xref: /linux/include/linux/mm.h (revision 9a6b55ac)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 #include <linux/overflow.h>
29 #include <linux/sizes.h>
30 
31 struct mempolicy;
32 struct anon_vma;
33 struct anon_vma_chain;
34 struct file_ra_state;
35 struct user_struct;
36 struct writeback_control;
37 struct bdi_writeback;
38 
39 void init_mm_internals(void);
40 
41 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
42 extern unsigned long max_mapnr;
43 
44 static inline void set_max_mapnr(unsigned long limit)
45 {
46 	max_mapnr = limit;
47 }
48 #else
49 static inline void set_max_mapnr(unsigned long limit) { }
50 #endif
51 
52 extern atomic_long_t _totalram_pages;
53 static inline unsigned long totalram_pages(void)
54 {
55 	return (unsigned long)atomic_long_read(&_totalram_pages);
56 }
57 
58 static inline void totalram_pages_inc(void)
59 {
60 	atomic_long_inc(&_totalram_pages);
61 }
62 
63 static inline void totalram_pages_dec(void)
64 {
65 	atomic_long_dec(&_totalram_pages);
66 }
67 
68 static inline void totalram_pages_add(long count)
69 {
70 	atomic_long_add(count, &_totalram_pages);
71 }
72 
73 static inline void totalram_pages_set(long val)
74 {
75 	atomic_long_set(&_totalram_pages, val);
76 }
77 
78 extern void * high_memory;
79 extern int page_cluster;
80 
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86 
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97 
98 #include <asm/page.h>
99 #include <asm/pgtable.h>
100 #include <asm/processor.h>
101 
102 /*
103  * Architectures that support memory tagging (assigning tags to memory regions,
104  * embedding these tags into addresses that point to these memory regions, and
105  * checking that the memory and the pointer tags match on memory accesses)
106  * redefine this macro to strip tags from pointers.
107  * It's defined as noop for arcitectures that don't support memory tagging.
108  */
109 #ifndef untagged_addr
110 #define untagged_addr(addr) (addr)
111 #endif
112 
113 #ifndef __pa_symbol
114 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
115 #endif
116 
117 #ifndef page_to_virt
118 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
119 #endif
120 
121 #ifndef lm_alias
122 #define lm_alias(x)	__va(__pa_symbol(x))
123 #endif
124 
125 /*
126  * To prevent common memory management code establishing
127  * a zero page mapping on a read fault.
128  * This macro should be defined within <asm/pgtable.h>.
129  * s390 does this to prevent multiplexing of hardware bits
130  * related to the physical page in case of virtualization.
131  */
132 #ifndef mm_forbids_zeropage
133 #define mm_forbids_zeropage(X)	(0)
134 #endif
135 
136 /*
137  * On some architectures it is expensive to call memset() for small sizes.
138  * If an architecture decides to implement their own version of
139  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
140  * define their own version of this macro in <asm/pgtable.h>
141  */
142 #if BITS_PER_LONG == 64
143 /* This function must be updated when the size of struct page grows above 80
144  * or reduces below 56. The idea that compiler optimizes out switch()
145  * statement, and only leaves move/store instructions. Also the compiler can
146  * combine write statments if they are both assignments and can be reordered,
147  * this can result in several of the writes here being dropped.
148  */
149 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
150 static inline void __mm_zero_struct_page(struct page *page)
151 {
152 	unsigned long *_pp = (void *)page;
153 
154 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
155 	BUILD_BUG_ON(sizeof(struct page) & 7);
156 	BUILD_BUG_ON(sizeof(struct page) < 56);
157 	BUILD_BUG_ON(sizeof(struct page) > 80);
158 
159 	switch (sizeof(struct page)) {
160 	case 80:
161 		_pp[9] = 0;	/* fallthrough */
162 	case 72:
163 		_pp[8] = 0;	/* fallthrough */
164 	case 64:
165 		_pp[7] = 0;	/* fallthrough */
166 	case 56:
167 		_pp[6] = 0;
168 		_pp[5] = 0;
169 		_pp[4] = 0;
170 		_pp[3] = 0;
171 		_pp[2] = 0;
172 		_pp[1] = 0;
173 		_pp[0] = 0;
174 	}
175 }
176 #else
177 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
178 #endif
179 
180 /*
181  * Default maximum number of active map areas, this limits the number of vmas
182  * per mm struct. Users can overwrite this number by sysctl but there is a
183  * problem.
184  *
185  * When a program's coredump is generated as ELF format, a section is created
186  * per a vma. In ELF, the number of sections is represented in unsigned short.
187  * This means the number of sections should be smaller than 65535 at coredump.
188  * Because the kernel adds some informative sections to a image of program at
189  * generating coredump, we need some margin. The number of extra sections is
190  * 1-3 now and depends on arch. We use "5" as safe margin, here.
191  *
192  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193  * not a hard limit any more. Although some userspace tools can be surprised by
194  * that.
195  */
196 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
197 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198 
199 extern int sysctl_max_map_count;
200 
201 extern unsigned long sysctl_user_reserve_kbytes;
202 extern unsigned long sysctl_admin_reserve_kbytes;
203 
204 extern int sysctl_overcommit_memory;
205 extern int sysctl_overcommit_ratio;
206 extern unsigned long sysctl_overcommit_kbytes;
207 
208 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
209 				    size_t *, loff_t *);
210 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
211 				    size_t *, loff_t *);
212 
213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214 
215 /* to align the pointer to the (next) page boundary */
216 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
217 
218 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
219 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
220 
221 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
222 
223 /*
224  * Linux kernel virtual memory manager primitives.
225  * The idea being to have a "virtual" mm in the same way
226  * we have a virtual fs - giving a cleaner interface to the
227  * mm details, and allowing different kinds of memory mappings
228  * (from shared memory to executable loading to arbitrary
229  * mmap() functions).
230  */
231 
232 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
233 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
234 void vm_area_free(struct vm_area_struct *);
235 
236 #ifndef CONFIG_MMU
237 extern struct rb_root nommu_region_tree;
238 extern struct rw_semaphore nommu_region_sem;
239 
240 extern unsigned int kobjsize(const void *objp);
241 #endif
242 
243 /*
244  * vm_flags in vm_area_struct, see mm_types.h.
245  * When changing, update also include/trace/events/mmflags.h
246  */
247 #define VM_NONE		0x00000000
248 
249 #define VM_READ		0x00000001	/* currently active flags */
250 #define VM_WRITE	0x00000002
251 #define VM_EXEC		0x00000004
252 #define VM_SHARED	0x00000008
253 
254 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
255 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
256 #define VM_MAYWRITE	0x00000020
257 #define VM_MAYEXEC	0x00000040
258 #define VM_MAYSHARE	0x00000080
259 
260 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
261 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
262 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
263 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
264 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
265 
266 #define VM_LOCKED	0x00002000
267 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
268 
269 					/* Used by sys_madvise() */
270 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
271 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
272 
273 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
274 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
275 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
276 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
277 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
278 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
279 #define VM_SYNC		0x00800000	/* Synchronous page faults */
280 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
281 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
282 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
283 
284 #ifdef CONFIG_MEM_SOFT_DIRTY
285 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
286 #else
287 # define VM_SOFTDIRTY	0
288 #endif
289 
290 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
291 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
292 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
293 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
294 
295 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
296 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
297 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
298 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
299 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
300 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
301 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
302 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
303 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
304 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
305 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
306 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
307 
308 #ifdef CONFIG_ARCH_HAS_PKEYS
309 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
310 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
311 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
312 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
313 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
314 #ifdef CONFIG_PPC
315 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
316 #else
317 # define VM_PKEY_BIT4  0
318 #endif
319 #endif /* CONFIG_ARCH_HAS_PKEYS */
320 
321 #if defined(CONFIG_X86)
322 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
323 #elif defined(CONFIG_PPC)
324 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
325 #elif defined(CONFIG_PARISC)
326 # define VM_GROWSUP	VM_ARCH_1
327 #elif defined(CONFIG_IA64)
328 # define VM_GROWSUP	VM_ARCH_1
329 #elif defined(CONFIG_SPARC64)
330 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
331 # define VM_ARCH_CLEAR	VM_SPARC_ADI
332 #elif !defined(CONFIG_MMU)
333 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
334 #endif
335 
336 #if defined(CONFIG_X86_INTEL_MPX)
337 /* MPX specific bounds table or bounds directory */
338 # define VM_MPX		VM_HIGH_ARCH_4
339 #else
340 # define VM_MPX		VM_NONE
341 #endif
342 
343 #ifndef VM_GROWSUP
344 # define VM_GROWSUP	VM_NONE
345 #endif
346 
347 /* Bits set in the VMA until the stack is in its final location */
348 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
349 
350 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
351 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
352 #endif
353 
354 #ifdef CONFIG_STACK_GROWSUP
355 #define VM_STACK	VM_GROWSUP
356 #else
357 #define VM_STACK	VM_GROWSDOWN
358 #endif
359 
360 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
361 
362 /*
363  * Special vmas that are non-mergable, non-mlock()able.
364  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
365  */
366 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
367 
368 /* This mask defines which mm->def_flags a process can inherit its parent */
369 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
370 
371 /* This mask is used to clear all the VMA flags used by mlock */
372 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
373 
374 /* Arch-specific flags to clear when updating VM flags on protection change */
375 #ifndef VM_ARCH_CLEAR
376 # define VM_ARCH_CLEAR	VM_NONE
377 #endif
378 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
379 
380 /*
381  * mapping from the currently active vm_flags protection bits (the
382  * low four bits) to a page protection mask..
383  */
384 extern pgprot_t protection_map[16];
385 
386 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
387 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
388 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
389 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
390 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
391 #define FAULT_FLAG_TRIED	0x20	/* Second try */
392 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
393 #define FAULT_FLAG_REMOTE	0x80	/* faulting for non current tsk/mm */
394 #define FAULT_FLAG_INSTRUCTION  0x100	/* The fault was during an instruction fetch */
395 
396 #define FAULT_FLAG_TRACE \
397 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
398 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
399 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
400 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
401 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
402 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
403 	{ FAULT_FLAG_USER,		"USER" }, \
404 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
405 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }
406 
407 /*
408  * vm_fault is filled by the the pagefault handler and passed to the vma's
409  * ->fault function. The vma's ->fault is responsible for returning a bitmask
410  * of VM_FAULT_xxx flags that give details about how the fault was handled.
411  *
412  * MM layer fills up gfp_mask for page allocations but fault handler might
413  * alter it if its implementation requires a different allocation context.
