xref: /linux/include/linux/mm.h (revision d6fd48ef)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/bug.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/atomic.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/mmap_lock.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 #include <linux/page-flags.h>
25 #include <linux/page_ref.h>
26 #include <linux/overflow.h>
27 #include <linux/sizes.h>
28 #include <linux/sched.h>
29 #include <linux/pgtable.h>
30 #include <linux/kasan.h>
31 #include <linux/memremap.h>
32 
33 struct mempolicy;
34 struct anon_vma;
35 struct anon_vma_chain;
36 struct user_struct;
37 struct pt_regs;
38 
39 extern int sysctl_page_lock_unfairness;
40 
41 void init_mm_internals(void);
42 
43 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
44 extern unsigned long max_mapnr;
45 
46 static inline void set_max_mapnr(unsigned long limit)
47 {
48 	max_mapnr = limit;
49 }
50 #else
51 static inline void set_max_mapnr(unsigned long limit) { }
52 #endif
53 
54 extern atomic_long_t _totalram_pages;
55 static inline unsigned long totalram_pages(void)
56 {
57 	return (unsigned long)atomic_long_read(&_totalram_pages);
58 }
59 
60 static inline void totalram_pages_inc(void)
61 {
62 	atomic_long_inc(&_totalram_pages);
63 }
64 
65 static inline void totalram_pages_dec(void)
66 {
67 	atomic_long_dec(&_totalram_pages);
68 }
69 
70 static inline void totalram_pages_add(long count)
71 {
72 	atomic_long_add(count, &_totalram_pages);
73 }
74 
75 extern void * high_memory;
76 extern int page_cluster;
77 extern const int page_cluster_max;
78 
79 #ifdef CONFIG_SYSCTL
80 extern int sysctl_legacy_va_layout;
81 #else
82 #define sysctl_legacy_va_layout 0
83 #endif
84 
85 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
86 extern const int mmap_rnd_bits_min;
87 extern const int mmap_rnd_bits_max;
88 extern int mmap_rnd_bits __read_mostly;
89 #endif
90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
91 extern const int mmap_rnd_compat_bits_min;
92 extern const int mmap_rnd_compat_bits_max;
93 extern int mmap_rnd_compat_bits __read_mostly;
94 #endif
95 
96 #include <asm/page.h>
97 #include <asm/processor.h>
98 
99 /*
100  * Architectures that support memory tagging (assigning tags to memory regions,
101  * embedding these tags into addresses that point to these memory regions, and
102  * checking that the memory and the pointer tags match on memory accesses)
103  * redefine this macro to strip tags from pointers.
104  * It's defined as noop for architectures that don't support memory tagging.
105  */
106 #ifndef untagged_addr
107 #define untagged_addr(addr) (addr)
108 #endif
109 
110 #ifndef __pa_symbol
111 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
112 #endif
113 
114 #ifndef page_to_virt
115 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
116 #endif
117 
118 #ifndef lm_alias
119 #define lm_alias(x)	__va(__pa_symbol(x))
120 #endif
121 
122 /*
123  * To prevent common memory management code establishing
124  * a zero page mapping on a read fault.
125  * This macro should be defined within <asm/pgtable.h>.
126  * s390 does this to prevent multiplexing of hardware bits
127  * related to the physical page in case of virtualization.
128  */
129 #ifndef mm_forbids_zeropage
130 #define mm_forbids_zeropage(X)	(0)
131 #endif
132 
133 /*
134  * On some architectures it is expensive to call memset() for small sizes.
135  * If an architecture decides to implement their own version of
136  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
137  * define their own version of this macro in <asm/pgtable.h>
138  */
139 #if BITS_PER_LONG == 64
140 /* This function must be updated when the size of struct page grows above 96
141  * or reduces below 56. The idea that compiler optimizes out switch()
142  * statement, and only leaves move/store instructions. Also the compiler can
143  * combine write statements if they are both assignments and can be reordered,
144  * this can result in several of the writes here being dropped.
145  */
146 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
147 static inline void __mm_zero_struct_page(struct page *page)
148 {
149 	unsigned long *_pp = (void *)page;
150 
151 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
152 	BUILD_BUG_ON(sizeof(struct page) & 7);
153 	BUILD_BUG_ON(sizeof(struct page) < 56);
154 	BUILD_BUG_ON(sizeof(struct page) > 96);
155 
156 	switch (sizeof(struct page)) {
157 	case 96:
158 		_pp[11] = 0;
159 		fallthrough;
160 	case 88:
161 		_pp[10] = 0;
162 		fallthrough;
163 	case 80:
164 		_pp[9] = 0;
165 		fallthrough;
166 	case 72:
167 		_pp[8] = 0;
168 		fallthrough;
169 	case 64:
170 		_pp[7] = 0;
171 		fallthrough;
172 	case 56:
173 		_pp[6] = 0;
174 		_pp[5] = 0;
175 		_pp[4] = 0;
176 		_pp[3] = 0;
177 		_pp[2] = 0;
178 		_pp[1] = 0;
179 		_pp[0] = 0;
180 	}
181 }
182 #else
183 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
184 #endif
185 
186 /*
187  * Default maximum number of active map areas, this limits the number of vmas
188  * per mm struct. Users can overwrite this number by sysctl but there is a
189  * problem.
190  *
191  * When a program's coredump is generated as ELF format, a section is created
192  * per a vma. In ELF, the number of sections is represented in unsigned short.
193  * This means the number of sections should be smaller than 65535 at coredump.
194  * Because the kernel adds some informative sections to a image of program at
195  * generating coredump, we need some margin. The number of extra sections is
196  * 1-3 now and depends on arch. We use "5" as safe margin, here.
197  *
198  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
199  * not a hard limit any more. Although some userspace tools can be surprised by
200  * that.
201  */
202 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
203 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
204 
205 extern int sysctl_max_map_count;
206 
207 extern unsigned long sysctl_user_reserve_kbytes;
208 extern unsigned long sysctl_admin_reserve_kbytes;
209 
210 extern int sysctl_overcommit_memory;
211 extern int sysctl_overcommit_ratio;
212 extern unsigned long sysctl_overcommit_kbytes;
213 
214 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
215 		loff_t *);
216 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
217 		loff_t *);
218 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
219 		loff_t *);
220 
221 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
222 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
223 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
224 #else
225 #define nth_page(page,n) ((page) + (n))
226 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
227 #endif
228 
229 /* to align the pointer to the (next) page boundary */
230 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
231 
232 /* to align the pointer to the (prev) page boundary */
233 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
234 
235 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
236 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
237 
238 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
239 static inline struct folio *lru_to_folio(struct list_head *head)
240 {
241 	return list_entry((head)->prev, struct folio, lru);
242 }
243 
244 void setup_initial_init_mm(void *start_code, void *end_code,
245 			   void *end_data, void *brk);
246 
247 /*
248  * Linux kernel virtual memory manager primitives.
