtor * const compound_page_dtors[];
760 
761 static inline void set_compound_page_dtor(struct page *page,
762 		enum compound_dtor_id compound_dtor)
763 {
764 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
765 	page[1].compound_dtor = compound_dtor;
766 }
767 
768 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
769 {
770 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
771 	return compound_page_dtors[page[1].compound_dtor];
772 }
773 
774 static inline unsigned int compound_order(struct page *page)
775 {
776 	if (!PageHead(page))
777 		return 0;
778 	return page[1].compound_order;
779 }
780 
781 static inline void set_compound_order(struct page *page, unsigned int order)
782 {
783 	page[1].compound_order = order;
784 }
785 
786 void free_compound_page(struct page *page);
787 
788 #ifdef CONFIG_MMU
789 /*
790  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
791  * servicing faults for write access.  In the normal case, do always want
792  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
793  * that do not have writing enabled, when used by access_process_vm.
794  */
795 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
796 {
797 	if (likely(vma->vm_flags & VM_WRITE))
798 		pte = pte_mkwrite(pte);
799 	return pte;
800 }
801 
802 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
803 		struct page *page);
804 vm_fault_t finish_fault(struct vm_fault *vmf);
805 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
806 #endif
807 
808 /*
809  * Multiple processes may "see" the same page. E.g. for untouched
810  * mappings of /dev/null, all processes see the same page full of
811  * zeroes, and text pages of executables and shared libraries have
812  * only one copy in memory, at most, normally.
813  *
814  * For the non-reserved pages, page_count(page) denotes a reference count.
815  *   page_count() == 0 means the page is free. page->lru is then used for
816  *   freelist management in the buddy allocator.
817  *   page_count() > 0  means the page has been allocated.
818  *
819  * Pages are allocated by the slab allocator in order to provide memory
820  * to kmalloc and kmem_cache_alloc. In this case, the management of the
821  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
822  * unless a particular usage is carefully commented. (the responsibility of
823  * freeing the kmalloc memory is the caller's, of course).
824  *
825  * A page may be used by anyone else who does a __get_free_page().
826  * In this case, page_count still tracks the references, and should only
827  * be used through the normal accessor functions. The top bits of page->flags
828  * and page->virtual store page management information, but all other fields
829  * are unused and could be used privately, carefully. The management of this
830  * page is the responsibility of the one who allocated it, and those who have
831  * subsequently been given references to it.
832  *
833  * The other pages (we may call them "pagecache pages") are completely
834  * managed by the Linux memory manager: I/O, buffers, swapping etc.
835  * The following discussion applies only to them.
836  *
837  * A pagecache page contains an opaque `private' member, which belongs to the
838  * page's address_space. Usually, this is the address of a circular list of
839  * the page's disk buffers. PG_private must be set to tell the VM to call
840  * into the filesystem to release these pages.
841  *
842  * A page may belong to an inode's memory mapping. In this case, page->mapping
843  * is the pointer to the inode, and page->index is the file offset of the page,
844  * in units of PAGE_SIZE.
845  *
846  * If pagecache pages are not associated with an inode, they are said to be
847  * anonymous pages. These may become associated with the swapcache, and in that
848  * case PG_swapcache is set, and page->private is an offset into the swapcache.
849  *
850  * In either case (swapcache or inode backed), the pagecache itself holds one
851  * reference to the page. Setting PG_private should also increment the
852  * refcount. The each user mapping also has a reference to the page.
853  *
854  * The pagecache pages are stored in a per-mapping radix tree, which is
855  * rooted at mapping->i_pages, and indexed by offset.
856  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
857  * lists, we instead now tag pages as dirty/writeback in the radix tree.
858  *
859  * All pagecache pages may be subject to I/O:
860  * - inode pages may need to be read from disk,
861  * - inode pages which have been modified and are MAP_SHARED may need
862  *   to be written back to the inode on disk,
863  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
864  *   modified may need to be swapped out to swap space and (later) to be read
865  *   back into memory.
866  */
867 
868 /*
869  * The zone field is never updated after free_area_init_core()
870  * sets it, so none of the operations on it need to be atomic.
871  */
872 
873 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
874 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
875 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
876 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
877 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
878 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
879 
880 /*
881  * Define the bit shifts to access each section.  For non-existent
882  * sections we define the shift as 0; that plus a 0 mask ensures
883  * the compiler will optimise away reference to them.
884  */
885 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
886 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
887 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
888 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
889 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
890 
891 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
892 #ifdef NODE_NOT_IN_PAGE_FLAGS
893 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
894 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
895 						SECTIONS_PGOFF : ZONES_PGOFF)
896 #else
897 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
898 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
899 						NODES_PGOFF : ZONES_PGOFF)
900 #endif
901 
902 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
903 
904 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
905 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
906 #endif
907 
908 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
909 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
910 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
911 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
912 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
913 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
914 
915 static inline enum zone_type page_zonenum(const struct page *page)
916 {
917 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
918 }
919 
920 #ifdef CONFIG_ZONE_DEVICE
921 static inline bool is_zone_device_page(const struct page *page)
922 {
923 	return page_zonenum(page) == ZONE_DEVICE;
924 }
925 extern void memmap_init_zone_device(struct zone *, unsigned long,
926 				    unsigned long, struct dev_pagemap *);
927 #else
928 static inline bool is_zone_device_page(const struct page *page)
929 {
930 	return false;
931 }
932 #endif
933 
934 #ifdef CONFIG_DEV_PAGEMAP_OPS
935 void dev_pagemap_get_ops(void);
936 void dev_pagemap_put_ops(void);
937 void __put_devmap_managed_page(struct page *page);
938 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
939 static inline bool put_devmap_managed_page(struct page *page)
940 {
941 	if (!static_branch_unlikely(&devmap_managed_key))
942 		return false;
943 	if (!is_zone_device_page(page))
944 		return false;
945 	switch (page->pgmap->type) {
946 	case MEMORY_DEVICE_PRIVATE:
947 	case MEMORY_DEVICE_PUBLIC:
948 	case MEMORY_DEVICE_FS_DAX:
949 		__put_devmap_managed_page(page);
950 		return true;
951 	default:
952 		break;
953 	}
954 	return false;
955 }
956 
957 static inline bool is_device_private_page(const struct page *page)
958 {
959 	return is_zone_device_page(page) &&
960 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
961 }
962 
963 static inline bool is_device_public_page(const struct page *page)
964 {
965 	return is_zone_device_page(page) &&
966 		page->pgmap->type == MEMORY_DEVICE_PUBLIC;
967 }
968 
969 #ifdef CONFIG_PCI_P2PDMA
970 static inline bool is_pci_p2pdma_page(const struct page *page)
971 {
972 	return is_zone_device_page(page) &&
973 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
974 }
975 #else /* CONFIG_PCI_P2PDMA */
976 static inline bool is_pci_p2pdma_page(const struct page *page)
977 {
978 	return false;
979 }
980 #endif /* CONFIG_PCI_P2PDMA */
981 
982 #else /* CONFIG_DEV_PAGEMAP_OPS */
983 static inline void dev_pagemap_get_ops(void)
984 {
985 }
986 
987 static inline void dev_pagemap_put_ops(void)
988 {
989 }
990 
991 static inline bool put_devmap_managed_page(struct page *page)
992 {
993 	return false;
994 }
995 
996 static inline bool is_device_private_page(const struct page *page)
997 {
998 	return false;
999 }
1000 
1001 static inline bool is_device_public_page(const struct page *page)
1002 {
1003 	return false;
1004 }
1005 
1006 static inline bool is_pci_p2pdma_page(const struct page *page)
1007 {
1008 	return false;
1009 }
1010 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1011 
1012 /* 127: arbitrary random number, small enough to assemble well */
1013 #define page_ref_zero_or_close_to_overflow(page) \
1014 	((unsigned int) page_ref_count(page) + 127u <= 127u)
1015 
1016 static inline void get_page(struct page *page)
1017 {
1018 	page = compound_head(page);
1019 	/*
1020 	 * Getting a normal page or the head of a compound page
1021 	 * requires to already have an elevated page->_refcount.