414  *
415  * pgoff should be used in favour of virtual_address, if possible.
416  */
417 struct vm_fault {
418 	struct vm_area_struct *vma;	/* Target VMA */
419 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
420 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
421 	pgoff_t pgoff;			/* Logical page offset based on vma */
422 	unsigned long address;		/* Faulting virtual address */
423 	pmd_t *pmd;			/* Pointer to pmd entry matching
424 					 * the 'address' */
425 	pud_t *pud;			/* Pointer to pud entry matching
426 					 * the 'address'
427 					 */
428 	pte_t orig_pte;			/* Value of PTE at the time of fault */
429 
430 	struct page *cow_page;		/* Page handler may use for COW fault */
431 	struct mem_cgroup *memcg;	/* Cgroup cow_page belongs to */
432 	struct page *page;		/* ->fault handlers should return a
433 					 * page here, unless VM_FAULT_NOPAGE
434 					 * is set (which is also implied by
435 					 * VM_FAULT_ERROR).
436 					 */
437 	/* These three entries are valid only while holding ptl lock */
438 	pte_t *pte;			/* Pointer to pte entry matching
439 					 * the 'address'. NULL if the page
440 					 * table hasn't been allocated.
441 					 */
442 	spinlock_t *ptl;		/* Page table lock.
443 					 * Protects pte page table if 'pte'
444 					 * is not NULL, otherwise pmd.
445 					 */
446 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
447 					 * vm_ops->map_pages() calls
448 					 * alloc_set_pte() from atomic context.
449 					 * do_fault_around() pre-allocates
450 					 * page table to avoid allocation from
451 					 * atomic context.
452 					 */
453 };
454 
455 /* page entry size for vm->huge_fault() */
456 enum page_entry_size {
457 	PE_SIZE_PTE = 0,
458 	PE_SIZE_PMD,
459 	PE_SIZE_PUD,
460 };
461 
462 /*
463  * These are the virtual MM functions - opening of an area, closing and
464  * unmapping it (needed to keep files on disk up-to-date etc), pointer
465  * to the functions called when a no-page or a wp-page exception occurs.
466  */
467 struct vm_operations_struct {
468 	void (*open)(struct vm_area_struct * area);
469 	void (*close)(struct vm_area_struct * area);
470 	int (*split)(struct vm_area_struct * area, unsigned long addr);
471 	int (*mremap)(struct vm_area_struct * area);
472 	vm_fault_t (*fault)(struct vm_fault *vmf);
473 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
474 			enum page_entry_size pe_size);
475 	void (*map_pages)(struct vm_fault *vmf,
476 			pgoff_t start_pgoff, pgoff_t end_pgoff);
477 	unsigned long (*pagesize)(struct vm_area_struct * area);
478 
479 	/* notification that a previously read-only page is about to become
480 	 * writable, if an error is returned it will cause a SIGBUS */
481 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
482 
483 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
484 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
485 
486 	/* called by access_process_vm when get_user_pages() fails, typically
487 	 * for use by special VMAs that can switch between memory and hardware
488 	 */
489 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
490 		      void *buf, int len, int write);
491 
492 	/* Called by the /proc/PID/maps code to ask the vma whether it
493 	 * has a special name.  Returning non-NULL will also cause this
494 	 * vma to be dumped unconditionally. */
495 	const char *(*name)(struct vm_area_struct *vma);
496 
497 #ifdef CONFIG_NUMA
498 	/*
499 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
500 	 * to hold the policy upon return.  Caller should pass NULL @new to
501 	 * remove a policy and fall back to surrounding context--i.e. do not
502 	 * install a MPOL_DEFAULT policy, nor the task or system default
503 	 * mempolicy.
504 	 */
505 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
506 
507 	/*
508 	 * get_policy() op must add reference [mpol_get()] to any policy at
509 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
510 	 * in mm/mempolicy.c will do this automatically.
511 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
512 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
513 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
514 	 * must return NULL--i.e., do not "fallback" to task or system default
515 	 * policy.
516 	 */
517 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
518 					unsigned long addr);
519 #endif
520 	/*
521 	 * Called by vm_normal_page() for special PTEs to find the
522 	 * page for @addr.  This is useful if the default behavior
523 	 * (using pte_page()) would not find the correct page.
524 	 */
525 	struct page *(*find_special_page)(struct vm_area_struct *vma,
526 					  unsigned long addr);
527 };
528 
529 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
530 {
531 	static const struct vm_operations_struct dummy_vm_ops = {};
532 
533 	memset(vma, 0, sizeof(*vma));
534 	vma->vm_mm = mm;
535 	vma->vm_ops = &dummy_vm_ops;
536 	INIT_LIST_HEAD(&vma->anon_vma_chain);
537 }
538 
539 static inline void vma_set_anonymous(struct vm_area_struct *vma)
540 {
541 	vma->vm_ops = NULL;
542 }
543 
544 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
545 {
546 	return !vma->vm_ops;
547 }
548 
549 #ifdef CONFIG_SHMEM
550 /*
551  * The vma_is_shmem is not inline because it is used only by slow
552  * paths in userfault.
553  */
554 bool vma_is_shmem(struct vm_area_struct *vma);
555 #else
556 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
557 #endif
558 
559 int vma_is_stack_for_current(struct vm_area_struct *vma);
560 
561 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
562 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
563 
564 struct mmu_gather;
565 struct inode;
566 
567 /*
568  * FIXME: take this include out, include page-flags.h in
569  * files which need it (119 of them)
570  */
571 #include <linux/page-flags.h>
572 #include <linux/huge_mm.h>
573 
574 /*
575  * Methods to modify the page usage count.
576  *
577  * What counts for a page usage:
578  * - cache mapping   (page->mapping)
579  * - private data    (page->private)
580  * - page mapped in a task's page tables, each mapping
581  *   is counted separately
582  *
583  * Also, many kernel routines increase the page count before a critical
584  * routine so they can be sure the page doesn't go away from under them.
585  */
586 
587 /*
588  * Drop a ref, return true if the refcount fell to zero (the page has no users)
589  */
590 static inline int put_page_testzero(struct page *page)
591 {
592 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
593 	return page_ref_dec_and_test(page);
594 }
595 
596 /*
597  * Try to grab a ref unless the page has a refcount of zero, return false if
598  * that is the case.
599  * This can be called when MMU is off so it must not access
600  * any of the virtual mappings.
601  */
602 static inline int get_page_unless_zero(struct page *page)
603 {
604 	return page_ref_add_unless(page, 1, 0);
605 }
606 
607 extern int page_is_ram(unsigned long pfn);
608 
609 enum {
610 	REGION_INTERSECTS,
611 	REGION_DISJOINT,
612 	REGION_MIXED,
613 };
614 
615 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
616 		      unsigned long desc);
617 
618 /* Support for virtually mapped pages */
619 struct page *vmalloc_to_page(const void *addr);
620 unsigned long vmalloc_to_pfn(const void *addr);
621 
622 /*
623  * Determine if an address is within the vmalloc range
624  *
625  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
626  * is no special casing required.
627  */
628 static inline bool is_vmalloc_addr(const void *x)
629 {
630 #ifdef CONFIG_MMU
631 	unsigned long addr = (unsigned long)x;
632 
633 	return addr >= VMALLOC_START && addr < VMALLOC_END;
634 #else
635 	return false;
636 #endif
637 }
638 
639 #ifndef is_ioremap_addr
640 #define is_ioremap_addr(x) is_vmalloc_addr(x)
641 #endif
642 
643 #ifdef CONFIG_MMU
644 extern int is_vmalloc_or_module_addr(const void *x);
645 #else
646 static inline int is_vmalloc_or_module_addr(const void *x)
647 {
648 	return 0;
649 }
650 #endif
651 
652 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
653 static inline void *kvmalloc(size_t size, gfp_t flags)
654 {
655 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
656 }
657 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
658 {
659 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
660 }
661 static inline void *kvzalloc(size_t size, gfp_t flags)
662 {
663 	return kvmalloc(size, flags | __GFP_ZERO);
664 }
665 
666 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
667 {
668 	size_t bytes;
669 
670 	if (unlikely(check_mul_overflow(n, size, &bytes)))
671 		return NULL;
672 
673 	return kvmalloc(bytes, flags);
674 }
675 
676 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
677 {
678 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
679 }
680 
681 extern void kvfree(const void *addr);
682 
683 static inline int compound_mapcount(struct page *page)
684 {
685 	VM_BUG_ON_PAGE(!PageCompound(page), page);
686 	page = compound_head(page);
687 	return atomic_read(compound_mapcount_ptr(page)) + 1;
688 }
689 
690 /*
691  * The atomic page->_mapcount, starts from -1: so that transitions
692  * both from it and to it can be tracked, using atomic_inc_and_test
693  * and atomic_add_negative(-1).
694  */
695 static inline void page_mapcount_reset(struct page *page)
696 {
697 	atomic_set(&(page)->_mapcount, -1);
698 }
699 
700 int __page_mapcount(struct page *page);
701 
702 static inline int page_mapcount(struct page *page)
703 {
704 	VM_BUG_ON_PAGE(PageSlab(page), page);
705 
706 	if (unlikely(PageCompound(page)))
707 		return __page_mapcount(page);
708 	return atomic_read(&page->_mapcount) + 1;
709 }
710 
711 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
712 int total_mapcount(struct page *page);
713 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
714 #else
715 static inline int total_mapcount(struct page *page)
716 {
717 	return page_mapcount(page);
718 }
719 static inline int page_trans_huge_mapcount(struct page *page,
720 					   int *total_mapcount)
721 {
722 	int mapcount = page_mapcount(page);
723 	if (total_mapcount)
724 		*total_mapcount = mapcount;
725 	return mapcount;
726 }
727 #endif
728 
729 static inline struct page *virt_to_head_page(const void *x)
730 {
731 	struct page *page = virt_to_page(x);
732 
733 	return compound_head(page);
734 }
735 
736 void __put_page(struct page *page);
737 
738 void put_pages_list(struct list_head *pages);
739 
740 void split_page(struct page *page, unsigned int order);
741 
742 /*
743  * Compound pages have a destructor function.  Provide a
744  * prototype for that function and accessor functions.
745  * These are _only_ valid on the head of a compound page.