249  * The idea being to have a "virtual" mm in the same way
250  * we have a virtual fs - giving a cleaner interface to the
251  * mm details, and allowing different kinds of memory mappings
252  * (from shared memory to executable loading to arbitrary
253  * mmap() functions).
254  */
255 
256 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
257 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
258 void vm_area_free(struct vm_area_struct *);
259 
260 #ifndef CONFIG_MMU
261 extern struct rb_root nommu_region_tree;
262 extern struct rw_semaphore nommu_region_sem;
263 
264 extern unsigned int kobjsize(const void *objp);
265 #endif
266 
267 /*
268  * vm_flags in vm_area_struct, see mm_types.h.
269  * When changing, update also include/trace/events/mmflags.h
270  */
271 #define VM_NONE		0x00000000
272 
273 #define VM_READ		0x00000001	/* currently active flags */
274 #define VM_WRITE	0x00000002
275 #define VM_EXEC		0x00000004
276 #define VM_SHARED	0x00000008
277 
278 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
279 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
280 #define VM_MAYWRITE	0x00000020
281 #define VM_MAYEXEC	0x00000040
282 #define VM_MAYSHARE	0x00000080
283 
284 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
285 #ifdef CONFIG_MMU
286 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
287 #else /* CONFIG_MMU */
288 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
289 #define VM_UFFD_MISSING	0
290 #endif /* CONFIG_MMU */
291 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
292 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
293 
294 #define VM_LOCKED	0x00002000
295 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
296 
297 					/* Used by sys_madvise() */
298 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
299 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
300 
301 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
302 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
303 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
304 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
305 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
306 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
307 #define VM_SYNC		0x00800000	/* Synchronous page faults */
308 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
309 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
310 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
311 
312 #ifdef CONFIG_MEM_SOFT_DIRTY
313 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
314 #else
315 # define VM_SOFTDIRTY	0
316 #endif
317 
318 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
319 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
320 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
321 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
322 
323 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
324 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
325 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
326 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
327 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
328 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
329 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
330 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
331 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
332 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
333 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
334 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
335 
336 #ifdef CONFIG_ARCH_HAS_PKEYS
337 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
338 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
339 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
340 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
341 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
342 #ifdef CONFIG_PPC
343 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
344 #else
345 # define VM_PKEY_BIT4  0
346 #endif
347 #endif /* CONFIG_ARCH_HAS_PKEYS */
348 
349 #if defined(CONFIG_X86)
350 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
351 #elif defined(CONFIG_PPC)
352 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
353 #elif defined(CONFIG_PARISC)
354 # define VM_GROWSUP	VM_ARCH_1
355 #elif defined(CONFIG_IA64)
356 # define VM_GROWSUP	VM_ARCH_1
357 #elif defined(CONFIG_SPARC64)
358 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
359 # define VM_ARCH_CLEAR	VM_SPARC_ADI
360 #elif defined(CONFIG_ARM64)
361 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
362 # define VM_ARCH_CLEAR	VM_ARM64_BTI
363 #elif !defined(CONFIG_MMU)
364 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
365 #endif
366 
367 #if defined(CONFIG_ARM64_MTE)
368 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
369 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
370 #else
371 # define VM_MTE		VM_NONE
372 # define VM_MTE_ALLOWED	VM_NONE
373 #endif
374 
375 #ifndef VM_GROWSUP
376 # define VM_GROWSUP	VM_NONE
377 #endif
378 
379 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
380 # define VM_UFFD_MINOR_BIT	37
381 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
382 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
383 # define VM_UFFD_MINOR		VM_NONE
384 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
385 
386 /* Bits set in the VMA until the stack is in its final location */
387 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
388 
389 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
390 
391 /* Common data flag combinations */
392 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
393 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
394 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
395 				 VM_MAYWRITE | VM_MAYEXEC)
396 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
397 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
398 
399 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
400 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
401 #endif
402 
403 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
404 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
405 #endif
406 
407 #ifdef CONFIG_STACK_GROWSUP
408 #define VM_STACK	VM_GROWSUP
409 #else
410 #define VM_STACK	VM_GROWSDOWN
411 #endif
412 
413 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
414 
415 /* VMA basic access permission flags */
416 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
417 
418 
419 /*
420  * Special vmas that are non-mergable, non-mlock()able.
421  */
422 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
423 
424 /* This mask prevents VMA from being scanned with khugepaged */
425 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
426 
427 /* This mask defines which mm->def_flags a process can inherit its parent */
428 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
429 
430 /* This mask represents all the VMA flag bits used by mlock */
431 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
432 
433 /* Arch-specific flags to clear when updating VM flags on protection change */
434 #ifndef VM_ARCH_CLEAR
435 # define VM_ARCH_CLEAR	VM_NONE
436 #endif
437 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
438 
439 /*
440  * mapping from the currently active vm_flags protection bits (the
441  * low four bits) to a page protection mask..
442  */
443 
444 /*
445  * The default fault flags that should be used by most of the
446  * arch-specific page fault handlers.
447  */
448 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
449 			     FAULT_FLAG_KILLABLE | \
450 			     FAULT_FLAG_INTERRUPTIBLE)
451 
452 /**
453  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
454  * @flags: Fault flags.
455  *
456  * This is mostly used for places where we want to try to avoid taking
457  * the mmap_lock for too long a time when waiting for another condition
458  * to change, in which case we can try to be polite to release the
459  * mmap_lock in the first round to avoid potential starvation of other
460  * processes that would also want the mmap_lock.
461  *
462  * Return: true if the page fault allows retry and this is the first
463  * attempt of the fault handling; false otherwise.
464  */
465 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
466 {
467 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
468 	    (!(flags & FAULT_FLAG_TRIED));
469 }
470 
471 #define FAULT_FLAG_TRACE \
472 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
473 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
474 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
475 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
476 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
477 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
478 	{ FAULT_FLAG_USER,		"USER" }, \
479 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
480 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
481 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
482 
483 /*
484  * vm_fault is filled by the pagefault handler and passed to the vma's
485  * ->fault function. The vma's ->fault is responsible for returning a bitmask
486  * of VM_FAULT_xxx flags that give details about how the fault was handled.
487  *
488  * MM layer fills up gfp_mask for page allocations but fault handler might
489  * alter it if its implementation requires a different allocation context.
490  *
491  * pgoff should be used in favour of virtual_address, if possible.
492  */
493 struct vm_fault {
494 	const struct {
495 		struct vm_area_struct *vma;	/* Target VMA */
496 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
497 		pgoff_t pgoff;			/* Logical page offset based on vma */
498 		unsigned long address;		/* Faulting virtual address - masked */
499 		unsigned long real_address;	/* Faulting virtual address - unmasked */
500 	};
501 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
502 					 * XXX: should really be 'const' */
503 	pmd_t *pmd;			/* Pointer to pmd entry matching
504 					 * the 'address' */
505 	pud_t *pud;			/* Pointer to pud entry matching
506 					 * the 'address'
507 					 */
508 	union {
509 		pte_t orig_pte;		/* Value of PTE at the time of fault */
510 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
511 					 * used by PMD fault only.