1022 	 */
1023 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1024 	page_ref_inc(page);
1025 }
1026 
1027 static inline __must_check bool try_get_page(struct page *page)
1028 {
1029 	page = compound_head(page);
1030 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1031 		return false;
1032 	page_ref_inc(page);
1033 	return true;
1034 }
1035 
1036 static inline void put_page(struct page *page)
1037 {
1038 	page = compound_head(page);
1039 
1040 	/*
1041 	 * For devmap managed pages we need to catch refcount transition from
1042 	 * 2 to 1, when refcount reach one it means the page is free and we
1043 	 * need to inform the device driver through callback. See
1044 	 * include/linux/memremap.h and HMM for details.
1045 	 */
1046 	if (put_devmap_managed_page(page))
1047 		return;
1048 
1049 	if (put_page_testzero(page))
1050 		__put_page(page);
1051 }
1052 
1053 /**
1054  * put_user_page() - release a gup-pinned page
1055  * @page:            pointer to page to be released
1056  *
1057  * Pages that were pinned via get_user_pages*() must be released via
1058  * either put_user_page(), or one of the put_user_pages*() routines
1059  * below. This is so that eventually, pages that are pinned via
1060  * get_user_pages*() can be separately tracked and uniquely handled. In
1061  * particular, interactions with RDMA and filesystems need special
1062  * handling.
1063  *
1064  * put_user_page() and put_page() are not interchangeable, despite this early
1065  * implementation that makes them look the same. put_user_page() calls must
1066  * be perfectly matched up with get_user_page() calls.
1067  */
1068 static inline void put_user_page(struct page *page)
1069 {
1070 	put_page(page);
1071 }
1072 
1073 void put_user_pages_dirty(struct page **pages, unsigned long npages);
1074 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages);
1075 void put_user_pages(struct page **pages, unsigned long npages);
1076 
1077 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1078 #define SECTION_IN_PAGE_FLAGS
1079 #endif
1080 
1081 /*
1082  * The identification function is mainly used by the buddy allocator for
1083  * determining if two pages could be buddies. We are not really identifying
1084  * the zone since we could be using the section number id if we do not have
1085  * node id available in page flags.
1086  * We only guarantee that it will return the same value for two combinable
1087  * pages in a zone.
1088  */
1089 static inline int page_zone_id(struct page *page)
1090 {
1091 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1092 }
1093 
1094 #ifdef NODE_NOT_IN_PAGE_FLAGS
1095 extern int page_to_nid(const struct page *page);
1096 #else
1097 static inline int page_to_nid(const struct page *page)
1098 {
1099 	struct page *p = (struct page *)page;
1100 
1101 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1102 }
1103 #endif
1104 
1105 #ifdef CONFIG_NUMA_BALANCING
1106 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1107 {
1108 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1109 }
1110 
1111 static inline int cpupid_to_pid(int cpupid)
1112 {
1113 	return cpupid & LAST__PID_MASK;
1114 }
1115 
1116 static inline int cpupid_to_cpu(int cpupid)
1117 {
1118 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1119 }
1120 
1121 static inline int cpupid_to_nid(int cpupid)
1122 {
1123 	return cpu_to_node(cpupid_to_cpu(cpupid));
1124 }
1125 
1126 static inline bool cpupid_pid_unset(int cpupid)
1127 {
1128 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1129 }
1130 
1131 static inline bool cpupid_cpu_unset(int cpupid)
1132 {
1133 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1134 }
1135 
1136 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1137 {
1138 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1139 }
1140 
1141 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1142 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1143 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1144 {
1145 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1146 }
1147 
1148 static inline int page_cpupid_last(struct page *page)
1149 {
1150 	return page->_last_cpupid;
1151 }
1152 static inline void page_cpupid_reset_last(struct page *page)
1153 {
1154 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1155 }
1156 #else
1157 static inline int page_cpupid_last(struct page *page)
1158 {
1159 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1160 }
1161 
1162 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1163 
1164 static inline void page_cpupid_reset_last(struct page *page)
1165 {
1166 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1167 }
1168 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1169 #else /* !CONFIG_NUMA_BALANCING */
1170 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1171 {
1172 	return page_to_nid(page); /* XXX */
1173 }
1174 
1175 static inline int page_cpupid_last(struct page *page)
1176 {
1177 	return page_to_nid(page); /* XXX */
1178 }
1179 
1180 static inline int cpupid_to_nid(int cpupid)
1181 {
1182 	return -1;
1183 }
1184 
1185 static inline int cpupid_to_pid(int cpupid)
1186 {
1187 	return -1;
1188 }
1189 
1190 static inline int cpupid_to_cpu(int cpupid)
1191 {
1192 	return -1;
1193 }
1194 
1195 static inline int cpu_pid_to_cpupid(int nid, int pid)
1196 {
1197 	return -1;
1198 }
1199 
1200 static inline bool cpupid_pid_unset(int cpupid)
1201 {
1202 	return 1;
1203 }
1204 
1205 static inline void page_cpupid_reset_last(struct page *page)
1206 {
1207 }
1208 
1209 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1210 {
1211 	return false;
1212 }
1213 #endif /* CONFIG_NUMA_BALANCING */
1214 
1215 #ifdef CONFIG_KASAN_SW_TAGS
1216 static inline u8 page_kasan_tag(const struct page *page)
1217 {
1218 	return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1219 }
1220 
1221 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1222 {
1223 	page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1224 	page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1225 }
1226 
1227 static inline void page_kasan_tag_reset(struct page *page)
1228 {
1229 	page_kasan_tag_set(page, 0xff);
1230 }
1231 #else
1232 static inline u8 page_kasan_tag(const struct page *page)
1233 {
1234 	return 0xff;
1235 }
1236 
1237 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1238 static inline void page_kasan_tag_reset(struct page *page) { }
1239 #endif
1240 
1241 static inline struct zone *page_zone(const struct page *page)
1242 {
1243 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1244 }
1245 
1246 static inline pg_data_t *page_pgdat(const struct page *page)
1247 {
1248 	return NODE_DATA(page_to_nid(page));
1249 }
1250 
1251 #ifdef SECTION_IN_PAGE_FLAGS
1252 static inline void set_page_section(struct page *page, unsigned long section)
1253 {
1254 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1255 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1256 }
1257 
1258 static inline unsigned long page_to_section(const struct page *page)
1259 {
1260 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1261 }
1262 #endif
1263 
1264 static inline void set_page_zone(struct page *page, enum zone_type zone)
1265 {
1266 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1267 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1268 }
1269 
1270 static inline void set_page_node(struct page *page, unsigned long node)
1271 {
1272 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1273 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1274 }
1275 
1276 static inline void set_page_links(struct page *page, enum zone_type zone,
1277 	unsigned long node, unsigned long pfn)
1278 {
1279 	set_page_zone(page, zone);
1280 	set_page_node(page, node);
1281 #ifdef SECTION_IN_PAGE_FLAGS
1282 	set_page_section(page, pfn_to_section_nr(pfn));
1283 #endif
1284 }
1285 
1286 #ifdef CONFIG_MEMCG
1287 static inline struct mem_cgroup *page_memcg(struct page *page)
1288 {
1289 	return page->mem_cgroup;
1290 }
1291 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1292 {
1293 	WARN_ON_ONCE(!rcu_read_lock_held());
1294 	return READ_ONCE(page->mem_cgroup);
1295 }
1296 #else
1297 static inline struct mem_cgroup *page_memcg(struct page *page)
1298 {
1299 	return NULL;
1300 }
1301 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1302 {
1303 	WARN_ON_ONCE(!rcu_read_lock_held());
1304 	return NULL;
1305 }
1306 #endif
1307 
1308 /*
1309  * Some inline functions in vmstat.h depend on page_zone()
1310  */
1311 #include <linux/vmstat.h>
1312 
1313 static __always_inline void *lowmem_page_address(const struct page *page)
1314 {
1315 	return page_to_virt(page);
1316 }
1317 
1318 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1319 #define HASHED_PAGE_VIRTUAL
1320 #endif
1321 
1322 #if defined(WANT_PAGE_VIRTUAL)
1323 static inline void *page_address(const struct page *page)
1324 {
1325 	return page->virtual;
1326 }
1327 static inline void set_page_address(struct page *page, void *address)
1328 {
1329 	page->virtual = address;
1330 }
1331 #define page_address_init()  do { } while(0)
1332 #endif
1333 
1334 #if defined(HASHED_PAGE_VIRTUAL)
1335 void *page_address(const struct page *page);
1336 void set_page_address(struct page *page, void *virtual);
1337 void page_address_init(void);
1338 #endif
1339 
1340 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1341 #define page_address(page) lowmem_page_address(page)
1342 #define set_page_address(page, address)  do { } while(0)
1343 #define page_address_init()  do { } while(0)
1344 #endif
1345 
1346 extern void *page_rmapping(struct page *page);
1347 extern struct anon_vma *page_anon_vma(struct page *page);
1348 extern struct address_space *page_mapping(struct page *page);
1349 
1350 extern struct address_space *__page_file_mapping(struct page *);
1351 
1352 static inline
1353 struct address_space *page_file_mapping(struct page *page)
1354 {
1355 	if (unlikely(PageSwapCache(page)))
1356 		return __page_file_mapping(page);
1357 
1358 	return page->mapping;
1359 }
1360 
1361 extern pgoff_t __page_file_index(struct page *page);
1362 
1363 /*
1364  * Return the pagecache index of the passed page.  Regular pagecache pages
1365  * use ->index whereas swapcache pages use swp_offset(->private)
1366  */
1367 static inline pgoff_t page_index(struct page *page)
1368 {
1369 	if (unlikely(PageSwapCache(page)))
1370 		return __page_file_index(page);
1371 	return page->index;
1372 }
1373 
1374 bool page_mapped(struct page *page);
1375 struct address_space *page_mapping(struct page *page);
1376 struct address_space *page_mapping_file(struct page *page);
1377 
1378 /*
1379  * Return true only if the page has been allocated with
1380  * ALLOC_NO_WATERMARKS and the low watermark was not
1381  * met implying that the system is under some pressure.