746  */
747 typedef void compound_page_dtor(struct page *);
748 
749 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
750 enum compound_dtor_id {
751 	NULL_COMPOUND_DTOR,
752 	COMPOUND_PAGE_DTOR,
753 #ifdef CONFIG_HUGETLB_PAGE
754 	HUGETLB_PAGE_DTOR,
755 #endif
756 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
757 	TRANSHUGE_PAGE_DTOR,
758 #endif
759 	NR_COMPOUND_DTORS,
760 };
761 extern compound_page_dtor * const compound_page_dtors[];
762 
763 static inline void set_compound_page_dtor(struct page *page,
764 		enum compound_dtor_id compound_dtor)
765 {
766 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
767 	page[1].compound_dtor = compound_dtor;
768 }
769 
770 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
771 {
772 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
773 	return compound_page_dtors[page[1].compound_dtor];
774 }
775 
776 static inline unsigned int compound_order(struct page *page)
777 {
778 	if (!PageHead(page))
779 		return 0;
780 	return page[1].compound_order;
781 }
782 
783 static inline void set_compound_order(struct page *page, unsigned int order)
784 {
785 	page[1].compound_order = order;
786 }
787 
788 /* Returns the number of pages in this potentially compound page. */
789 static inline unsigned long compound_nr(struct page *page)
790 {
791 	return 1UL << compound_order(page);
792 }
793 
794 /* Returns the number of bytes in this potentially compound page. */
795 static inline unsigned long page_size(struct page *page)
796 {
797 	return PAGE_SIZE << compound_order(page);
798 }
799 
800 /* Returns the number of bits needed for the number of bytes in a page */
801 static inline unsigned int page_shift(struct page *page)
802 {
803 	return PAGE_SHIFT + compound_order(page);
804 }
805 
806 void free_compound_page(struct page *page);
807 
808 #ifdef CONFIG_MMU
809 /*
810  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
811  * servicing faults for write access.  In the normal case, do always want
812  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
813  * that do not have writing enabled, when used by access_process_vm.
814  */
815 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
816 {
817 	if (likely(vma->vm_flags & VM_WRITE))
818 		pte = pte_mkwrite(pte);
819 	return pte;
820 }
821 
822 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
823 		struct page *page);
824 vm_fault_t finish_fault(struct vm_fault *vmf);
825 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
826 #endif
827 
828 /*
829  * Multiple processes may "see" the same page. E.g. for untouched
830  * mappings of /dev/null, all processes see the same page full of
831  * zeroes, and text pages of executables and shared libraries have
832  * only one copy in memory, at most, normally.
833  *
834  * For the non-reserved pages, page_count(page) denotes a reference count.
835  *   page_count() == 0 means the page is free. page->lru is then used for
836  *   freelist management in the buddy allocator.
837  *   page_count() > 0  means the page has been allocated.
838  *
839  * Pages are allocated by the slab allocator in order to provide memory
840  * to kmalloc and kmem_cache_alloc. In this case, the management of the
841  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
842  * unless a particular usage is carefully commented. (the responsibility of
843  * freeing the kmalloc memory is the caller's, of course).
844  *
845  * A page may be used by anyone else who does a __get_free_page().
846  * In this case, page_count still tracks the references, and should only
847  * be used through the normal accessor functions. The top bits of page->flags
848  * and page->virtual store page management information, but all other fields
849  * are unused and could be used privately, carefully. The management of this
850  * page is the responsibility of the one who allocated it, and those who have
851  * subsequently been given references to it.
852  *
853  * The other pages (we may call them "pagecache pages") are completely
854  * managed by the Linux memory manager: I/O, buffers, swapping etc.
855  * The following discussion applies only to them.
856  *
857  * A pagecache page contains an opaque `private' member, which belongs to the
858  * page's address_space. Usually, this is the address of a circular list of
859  * the page's disk buffers. PG_private must be set to tell the VM to call
860  * into the filesystem to release these pages.
861  *
862  * A page may belong to an inode's memory mapping. In this case, page->mapping
863  * is the pointer to the inode, and page->index is the file offset of the page,
864  * in units of PAGE_SIZE.
865  *
866  * If pagecache pages are not associated with an inode, they are said to be
867  * anonymous pages. These may become associated with the swapcache, and in that
868  * case PG_swapcache is set, and page->private is an offset into the swapcache.
869  *
870  * In either case (swapcache or inode backed), the pagecache itself holds one
871  * reference to the page. Setting PG_private should also increment the
872  * refcount. The each user mapping also has a reference to the page.
873  *
874  * The pagecache pages are stored in a per-mapping radix tree, which is
875  * rooted at mapping->i_pages, and indexed by offset.
876  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
877  * lists, we instead now tag pages as dirty/writeback in the radix tree.
878  *
879  * All pagecache pages may be subject to I/O:
880  * - inode pages may need to be read from disk,
881  * - inode pages which have been modified and are MAP_SHARED may need
882  *   to be written back to the inode on disk,
883  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
884  *   modified may need to be swapped out to swap space and (later) to be read
885  *   back into memory.
886  */
887 
888 /*
889  * The zone field is never updated after free_area_init_core()
890  * sets it, so none of the operations on it need to be atomic.
891  */
892 
893 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
894 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
895 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
896 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
897 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
898 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
899 
900 /*
901  * Define the bit shifts to access each section.  For non-existent
902  * sections we define the shift as 0; that plus a 0 mask ensures
903  * the compiler will optimise away reference to them.
904  */
905 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
906 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
907 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
908 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
909 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
910 
911 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
912 #ifdef NODE_NOT_IN_PAGE_FLAGS
913 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
914 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
915 						SECTIONS_PGOFF : ZONES_PGOFF)
916 #else
917 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
918 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
919 						NODES_PGOFF : ZONES_PGOFF)
920 #endif
921 
922 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
923 
924 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
925 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
926 #endif
927 
928 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
929 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
930 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
931 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
932 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
933 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
934 
935 static inline enum zone_type page_zonenum(const struct page *page)
936 {
937 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
938 }
939 
940 #ifdef CONFIG_ZONE_DEVICE
941 static inline bool is_zone_device_page(const struct page *page)
942 {
943 	return page_zonenum(page) == ZONE_DEVICE;
944 }
945 extern void memmap_init_zone_device(struct zone *, unsigned long,
946 				    unsigned long, struct dev_pagemap *);
947 #else
948 static inline bool is_zone_device_page(const struct page *page)
949 {
950 	return false;
951 }
952 #endif
953 
954 #ifdef CONFIG_DEV_PAGEMAP_OPS
955 void __put_devmap_managed_page(struct page *page);
956 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
957 static inline bool put_devmap_managed_page(struct page *page)
958 {
959 	if (!static_branch_unlikely(&devmap_managed_key))
960 		return false;
961 	if (!is_zone_device_page(page))
962 		return false;
963 	switch (page->pgmap->type) {
964 	case MEMORY_DEVICE_PRIVATE:
965 	case MEMORY_DEVICE_FS_DAX:
966 		__put_devmap_managed_page(page);
967 		return true;
968 	default:
969 		break;
970 	}
971 	return false;
972 }
973 
974 #else /* CONFIG_DEV_PAGEMAP_OPS */
975 static inline bool put_devmap_managed_page(struct page *page)
976 {
977 	return false;
978 }
979 #endif /* CONFIG_DEV_PAGEMAP_OPS */
980 
981 static inline bool is_device_private_page(const struct page *page)
982 {
983 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
984 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
985 		is_zone_device_page(page) &&
986 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
987 }
988 
989 static inline bool is_pci_p2pdma_page(const struct page *page)
990 {
991 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
992 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
993 		is_zone_device_page(page) &&
994 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
995 }
996 
997 /* 127: arbitrary random number, small enough to assemble well */
998 #define page_ref_zero_or_close_to_overflow(page) \
999 	((unsigned int) page_ref_count(page) + 127u <= 127u)
1000 
1001 static inline void get_page(struct page *page)
1002 {
1003 	page = compound_head(page);
1004 	/*
1005 	 * Getting a normal page or the head of a compound page
1006 	 * requires to already have an elevated page->_refcount.
1007 	 */
1008 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1009 	page_ref_inc(page);
1010 }
1011 
1012 static inline __must_check bool try_get_page(struct page *page)
1013 {
1014 	page = compound_head(page);
1015 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1016 		return false;
1017 	page_ref_inc(page);
1018 	return true;
1019 }
1020 
1021 static inline void put_page(struct page *page)
1022 {
1023 	page = compound_head(page);
1024 
1025 	/*
1026 	 * For devmap managed pages we need to catch refcount transition from
1027 	 * 2 to 1, when refcount reach one it means the page is free and we
1028 	 * need to inform the device driver through callback. See
1029 	 * include/linux/memremap.h and HMM for details.
1030 	 */
1031 	if (put_devmap_managed_page(page))
1032 		return;
1033 
1034 	if (put_page_testzero(page))
1035 		__put_page(page);
1036 }
1037 
1038 /**
1039  * put_user_page() - release a gup-pinned page
1040  * @page:            pointer to page to be released
1041  *
1042  * Pages that were pinned via get_user_pages*() must be released via
1043  * either put_user_page(), or one of the put_user_pages*() routines
1044  * below. This is so that eventually, pages that are pinned via
1045  * get_user_pages*() can be separately tracked and uniquely handled. In
1046  * particular, interactions with RDMA and filesystems need special
1047  * handling.
1048  *
1049  * put_user_page() and put_page() are not interchangeable, despite this early
1050  * implementation that makes them look the same. put_user_page() calls must
1051  * be perfectly matched up with get_user_page() calls.
1052  */
1053 static inline void put_user_page(struct page *page)
1054 {
1055 	put_page(page);
1056 }
1057 
1058 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1059 			       bool make_dirty);
1060 
1061 void put_user_pages(struct page **pages, unsigned long npages);
1062 
1063 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1064 #define SECTION_IN_PAGE_FLAGS
1065 #endif
1066 
1067 /*
1068  * The identification function is mainly used by the buddy allocator for
1069  * determining if two pages could be buddies. We are not really identifying
1070  * the zone since we could be using the section number id if we do not have
1071  * node id available in page flags.
1072  * We only guarantee that it will return the same value for two combinable
1073  * pages in a zone.