512 					 */
513 	};
514 
515 	struct page *cow_page;		/* Page handler may use for COW fault */
516 	struct page *page;		/* ->fault handlers should return a
517 					 * page here, unless VM_FAULT_NOPAGE
518 					 * is set (which is also implied by
519 					 * VM_FAULT_ERROR).
520 					 */
521 	/* These three entries are valid only while holding ptl lock */
522 	pte_t *pte;			/* Pointer to pte entry matching
523 					 * the 'address'. NULL if the page
524 					 * table hasn't been allocated.
525 					 */
526 	spinlock_t *ptl;		/* Page table lock.
527 					 * Protects pte page table if 'pte'
528 					 * is not NULL, otherwise pmd.
529 					 */
530 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
531 					 * vm_ops->map_pages() sets up a page
532 					 * table from atomic context.
533 					 * do_fault_around() pre-allocates
534 					 * page table to avoid allocation from
535 					 * atomic context.
536 					 */
537 };
538 
539 /* page entry size for vm->huge_fault() */
540 enum page_entry_size {
541 	PE_SIZE_PTE = 0,
542 	PE_SIZE_PMD,
543 	PE_SIZE_PUD,
544 };
545 
546 /*
547  * These are the virtual MM functions - opening of an area, closing and
548  * unmapping it (needed to keep files on disk up-to-date etc), pointer
549  * to the functions called when a no-page or a wp-page exception occurs.
550  */
551 struct vm_operations_struct {
552 	void (*open)(struct vm_area_struct * area);
553 	/**
554 	 * @close: Called when the VMA is being removed from the MM.
555 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
556 	 */
557 	void (*close)(struct vm_area_struct * area);
558 	/* Called any time before splitting to check if it's allowed */
559 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
560 	int (*mremap)(struct vm_area_struct *area);
561 	/*
562 	 * Called by mprotect() to make driver-specific permission
563 	 * checks before mprotect() is finalised.   The VMA must not
564 	 * be modified.  Returns 0 if mprotect() can proceed.
565 	 */
566 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
567 			unsigned long end, unsigned long newflags);
568 	vm_fault_t (*fault)(struct vm_fault *vmf);
569 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
570 			enum page_entry_size pe_size);
571 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
572 			pgoff_t start_pgoff, pgoff_t end_pgoff);
573 	unsigned long (*pagesize)(struct vm_area_struct * area);
574 
575 	/* notification that a previously read-only page is about to become
576 	 * writable, if an error is returned it will cause a SIGBUS */
577 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
578 
579 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
580 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
581 
582 	/* called by access_process_vm when get_user_pages() fails, typically
583 	 * for use by special VMAs. See also generic_access_phys() for a generic
584 	 * implementation useful for any iomem mapping.
585 	 */
586 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
587 		      void *buf, int len, int write);
588 
589 	/* Called by the /proc/PID/maps code to ask the vma whether it
590 	 * has a special name.  Returning non-NULL will also cause this
591 	 * vma to be dumped unconditionally. */
592 	const char *(*name)(struct vm_area_struct *vma);
593 
594 #ifdef CONFIG_NUMA
595 	/*
596 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
597 	 * to hold the policy upon return.  Caller should pass NULL @new to
598 	 * remove a policy and fall back to surrounding context--i.e. do not
599 	 * install a MPOL_DEFAULT policy, nor the task or system default
600 	 * mempolicy.
601 	 */
602 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
603 
604 	/*
605 	 * get_policy() op must add reference [mpol_get()] to any policy at
606 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
607 	 * in mm/mempolicy.c will do this automatically.
608 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
609 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
610 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
611 	 * must return NULL--i.e., do not "fallback" to task or system default
612 	 * policy.
613 	 */
614 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
615 					unsigned long addr);
616 #endif
617 	/*
618 	 * Called by vm_normal_page() for special PTEs to find the
619 	 * page for @addr.  This is useful if the default behavior
620 	 * (using pte_page()) would not find the correct page.
621 	 */
622 	struct page *(*find_special_page)(struct vm_area_struct *vma,
623 					  unsigned long addr);
624 };
625 
626 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
627 {
628 	static const struct vm_operations_struct dummy_vm_ops = {};
629 
630 	memset(vma, 0, sizeof(*vma));
631 	vma->vm_mm = mm;
632 	vma->vm_ops = &dummy_vm_ops;
633 	INIT_LIST_HEAD(&vma->anon_vma_chain);
634 }
635 
636 /* Use when VMA is not part of the VMA tree and needs no locking */
637 static inline void vm_flags_init(struct vm_area_struct *vma,
638 				 vm_flags_t flags)
639 {
640 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
641 }
642 
643 /* Use when VMA is part of the VMA tree and modifications need coordination */
644 static inline void vm_flags_reset(struct vm_area_struct *vma,
645 				  vm_flags_t flags)
646 {
647 	mmap_assert_write_locked(vma->vm_mm);
648 	vm_flags_init(vma, flags);
649 }
650 
651 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
652 				       vm_flags_t flags)
653 {
654 	mmap_assert_write_locked(vma->vm_mm);
655 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
656 }
657 
658 static inline void vm_flags_set(struct vm_area_struct *vma,
659 				vm_flags_t flags)
660 {
661 	mmap_assert_write_locked(vma->vm_mm);
662 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
663 }
664 
665 static inline void vm_flags_clear(struct vm_area_struct *vma,
666 				  vm_flags_t flags)
667 {
668 	mmap_assert_write_locked(vma->vm_mm);
669 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
670 }
671 
672 /*
673  * Use only if VMA is not part of the VMA tree or has no other users and
674  * therefore needs no locking.
675  */
676 static inline void __vm_flags_mod(struct vm_area_struct *vma,
677 				  vm_flags_t set, vm_flags_t clear)
678 {
679 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
680 }
681 
682 /*
683  * Use only when the order of set/clear operations is unimportant, otherwise
684  * use vm_flags_{set|clear} explicitly.
685  */
686 static inline void vm_flags_mod(struct vm_area_struct *vma,
687 				vm_flags_t set, vm_flags_t clear)
688 {
689 	mmap_assert_write_locked(vma->vm_mm);
690 	__vm_flags_mod(vma, set, clear);
691 }
692 
693 static inline void vma_set_anonymous(struct vm_area_struct *vma)
694 {
695 	vma->vm_ops = NULL;
696 }
697 
698 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
699 {
700 	return !vma->vm_ops;
701 }
702 
703 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
704 {
705 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
706 
707 	if (!maybe_stack)
708 		return false;
709 
710 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
711 						VM_STACK_INCOMPLETE_SETUP)
712 		return true;
713 
714 	return false;
715 }
716 
717 static inline bool vma_is_foreign(struct vm_area_struct *vma)
718 {
719 	if (!current->mm)
720 		return true;
721 
722 	if (current->mm != vma->vm_mm)
723 		return true;
724 
725 	return false;
726 }
727 
728 static inline bool vma_is_accessible(struct vm_area_struct *vma)
729 {
730 	return vma->vm_flags & VM_ACCESS_FLAGS;
731 }
732 
733 static inline
734 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
735 {
736 	return mas_find(&vmi->mas, max - 1);
737 }
738 
739 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
740 {
741 	/*
742 	 * Uses mas_find() to get the first VMA when the iterator starts.