1382  */
1383 static inline bool page_is_pfmemalloc(struct page *page)
1384 {
1385 	/*
1386 	 * Page index cannot be this large so this must be
1387 	 * a pfmemalloc page.
1388 	 */
1389 	return page->index == -1UL;
1390 }
1391 
1392 /*
1393  * Only to be called by the page allocator on a freshly allocated
1394  * page.
1395  */
1396 static inline void set_page_pfmemalloc(struct page *page)
1397 {
1398 	page->index = -1UL;
1399 }
1400 
1401 static inline void clear_page_pfmemalloc(struct page *page)
1402 {
1403 	page->index = 0;
1404 }
1405 
1406 /*
1407  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1408  */
1409 extern void pagefault_out_of_memory(void);
1410 
1411 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1412 
1413 /*
1414  * Flags passed to show_mem() and show_free_areas() to suppress output in
1415  * various contexts.
1416  */
1417 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1418 
1419 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1420 
1421 extern bool can_do_mlock(void);
1422 extern int user_shm_lock(size_t, struct user_struct *);
1423 extern void user_shm_unlock(size_t, struct user_struct *);
1424 
1425 /*
1426  * Parameter block passed down to zap_pte_range in exceptional cases.
1427  */
1428 struct zap_details {
1429 	struct address_space *check_mapping;	/* Check page->mapping if set */
1430 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1431 	pgoff_t last_index;			/* Highest page->index to unmap */
1432 };
1433 
1434 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1435 			     pte_t pte, bool with_public_device);
1436 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1437 
1438 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1439 				pmd_t pmd);
1440 
1441 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1442 		  unsigned long size);
1443 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1444 		    unsigned long size);
1445 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1446 		unsigned long start, unsigned long end);
1447 
1448 /**
1449  * mm_walk - callbacks for walk_page_range
1450  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1451  *	       this handler should only handle pud_trans_huge() puds.
1452  *	       the pmd_entry or pte_entry callbacks will be used for
1453  *	       regular PUDs.
1454  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1455  *	       this handler is required to be able to handle
1456  *	       pmd_trans_huge() pmds.  They may simply choose to
1457  *	       split_huge_page() instead of handling it explicitly.
1458  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1459  * @pte_hole: if set, called for each hole at all levels
1460  * @hugetlb_entry: if set, called for each hugetlb entry
1461  * @test_walk: caller specific callback function to determine whether
1462  *             we walk over the current vma or not. Returning 0
1463  *             value means "do page table walk over the current vma,"
1464  *             and a negative one means "abort current page table walk
1465  *             right now." 1 means "skip the current vma."
1466  * @mm:        mm_struct representing the target process of page table walk
1467  * @vma:       vma currently walked (NULL if walking outside vmas)
1468  * @private:   private data for callbacks' usage
1469  *
1470  * (see the comment on walk_page_range() for more details)
1471  */
1472 struct mm_walk {
1473 	int (*pud_entry)(pud_t *pud, unsigned long addr,
1474 			 unsigned long next, struct mm_walk *walk);
1475 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1476 			 unsigned long next, struct mm_walk *walk);
1477 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1478 			 unsigned long next, struct mm_walk *walk);
1479 	int (*pte_hole)(unsigned long addr, unsigned long next,
1480 			struct mm_walk *walk);
1481 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1482 			     unsigned long addr, unsigned long next,
1483 			     struct mm_walk *walk);
1484 	int (*test_walk)(unsigned long addr, unsigned long next,
1485 			struct mm_walk *walk);
1486 	struct mm_struct *mm;
1487 	struct vm_area_struct *vma;
1488 	void *private;
1489 };
1490 
1491 struct mmu_notifier_range;
1492 
1493 int walk_page_range(unsigned long addr, unsigned long end,
1494 		struct mm_walk *walk);
1495 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1496 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1497 		unsigned long end, unsigned long floor, unsigned long ceiling);
1498 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1499 			struct vm_area_struct *vma);
1500 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1501 		   struct mmu_notifier_range *range,
1502 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1503 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1504 	unsigned long *pfn);
1505 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1506 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1507 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1508 			void *buf, int len, int write);
1509 
1510 extern void truncate_pagecache(struct inode *inode, loff_t new);
1511 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1512 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1513 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1514 int truncate_inode_page(struct address_space *mapping, struct page *page);
1515 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1516 int invalidate_inode_page(struct page *page);
1517 
1518 #ifdef CONFIG_MMU
1519 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1520 			unsigned long address, unsigned int flags);
1521 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1522 			    unsigned long address, unsigned int fault_flags,
1523 			    bool *unlocked);
1524 void unmap_mapping_pages(struct address_space *mapping,
1525 		pgoff_t start, pgoff_t nr, bool even_cows);
1526 void unmap_mapping_range(struct address_space *mapping,
1527 		loff_t const holebegin, loff_t const holelen, int even_cows);
1528 #else
1529 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1530 		unsigned long address, unsigned int flags)
1531 {
1532 	/* should never happen if there's no MMU */
1533 	BUG();
1534 	return VM_FAULT_SIGBUS;
1535 }
1536 static inline int fixup_user_fault(struct task_struct *tsk,
1537 		struct mm_struct *mm, unsigned long address,
1538 		unsigned int fault_flags, bool *unlocked)
1539 {
1540 	/* should never happen if there's no MMU */
1541 	BUG();
1542 	return -EFAULT;
1543 }
1544 static inline void unmap_mapping_pages(struct address_space *mapping,
1545 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1546 static inline void unmap_mapping_range(struct address_space *mapping,
1547 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1548 #endif
1549 
1550 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1551 		loff_t const holebegin, loff_t const holelen)
1552 {
1553 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1554 }
1555 
1556 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1557 		void *buf, int len, unsigned int gup_flags);
1558 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1559 		void *buf, int len, unsigned int gup_flags);
1560 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1561 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1562 
1563 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1564 			    unsigned long start, unsigned long nr_pages,
1565 			    unsigned int gup_flags, struct page **pages,
1566 			    struct vm_area_struct **vmas, int *locked);
1567 long get_user_pages(unsigned long start, unsigned long nr_pages,
1568 			    unsigned int gup_flags, struct page **pages,
1569 			    struct vm_area_struct **vmas);
1570 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1571 		    unsigned int gup_flags, struct page **pages, int *locked);
1572 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1573 		    struct page **pages, unsigned int gup_flags);
1574 
1575 int get_user_pages_fast(unsigned long start, int nr_pages,
1576 			unsigned int gup_flags, struct page **pages);
1577 
1578 /* Container for pinned pfns / pages */
1579 struct frame_vector {
1580 	unsigned int nr_allocated;	/* Number of frames we have space for */
1581 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1582 	bool got_ref;		/* Did we pin pages by getting page ref? */
1583 	bool is_pfns;		/* Does array contain pages or pfns? */
1584 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1585 				 * pfns_vector_pages() or pfns_vector_pfns()
1586 				 * for access */
1587 };
1588 
1589 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1590 void frame_vector_destroy(struct frame_vector *vec);
1591 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1592 		     unsigned int gup_flags, struct frame_vector *vec);
1593 void put_vaddr_frames(struct frame_vector *vec);
1594 int frame_vector_to_pages(struct frame_vector *vec);
1595 void frame_vector_to_pfns(struct frame_vector *vec);