1074  */
1075 static inline int page_zone_id(struct page *page)
1076 {
1077 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1078 }
1079 
1080 #ifdef NODE_NOT_IN_PAGE_FLAGS
1081 extern int page_to_nid(const struct page *page);
1082 #else
1083 static inline int page_to_nid(const struct page *page)
1084 {
1085 	struct page *p = (struct page *)page;
1086 
1087 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1088 }
1089 #endif
1090 
1091 #ifdef CONFIG_NUMA_BALANCING
1092 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1093 {
1094 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1095 }
1096 
1097 static inline int cpupid_to_pid(int cpupid)
1098 {
1099 	return cpupid & LAST__PID_MASK;
1100 }
1101 
1102 static inline int cpupid_to_cpu(int cpupid)
1103 {
1104 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1105 }
1106 
1107 static inline int cpupid_to_nid(int cpupid)
1108 {
1109 	return cpu_to_node(cpupid_to_cpu(cpupid));
1110 }
1111 
1112 static inline bool cpupid_pid_unset(int cpupid)
1113 {
1114 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1115 }
1116 
1117 static inline bool cpupid_cpu_unset(int cpupid)
1118 {
1119 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1120 }
1121 
1122 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1123 {
1124 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1125 }
1126 
1127 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1128 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1129 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1130 {
1131 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1132 }
1133 
1134 static inline int page_cpupid_last(struct page *page)
1135 {
1136 	return page->_last_cpupid;
1137 }
1138 static inline void page_cpupid_reset_last(struct page *page)
1139 {
1140 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1141 }
1142 #else
1143 static inline int page_cpupid_last(struct page *page)
1144 {
1145 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1146 }
1147 
1148 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1149 
1150 static inline void page_cpupid_reset_last(struct page *page)
1151 {
1152 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1153 }
1154 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1155 #else /* !CONFIG_NUMA_BALANCING */
1156 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1157 {
1158 	return page_to_nid(page); /* XXX */
1159 }
1160 
1161 static inline int page_cpupid_last(struct page *page)
1162 {
1163 	return page_to_nid(page); /* XXX */
1164 }
1165 
1166 static inline int cpupid_to_nid(int cpupid)
1167 {
1168 	return -1;
1169 }
1170 
1171 static inline int cpupid_to_pid(int cpupid)
1172 {
1173 	return -1;
1174 }
1175 
1176 static inline int cpupid_to_cpu(int cpupid)
1177 {
1178 	return -1;
1179 }
1180 
1181 static inline int cpu_pid_to_cpupid(int nid, int pid)
1182 {
1183 	return -1;
1184 }
1185 
1186 static inline bool cpupid_pid_unset(int cpupid)
1187 {
1188 	return 1;
1189 }
1190 
1191 static inline void page_cpupid_reset_last(struct page *page)
1192 {
1193 }
1194 
1195 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1196 {
1197 	return false;
1198 }
1199 #endif /* CONFIG_NUMA_BALANCING */
1200 
1201 #ifdef CONFIG_KASAN_SW_TAGS
1202 static inline u8 page_kasan_tag(const struct page *page)
1203 {
1204 	return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1205 }
1206 
1207 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1208 {
1209 	page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1210 	page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1211 }
1212 
1213 static inline void page_kasan_tag_reset(struct page *page)
1214 {
1215 	page_kasan_tag_set(page, 0xff);
1216 }
1217 #else
1218 static inline u8 page_kasan_tag(const struct page *page)
1219 {
1220 	return 0xff;
1221 }
1222 
1223 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1224 static inline void page_kasan_tag_reset(struct page *page) { }
1225 #endif
1226 
1227 static inline struct zone *page_zone(const struct page *page)
1228 {
1229 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1230 }
1231 
1232 static inline pg_data_t *page_pgdat(const struct page *page)
1233 {
1234 	return NODE_DATA(page_to_nid(page));
1235 }
1236 
1237 #ifdef SECTION_IN_PAGE_FLAGS
1238 static inline void set_page_section(struct page *page, unsigned long section)
1239 {
1240 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1241 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1242 }
1243 
1244 static inline unsigned long page_to_section(const struct page *page)
1245 {
1246 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1247 }
1248 #endif
1249 
1250 static inline void set_page_zone(struct page *page, enum zone_type zone)
1251 {
1252 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1253 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1254 }
1255 
1256 static inline void set_page_node(struct page *page, unsigned long node)
1257 {
1258 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1259 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1260 }
1261 
1262 static inline void set_page_links(struct page *page, enum zone_type zone,
1263 	unsigned long node, unsigned long pfn)
1264 {
1265 	set_page_zone(page, zone);
1266 	set_page_node(page, node);
1267 #ifdef SECTION_IN_PAGE_FLAGS
1268 	set_page_section(page, pfn_to_section_nr(pfn));
1269 #endif
1270 }
1271 
1272 #ifdef CONFIG_MEMCG
1273 static inline struct mem_cgroup *page_memcg(struct page *page)
1274 {
1275 	return page->mem_cgroup;
1276 }
1277 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1278 {
1279 	WARN_ON_ONCE(!rcu_read_lock_held());
1280 	return READ_ONCE(page->mem_cgroup);
1281 }
1282 #else
1283 static inline struct mem_cgroup *page_memcg(struct page *page)
1284 {
1285 	return NULL;
1286 }
1287 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1288 {
1289 	WARN_ON_ONCE(!rcu_read_lock_held());
1290 	return NULL;
1291 }
1292 #endif
1293 
1294 /*
1295  * Some inline functions in vmstat.h depend on page_zone()
1296  */
1297 #include <linux/vmstat.h>
1298 
1299 static __always_inline void *lowmem_page_address(const struct page *page)
1300 {
1301 	return page_to_virt(page);
1302 }
1303 
1304 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1305 #define HASHED_PAGE_VIRTUAL
1306 #endif
1307 
1308 #if defined(WANT_PAGE_VIRTUAL)
1309 static inline void *page_address(const struct page *page)
1310 {
1311 	return page->virtual;
1312 }
1313 static inline void set_page_address(struct page *page, void *address)
1314 {
1315 	page->virtual = address;
1316 }
1317 #define page_address_init()  do { } while(0)
1318 #endif
1319 
1320 #if defined(HASHED_PAGE_VIRTUAL)
1321 void *page_address(const struct page *page);
1322 void set_page_address(struct page *page, void *virtual);
1323 void page_address_init(void);
1324 #endif
1325 
1326 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1327 #define page_address(page) lowmem_page_address(page)
1328 #define set_page_address(page, address)  do { } while(0)
1329 #define page_address_init()  do { } while(0)
1330 #endif
1331 
1332 extern void *page_rmapping(struct page *page);
1333 extern struct anon_vma *page_anon_vma(struct page *page);
1334 extern struct address_space *page_mapping(struct page *page);
1335 
1336 extern struct address_space *__page_file_mapping(struct page *);
1337 
1338 static inline
1339 struct address_space *page_file_mapping(struct page *page)
1340 {
1341 	if (unlikely(PageSwapCache(page)))
1342 		return __page_file_mapping(page);
1343 
1344 	return page->mapping;
1345 }
1346 
1347 extern pgoff_t __page_file_index(struct page *page);
1348 
1349 /*
1350  * Return the pagecache index of the passed page.  Regular pagecache pages
1351  * use ->index whereas swapcache pages use swp_offset(->private)
1352  */
1353 static inline pgoff_t page_index(struct page *page)
1354 {
1355 	if (unlikely(PageSwapCache(page)))
1356 		return __page_file_index(page);
1357 	return page->index;
1358 }
1359 
1360 bool page_mapped(struct page *page);
1361 struct address_space *page_mapping(struct page *page);
1362 struct address_space *page_mapping_file(struct page *page);
1363 
1364 /*
1365  * Return true only if the page has been allocated with
1366  * ALLOC_NO_WATERMARKS and the low watermark was not
1367  * met implying that the system is under some pressure.
1368  */
1369 static inline bool page_is_pfmemalloc(struct page *page)
1370 {
1371 	/*
1372 	 * Page index cannot be this large so this must be
1373 	 * a pfmemalloc page.
1374 	 */
1375 	return page->index == -1UL;
1376 }
1377 
1378 /*
1379  * Only to be called by the page allocator on a freshly allocated
1380  * page.
1381  */
1382 static inline void set_page_pfmemalloc(struct page *page)
1383 {
1384 	page->index = -1UL;
1385 }
1386 
1387 static inline void clear_page_pfmemalloc(struct page *page)
1388 {
1389 	page->index = 0;
1390 }
1391 
1392 /*
1393  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1394  */
1395 extern void pagefault_out_of_memory(void);
1396 
1397 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1398 
1399 /*
1400  * Flags passed to show_mem() and show_free_areas() to suppress output in
1401  * various contexts.
1402  */
1403 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1404 
1405 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1406 
1407 #ifdef CONFIG_MMU
1408 extern bool can_do_mlock(void);
1409 #else
1410 static inline bool can_do_mlock(void) { return false; }
1411 #endif
1412 extern int user_shm_lock(size_t, struct user_struct *);
1413 extern void user_shm_unlock(size_t, struct user_struct *);
1414 
1415 /*
1416  * Parameter block passed down to zap_pte_range in exceptional cases.