743 	 * Calling mas_next() could skip the first entry.
744 	 */
745 	return mas_find(&vmi->mas, ULONG_MAX);
746 }
747 
748 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
749 {
750 	return mas_prev(&vmi->mas, 0);
751 }
752 
753 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
754 {
755 	return vmi->mas.index;
756 }
757 
758 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
759 {
760 	return vmi->mas.last + 1;
761 }
762 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
763 				      unsigned long count)
764 {
765 	return mas_expected_entries(&vmi->mas, count);
766 }
767 
768 /* Free any unused preallocations */
769 static inline void vma_iter_free(struct vma_iterator *vmi)
770 {
771 	mas_destroy(&vmi->mas);
772 }
773 
774 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
775 				      struct vm_area_struct *vma)
776 {
777 	vmi->mas.index = vma->vm_start;
778 	vmi->mas.last = vma->vm_end - 1;
779 	mas_store(&vmi->mas, vma);
780 	if (unlikely(mas_is_err(&vmi->mas)))
781 		return -ENOMEM;
782 
783 	return 0;
784 }
785 
786 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
787 {
788 	mas_pause(&vmi->mas);
789 }
790 
791 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
792 {
793 	mas_set(&vmi->mas, addr);
794 }
795 
796 #define for_each_vma(__vmi, __vma)					\
797 	while (((__vma) = vma_next(&(__vmi))) != NULL)
798 
799 /* The MM code likes to work with exclusive end addresses */
800 #define for_each_vma_range(__vmi, __vma, __end)				\
801 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
802 
803 #ifdef CONFIG_SHMEM
804 /*
805  * The vma_is_shmem is not inline because it is used only by slow
806  * paths in userfault.
807  */
808 bool vma_is_shmem(struct vm_area_struct *vma);
809 bool vma_is_anon_shmem(struct vm_area_struct *vma);
810 #else
811 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
812 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
813 #endif
814 
815 int vma_is_stack_for_current(struct vm_area_struct *vma);
816 
817 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
818 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
819 
820 struct mmu_gather;
821 struct inode;
822 
823 /*
824  * compound_order() can be called without holding a reference, which means
825  * that niceties like page_folio() don't work.  These callers should be
826  * prepared to handle wild return values.  For example, PG_head may be
827  * set before _folio_order is initialised, or this may be a tail page.
828  * See compaction.c for some good examples.
829  */
830 static inline unsigned int compound_order(struct page *page)
831 {
832 	struct folio *folio = (struct folio *)page;
833 
834 	if (!test_bit(PG_head, &folio->flags))
835 		return 0;
836 	return folio->_folio_order;
837 }
838 
839 /**
840  * folio_order - The allocation order of a folio.
841  * @folio: The folio.
842  *
843  * A folio is composed of 2^order pages.  See get_order() for the definition
844  * of order.
845  *
846  * Return: The order of the folio.
847  */
848 static inline unsigned int folio_order(struct folio *folio)
849 {
850 	if (!folio_test_large(folio))
851 		return 0;
852 	return folio->_folio_order;
853 }
854 
855 #include <linux/huge_mm.h>
856 
857 /*
858  * Methods to modify the page usage count.
859  *
860  * What counts for a page usage:
861  * - cache mapping   (page->mapping)
862  * - private data    (page->private)
863  * - page mapped in a task's page tables, each mapping
864  *   is counted separately
865  *
866  * Also, many kernel routines increase the page count before a critical
867  * routine so they can be sure the page doesn't go away from under them.
868  */
869 
870 /*
871  * Drop a ref, return true if the refcount fell to zero (the page has no users)
872  */
873 static inline int put_page_testzero(struct page *page)
874 {
875 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
876 	return page_ref_dec_and_test(page);
877 }
878 
879 static inline int folio_put_testzero(struct folio *folio)
880 {
881 	return put_page_testzero(&folio->page);
882 }
883 
884 /*
885  * Try to grab a ref unless the page has a refcount of zero, return false if
886  * that is the case.
887  * This can be called when MMU is off so it must not access
888  * any of the virtual mappings.
889  */
890 static inline bool get_page_unless_zero(struct page *page)
891 {
892 	return page_ref_add_unless(page, 1, 0);
893 }
894 
895 static inline struct folio *folio_get_nontail_page(struct page *page)
896 {
897 	if (unlikely(!get_page_unless_zero(page)))
898 		return NULL;
899 	return (struct folio *)page;
900 }
901 
902 extern int page_is_ram(unsigned long pfn);
903 
904 enum {
905 	REGION_INTERSECTS,
906 	REGION_DISJOINT,
907 	REGION_MIXED,
908 };
909 
910 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
911 		      unsigned long desc);
912 
913 /* Support for virtually mapped pages */
914 struct page *vmalloc_to_page(const void *addr);
915 unsigned long vmalloc_to_pfn(const void *addr);
916 
917 /*
918  * Determine if an address is within the vmalloc range
919  *
920  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
921  * is no special casing required.
922  */
923 
924 #ifndef is_ioremap_addr
925 #define is_ioremap_addr(x) is_vmalloc_addr(x)
926 #endif
927 
928 #ifdef CONFIG_MMU
929 extern bool is_vmalloc_addr(const void *x);
930 extern int is_vmalloc_or_module_addr(const void *x);
931 #else
932 static inline bool is_vmalloc_addr(const void *x)
933 {
934 	return false;
935 }
936 static inline int is_vmalloc_or_module_addr(const void *x)
937 {
938 	return 0;
939 }
940 #endif
941 
942 /*
943  * How many times the entire folio is mapped as a single unit (eg by a
944  * PMD or PUD entry).  This is probably not what you want, except for
945  * debugging purposes - it does not include PTE-mapped sub-pages; look
946  * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
947  */
948 static inline int folio_entire_mapcount(struct folio *folio)
949 {
950 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
951 	return atomic_read(&folio->_entire_mapcount) + 1;
952 }
953 
954 /*
955  * The atomic page->_mapcount, starts from -1: so that transitions
956  * both from it and to it can be tracked, using atomic_inc_and_test
957  * and atomic_add_negative(-1).
958  */
959 static inline void page_mapcount_reset(struct page *page)
960 {
961 	atomic_set(&(page)->_mapcount, -1);
962 }
963 
964 /**
965  * page_mapcount() - Number of times this precise page is mapped.
966  * @page: The page.