1596 
1597 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1598 {
1599 	return vec->nr_frames;
1600 }
1601 
1602 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1603 {
1604 	if (vec->is_pfns) {
1605 		int err = frame_vector_to_pages(vec);
1606 
1607 		if (err)
1608 			return ERR_PTR(err);
1609 	}
1610 	return (struct page **)(vec->ptrs);
1611 }
1612 
1613 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1614 {
1615 	if (!vec->is_pfns)
1616 		frame_vector_to_pfns(vec);
1617 	return (unsigned long *)(vec->ptrs);
1618 }
1619 
1620 struct kvec;
1621 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1622 			struct page **pages);
1623 int get_kernel_page(unsigned long start, int write, struct page **pages);
1624 struct page *get_dump_page(unsigned long addr);
1625 
1626 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1627 extern void do_invalidatepage(struct page *page, unsigned int offset,
1628 			      unsigned int length);
1629 
1630 void __set_page_dirty(struct page *, struct address_space *, int warn);
1631 int __set_page_dirty_nobuffers(struct page *page);
1632 int __set_page_dirty_no_writeback(struct page *page);
1633 int redirty_page_for_writepage(struct writeback_control *wbc,
1634 				struct page *page);
1635 void account_page_dirtied(struct page *page, struct address_space *mapping);
1636 void account_page_cleaned(struct page *page, struct address_space *mapping,
1637 			  struct bdi_writeback *wb);
1638 int set_page_dirty(struct page *page);
1639 int set_page_dirty_lock(struct page *page);
1640 void __cancel_dirty_page(struct page *page);
1641 static inline void cancel_dirty_page(struct page *page)
1642 {
1643 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1644 	if (PageDirty(page))
1645 		__cancel_dirty_page(page);
1646 }
1647 int clear_page_dirty_for_io(struct page *page);
1648 
1649 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1650 
1651 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1652 {
1653 	return !vma->vm_ops;
1654 }
1655 
1656 #ifdef CONFIG_SHMEM
1657 /*
1658  * The vma_is_shmem is not inline because it is used only by slow
1659  * paths in userfault.
1660  */
1661 bool vma_is_shmem(struct vm_area_struct *vma);
1662 #else
1663 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1664 #endif
1665 
1666 int vma_is_stack_for_current(struct vm_area_struct *vma);
1667 
1668 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1669 		unsigned long old_addr, struct vm_area_struct *new_vma,
1670 		unsigned long new_addr, unsigned long len,
1671 		bool need_rmap_locks);
1672 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1673 			      unsigned long end, pgprot_t newprot,
1674 			      int dirty_accountable, int prot_numa);
1675 extern int mprotect_fixup(struct vm_area_struct *vma,
1676 			  struct vm_area_struct **pprev, unsigned long start,
1677 			  unsigned long end, unsigned long newflags);
1678 
1679 /*
1680  * doesn't attempt to fault and will return short.
1681  */
1682 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1683 			  struct page **pages);
1684 /*
1685  * per-process(per-mm_struct) statistics.
1686  */
1687 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1688 {
1689 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1690 
1691 #ifdef SPLIT_RSS_COUNTING
1692 	/*
1693 	 * counter is updated in asynchronous manner and may go to minus.
1694 	 * But it's never be expected number for users.
1695 	 */
1696 	if (val < 0)
1697 		val = 0;
1698 #endif
1699 	return (unsigned long)val;
1700 }
1701 
1702 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1703 {
1704 	atomic_long_add(value, &mm->rss_stat.count[member]);
1705 }
1706 
1707 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1708 {
1709 	atomic_long_inc(&mm->rss_stat.count[member]);
1710 }
1711 
1712 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1713 {
1714 	atomic_long_dec(&mm->rss_stat.count[member]);
1715 }
1716 
1717 /* Optimized variant when page is already known not to be PageAnon */
1718 static inline int mm_counter_file(struct page *page)
1719 {
1720 	if (PageSwapBacked(page))
1721 		return MM_SHMEMPAGES;
1722 	return MM_FILEPAGES;
1723 }
1724 
1725 static inline int mm_counter(struct page *page)
1726 {
1727 	if (PageAnon(page))
1728 		return MM_ANONPAGES;
1729 	return mm_counter_file(page);
1730 }
1731 
1732 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1733 {
1734 	return get_mm_counter(mm, MM_FILEPAGES) +
1735 		get_mm_counter(mm, MM_ANONPAGES) +
1736 		get_mm_counter(mm, MM_SHMEMPAGES);
1737 }
1738 
1739 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1740 {
1741 	return max(mm->hiwater_rss, get_mm_rss(mm));
1742 }
1743 
1744 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1745 {
1746 	return max(mm->hiwater_vm, mm->total_vm);
1747 }
1748 
1749 static inline void update_hiwater_rss(struct mm_struct *mm)
1750 {
1751 	unsigned long _rss = get_mm_rss(mm);
1752 
1753 	if ((mm)->hiwater_rss < _rss)
1754 		(mm)->hiwater_rss = _rss;
1755 }
1756 
1757 static inline void update_hiwater_vm(struct mm_struct *mm)
1758 {
1759 	if (mm->hiwater_vm < mm->total_vm)
1760 		mm->hiwater_vm = mm->total_vm;
1761 }
1762 
1763 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1764 {
1765 	mm->hiwater_rss = get_mm_rss(mm);
1766 }
1767 
1768 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1769 					 struct mm_struct *mm)
1770 {
1771 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1772 
1773 	if (*maxrss < hiwater_rss)
1774 		*maxrss = hiwater_rss;
1775 }
1776 
1777 #if defined(SPLIT_RSS_COUNTING)
1778 void sync_mm_rss(struct mm_struct *mm);
1779 #else
1780 static inline void sync_mm_rss(struct mm_struct *mm)
1781 {
1782 }
1783 #endif
1784 
1785 #ifndef __HAVE_ARCH_PTE_DEVMAP
1786 static inline int pte_devmap(pte_t pte)
1787 {
1788 	return 0;
1789 }
1790 #endif
1791 
1792 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1793 
1794 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1795 			       spinlock_t **ptl);
1796 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1797 				    spinlock_t **ptl)
1798 {
1799 	pte_t *ptep;
1800 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1801 	return ptep;
1802 }
1803 
1804 #ifdef __PAGETABLE_P4D_FOLDED
1805 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1806 						unsigned long address)
1807 {
1808 	return 0;
1809 }
1810 #else
1811 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1812 #endif
1813 
1814 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1815 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1816 						unsigned long address)
1817 {
1818 	return 0;
1819 }
1820 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1821 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1822 
1823 #else
1824 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1825 
1826 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1827 {
1828 	if (mm_pud_folded(mm))
1829 		return;
1830 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1831 }
1832 
1833 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1834 {
1835 	if (mm_pud_folded(mm))
1836 		return;
1837 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1838 }
1839 #endif
1840 
1841 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1842 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1843 						unsigned long address)
1844 {
1845 	return 0;
1846 }
1847 
1848 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1849 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1850 
1851 #else
1852 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1853 
1854 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1855 {
1856 	if (mm_pmd_folded(mm))
1857 		return;
1858 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1859 }
1860 
1861 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1862 {
1863 	if (mm_pmd_folded(mm))
1864 		return;
1865 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1866 }
1867 #endif
1868 
1869 #ifdef CONFIG_MMU
1870 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1871 {
1872 	atomic_long_set(&mm->pgtables_bytes, 0);
1873 }
1874 
1875 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1876 {
1877 	return atomic_long_read(&mm->pgtables_bytes);
1878 }
1879 
1880 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1881 {
1882 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1883 }
1884 
1885 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1886 {
1887 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1888 }
1889 #else
1890 
1891 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1892 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1893 {
1894 	return 0;
1895 }
1896 
1897 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1898 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1899 #endif
1900 
1901 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1902 int __pte_alloc_kernel(pmd_t *pmd);
1903 
1904 /*
1905  * The following ifdef needed to get the 4level-fixup.h header to work.