1417  */
1418 struct zap_details {
1419 	struct address_space *check_mapping;	/* Check page->mapping if set */
1420 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1421 	pgoff_t last_index;			/* Highest page->index to unmap */
1422 };
1423 
1424 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1425 			     pte_t pte);
1426 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1427 				pmd_t pmd);
1428 
1429 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1430 		  unsigned long size);
1431 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1432 		    unsigned long size);
1433 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1434 		unsigned long start, unsigned long end);
1435 
1436 struct mmu_notifier_range;
1437 
1438 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1439 		unsigned long end, unsigned long floor, unsigned long ceiling);
1440 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1441 			struct vm_area_struct *vma);
1442 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1443 		   struct mmu_notifier_range *range,
1444 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1445 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1446 	unsigned long *pfn);
1447 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1448 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1449 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1450 			void *buf, int len, int write);
1451 
1452 extern void truncate_pagecache(struct inode *inode, loff_t new);
1453 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1454 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1455 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1456 int truncate_inode_page(struct address_space *mapping, struct page *page);
1457 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1458 int invalidate_inode_page(struct page *page);
1459 
1460 #ifdef CONFIG_MMU
1461 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1462 			unsigned long address, unsigned int flags);
1463 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1464 			    unsigned long address, unsigned int fault_flags,
1465 			    bool *unlocked);
1466 void unmap_mapping_pages(struct address_space *mapping,
1467 		pgoff_t start, pgoff_t nr, bool even_cows);
1468 void unmap_mapping_range(struct address_space *mapping,
1469 		loff_t const holebegin, loff_t const holelen, int even_cows);
1470 #else
1471 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1472 		unsigned long address, unsigned int flags)
1473 {
1474 	/* should never happen if there's no MMU */
1475 	BUG();
1476 	return VM_FAULT_SIGBUS;
1477 }
1478 static inline int fixup_user_fault(struct task_struct *tsk,
1479 		struct mm_struct *mm, unsigned long address,
1480 		unsigned int fault_flags, bool *unlocked)
1481 {
1482 	/* should never happen if there's no MMU */
1483 	BUG();
1484 	return -EFAULT;
1485 }
1486 static inline void unmap_mapping_pages(struct address_space *mapping,
1487 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1488 static inline void unmap_mapping_range(struct address_space *mapping,
1489 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1490 #endif
1491 
1492 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1493 		loff_t const holebegin, loff_t const holelen)
1494 {
1495 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1496 }
1497 
1498 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1499 		void *buf, int len, unsigned int gup_flags);
1500 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1501 		void *buf, int len, unsigned int gup_flags);
1502 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1503 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1504 
1505 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1506 			    unsigned long start, unsigned long nr_pages,
1507 			    unsigned int gup_flags, struct page **pages,
1508 			    struct vm_area_struct **vmas, int *locked);
1509 long get_user_pages(unsigned long start, unsigned long nr_pages,
1510 			    unsigned int gup_flags, struct page **pages,
1511 			    struct vm_area_struct **vmas);
1512 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1513 		    unsigned int gup_flags, struct page **pages, int *locked);
1514 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1515 		    struct page **pages, unsigned int gup_flags);
1516 
1517 int get_user_pages_fast(unsigned long start, int nr_pages,
1518 			unsigned int gup_flags, struct page **pages);
1519 
1520 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1521 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1522 			struct task_struct *task, bool bypass_rlim);
1523 
1524 /* Container for pinned pfns / pages */
1525 struct frame_vector {
1526 	unsigned int nr_allocated;	/* Number of frames we have space for */
1527 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1528 	bool got_ref;		/* Did we pin pages by getting page ref? */
1529 	bool is_pfns;		/* Does array contain pages or pfns? */
1530 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1531 				 * pfns_vector_pages() or pfns_vector_pfns()
1532 				 * for access */
1533 };
1534 
1535 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1536 void frame_vector_destroy(struct frame_vector *vec);
1537 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1538 		     unsigned int gup_flags, struct frame_vector *vec);
1539 void put_vaddr_frames(struct frame_vector *vec);
1540 int frame_vector_to_pages(struct frame_vector *vec);
1541 void frame_vector_to_pfns(struct frame_vector *vec);
1542 
1543 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1544 {
1545 	return vec->nr_frames;
1546 }
1547 
1548 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1549 {
1550 	if (vec->is_pfns) {
1551 		int err = frame_vector_to_pages(vec);
1552 
1553 		if (err)
1554 			return ERR_PTR(err);
1555 	}
1556 	return (struct page **)(vec->ptrs);
1557 }
1558 
1559 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1560 {
1561 	if (!vec->is_pfns)
1562 		frame_vector_to_pfns(vec);
1563 	return (unsigned long *)(vec->ptrs);
1564 }
1565 
1566 struct kvec;
1567 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1568 			struct page **pages);
1569 int get_kernel_page(unsigned long start, int write, struct page **pages);
1570 struct page *get_dump_page(unsigned long addr);
1571 
1572 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1573 extern void do_invalidatepage(struct page *page, unsigned int offset,
1574 			      unsigned int length);
1575 
1576 void __set_page_dirty(struct page *, struct address_space *, int warn);
1577 int __set_page_dirty_nobuffers(struct page *page);
1578 int __set_page_dirty_no_writeback(struct page *page);
1579 int redirty_page_for_writepage(struct writeback_control *wbc,
1580 				struct page *page);
1581 void account_page_dirtied(struct page *page, struct address_space *mapping);
1582 void account_page_cleaned(struct page *page, struct address_space *mapping,
1583 			  struct bdi_writeback *wb);
1584 int set_page_dirty(struct page *page);
1585 int set_page_dirty_lock(struct page *page);
1586 void __cancel_dirty_page(struct page *page);
1587 static inline void cancel_dirty_page(struct page *page)
1588 {
1589 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1590 	if (PageDirty(page))
1591 		__cancel_dirty_page(page);
1592 }
1593 int clear_page_dirty_for_io(struct page *page);
1594 
1595 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1596 
1597 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1598 		unsigned long old_addr, struct vm_area_struct *new_vma,
1599 		unsigned long new_addr, unsigned long len,
1600 		bool need_rmap_locks);
1601 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1602 			      unsigned long end, pgprot_t newprot,
1603 			      int dirty_accountable, int prot_numa);
1604 extern int mprotect_fixup(struct vm_area_struct *vma,
1605 			  struct vm_area_struct **pprev, unsigned long start,
1606 			  unsigned long end, unsigned long newflags);
1607 
1608 /*
1609  * doesn't attempt to fault and will return short.
1610  */
1611 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1612 			  struct page **pages);
1613 /*
1614  * per-process(per-mm_struct) statistics.
1615  */
1616 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1617 {
1618 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1619 
1620 #ifdef SPLIT_RSS_COUNTING
1621 	/*
1622 	 * counter is updated in asynchronous manner and may go to minus.
1623 	 * But it's never be expected number for users.
1624 	 */
1625 	if (val < 0)
1626 		val = 0;
1627 #endif
1628 	return (unsigned long)val;
1629 }
1630 
1631 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1632 
1633 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1634 {
1635 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1636 
1637 	mm_trace_rss_stat(mm, member, count);
1638 }
1639 
1640 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1641 {
1642 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1643 
1644 	mm_trace_rss_stat(mm, member, count);
1645 }
1646 
1647 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1648 {
1649 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1650 
1651 	mm_trace_rss_stat(mm, member, count);
1652 }
1653 
1654 /* Optimized variant when page is already known not to be PageAnon */
1655 static inline int mm_counter_file(struct page *page)
1656 {
1657 	if (PageSwapBacked(page))
1658 		return MM_SHMEMPAGES;
1659 	return MM_FILEPAGES;
1660 }
1661 
1662 static inline int mm_counter(struct page *page)
1663 {
1664 	if (PageAnon(page))
1665 		return MM_ANONPAGES;
1666 	return mm_counter_file(page);
1667 }
1668 
1669 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1670 {
1671 	return get_mm_counter(mm, MM_FILEPAGES) +
1672 		get_mm_counter(mm, MM_ANONPAGES) +
1673 		get_mm_counter(mm, MM_SHMEMPAGES);
1674 }
1675 
1676 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1677 {
1678 	return max(mm->hiwater_rss, get_mm_rss(mm));
1679 }
1680 
1681 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1682 {
1683 	return max(mm->hiwater_vm, mm->total_vm);
1684 }
1685 
1686 static inline void update_hiwater_rss(struct mm_struct *mm)
1687 {
1688 	unsigned long _rss = get_mm_rss(mm);
1689 
1690 	if ((mm)->hiwater_rss < _rss)
1691 		(mm)->hiwater_rss = _rss;
1692 }
1693 
1694 static inline void update_hiwater_vm(struct mm_struct *mm)
1695 {
1696 	if (mm->hiwater_vm < mm->total_vm)
1697 		mm->hiwater_vm = mm->total_vm;
1698 }
1699 
1700 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1701 {
1702 	mm->hiwater_rss = get_mm_rss(mm);
1703 }
1704 
1705 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1706 					 struct mm_struct *mm)
1707 {
1708 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1709 
1710 	if (*maxrss < hiwater_rss)
1711 		*maxrss = hiwater_rss;
1712 }
1713 
1714 #if defined(SPLIT_RSS_COUNTING)
1715 void sync_mm_rss(struct mm_struct *mm);
1716 #else
1717 static inline void sync_mm_rss(struct mm_struct *mm)
1718 {
1719 }
1720 #endif
1721 
1722 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1723 static inline int pte_devmap(pte_t pte)
1724 {
1725 	return 0;
1726 }
1727 #endif
1728 
1729 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1730 
1731 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1732 			       spinlock_t **ptl);
1733 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1734 				    spinlock_t **ptl)
1735 {
1736 	pte_t *ptep;
1737 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1738 	return ptep;
1739 }
1740 
1741 #ifdef __PAGETABLE_P4D_FOLDED
1742 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1743 						unsigned long address)
1744 {
1745 	return 0;
1746 }
1747 #else
1748 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1749 #endif
1750 
1751 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1752 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1753 						unsigned long address)
1754 {
1755 	return 0;
1756 }
1757 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1758 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1759 
1760 #else
1761 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1762 
1763 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1764 {
1765 	if (mm_pud_folded(mm))
1766 		return;
1767 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1768 }
1769 
1770 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1771 {
1772 	if (mm_pud_folded(mm))
1773 		return;
1774 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1775 }
1776 #endif
1777 
1778 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1779 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1780 						unsigned long address)
1781 {
1782 	return 0;
1783 }
1784 
1785 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1786 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1787 
1788 #else
1789 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1790 
1791 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1792 {
1793 	if (mm_pmd_folded(mm))
1794 		return;
1795 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1796 }
1797 
1798 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1799 {
1800 	if (mm_pmd_folded(mm))
1801 		return;
1802 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1803 }
1804 #endif
1805 
1806 #ifdef CONFIG_MMU
1807 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1808 {
1809 	atomic_long_set(&mm->pgtables_bytes, 0);
1810 }
1811 
1812 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1813 {
1814 	return atomic_long_read(&mm->pgtables_bytes);
1815 }
1816 
1817 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1818 {
1819 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1820 }
1821 
1822 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1823 {
1824 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1825 }
1826 #else
1827 
1828 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1829 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1830 {
1831 	return 0;
1832 }
1833 
1834 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1835 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1836 #endif
1837 
1838 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1839 int __pte_alloc_kernel(pmd_t *pmd);
1840 
1841 #if defined(CONFIG_MMU)
1842 
1843 /*
1844  * The following ifdef needed to get the 5level-fixup.h header to work.
1845  * Remove it when 5level-fixup.h has been removed.