967  *
968  * The number of times this page is mapped.  If this page is part of
969  * a large folio, it includes the number of times this page is mapped
970  * as part of that folio.
971  *
972  * The result is undefined for pages which cannot be mapped into userspace.
973  * For example SLAB or special types of pages. See function page_has_type().
974  * They use this field in struct page differently.
975  */
976 static inline int page_mapcount(struct page *page)
977 {
978 	int mapcount = atomic_read(&page->_mapcount) + 1;
979 
980 	if (unlikely(PageCompound(page)))
981 		mapcount += folio_entire_mapcount(page_folio(page));
982 
983 	return mapcount;
984 }
985 
986 int folio_total_mapcount(struct folio *folio);
987 
988 /**
989  * folio_mapcount() - Calculate the number of mappings of this folio.
990  * @folio: The folio.
991  *
992  * A large folio tracks both how many times the entire folio is mapped,
993  * and how many times each individual page in the folio is mapped.
994  * This function calculates the total number of times the folio is
995  * mapped.
996  *
997  * Return: The number of times this folio is mapped.
998  */
999 static inline int folio_mapcount(struct folio *folio)
1000 {
1001 	if (likely(!folio_test_large(folio)))
1002 		return atomic_read(&folio->_mapcount) + 1;
1003 	return folio_total_mapcount(folio);
1004 }
1005 
1006 static inline int total_mapcount(struct page *page)
1007 {
1008 	if (likely(!PageCompound(page)))
1009 		return atomic_read(&page->_mapcount) + 1;
1010 	return folio_total_mapcount(page_folio(page));
1011 }
1012 
1013 static inline bool folio_large_is_mapped(struct folio *folio)
1014 {
1015 	/*
1016 	 * Reading _entire_mapcount below could be omitted if hugetlb
1017 	 * participated in incrementing nr_pages_mapped when compound mapped.
1018 	 */
1019 	return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1020 		atomic_read(&folio->_entire_mapcount) >= 0;
1021 }
1022 
1023 /**
1024  * folio_mapped - Is this folio mapped into userspace?
1025  * @folio: The folio.
1026  *
1027  * Return: True if any page in this folio is referenced by user page tables.
1028  */
1029 static inline bool folio_mapped(struct folio *folio)
1030 {
1031 	if (likely(!folio_test_large(folio)))
1032 		return atomic_read(&folio->_mapcount) >= 0;
1033 	return folio_large_is_mapped(folio);
1034 }
1035 
1036 /*
1037  * Return true if this page is mapped into pagetables.
1038  * For compound page it returns true if any sub-page of compound page is mapped,
1039  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1040  */
1041 static inline bool page_mapped(struct page *page)
1042 {
1043 	if (likely(!PageCompound(page)))
1044 		return atomic_read(&page->_mapcount) >= 0;
1045 	return folio_large_is_mapped(page_folio(page));
1046 }
1047 
1048 static inline struct page *virt_to_head_page(const void *x)
1049 {
1050 	struct page *page = virt_to_page(x);
1051 
1052 	return compound_head(page);
1053 }
1054 
1055 static inline struct folio *virt_to_folio(const void *x)
1056 {
1057 	struct page *page = virt_to_page(x);
1058 
1059 	return page_folio(page);
1060 }
1061 
1062 void __folio_put(struct folio *folio);
1063 
1064 void put_pages_list(struct list_head *pages);
1065 
1066 void split_page(struct page *page, unsigned int order);
1067 void folio_copy(struct folio *dst, struct folio *src);
1068 
1069 unsigned long nr_free_buffer_pages(void);
1070 
1071 /*
1072  * Compound pages have a destructor function.  Provide a
1073  * prototype for that function and accessor functions.
1074  * These are _only_ valid on the head of a compound page.
1075  */
1076 typedef void compound_page_dtor(struct page *);
1077 
1078 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
1079 enum compound_dtor_id {
1080 	NULL_COMPOUND_DTOR,
1081 	COMPOUND_PAGE_DTOR,
1082 #ifdef CONFIG_HUGETLB_PAGE
1083 	HUGETLB_PAGE_DTOR,
1084 #endif
1085 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1086 	TRANSHUGE_PAGE_DTOR,
1087 #endif
1088 	NR_COMPOUND_DTORS,
1089 };
1090 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
1091 
1092 static inline void set_compound_page_dtor(struct page *page,
1093 		enum compound_dtor_id compound_dtor)
1094 {
1095 	struct folio *folio = (struct folio *)page;
1096 
1097 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
1098 	VM_BUG_ON_PAGE(!PageHead(page), page);
1099 	folio->_folio_dtor = compound_dtor;
1100 }
1101 
1102 static inline void folio_set_compound_dtor(struct folio *folio,
1103 		enum compound_dtor_id compound_dtor)
1104 {
1105 	VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1106 	folio->_folio_dtor = compound_dtor;
1107 }
1108 
1109 void destroy_large_folio(struct folio *folio);
1110 
1111 static inline void set_compound_order(struct page *page, unsigned int order)
1112 {
1113 	struct folio *folio = (struct folio *)page;
1114 
1115 	folio->_folio_order = order;
1116 #ifdef CONFIG_64BIT
1117 	folio->_folio_nr_pages = 1U << order;
1118 #endif
1119 }
1120 
1121 /* Returns the number of bytes in this potentially compound page. */
1122 static inline unsigned long page_size(struct page *page)
1123 {
1124 	return PAGE_SIZE << compound_order(page);
1125 }
1126 
1127 /* Returns the number of bits needed for the number of bytes in a page */
1128 static inline unsigned int page_shift(struct page *page)
1129 {
1130 	return PAGE_SHIFT + compound_order(page);
1131 }
1132 
1133 /**
1134  * thp_order - Order of a transparent huge page.
1135  * @page: Head page of a transparent huge page.
1136  */
1137 static inline unsigned int thp_order(struct page *page)
1138 {
1139 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1140 	return compound_order(page);
1141 }
1142 
1143 /**
1144  * thp_size - Size of a transparent huge page.
1145  * @page: Head page of a transparent huge page.
1146  *
1147  * Return: Number of bytes in this page.
1148  */
1149 static inline unsigned long thp_size(struct page *page)
1150 {
1151 	return PAGE_SIZE << thp_order(page);
1152 }
1153 
1154 void free_compound_page(struct page *page);
1155 
1156 #ifdef CONFIG_MMU
1157 /*
1158  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1159  * servicing faults for write access.  In the normal case, do always want
1160  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1161  * that do not have writing enabled, when used by access_process_vm.
1162  */
1163 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1164 {
1165 	if (likely(vma->vm_flags & VM_WRITE))
1166 		pte = pte_mkwrite(pte);
1167 	return pte;
1168 }
1169 
1170 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1171 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1172 
1173 vm_fault_t finish_fault(struct vm_fault *vmf);
1174 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1175 #endif
1176 
1177 /*
1178  * Multiple processes may "see" the same page. E.g. for untouched
1179  * mappings of /dev/null, all processes see the same page full of
1180  * zeroes, and text pages of executables and shared libraries have
1181  * only one copy in memory, at most, normally.