1906  * Remove it when 4level-fixup.h has been removed.
1907  */
1908 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1909 
1910 #ifndef __ARCH_HAS_5LEVEL_HACK
1911 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1912 		unsigned long address)
1913 {
1914 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1915 		NULL : p4d_offset(pgd, address);
1916 }
1917 
1918 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1919 		unsigned long address)
1920 {
1921 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1922 		NULL : pud_offset(p4d, address);
1923 }
1924 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1925 
1926 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1927 {
1928 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1929 		NULL: pmd_offset(pud, address);
1930 }
1931 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1932 
1933 #if USE_SPLIT_PTE_PTLOCKS
1934 #if ALLOC_SPLIT_PTLOCKS
1935 void __init ptlock_cache_init(void);
1936 extern bool ptlock_alloc(struct page *page);
1937 extern void ptlock_free(struct page *page);
1938 
1939 static inline spinlock_t *ptlock_ptr(struct page *page)
1940 {
1941 	return page->ptl;
1942 }
1943 #else /* ALLOC_SPLIT_PTLOCKS */
1944 static inline void ptlock_cache_init(void)
1945 {
1946 }
1947 
1948 static inline bool ptlock_alloc(struct page *page)
1949 {
1950 	return true;
1951 }
1952 
1953 static inline void ptlock_free(struct page *page)
1954 {
1955 }
1956 
1957 static inline spinlock_t *ptlock_ptr(struct page *page)
1958 {
1959 	return &page->ptl;
1960 }
1961 #endif /* ALLOC_SPLIT_PTLOCKS */
1962 
1963 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1964 {
1965 	return ptlock_ptr(pmd_page(*pmd));
1966 }
1967 
1968 static inline bool ptlock_init(struct page *page)
1969 {
1970 	/*
1971 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1972 	 * with 0. Make sure nobody took it in use in between.
1973 	 *
1974 	 * It can happen if arch try to use slab for page table allocation:
1975 	 * slab code uses page->slab_cache, which share storage with page->ptl.
1976 	 */
1977 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1978 	if (!ptlock_alloc(page))
1979 		return false;
1980 	spin_lock_init(ptlock_ptr(page));
1981 	return true;
1982 }
1983 
1984 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1985 /*
1986  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1987  */
1988 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1989 {
1990 	return &mm->page_table_lock;
1991 }
1992 static inline void ptlock_cache_init(void) {}
1993 static inline bool ptlock_init(struct page *page) { return true; }
1994 static inline void ptlock_free(struct page *page) {}
1995 #endif /* USE_SPLIT_PTE_PTLOCKS */
1996 
1997 static inline void pgtable_init(void)
1998 {
1999 	ptlock_cache_init();
2000 	pgtable_cache_init();
2001 }
2002 
2003 static inline bool pgtable_page_ctor(struct page *page)
2004 {
2005 	if (!ptlock_init(page))
2006 		return false;
2007 	__SetPageTable(page);
2008 	inc_zone_page_state(page, NR_PAGETABLE);
2009 	return true;
2010 }
2011 
2012 static inline void pgtable_page_dtor(struct page *page)
2013 {
2014 	ptlock_free(page);
2015 	__ClearPageTable(page);
2016 	dec_zone_page_state(page, NR_PAGETABLE);
2017 }
2018 
2019 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2020 ({							\
2021 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2022 	pte_t *__pte = pte_offset_map(pmd, address);	\
2023 	*(ptlp) = __ptl;				\
2024 	spin_lock(__ptl);				\
2025 	__pte;						\
2026 })
2027 
2028 #define pte_unmap_unlock(pte, ptl)	do {		\
2029 	spin_unlock(ptl);				\
2030 	pte_unmap(pte);					\
2031 } while (0)
2032 
2033 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2034 
2035 #define pte_alloc_map(mm, pmd, address)			\
2036 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2037 
2038 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2039 	(pte_alloc(mm, pmd) ?			\
2040 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2041 
2042 #define pte_alloc_kernel(pmd, address)			\
2043 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2044 		NULL: pte_offset_kernel(pmd, address))
2045 
2046 #if USE_SPLIT_PMD_PTLOCKS
2047 
2048 static struct page *pmd_to_page(pmd_t *pmd)
2049 {
2050 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2051 	return virt_to_page((void *)((unsigned long) pmd & mask));
2052 }
2053 
2054 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2055 {
2056 	return ptlock_ptr(pmd_to_page(pmd));
2057 }
2058 
2059 static inline bool pgtable_pmd_page_ctor(struct page *page)
2060 {
2061 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2062 	page->pmd_huge_pte = NULL;
2063 #endif
2064 	return ptlock_init(page);
2065 }
2066 
2067 static inline void pgtable_pmd_page_dtor(struct page *page)
2068 {
2069 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2070 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2071 #endif
2072 	ptlock_free(page);
2073 }
2074 
2075 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2076 
2077 #else
2078 
2079 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2080 {
2081 	return &mm->page_table_lock;
2082 }
2083 
2084 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2085 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2086 
2087 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2088 
2089 #endif
2090 
2091 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2092 {
2093 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2094 	spin_lock(ptl);
2095 	return ptl;
2096 }
2097 
2098 /*
2099  * No scalability reason to split PUD locks yet, but follow the same pattern
2100  * as the PMD locks to make it easier if we decide to.  The VM should not be
2101  * considered ready to switch to split PUD locks yet; there may be places
2102  * which need to be converted from page_table_lock.
2103  */
2104 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2105 {
2106 	return &mm->page_table_lock;
2107 }
2108 
2109 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2110 {
2111 	spinlock_t *ptl = pud_lockptr(mm, pud);
2112 
2113 	spin_lock(ptl);
2114 	return ptl;
2115 }
2116 
2117 extern void __init pagecache_init(void);
2118 extern void free_area_init(unsigned long * zones_size);
2119 extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2120 		unsigned long zone_start_pfn, unsigned long *zholes_size);
2121 extern void free_initmem(void);
2122 
2123 /*
2124  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2125  * into the buddy system. The freed pages will be poisoned with pattern
2126  * "poison" if it's within range [0, UCHAR_MAX].
2127  * Return pages freed into the buddy system.
2128  */
2129 extern unsigned long free_reserved_area(void *start, void *end,
2130 					int poison, const char *s);
2131 
2132 #ifdef	CONFIG_HIGHMEM
2133 /*
2134  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2135  * and totalram_pages.