1846  */
1847 #ifndef __ARCH_HAS_5LEVEL_HACK
1848 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1849 		unsigned long address)
1850 {
1851 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1852 		NULL : p4d_offset(pgd, address);
1853 }
1854 
1855 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1856 		unsigned long address)
1857 {
1858 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1859 		NULL : pud_offset(p4d, address);
1860 }
1861 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1862 
1863 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1864 {
1865 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1866 		NULL: pmd_offset(pud, address);
1867 }
1868 #endif /* CONFIG_MMU */
1869 
1870 #if USE_SPLIT_PTE_PTLOCKS
1871 #if ALLOC_SPLIT_PTLOCKS
1872 void __init ptlock_cache_init(void);
1873 extern bool ptlock_alloc(struct page *page);
1874 extern void ptlock_free(struct page *page);
1875 
1876 static inline spinlock_t *ptlock_ptr(struct page *page)
1877 {
1878 	return page->ptl;
1879 }
1880 #else /* ALLOC_SPLIT_PTLOCKS */
1881 static inline void ptlock_cache_init(void)
1882 {
1883 }
1884 
1885 static inline bool ptlock_alloc(struct page *page)
1886 {
1887 	return true;
1888 }
1889 
1890 static inline void ptlock_free(struct page *page)
1891 {
1892 }
1893 
1894 static inline spinlock_t *ptlock_ptr(struct page *page)
1895 {
1896 	return &page->ptl;
1897 }
1898 #endif /* ALLOC_SPLIT_PTLOCKS */
1899 
1900 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1901 {
1902 	return ptlock_ptr(pmd_page(*pmd));
1903 }
1904 
1905 static inline bool ptlock_init(struct page *page)
1906 {
1907 	/*
1908 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1909 	 * with 0. Make sure nobody took it in use in between.
1910 	 *
1911 	 * It can happen if arch try to use slab for page table allocation:
1912 	 * slab code uses page->slab_cache, which share storage with page->ptl.
1913 	 */
1914 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1915 	if (!ptlock_alloc(page))
1916 		return false;
1917 	spin_lock_init(ptlock_ptr(page));
1918 	return true;
1919 }
1920 
1921 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1922 /*
1923  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1924  */
1925 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1926 {
1927 	return &mm->page_table_lock;
1928 }
1929 static inline void ptlock_cache_init(void) {}
1930 static inline bool ptlock_init(struct page *page) { return true; }
1931 static inline void ptlock_free(struct page *page) {}
1932 #endif /* USE_SPLIT_PTE_PTLOCKS */
1933 
1934 static inline void pgtable_init(void)
1935 {
1936 	ptlock_cache_init();
1937 	pgtable_cache_init();
1938 }
1939 
1940 static inline bool pgtable_pte_page_ctor(struct page *page)
1941 {
1942 	if (!ptlock_init(page))
1943 		return false;
1944 	__SetPageTable(page);
1945 	inc_zone_page_state(page, NR_PAGETABLE);
1946 	return true;
1947 }
1948 
1949 static inline void pgtable_pte_page_dtor(struct page *page)
1950 {
1951 	ptlock_free(page);
1952 	__ClearPageTable(page);
1953 	dec_zone_page_state(page, NR_PAGETABLE);
1954 }
1955 
1956 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1957 ({							\
1958 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1959 	pte_t *__pte = pte_offset_map(pmd, address);	\
1960 	*(ptlp) = __ptl;				\
1961 	spin_lock(__ptl);				\
1962 	__pte;						\
1963 })
1964 
1965 #define pte_unmap_unlock(pte, ptl)	do {		\
1966 	spin_unlock(ptl);				\
1967 	pte_unmap(pte);					\
1968 } while (0)
1969 
1970 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
1971 
1972 #define pte_alloc_map(mm, pmd, address)			\
1973 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1974 
1975 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1976 	(pte_alloc(mm, pmd) ?			\
1977 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1978 
1979 #define pte_alloc_kernel(pmd, address)			\
1980 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1981 		NULL: pte_offset_kernel(pmd, address))
1982 
1983 #if USE_SPLIT_PMD_PTLOCKS
1984 
1985 static struct page *pmd_to_page(pmd_t *pmd)
1986 {
1987 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1988 	return virt_to_page((void *)((unsigned long) pmd & mask));
1989 }
1990 
1991 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1992 {
1993 	return ptlock_ptr(pmd_to_page(pmd));
1994 }
1995 
1996 static inline bool pgtable_pmd_page_ctor(struct page *page)
1997 {
1998 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1999 	page->pmd_huge_pte = NULL;
2000 #endif
2001 	return ptlock_init(page);
2002 }
2003 
2004 static inline void pgtable_pmd_page_dtor(struct page *page)
2005 {
2006 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2007 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2008 #endif
2009 	ptlock_free(page);
2010 }
2011 
2012 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2013 
2014 #else
2015 
2016 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2017 {
2018 	return &mm->page_table_lock;
2019 }
2020 
2021 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2022 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2023 
2024 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2025 
2026 #endif
2027 
2028 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2029 {
2030 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2031 	spin_lock(ptl);
2032 	return ptl;
2033 }
2034 
2035 /*
2036  * No scalability reason to split PUD locks yet, but follow the same pattern
2037  * as the PMD locks to make it easier if we decide to.  The VM should not be
2038  * considered ready to switch to split PUD locks yet; there may be places
2039  * which need to be converted from page_table_lock.
2040  */
2041 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2042 {
2043 	return &mm->page_table_lock;
2044 }
2045 
2046 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2047 {
2048 	spinlock_t *ptl = pud_lockptr(mm, pud);
2049 
2050 	spin_lock(ptl);
2051 	return ptl;
2052 }
2053 
2054 extern void __init pagecache_init(void);
2055 extern void free_area_init(unsigned long * zones_size);
2056 extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2057 		unsigned long zone_start_pfn, unsigned long *zholes_size);
2058 extern void free_initmem(void);
2059 
2060 /*
2061  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2062  * into the buddy system. The freed pages will be poisoned with pattern
2063  * "poison" if it's within range [0, UCHAR_MAX].
2064  * Return pages freed into the buddy system.
2065  */
2066 extern unsigned long free_reserved_area(void *start, void *end,
2067 					int poison, const char *s);
2068 
2069 #ifdef	CONFIG_HIGHMEM
2070 /*
2071  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2072  * and totalram_pages.
2073  */
2074 extern void free_highmem_page(struct page *page);
2075 #endif
2076 
2077 extern void adjust_managed_page_count(struct page *page, long count);
2078 extern void mem_init_print_info(const char *str);
2079 
2080 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2081 
2082 /* Free the reserved page into the buddy system, so it gets managed. */
2083 static inline void __free_reserved_page(struct page *page)
2084 {
2085 	ClearPageReserved(page);
2086 	init_page_count(page);
2087 	__free_page(page);
2088 }
2089 
2090 static inline void free_reserved_page(struct page *page)
2091 {
2092 	__free_reserved_page(page);
2093 	adjust_managed_page_count(page, 1);
2094 }
2095 
2096 static inline void mark_page_reserved(struct page *page)
2097 {
2098 	SetPageReserved(page);
2099 	adjust_managed_page_count(page, -1);
2100 }
2101 
2102 /*
2103  * Default method to free all the __init memory into the buddy system.
2104  * The freed pages will be poisoned with pattern "poison" if it's within
2105  * range [0, UCHAR_MAX].
2106  * Return pages freed into the buddy system.
2107  */
2108 static inline unsigned long free_initmem_default(int poison)
2109 {
2110 	extern char __init_begin[], __init_end[];
2111 
2112 	return free_reserved_area(&__init_begin, &__init_end,
2113 				  poison, "unused kernel");
2114 }
2115 
2116 static inline unsigned long get_num_physpages(void)
2117 {
2118 	int nid;
2119 	unsigned long phys_pages = 0;
2120 
2121 	for_each_online_node(nid)
2122 		phys_pages += node_present_pages(nid);
2123 
2124 	return phys_pages;
2125 }
2126 
2127 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2128 /*
2129  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2130  * zones, allocate the backing mem_map and account for memory holes in a more
2131  * architecture independent manner. This is a substitute for creating the
2132  * zone_sizes[] and zholes_size[] arrays and passing them to
2133  * free_area_init_node()
2134  *
2135  * An architecture is expected to register range of page frames backed by
2136  * physical memory with memblock_add[_node]() before calling
2137  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2138  * usage, an architecture is expected to do something like
2139  *
2140  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2141  * 							 max_highmem_pfn};
2142  * for_each_valid_physical_page_range()
2143  * 	memblock_add_node(base, size, nid)
2144  * free_area_init_nodes(max_zone_pfns);
2145  *
2146  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2147  * registered physical page range.  Similarly
2148  * sparse_memory_present_with_active_regions() calls memory_present() for
2149  * each range when SPARSEMEM is enabled.