1182  *
1183  * For the non-reserved pages, page_count(page) denotes a reference count.
1184  *   page_count() == 0 means the page is free. page->lru is then used for
1185  *   freelist management in the buddy allocator.
1186  *   page_count() > 0  means the page has been allocated.
1187  *
1188  * Pages are allocated by the slab allocator in order to provide memory
1189  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1190  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1191  * unless a particular usage is carefully commented. (the responsibility of
1192  * freeing the kmalloc memory is the caller's, of course).
1193  *
1194  * A page may be used by anyone else who does a __get_free_page().
1195  * In this case, page_count still tracks the references, and should only
1196  * be used through the normal accessor functions. The top bits of page->flags
1197  * and page->virtual store page management information, but all other fields
1198  * are unused and could be used privately, carefully. The management of this
1199  * page is the responsibility of the one who allocated it, and those who have
1200  * subsequently been given references to it.
1201  *
1202  * The other pages (we may call them "pagecache pages") are completely
1203  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1204  * The following discussion applies only to them.
1205  *
1206  * A pagecache page contains an opaque `private' member, which belongs to the
1207  * page's address_space. Usually, this is the address of a circular list of
1208  * the page's disk buffers. PG_private must be set to tell the VM to call
1209  * into the filesystem to release these pages.
1210  *
1211  * A page may belong to an inode's memory mapping. In this case, page->mapping
1212  * is the pointer to the inode, and page->index is the file offset of the page,
1213  * in units of PAGE_SIZE.
1214  *
1215  * If pagecache pages are not associated with an inode, they are said to be
1216  * anonymous pages. These may become associated with the swapcache, and in that
1217  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1218  *
1219  * In either case (swapcache or inode backed), the pagecache itself holds one
1220  * reference to the page. Setting PG_private should also increment the
1221  * refcount. The each user mapping also has a reference to the page.
1222  *
1223  * The pagecache pages are stored in a per-mapping radix tree, which is
1224  * rooted at mapping->i_pages, and indexed by offset.
1225  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1226  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1227  *
1228  * All pagecache pages may be subject to I/O:
1229  * - inode pages may need to be read from disk,
1230  * - inode pages which have been modified and are MAP_SHARED may need
1231  *   to be written back to the inode on disk,
1232  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1233  *   modified may need to be swapped out to swap space and (later) to be read
1234  *   back into memory.
1235  */
1236 
1237 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1238 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1239 
1240 bool __put_devmap_managed_page_refs(struct page *page, int refs);
1241 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1242 {
1243 	if (!static_branch_unlikely(&devmap_managed_key))
1244 		return false;
1245 	if (!is_zone_device_page(page))
1246 		return false;
1247 	return __put_devmap_managed_page_refs(page, refs);
1248 }
1249 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1250 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1251 {
1252 	return false;
1253 }
1254 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1255 
1256 static inline bool put_devmap_managed_page(struct page *page)
1257 {
1258 	return put_devmap_managed_page_refs(page, 1);
1259 }
1260 
1261 /* 127: arbitrary random number, small enough to assemble well */
1262 #define folio_ref_zero_or_close_to_overflow(folio) \
1263 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1264 
1265 /**
1266  * folio_get - Increment the reference count on a folio.
1267  * @folio: The folio.
1268  *
1269  * Context: May be called in any context, as long as you know that
1270  * you have a refcount on the folio.  If you do not already have one,
1271  * folio_try_get() may be the right interface for you to use.
1272  */
1273 static inline void folio_get(struct folio *folio)
1274 {
1275 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1276 	folio_ref_inc(folio);
1277 }
1278 
1279 static inline void get_page(struct page *page)
1280 {
1281 	folio_get(page_folio(page));
1282 }
1283 
1284 static inline __must_check bool try_get_page(struct page *page)
1285 {
1286 	page = compound_head(page);
1287 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1288 		return false;
1289 	page_ref_inc(page);
1290 	return true;
1291 }
1292 
1293 /**
1294  * folio_put - Decrement the reference count on a folio.
1295  * @folio: The folio.
1296  *
1297  * If the folio's reference count reaches zero, the memory will be
1298  * released back to the page allocator and may be used by another
1299  * allocation immediately.  Do not access the memory or the struct folio
1300  * after calling folio_put() unless you can be sure that it wasn't the
1301  * last reference.
1302  *
1303  * Context: May be called in process or interrupt context, but not in NMI
1304  * context.  May be called while holding a spinlock.
1305  */
1306 static inline void folio_put(struct folio *folio)
1307 {
1308 	if (folio_put_testzero(folio))
1309 		__folio_put(folio);
1310 }
1311 
1312 /**
1313  * folio_put_refs - Reduce the reference count on a folio.
1314  * @folio: The folio.
1315  * @refs: The amount to subtract from the folio's reference count.
1316  *
1317  * If the folio's reference count reaches zero, the memory will be
1318  * released back to the page allocator and may be used by another
1319  * allocation immediately.  Do not access the memory or the struct folio
1320  * after calling folio_put_refs() unless you can be sure that these weren't
1321  * the last references.
1322  *
1323  * Context: May be called in process or interrupt context, but not in NMI
1324  * context.  May be called while holding a spinlock.
1325  */
1326 static inline void folio_put_refs(struct folio *folio, int refs)
1327 {
1328 	if (folio_ref_sub_and_test(folio, refs))
1329 		__folio_put(folio);
1330 }
1331 
1332 /*
1333  * union release_pages_arg - an array of pages or folios
1334  *
1335  * release_pages() releases a simple array of multiple pages, and
1336  * accepts various different forms of said page array: either
1337  * a regular old boring array of pages, an array of folios, or
1338  * an array of encoded page pointers.
1339  *
1340  * The transparent union syntax for this kind of "any of these
1341  * argument types" is all kinds of ugly, so look away.
1342  */
1343 typedef union {
1344 	struct page **pages;
1345 	struct folio **folios;
1346 	struct encoded_page **encoded_pages;
1347 } release_pages_arg __attribute__ ((__transparent_union__));
1348 
1349 void release_pages(release_pages_arg, int nr);
1350 
1351 /**
1352  * folios_put - Decrement the reference count on an array of folios.
1353  * @folios: The folios.
1354  * @nr: How many folios there are.
1355  *
1356  * Like folio_put(), but for an array of folios.  This is more efficient
1357  * than writing the loop yourself as it will optimise the locks which
1358  * need to be taken if the folios are freed.
1359  *
1360  * Context: May be called in process or interrupt context, but not in NMI
1361  * context.  May be called while holding a spinlock.