2136  */
2137 extern void free_highmem_page(struct page *page);
2138 #endif
2139 
2140 extern void adjust_managed_page_count(struct page *page, long count);
2141 extern void mem_init_print_info(const char *str);
2142 
2143 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2144 
2145 /* Free the reserved page into the buddy system, so it gets managed. */
2146 static inline void __free_reserved_page(struct page *page)
2147 {
2148 	ClearPageReserved(page);
2149 	init_page_count(page);
2150 	__free_page(page);
2151 }
2152 
2153 static inline void free_reserved_page(struct page *page)
2154 {
2155 	__free_reserved_page(page);
2156 	adjust_managed_page_count(page, 1);
2157 }
2158 
2159 static inline void mark_page_reserved(struct page *page)
2160 {
2161 	SetPageReserved(page);
2162 	adjust_managed_page_count(page, -1);
2163 }
2164 
2165 /*
2166  * Default method to free all the __init memory into the buddy system.
2167  * The freed pages will be poisoned with pattern "poison" if it's within
2168  * range [0, UCHAR_MAX].
2169  * Return pages freed into the buddy system.
2170  */
2171 static inline unsigned long free_initmem_default(int poison)
2172 {
2173 	extern char __init_begin[], __init_end[];
2174 
2175 	return free_reserved_area(&__init_begin, &__init_end,
2176 				  poison, "unused kernel");
2177 }
2178 
2179 static inline unsigned long get_num_physpages(void)
2180 {
2181 	int nid;
2182 	unsigned long phys_pages = 0;
2183 
2184 	for_each_online_node(nid)
2185 		phys_pages += node_present_pages(nid);
2186 
2187 	return phys_pages;
2188 }
2189 
2190 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2191 /*
2192  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2193  * zones, allocate the backing mem_map and account for memory holes in a more
2194  * architecture independent manner. This is a substitute for creating the
2195  * zone_sizes[] and zholes_size[] arrays and passing them to
2196  * free_area_init_node()
2197  *
2198  * An architecture is expected to register range of page frames backed by
2199  * physical memory with memblock_add[_node]() before calling
2200  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2201  * usage, an architecture is expected to do something like
2202  *
2203  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2204  * 							 max_highmem_pfn};
2205  * for_each_valid_physical_page_range()
2206  * 	memblock_add_node(base, size, nid)
2207  * free_area_init_nodes(max_zone_pfns);
2208  *
2209  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2210  * registered physical page range.  Similarly
2211  * sparse_memory_present_with_active_regions() calls memory_present() for
2212  * each range when SPARSEMEM is enabled.
2213  *
2214  * See mm/page_alloc.c for more information on each function exposed by
2215  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2216  */
2217 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2218 unsigned long node_map_pfn_alignment(void);
2219 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2220 						unsigned long end_pfn);
2221 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2222 						unsigned long end_pfn);
2223 extern void get_pfn_range_for_nid(unsigned int nid,
2224 			unsigned long *start_pfn, unsigned long *end_pfn);
2225 extern unsigned long find_min_pfn_with_active_regions(void);
2226 extern void free_bootmem_with_active_regions(int nid,
2227 						unsigned long max_low_pfn);
2228 extern void sparse_memory_present_with_active_regions(int nid);
2229 
2230 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2231 
2232 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2233     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2234 static inline int __early_pfn_to_nid(unsigned long pfn,
2235 					struct mminit_pfnnid_cache *state)
2236 {
2237 	return 0;
2238 }
2239 #else
2240 /* please see mm/page_alloc.c */
2241 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2242 /* there is a per-arch backend function. */
2243 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2244 					struct mminit_pfnnid_cache *state);
2245 #endif
2246 
2247 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2248 void zero_resv_unavail(void);
2249 #else
2250 static inline void zero_resv_unavail(void) {}
2251 #endif
2252 
2253 extern void set_dma_reserve(unsigned long new_dma_reserve);
2254 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2255 		enum memmap_context, struct vmem_altmap *);
2256 extern void setup_per_zone_wmarks(void);
2257 extern int __meminit init_per_zone_wmark_min(void);
2258 extern void mem_init(void);
2259 extern void __init mmap_init(void);
2260 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2261 extern long si_mem_available(void);
2262 extern void si_meminfo(struct sysinfo * val);
2263 extern void si_meminfo_node(struct sysinfo *val, int nid);
2264 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2265 extern unsigned long arch_reserved_kernel_pages(void);
2266 #endif
2267 
2268 extern __printf(3, 4)
2269 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2270 
2271 extern void setup_per_cpu_pageset(void);
2272 
2273 extern void zone_pcp_update(struct zone *zone);
2274 extern void zone_pcp_reset(struct zone *zone);
2275 
2276 /* page_alloc.c */
2277 extern int min_free_kbytes;
2278 extern int watermark_boost_factor;
2279 extern int watermark_scale_factor;
2280 
2281 /* nommu.c */
2282 extern atomic_long_t mmap_pages_allocated;
2283 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2284 
2285 /* interval_tree.c */
2286 void vma_interval_tree_insert(struct vm_area_struct *node,
2287 			      struct rb_root_cached *root);
2288 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2289 				    struct vm_area_struct *prev,
2290 				    struct rb_root_cached *root);
2291 void vma_interval_tree_remove(struct vm_area_struct *node,
2292 			      struct rb_root_cached *root);
2293 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2294 				unsigned long start, unsigned long last);
2295 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2296 				unsigned long start, unsigned long last);
2297 
2298 #define vma_interval_tree_foreach(vma, root, start, last)		\
2299 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2300 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2301 
2302 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2303 				   struct rb_root_cached *root);
2304 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2305 				   struct rb_root_cached *root);
2306 struct anon_vma_chain *
2307 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2308 				  unsigned long start, unsigned long last);
2309 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2310 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2311 #ifdef CONFIG_DEBUG_VM_RB
2312 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2313 #endif
2314 
2315 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2316 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2317 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2318 
2319 /* mmap.c */
2320 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2321 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2322 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2323 	struct vm_area_struct *expand);
2324 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2325 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2326 {
2327 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2328 }
2329 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2330 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2331 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2332 	struct mempolicy *, struct vm_userfaultfd_ctx);
2333 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2334 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2335 	unsigned long addr, int new_below);
2336 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2337 	unsigned long addr, int new_below);
2338 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2339 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2340 	struct rb_node **, struct rb_node *);
2341 extern void unlink_file_vma(struct vm_area_struct *);
2342 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2343 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2344 	bool *need_rmap_locks);
2345 extern void exit_mmap(struct mm_struct *);
2346 
2347 static inline int check_data_rlimit(unsigned long rlim,
2348 				    unsigned long new,
2349 				    unsigned long start,
2350 				    unsigned long end_data,
2351 				    unsigned long start_data)
2352 {
2353 	if (rlim < RLIM_INFINITY) {
2354 		if (((new - start) + (end_data - start_data)) > rlim)
2355 			return -ENOSPC;
2356 	}
2357 
2358 	return 0;
2359 }
2360 
2361 extern int mm_take_all_locks(struct mm_struct *mm);
2362 extern void mm_drop_all_locks(struct mm_struct *mm);
2363 
2364 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2365 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2366 extern struct file *get_task_exe_file(struct task_struct *task);
2367 
2368 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2369 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2370 
2371 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2372 				   const struct vm_special_mapping *sm);
2373 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2374 				   unsigned long addr, unsigned long len,
2375 				   unsigned long flags,
2376 				   const struct vm_special_mapping *spec);
2377 /* This is an obsolete alternative to _install_special_mapping. */
2378 extern int install_special_mapping(struct mm_struct *mm,
2379 				   unsigned long addr, unsigned long len,
2380 				   unsigned long flags, struct page **pages);
2381 
2382 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2383 
2384 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2385 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2386 	struct list_head *uf);
2387 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2388 	unsigned long len, unsigned long prot, unsigned long flags,
2389 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2390 	struct list_head *uf);
2391 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2392 		       struct list_head *uf, bool downgrade);
2393 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2394 		     struct list_head *uf);
2395 
2396 static inline unsigned long
2397 do_mmap_pgoff(struct file *file, unsigned long addr,
2398 	unsigned long len, unsigned long prot, unsigned long flags,
2399 	unsigned long pgoff, unsigned long *populate,
2400 	struct list_head *uf)
2401 {
2402 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2403 }
2404 
2405 #ifdef CONFIG_MMU
2406 extern int __mm_populate(unsigned long addr, unsigned long len,
2407 			 int ignore_errors);
2408 static inline void mm_populate(unsigned long addr, unsigned long len)
2409 {
2410 	/* Ignore errors */
2411 	(void) __mm_populate(addr, len, 1);
2412 }
2413 #else
2414 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2415 #endif
2416 
2417 /* These take the mm semaphore themselves */
2418 extern int __must_check vm_brk(unsigned long, unsigned long);
2419 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2420 extern int vm_munmap(unsigned long, size_t);
2421 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2422         unsigned long, unsigned long,
2423         unsigned long, unsigned long);
2424 
2425 struct vm_unmapped_area_info {
2426 #define VM_UNMAPPED_AREA_TOPDOWN 1
2427 	unsigned long flags;
2428 	unsigned long length;
2429 	unsigned long low_limit;
2430 	unsigned long high_limit;
2431 	unsigned long align_mask;
2432 	unsigned long align_offset;
2433 };
2434 
2435 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2436 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2437 
2438 /*
2439  * Search for an unmapped address range.