2150  *
2151  * See mm/page_alloc.c for more information on each function exposed by
2152  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2153  */
2154 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2155 unsigned long node_map_pfn_alignment(void);
2156 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2157 						unsigned long end_pfn);
2158 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2159 						unsigned long end_pfn);
2160 extern void get_pfn_range_for_nid(unsigned int nid,
2161 			unsigned long *start_pfn, unsigned long *end_pfn);
2162 extern unsigned long find_min_pfn_with_active_regions(void);
2163 extern void free_bootmem_with_active_regions(int nid,
2164 						unsigned long max_low_pfn);
2165 extern void sparse_memory_present_with_active_regions(int nid);
2166 
2167 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2168 
2169 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2170     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2171 static inline int __early_pfn_to_nid(unsigned long pfn,
2172 					struct mminit_pfnnid_cache *state)
2173 {
2174 	return 0;
2175 }
2176 #else
2177 /* please see mm/page_alloc.c */
2178 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2179 /* there is a per-arch backend function. */
2180 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2181 					struct mminit_pfnnid_cache *state);
2182 #endif
2183 
2184 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2185 void zero_resv_unavail(void);
2186 #else
2187 static inline void zero_resv_unavail(void) {}
2188 #endif
2189 
2190 extern void set_dma_reserve(unsigned long new_dma_reserve);
2191 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2192 		enum memmap_context, struct vmem_altmap *);
2193 extern void setup_per_zone_wmarks(void);
2194 extern int __meminit init_per_zone_wmark_min(void);
2195 extern void mem_init(void);
2196 extern void __init mmap_init(void);
2197 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2198 extern long si_mem_available(void);
2199 extern void si_meminfo(struct sysinfo * val);
2200 extern void si_meminfo_node(struct sysinfo *val, int nid);
2201 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2202 extern unsigned long arch_reserved_kernel_pages(void);
2203 #endif
2204 
2205 extern __printf(3, 4)
2206 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2207 
2208 extern void setup_per_cpu_pageset(void);
2209 
2210 /* page_alloc.c */
2211 extern int min_free_kbytes;
2212 extern int watermark_boost_factor;
2213 extern int watermark_scale_factor;
2214 
2215 /* nommu.c */
2216 extern atomic_long_t mmap_pages_allocated;
2217 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2218 
2219 /* interval_tree.c */
2220 void vma_interval_tree_insert(struct vm_area_struct *node,
2221 			      struct rb_root_cached *root);
2222 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2223 				    struct vm_area_struct *prev,
2224 				    struct rb_root_cached *root);
2225 void vma_interval_tree_remove(struct vm_area_struct *node,
2226 			      struct rb_root_cached *root);
2227 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2228 				unsigned long start, unsigned long last);
2229 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2230 				unsigned long start, unsigned long last);
2231 
2232 #define vma_interval_tree_foreach(vma, root, start, last)		\
2233 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2234 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2235 
2236 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2237 				   struct rb_root_cached *root);
2238 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2239 				   struct rb_root_cached *root);
2240 struct anon_vma_chain *
2241 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2242 				  unsigned long start, unsigned long last);
2243 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2244 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2245 #ifdef CONFIG_DEBUG_VM_RB
2246 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2247 #endif
2248 
2249 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2250 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2251 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2252 
2253 /* mmap.c */
2254 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2255 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2256 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2257 	struct vm_area_struct *expand);
2258 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2259 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2260 {
2261 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2262 }
2263 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2264 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2265 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2266 	struct mempolicy *, struct vm_userfaultfd_ctx);
2267 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2268 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2269 	unsigned long addr, int new_below);
2270 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2271 	unsigned long addr, int new_below);
2272 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2273 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2274 	struct rb_node **, struct rb_node *);
2275 extern void unlink_file_vma(struct vm_area_struct *);
2276 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2277 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2278 	bool *need_rmap_locks);
2279 extern void exit_mmap(struct mm_struct *);
2280 
2281 static inline int check_data_rlimit(unsigned long rlim,
2282 				    unsigned long new,
2283 				    unsigned long start,
2284 				    unsigned long end_data,
2285 				    unsigned long start_data)
2286 {
2287 	if (rlim < RLIM_INFINITY) {
2288 		if (((new - start) + (end_data - start_data)) > rlim)
2289 			return -ENOSPC;
2290 	}
2291 
2292 	return 0;
2293 }
2294 
2295 extern int mm_take_all_locks(struct mm_struct *mm);
2296 extern void mm_drop_all_locks(struct mm_struct *mm);
2297 
2298 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2299 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2300 extern struct file *get_task_exe_file(struct task_struct *task);
2301 
2302 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2303 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2304 
2305 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2306 				   const struct vm_special_mapping *sm);
2307 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2308 				   unsigned long addr, unsigned long len,
2309 				   unsigned long flags,
2310 				   const struct vm_special_mapping *spec);
2311 /* This is an obsolete alternative to _install_special_mapping. */
2312 extern int install_special_mapping(struct mm_struct *mm,
2313 				   unsigned long addr, unsigned long len,
2314 				   unsigned long flags, struct page **pages);
2315 
2316 unsigned long randomize_stack_top(unsigned long stack_top);
2317 
2318 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2319 
2320 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2321 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2322 	struct list_head *uf);
2323 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2324 	unsigned long len, unsigned long prot, unsigned long flags,
2325 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2326 	struct list_head *uf);
2327 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2328 		       struct list_head *uf, bool downgrade);
2329 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2330 		     struct list_head *uf);
2331 
2332 static inline unsigned long
2333 do_mmap_pgoff(struct file *file, unsigned long addr,
2334 	unsigned long len, unsigned long prot, unsigned long flags,
2335 	unsigned long pgoff, unsigned long *populate,
2336 	struct list_head *uf)
2337 {
2338 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2339 }
2340 
2341 #ifdef CONFIG_MMU
2342 extern int __mm_populate(unsigned long addr, unsigned long len,
2343 			 int ignore_errors);
2344 static inline void mm_populate(unsigned long addr, unsigned long len)
2345 {
2346 	/* Ignore errors */
2347 	(void) __mm_populate(addr, len, 1);
2348 }
2349 #else
2350 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2351 #endif
2352 
2353 /* These take the mm semaphore themselves */
2354 extern int __must_check vm_brk(unsigned long, unsigned long);
2355 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2356 extern int vm_munmap(unsigned long, size_t);
2357 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2358         unsigned long, unsigned long,
2359         unsigned long, unsigned long);
2360 
2361 struct vm_unmapped_area_info {
2362 #define VM_UNMAPPED_AREA_TOPDOWN 1
2363 	unsigned long flags;
2364 	unsigned long length;
2365 	unsigned long low_limit;
2366 	unsigned long high_limit;
2367 	unsigned long align_mask;
2368 	unsigned long align_offset;
2369 };
2370 
2371 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2372 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2373 
2374 /*
2375  * Search for an unmapped address range.
2376  *
2377  * We are looking for a range that:
2378  * - does not intersect with any VMA;
2379  * - is contained within the [low_limit, high_limit) interval;
2380  * - is at least the desired size.
2381  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2382  */
2383 static inline unsigned long
2384 vm_unmapped_area(struct vm_unmapped_area_info *info)
2385 {
2386 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2387 		return unmapped_area_topdown(info);
2388 	else
2389 		return unmapped_area(info);
2390 }
2391 
2392 /* truncate.c */
2393 extern void truncate_inode_pages(struct address_space *, loff_t);
2394 extern void truncate_inode_pages_range(struct address_space *,
2395 				       loff_t lstart, loff_t lend);
2396 extern void truncate_inode_pages_final(struct address_space *);
2397 
2398 /* generic vm_area_ops exported for stackable file systems */
2399 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2400 extern void filemap_map_pages(struct vm_fault *vmf,
2401 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2402 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2403 
2404 /* mm/page-writeback.c */
2405 int __must_check write_one_page(struct page *page);
2406 void task_dirty_inc(struct task_struct *tsk);
2407 
2408 /* readahead.c */
2409 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
2410 
2411 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2412 			pgoff_t offset, unsigned long nr_to_read);
2413 
2414 void page_cache_sync_readahead(struct address_space *mapping,
2415 			       struct file_ra_state *ra,
2416 			       struct file *filp,
2417 			       pgoff_t offset,
2418 			       unsigned long size);
2419 
2420 void page_cache_async_readahead(struct address_space *mapping,
2421 				struct file_ra_state *ra,
2422 				struct file *filp,
2423 				struct page *pg,
2424 				pgoff_t offset,
2425 				unsigned long size);
2426 
2427 extern unsigned long stack_guard_gap;
2428 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2429 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2430 
2431 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2432 extern int expand_downwards(struct vm_area_struct *vma,
2433 		unsigned long address);
2434 #if VM_GROWSUP
2435 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2436 #else
2437   #define expand_upwards(vma, address) (0)
2438 #endif
2439 
2440 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2441 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2442 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2443 					     struct vm_area_struct **pprev);
2444 
2445 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2446    NULL if none.  Assume start_addr < end_addr. */
2447 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2448 {
2449 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2450 
2451 	if (vma && end_addr <= vma->vm_start)
2452 		vma = NULL;
2453 	return vma;
2454 }
2455 
2456 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2457 {
2458 	unsigned long vm_start = vma->vm_start;
2459 
2460 	if (vma->vm_flags & VM_GROWSDOWN) {
2461 		vm_start -= stack_guard_gap;
2462 		if (vm_start > vma->vm_start)
2463 			vm_start = 0;
2464 	}
2465 	return vm_start;
2466 }
2467 
2468 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2469 {
2470 	unsigned long vm_end = vma->vm_end;
2471 
2472 	if (vma->vm_flags & VM_GROWSUP) {
2473 		vm_end += stack_guard_gap;
2474 		if (vm_end < vma->vm_end)
2475 			vm_end = -PAGE_SIZE;
2476 	}
2477 	return vm_end;
2478 }
2479 
2480 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2481 {
2482 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2483 }
2484 
2485 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2486 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2487 				unsigned long vm_start, unsigned long vm_end)
2488 {
2489 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2490 
2491 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2492 		vma = NULL;
2493 
2494 	return vma;
2495 }
2496 
2497 static inline bool range_in_vma(struct vm_area_struct *vma,
2498 				unsigned long start, unsigned long end)
2499 {
2500 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2501 }
2502 
2503 #ifdef CONFIG_MMU
2504 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2505 void vma_set_page_prot(struct vm_area_struct *vma);
2506 #else
2507 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2508 {
2509 	return __pgprot(0);
2510 }
2511 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2512 {
2513 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2514 }
2515 #endif
2516 
2517 #ifdef CONFIG_NUMA_BALANCING
2518 unsigned long change_prot_numa(struct vm_area_struct *vma,
2519 			unsigned long start, unsigned long end);
2520 #endif
2521 
2522 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2523 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2524 			unsigned long pfn, unsigned long size, pgprot_t);
2525 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2526 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2527 				unsigned long num);
2528 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2529 				unsigned long num);
2530 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2531 			unsigned long pfn);
2532 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2533 			unsigned long pfn, pgprot_t pgprot);
2534 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2535 			pfn_t pfn);
2536 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2537 		unsigned long addr, pfn_t pfn);
2538 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2539 
2540 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2541 				unsigned long addr, struct page *page)
2542 {
2543 	int err = vm_insert_page(vma, addr, page);
2544 
2545 	if (err == -ENOMEM)
2546 		return VM_FAULT_OOM;
2547 	if (err < 0 && err != -EBUSY)
2548 		return VM_FAULT_SIGBUS;
2549 
2550 	return VM_FAULT_NOPAGE;
2551 }
2552 
2553 static inline vm_fault_t vmf_error(int err)
2554 {
2555 	if (err == -ENOMEM)
2556 		return VM_FAULT_OOM;
2557 	return VM_FAULT_SIGBUS;
2558 }
2559 
2560 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2561 			 unsigned int foll_flags);
2562 
2563 #define FOLL_WRITE	0x01	/* check pte is writable */
2564 #define FOLL_TOUCH	0x02	/* mark page accessed */
2565 #define FOLL_GET	0x04	/* do get_page on page */
2566 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2567 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2568 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2569 				 * and return without waiting upon it */
2570 #define FOLL_POPULATE	0x40	/* fault in page */
2571 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2572 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2573 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2574 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2575 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2576 #define FOLL_MLOCK	0x1000	/* lock present pages */
2577 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2578 #define FOLL_COW	0x4000	/* internal GUP flag */
2579 #define FOLL_ANON	0x8000	/* don't do file mappings */
2580 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2581 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2582 
2583 /*
2584  * NOTE on FOLL_LONGTERM:
2585  *
2586  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2587  * period _often_ under userspace control.  This is contrasted with
2588  * iov_iter_get_pages() where usages which are transient.