1362  */
1363 static inline void folios_put(struct folio **folios, unsigned int nr)
1364 {
1365 	release_pages(folios, nr);
1366 }
1367 
1368 static inline void put_page(struct page *page)
1369 {
1370 	struct folio *folio = page_folio(page);
1371 
1372 	/*
1373 	 * For some devmap managed pages we need to catch refcount transition
1374 	 * from 2 to 1:
1375 	 */
1376 	if (put_devmap_managed_page(&folio->page))
1377 		return;
1378 	folio_put(folio);
1379 }
1380 
1381 /*
1382  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1383  * the page's refcount so that two separate items are tracked: the original page
1384  * reference count, and also a new count of how many pin_user_pages() calls were
1385  * made against the page. ("gup-pinned" is another term for the latter).
1386  *
1387  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1388  * distinct from normal pages. As such, the unpin_user_page() call (and its
1389  * variants) must be used in order to release gup-pinned pages.
1390  *
1391  * Choice of value:
1392  *
1393  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1394  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1395  * simpler, due to the fact that adding an even power of two to the page
1396  * refcount has the effect of using only the upper N bits, for the code that
1397  * counts up using the bias value. This means that the lower bits are left for
1398  * the exclusive use of the original code that increments and decrements by one
1399  * (or at least, by much smaller values than the bias value).
1400  *
1401  * Of course, once the lower bits overflow into the upper bits (and this is
1402  * OK, because subtraction recovers the original values), then visual inspection
1403  * no longer suffices to directly view the separate counts. However, for normal
1404  * applications that don't have huge page reference counts, this won't be an
1405  * issue.
1406  *
1407  * Locking: the lockless algorithm described in folio_try_get_rcu()
1408  * provides safe operation for get_user_pages(), page_mkclean() and
1409  * other calls that race to set up page table entries.
1410  */
1411 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1412 
1413 void unpin_user_page(struct page *page);
1414 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1415 				 bool make_dirty);
1416 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1417 				      bool make_dirty);
1418 void unpin_user_pages(struct page **pages, unsigned long npages);
1419 
1420 static inline bool is_cow_mapping(vm_flags_t flags)
1421 {
1422 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1423 }
1424 
1425 #ifndef CONFIG_MMU
1426 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1427 {
1428 	/*
1429 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1430 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1431 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1432 	 * underlying memory if ptrace is active, so this is only possible if
1433 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1434 	 * write permissions later.
1435 	 */
1436 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1437 }
1438 #endif
1439 
1440 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1441 #define SECTION_IN_PAGE_FLAGS
1442 #endif
1443 
1444 /*
1445  * The identification function is mainly used by the buddy allocator for
1446  * determining if two pages could be buddies. We are not really identifying
1447  * the zone since we could be using the section number id if we do not have
1448  * node id available in page flags.
1449  * We only guarantee that it will return the same value for two combinable
1450  * pages in a zone.
1451  */
1452 static inline int page_zone_id(struct page *page)
1453 {
1454 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1455 }
1456 
1457 #ifdef NODE_NOT_IN_PAGE_FLAGS
1458 extern int page_to_nid(const struct page *page);
1459 #else
1460 static inline int page_to_nid(const struct page *page)
1461 {
1462 	struct page *p = (struct page *)page;
1463 
1464 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1465 }
1466 #endif
1467 
1468 static inline int folio_nid(const struct folio *folio)
1469 {
1470 	return page_to_nid(&folio->page);
1471 }
1472 
1473 #ifdef CONFIG_NUMA_BALANCING
1474 /* page access time bits needs to hold at least 4 seconds */
1475 #define PAGE_ACCESS_TIME_MIN_BITS	12
1476 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1477 #define PAGE_ACCESS_TIME_BUCKETS				\
1478 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1479 #else
1480 #define PAGE_ACCESS_TIME_BUCKETS	0
1481 #endif
1482 
1483 #define PAGE_ACCESS_TIME_MASK				\
1484 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1485 
1486 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1487 {
1488 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1489 }
1490 
1491 static inline int cpupid_to_pid(int cpupid)
1492 {
1493 	return cpupid & LAST__PID_MASK;
1494 }
1495 
1496 static inline int cpupid_to_cpu(int cpupid)
1497 {
1498 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1499 }
1500 
1501 static inline int cpupid_to_nid(int cpupid)
1502 {
1503 	return cpu_to_node(cpupid_to_cpu(cpupid));
1504 }
1505 
1506 static inline bool cpupid_pid_unset(int cpupid)
1507 {
1508 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1509 }
1510 
1511 static inline bool cpupid_cpu_unset(int cpupid)
1512 {
1513 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1514 }
1515 
1516 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1517 {
1518 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1519 }
1520 
1521 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1522 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1523 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1524 {
1525 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1526 }
1527 
1528 static inline int page_cpupid_last(struct page *page)
1529 {
1530 	return page->_last_cpupid;
1531 }
1532 static inline void page_cpupid_reset_last(struct page *page)
1533 {
1534 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1535 }
1536 #else
1537 static inline int page_cpupid_last(struct page *page)
1538 {
1539 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1540 }
1541 
1542 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1543 
1544 static inline void page_cpupid_reset_last(struct page *page)
1545 {
1546 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1547 }
1548 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1549 
1550 static inline int xchg_page_access_time(struct page *page, int time)
1551 {
1552 	int last_time;
1553 
1554 	last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1555 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1556 }
1557 #else /* !CONFIG_NUMA_BALANCING */
1558 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1559 {
1560 	return page_to_nid(page); /* XXX */
1561 }
1562 
1563 static inline int xchg_page_access_time(struct page *page, int time)
1564 {
1565 	return 0;
1566 }
1567 
1568 static inline int page_cpupid_last(struct page *page)
1569 {
1570 	return page_to_nid(page); /* XXX */
1571 }
1572 
1573 static inline int cpupid_to_nid(int cpupid)
1574 {
1575 	return -1;
1576 }
1577 
1578 static inline int cpupid_to_pid(int cpupid)
1579 {
1580 	return -1;
1581 }
1582 
1583 static inline int cpupid_to_cpu(int cpupid)
1584 {
1585 	return -1;
1586 }
1587 
1588 static inline int cpu_pid_to_cpupid(int nid, int pid)
1589 {
1590 	return -1;
1591 }
1592 
1593 static inline bool cpupid_pid_unset(int cpupid)
1594 {
1595 	return true;
1596 }
1597 
1598 static inline void page_cpupid_reset_last(struct page *page)
1599 {
1600 }
1601 
1602 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1603 {
1604 	return false;
1605 }
1606 #endif /* CONFIG_NUMA_BALANCING */
1607 
1608 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1609 
1610 /*
1611  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1612  * setting tags for all pages to native kernel tag value 0xff, as the default
1613  * value 0x00 maps to 0xff.