2440  *
2441  * We are looking for a range that:
2442  * - does not intersect with any VMA;
2443  * - is contained within the [low_limit, high_limit) interval;
2444  * - is at least the desired size.
2445  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2446  */
2447 static inline unsigned long
2448 vm_unmapped_area(struct vm_unmapped_area_info *info)
2449 {
2450 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2451 		return unmapped_area_topdown(info);
2452 	else
2453 		return unmapped_area(info);
2454 }
2455 
2456 /* truncate.c */
2457 extern void truncate_inode_pages(struct address_space *, loff_t);
2458 extern void truncate_inode_pages_range(struct address_space *,
2459 				       loff_t lstart, loff_t lend);
2460 extern void truncate_inode_pages_final(struct address_space *);
2461 
2462 /* generic vm_area_ops exported for stackable file systems */
2463 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2464 extern void filemap_map_pages(struct vm_fault *vmf,
2465 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2466 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2467 
2468 /* mm/page-writeback.c */
2469 int __must_check write_one_page(struct page *page);
2470 void task_dirty_inc(struct task_struct *tsk);
2471 
2472 /* readahead.c */
2473 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
2474 
2475 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2476 			pgoff_t offset, unsigned long nr_to_read);
2477 
2478 void page_cache_sync_readahead(struct address_space *mapping,
2479 			       struct file_ra_state *ra,
2480 			       struct file *filp,
2481 			       pgoff_t offset,
2482 			       unsigned long size);
2483 
2484 void page_cache_async_readahead(struct address_space *mapping,
2485 				struct file_ra_state *ra,
2486 				struct file *filp,
2487 				struct page *pg,
2488 				pgoff_t offset,
2489 				unsigned long size);
2490 
2491 extern unsigned long stack_guard_gap;
2492 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2493 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2494 
2495 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2496 extern int expand_downwards(struct vm_area_struct *vma,
2497 		unsigned long address);
2498 #if VM_GROWSUP
2499 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2500 #else
2501   #define expand_upwards(vma, address) (0)
2502 #endif
2503 
2504 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2505 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2506 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2507 					     struct vm_area_struct **pprev);
2508 
2509 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2510    NULL if none.  Assume start_addr < end_addr. */
2511 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2512 {
2513 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2514 
2515 	if (vma && end_addr <= vma->vm_start)
2516 		vma = NULL;
2517 	return vma;
2518 }
2519 
2520 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2521 {
2522 	unsigned long vm_start = vma->vm_start;
2523 
2524 	if (vma->vm_flags & VM_GROWSDOWN) {
2525 		vm_start -= stack_guard_gap;
2526 		if (vm_start > vma->vm_start)
2527 			vm_start = 0;
2528 	}
2529 	return vm_start;
2530 }
2531 
2532 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2533 {
2534 	unsigned long vm_end = vma->vm_end;
2535 
2536 	if (vma->vm_flags & VM_GROWSUP) {
2537 		vm_end += stack_guard_gap;
2538 		if (vm_end < vma->vm_end)
2539 			vm_end = -PAGE_SIZE;
2540 	}
2541 	return vm_end;
2542 }
2543 
2544 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2545 {
2546 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2547 }
2548 
2549 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2550 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2551 				unsigned long vm_start, unsigned long vm_end)
2552 {
2553 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2554 
2555 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2556 		vma = NULL;
2557 
2558 	return vma;
2559 }
2560 
2561 static inline bool range_in_vma(struct vm_area_struct *vma,
2562 				unsigned long start, unsigned long end)
2563 {
2564 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2565 }
2566 
2567 #ifdef CONFIG_MMU
2568 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2569 void vma_set_page_prot(struct vm_area_struct *vma);
2570 #else
2571 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2572 {
2573 	return __pgprot(0);
2574 }
2575 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2576 {
2577 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2578 }
2579 #endif
2580 
2581 #ifdef CONFIG_NUMA_BALANCING
2582 unsigned long change_prot_numa(struct vm_area_struct *vma,
2583 			unsigned long start, unsigned long end);
2584 #endif
2585 
2586 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2587 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2588 			unsigned long pfn, unsigned long size, pgprot_t);
2589 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2590 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2591 				unsigned long num);
2592 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2593 				unsigned long num);
2594 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2595 			unsigned long pfn);
2596 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2597 			unsigned long pfn, pgprot_t pgprot);
2598 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2599 			pfn_t pfn);
2600 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2601 		unsigned long addr, pfn_t pfn);
2602 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2603 
2604 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2605 				unsigned long addr, struct page *page)
2606 {
2607 	int err = vm_insert_page(vma, addr, page);
2608 
2609 	if (err == -ENOMEM)
2610 		return VM_FAULT_OOM;
2611 	if (err < 0 && err != -EBUSY)
2612 		return VM_FAULT_SIGBUS;
2613 
2614 	return VM_FAULT_NOPAGE;
2615 }
2616 
2617 static inline vm_fault_t vmf_error(int err)
2618 {
2619 	if (err == -ENOMEM)
2620 		return VM_FAULT_OOM;
2621 	return VM_FAULT_SIGBUS;
2622 }
2623 
2624 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2625 			 unsigned int foll_flags);
2626 
2627 #define FOLL_WRITE	0x01	/* check pte is writable */
2628 #define FOLL_TOUCH	0x02	/* mark page accessed */
2629 #define FOLL_GET	0x04	/* do get_page on page */
2630 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2631 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2632 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2633 				 * and return without waiting upon it */
2634 #define FOLL_POPULATE	0x40	/* fault in page */
2635 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2636 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2637 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2638 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2639 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2640 #define FOLL_MLOCK	0x1000	/* lock present pages */
2641 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2642 #define FOLL_COW	0x4000	/* internal GUP flag */
2643 #define FOLL_ANON	0x8000	/* don't do file mappings */
2644 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2645 
2646 /*
2647  * NOTE on FOLL_LONGTERM:
2648  *
2649  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2650  * period _often_ under userspace control.  This is contrasted with
2651  * iov_iter_get_pages() where usages which are transient.
2652  *
2653  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2654  * lifetime enforced by the filesystem and we need guarantees that longterm
2655  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2656  * the filesystem.  Ideas for this coordination include revoking the longterm
2657  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2658  * added after the problem with filesystems was found FS DAX VMAs are
2659  * specifically failed.  Filesystem pages are still subject to bugs and use of
2660  * FOLL_LONGTERM should be avoided on those pages.
2661  *
2662  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2663  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2664  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2665  * is due to an incompatibility with the FS DAX check and
2666  * FAULT_FLAG_ALLOW_RETRY
2667  *
2668  * In the CMA case: longterm pins in a CMA region would unnecessarily fragment
2669  * that region.  And so CMA attempts to migrate the page before pinning when
2670  * FOLL_LONGTERM is specified.