2589  *
2590  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2591  * lifetime enforced by the filesystem and we need guarantees that longterm
2592  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2593  * the filesystem.  Ideas for this coordination include revoking the longterm
2594  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2595  * added after the problem with filesystems was found FS DAX VMAs are
2596  * specifically failed.  Filesystem pages are still subject to bugs and use of
2597  * FOLL_LONGTERM should be avoided on those pages.
2598  *
2599  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2600  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2601  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2602  * is due to an incompatibility with the FS DAX check and
2603  * FAULT_FLAG_ALLOW_RETRY
2604  *
2605  * In the CMA case: longterm pins in a CMA region would unnecessarily fragment
2606  * that region.  And so CMA attempts to migrate the page before pinning when
2607  * FOLL_LONGTERM is specified.
2608  */
2609 
2610 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2611 {
2612 	if (vm_fault & VM_FAULT_OOM)
2613 		return -ENOMEM;
2614 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2615 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2616 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2617 		return -EFAULT;
2618 	return 0;
2619 }
2620 
2621 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2622 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2623 			       unsigned long size, pte_fn_t fn, void *data);
2624 extern int apply_to_existing_page_range(struct mm_struct *mm,
2625 				   unsigned long address, unsigned long size,
2626 				   pte_fn_t fn, void *data);
2627 
2628 #ifdef CONFIG_PAGE_POISONING
2629 extern bool page_poisoning_enabled(void);
2630 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2631 #else
2632 static inline bool page_poisoning_enabled(void) { return false; }
2633 static inline void kernel_poison_pages(struct page *page, int numpages,
2634 					int enable) { }
2635 #endif
2636 
2637 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2638 DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2639 #else
2640 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2641 #endif
2642 static inline bool want_init_on_alloc(gfp_t flags)
2643 {
2644 	if (static_branch_unlikely(&init_on_alloc) &&
2645 	    !page_poisoning_enabled())
2646 		return true;
2647 	return flags & __GFP_ZERO;
2648 }
2649 
2650 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2651 DECLARE_STATIC_KEY_TRUE(init_on_free);
2652 #else
2653 DECLARE_STATIC_KEY_FALSE(init_on_free);
2654 #endif
2655 static inline bool want_init_on_free(void)
2656 {
2657 	return static_branch_unlikely(&init_on_free) &&
2658 	       !page_poisoning_enabled();
2659 }
2660 
2661 #ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
2662 DECLARE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
2663 #else
2664 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2665 #endif
2666 
2667 static inline bool debug_pagealloc_enabled(void)
2668 {
2669 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2670 		return false;
2671 
2672 	return static_branch_unlikely(&_debug_pagealloc_enabled);
2673 }
2674 
2675 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2676 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2677 
2678 static inline void
2679 kernel_map_pages(struct page *page, int numpages, int enable)
2680 {
2681 	__kernel_map_pages(page, numpages, enable);
2682 }
2683 #ifdef CONFIG_HIBERNATION
2684 extern bool kernel_page_present(struct page *page);
2685 #endif	/* CONFIG_HIBERNATION */
2686 #else	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2687 static inline void
2688 kernel_map_pages(struct page *page, int numpages, int enable) {}
2689 #ifdef CONFIG_HIBERNATION
2690 static inline bool kernel_page_present(struct page *page) { return true; }
2691 #endif	/* CONFIG_HIBERNATION */
2692 #endif	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2693 
2694 #ifdef __HAVE_ARCH_GATE_AREA
2695 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2696 extern int in_gate_area_no_mm(unsigned long addr);
2697 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2698 #else
2699 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2700 {
2701 	return NULL;
2702 }
2703 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2704 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2705 {
2706 	return 0;
2707 }
2708 #endif	/* __HAVE_ARCH_GATE_AREA */
2709 
2710 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2711 
2712 #ifdef CONFIG_SYSCTL
2713 extern int sysctl_drop_caches;
2714 int drop_caches_sysctl_handler(struct ctl_table *, int,
2715 					void __user *, size_t *, loff_t *);
2716 #endif
2717 
2718 void drop_slab(void);
2719 void drop_slab_node(int nid);
2720 
2721 #ifndef CONFIG_MMU
2722 #define randomize_va_space 0
2723 #else
2724 extern int randomize_va_space;
2725 #endif
2726 
2727 const char * arch_vma_name(struct vm_area_struct *vma);
2728 #ifdef CONFIG_MMU
2729 void print_vma_addr(char *prefix, unsigned long rip);
2730 #else
2731 static inline void print_vma_addr(char *prefix, unsigned long rip)
2732 {
2733 }
2734 #endif
2735 
2736 void *sparse_buffer_alloc(unsigned long size);
2737 struct page * __populate_section_memmap(unsigned long pfn,
2738 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
2739 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2740 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2741 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2742 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2743 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2744 void *vmemmap_alloc_block(unsigned long size, int node);
2745 struct vmem_altmap;
2746 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2747 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2748 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2749 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2750 			       int node);
2751 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2752 		struct vmem_altmap *altmap);
2753 void vmemmap_populate_print_last(void);
2754 #ifdef CONFIG_MEMORY_HOTPLUG
2755 void vmemmap_free(unsigned long start, unsigned long end,
2756 		struct vmem_altmap *altmap);
2757 #endif
2758 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2759 				  unsigned long nr_pages);
2760 
2761 enum mf_flags {
2762 	MF_COUNT_INCREASED = 1 << 0,
2763 	MF_ACTION_REQUIRED = 1 << 1,
2764 	MF_MUST_KILL = 1 << 2,
2765 	MF_SOFT_OFFLINE = 1 << 3,
2766 };
2767 extern int memory_failure(unsigned long pfn, int flags);
2768 extern void memory_failure_queue(unsigned long pfn, int flags);
2769 extern int unpoison_memory(unsigned long pfn);
2770 extern int get_hwpoison_page(struct page *page);
2771 #define put_hwpoison_page(page)	put_page(page)
2772 extern int sysctl_memory_failure_early_kill;
2773 extern int sysctl_memory_failure_recovery;
2774 extern void shake_page(struct page *p, int access);
2775 extern atomic_long_t num_poisoned_pages __read_mostly;
2776 extern int soft_offline_page(unsigned long pfn, int flags);
2777 
2778 
2779 /*
2780  * Error handlers for various types of pages.
2781  */
2782 enum mf_result {
2783 	MF_IGNORED,	/* Error: cannot be handled */
2784 	MF_FAILED,	/* Error: handling failed */
2785 	MF_DELAYED,	/* Will be handled later */
2786 	MF_RECOVERED,	/* Successfully recovered */
2787 };
2788 
2789 enum mf_action_page_type {
2790 	MF_MSG_KERNEL,
2791 	MF_MSG_KERNEL_HIGH_ORDER,
2792 	MF_MSG_SLAB,
2793 	MF_MSG_DIFFERENT_COMPOUND,
2794 	MF_MSG_POISONED_HUGE,
2795 	MF_MSG_HUGE,
2796 	MF_MSG_FREE_HUGE,
2797 	MF_MSG_NON_PMD_HUGE,
2798 	MF_MSG_UNMAP_FAILED,
2799 	MF_MSG_DIRTY_SWAPCACHE,
2800 	MF_MSG_CLEAN_SWAPCACHE,
2801 	MF_MSG_DIRTY_MLOCKED_LRU,
2802 	MF_MSG_CLEAN_MLOCKED_LRU,
2803 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2804 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2805 	MF_MSG_DIRTY_LRU,
2806 	MF_MSG_CLEAN_LRU,
2807 	MF_MSG_TRUNCATED_LRU,
2808 	MF_MSG_BUDDY,
2809 	MF_MSG_BUDDY_2ND,
2810 	MF_MSG_DAX,
2811 	MF_MSG_UNKNOWN,
2812 };
2813 
2814 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2815 extern void clear_huge_page(struct page *page,
2816 			    unsigned long addr_hint,
2817 			    unsigned int pages_per_huge_page);
2818 extern void copy_user_huge_page(struct page *dst, struct page *src,
2819 				unsigned long addr_hint,
2820 				struct vm_area_struct *vma,
2821 				unsigned int pages_per_huge_page);
2822 extern long copy_huge_page_from_user(struct page *dst_page,
2823 				const void __user *usr_src,
2824 				unsigned int pages_per_huge_page,
2825 				bool allow_pagefault);
2826 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2827 
2828 #ifdef CONFIG_DEBUG_PAGEALLOC
2829 extern unsigned int _debug_guardpage_minorder;
2830 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
2831 
2832 static inline unsigned int debug_guardpage_minorder(void)
2833 {
2834 	return _debug_guardpage_minorder;
2835 }
2836 
2837 static inline bool debug_guardpage_enabled(void)
2838 {
2839 	return static_branch_unlikely(&_debug_guardpage_enabled);
2840 }
2841 
2842 static inline bool page_is_guard(struct page *page)
2843 {
2844 	if (!debug_guardpage_enabled())
2845 		return false;
2846 
2847 	return PageGuard(page);
2848 }
2849 #else
2850 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2851 static inline bool debug_guardpage_enabled(void) { return false; }
2852 static inline bool page_is_guard(struct page *page) { return false; }
2853 #endif /* CONFIG_DEBUG_PAGEALLOC */
2854 
2855 #if MAX_NUMNODES > 1
2856 void __init setup_nr_node_ids(void);
2857 #else
2858 static inline void setup_nr_node_ids(void) {}
2859 #endif
2860 
2861 extern int memcmp_pages(struct page *page1, struct page *page2);
2862 
2863 static inline int pages_identical(struct page *page1, struct page *page2)
2864 {
2865 	return !memcmp_pages(page1, page2);
2866 }
2867 
2868 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
2869 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
2870 						pgoff_t first_index, pgoff_t nr,
2871 						pgoff_t bitmap_pgoff,
2872 						unsigned long *bitmap,
2873 						pgoff_t *start,
2874 						pgoff_t *end);
2875 
2876 unsigned long wp_shared_mapping_range(struct address_space *mapping,
2877 				      pgoff_t first_index, pgoff_t nr);
2878 #endif
2879 
2880 #endif /* __KERNEL__ */
2881 #endif /* _LINUX_MM_H */
2882