2671  */
2672 
2673 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2674 {
2675 	if (vm_fault & VM_FAULT_OOM)
2676 		return -ENOMEM;
2677 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2678 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2679 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2680 		return -EFAULT;
2681 	return 0;
2682 }
2683 
2684 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2685 			void *data);
2686 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2687 			       unsigned long size, pte_fn_t fn, void *data);
2688 
2689 
2690 #ifdef CONFIG_PAGE_POISONING
2691 extern bool page_poisoning_enabled(void);
2692 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2693 #else
2694 static inline bool page_poisoning_enabled(void) { return false; }
2695 static inline void kernel_poison_pages(struct page *page, int numpages,
2696 					int enable) { }
2697 #endif
2698 
2699 extern bool _debug_pagealloc_enabled;
2700 
2701 static inline bool debug_pagealloc_enabled(void)
2702 {
2703 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && _debug_pagealloc_enabled;
2704 }
2705 
2706 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2707 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2708 
2709 static inline void
2710 kernel_map_pages(struct page *page, int numpages, int enable)
2711 {
2712 	__kernel_map_pages(page, numpages, enable);
2713 }
2714 #ifdef CONFIG_HIBERNATION
2715 extern bool kernel_page_present(struct page *page);
2716 #endif	/* CONFIG_HIBERNATION */
2717 #else	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2718 static inline void
2719 kernel_map_pages(struct page *page, int numpages, int enable) {}
2720 #ifdef CONFIG_HIBERNATION
2721 static inline bool kernel_page_present(struct page *page) { return true; }
2722 #endif	/* CONFIG_HIBERNATION */
2723 #endif	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2724 
2725 #ifdef __HAVE_ARCH_GATE_AREA
2726 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2727 extern int in_gate_area_no_mm(unsigned long addr);
2728 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2729 #else
2730 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2731 {
2732 	return NULL;
2733 }
2734 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2735 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2736 {
2737 	return 0;
2738 }
2739 #endif	/* __HAVE_ARCH_GATE_AREA */
2740 
2741 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2742 
2743 #ifdef CONFIG_SYSCTL
2744 extern int sysctl_drop_caches;
2745 int drop_caches_sysctl_handler(struct ctl_table *, int,
2746 					void __user *, size_t *, loff_t *);
2747 #endif
2748 
2749 void drop_slab(void);
2750 void drop_slab_node(int nid);
2751 
2752 #ifndef CONFIG_MMU
2753 #define randomize_va_space 0
2754 #else
2755 extern int randomize_va_space;
2756 #endif
2757 
2758 const char * arch_vma_name(struct vm_area_struct *vma);
2759 void print_vma_addr(char *prefix, unsigned long rip);
2760 
2761 void *sparse_buffer_alloc(unsigned long size);
2762 struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2763 		struct vmem_altmap *altmap);
2764 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2765 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2766 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2767 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2768 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2769 void *vmemmap_alloc_block(unsigned long size, int node);
2770 struct vmem_altmap;
2771 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2772 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2773 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2774 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2775 			       int node);
2776 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2777 		struct vmem_altmap *altmap);
2778 void vmemmap_populate_print_last(void);
2779 #ifdef CONFIG_MEMORY_HOTPLUG
2780 void vmemmap_free(unsigned long start, unsigned long end,
2781 		struct vmem_altmap *altmap);
2782 #endif
2783 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2784 				  unsigned long nr_pages);
2785 
2786 enum mf_flags {
2787 	MF_COUNT_INCREASED = 1 << 0,
2788 	MF_ACTION_REQUIRED = 1 << 1,
2789 	MF_MUST_KILL = 1 << 2,
2790 	MF_SOFT_OFFLINE = 1 << 3,
2791 };
2792 extern int memory_failure(unsigned long pfn, int flags);
2793 extern void memory_failure_queue(unsigned long pfn, int flags);
2794 extern int unpoison_memory(unsigned long pfn);
2795 extern int get_hwpoison_page(struct page *page);
2796 #define put_hwpoison_page(page)	put_page(page)
2797 extern int sysctl_memory_failure_early_kill;
2798 extern int sysctl_memory_failure_recovery;
2799 extern void shake_page(struct page *p, int access);
2800 extern atomic_long_t num_poisoned_pages __read_mostly;
2801 extern int soft_offline_page(struct page *page, int flags);
2802 
2803 
2804 /*
2805  * Error handlers for various types of pages.
2806  */
2807 enum mf_result {
2808 	MF_IGNORED,	/* Error: cannot be handled */
2809 	MF_FAILED,	/* Error: handling failed */
2810 	MF_DELAYED,	/* Will be handled later */
2811 	MF_RECOVERED,	/* Successfully recovered */
2812 };
2813 
2814 enum mf_action_page_type {
2815 	MF_MSG_KERNEL,
2816 	MF_MSG_KERNEL_HIGH_ORDER,
2817 	MF_MSG_SLAB,
2818 	MF_MSG_DIFFERENT_COMPOUND,
2819 	MF_MSG_POISONED_HUGE,
2820 	MF_MSG_HUGE,
2821 	MF_MSG_FREE_HUGE,
2822 	MF_MSG_NON_PMD_HUGE,
2823 	MF_MSG_UNMAP_FAILED,
2824 	MF_MSG_DIRTY_SWAPCACHE,
2825 	MF_MSG_CLEAN_SWAPCACHE,
2826 	MF_MSG_DIRTY_MLOCKED_LRU,
2827 	MF_MSG_CLEAN_MLOCKED_LRU,
2828 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2829 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2830 	MF_MSG_DIRTY_LRU,
2831 	MF_MSG_CLEAN_LRU,
2832 	MF_MSG_TRUNCATED_LRU,
2833 	MF_MSG_BUDDY,
2834 	MF_MSG_BUDDY_2ND,
2835 	MF_MSG_DAX,
2836 	MF_MSG_UNKNOWN,
2837 };
2838 
2839 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2840 extern void clear_huge_page(struct page *page,
2841 			    unsigned long addr_hint,
2842 			    unsigned int pages_per_huge_page);
2843 extern void copy_user_huge_page(struct page *dst, struct page *src,
2844 				unsigned long addr_hint,
2845 				struct vm_area_struct *vma,
2846 				unsigned int pages_per_huge_page);
2847 extern long copy_huge_page_from_user(struct page *dst_page,
2848 				const void __user *usr_src,
2849 				unsigned int pages_per_huge_page,
2850 				bool allow_pagefault);
2851 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2852 
2853 extern struct page_ext_operations debug_guardpage_ops;
2854 
2855 #ifdef CONFIG_DEBUG_PAGEALLOC
2856 extern unsigned int _debug_guardpage_minorder;
2857 extern bool _debug_guardpage_enabled;
2858 
2859 static inline unsigned int debug_guardpage_minorder(void)
2860 {
2861 	return _debug_guardpage_minorder;
2862 }
2863 
2864 static inline bool debug_guardpage_enabled(void)
2865 {
2866 	return _debug_guardpage_enabled;
2867 }
2868 
2869 static inline bool page_is_guard(struct page *page)
2870 {
2871 	struct page_ext *page_ext;
2872 
2873 	if (!debug_guardpage_enabled())
2874 		return false;
2875 
2876 	page_ext = lookup_page_ext(page);
2877 	if (unlikely(!page_ext))
2878 		return false;
2879 
2880 	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2881 }
2882 #else
2883 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2884 static inline bool debug_guardpage_enabled(void) { return false; }
2885 static inline bool page_is_guard(struct page *page) { return false; }
2886 #endif /* CONFIG_DEBUG_PAGEALLOC */
2887 
2888 #if MAX_NUMNODES > 1
2889 void __init setup_nr_node_ids(void);
2890 #else
2891 static inline void setup_nr_node_ids(void) {}
2892 #endif
2893 
2894 #endif /* __KERNEL__ */
2895 #endif /* _LINUX_MM_H */
2896