1614  */
1615 
1616 static inline u8 page_kasan_tag(const struct page *page)
1617 {
1618 	u8 tag = 0xff;
1619 
1620 	if (kasan_enabled()) {
1621 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1622 		tag ^= 0xff;
1623 	}
1624 
1625 	return tag;
1626 }
1627 
1628 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1629 {
1630 	unsigned long old_flags, flags;
1631 
1632 	if (!kasan_enabled())
1633 		return;
1634 
1635 	tag ^= 0xff;
1636 	old_flags = READ_ONCE(page->flags);
1637 	do {
1638 		flags = old_flags;
1639 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1640 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1641 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1642 }
1643 
1644 static inline void page_kasan_tag_reset(struct page *page)
1645 {
1646 	if (kasan_enabled())
1647 		page_kasan_tag_set(page, 0xff);
1648 }
1649 
1650 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1651 
1652 static inline u8 page_kasan_tag(const struct page *page)
1653 {
1654 	return 0xff;
1655 }
1656 
1657 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1658 static inline void page_kasan_tag_reset(struct page *page) { }
1659 
1660 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1661 
1662 static inline struct zone *page_zone(const struct page *page)
1663 {
1664 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1665 }
1666 
1667 static inline pg_data_t *page_pgdat(const struct page *page)
1668 {
1669 	return NODE_DATA(page_to_nid(page));
1670 }
1671 
1672 static inline struct zone *folio_zone(const struct folio *folio)
1673 {
1674 	return page_zone(&folio->page);
1675 }
1676 
1677 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1678 {
1679 	return page_pgdat(&folio->page);
1680 }
1681 
1682 #ifdef SECTION_IN_PAGE_FLAGS
1683 static inline void set_page_section(struct page *page, unsigned long section)
1684 {
1685 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1686 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1687 }
1688 
1689 static inline unsigned long page_to_section(const struct page *page)
1690 {
1691 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1692 }
1693 #endif
1694 
1695 /**
1696  * folio_pfn - Return the Page Frame Number of a folio.
1697  * @folio: The folio.
1698  *
1699  * A folio may contain multiple pages.  The pages have consecutive
1700  * Page Frame Numbers.
1701  *
1702  * Return: The Page Frame Number of the first page in the folio.
1703  */
1704 static inline unsigned long folio_pfn(struct folio *folio)
1705 {
1706 	return page_to_pfn(&folio->page);
1707 }
1708 
1709 static inline struct folio *pfn_folio(unsigned long pfn)
1710 {
1711 	return page_folio(pfn_to_page(pfn));
1712 }
1713 
1714 /**
1715  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1716  * @folio: The folio.
1717  *
1718  * This function checks if a folio has been pinned via a call to
1719  * a function in the pin_user_pages() family.
1720  *
1721  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1722  * because it means "definitely not pinned for DMA", but true means "probably
1723  * pinned for DMA, but possibly a false positive due to having at least
1724  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1725  *
1726  * False positives are OK, because: a) it's unlikely for a folio to
1727  * get that many refcounts, and b) all the callers of this routine are
1728  * expected to be able to deal gracefully with a false positive.
1729  *
1730  * For large folios, the result will be exactly correct. That's because
1731  * we have more tracking data available: the _pincount field is used
1732  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1733  *
1734  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1735  *
1736  * Return: True, if it is likely that the page has been "dma-pinned".
1737  * False, if the page is definitely not dma-pinned.
1738  */
1739 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1740 {
1741 	if (folio_test_large(folio))
1742 		return atomic_read(&folio->_pincount) > 0;
1743 
1744 	/*
1745 	 * folio_ref_count() is signed. If that refcount overflows, then
1746 	 * folio_ref_count() returns a negative value, and callers will avoid
1747 	 * further incrementing the refcount.
1748 	 *
1749 	 * Here, for that overflow case, use the sign bit to count a little
1750 	 * bit higher via unsigned math, and thus still get an accurate result.
1751 	 */
1752 	return ((unsigned int)folio_ref_count(folio)) >=
1753 		GUP_PIN_COUNTING_BIAS;
1754 }
1755 
1756 static inline bool page_maybe_dma_pinned(struct page *page)
1757 {
1758 	return folio_maybe_dma_pinned(page_folio(page));
1759 }
1760 
1761 /*
1762  * This should most likely only be called during fork() to see whether we
1763  * should break the cow immediately for an anon page on the src mm.
1764  *
1765  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1766  */
1767 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1768 					  struct page *page)
1769 {
1770 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1771 
1772 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1773 		return false;
1774 
1775 	return page_maybe_dma_pinned(page);
1776 }
1777 
1778 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1779 #ifdef CONFIG_MIGRATION
1780 static inline bool is_longterm_pinnable_page(struct page *page)
1781 {
1782 #ifdef CONFIG_CMA
1783 	int mt = get_pageblock_migratetype(page);
1784 
1785 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1786 		return false;
1787 #endif
1788 	/* The zero page may always be pinned */
1789 	if (is_zero_pfn(page_to_pfn(page)))
1790 		return true;
1791 
1792 	/* Coherent device memory must always allow eviction. */
1793 	if (is_device_coherent_page(page))
1794 		return false;
1795 
1796 	/* Otherwise, non-movable zone pages can be pinned. */
1797 	return !is_zone_movable_page(page);
1798 }
1799 #else
1800 static inline bool is_longterm_pinnable_page(struct page *page)
1801 {
1802 	return true;
1803 }
1804 #endif
1805 
1806 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1807 {
1808 	return is_longterm_pinnable_page(&folio->page);
1809 }
1810 
1811 static inline void set_page_zone(struct page *page, enum zone_type zone)
1812 {
1813 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1814 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1815 }
1816 
1817 static inline void set_page_node(struct page *page, unsigned long node)
1818 {
1819 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1820 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1821 }
1822 
1823 static inline void set_page_links(struct page *page, enum zone_type zone,
1824 	unsigned long node, unsigned long pfn)
1825 {
1826 	set_page_zone(page, zone);
1827 	set_page_node(page, node);
1828 #ifdef SECTION_IN_PAGE_FLAGS
1829 	set_page_section(page, pfn_to_section_nr(pfn));
1830 #endif
1831 }
1832 
1833 /**
1834  * folio_nr_pages - The number of pages in the folio.
1835  * @folio: The folio.
1836  *
1837  * Return: A positive power of two.
1838  */
1839 static inline long folio_nr_pages(struct folio *folio)
1840 {
1841 	if (!folio_test_large(folio))
1842 		return 1;
1843 #ifdef CONFIG_64BIT
1844 	return folio->_folio_nr_pages;
1845 #else
1846 	return 1L << folio->_folio_order;
1847 #endif
1848 }
1849 
1850 /*
1851  * compound_nr() returns the number of pages in this potentially compound
1852  * page.  compound_nr() can be called on a tail page, and is defined to
1853  * return 1 in that case.
1854  */
1855 static inline unsigned long compound_nr(struct page *page)
1856 {
1857 	struct folio *folio = (struct folio *)page;
1858 
1859 	if (!test_bit(PG_head, &folio->flags))
1860 		return 1;
1861 #ifdef CONFIG_64BIT
1862 	return folio->_folio_nr_pages;
1863 #else
1864 	return 1L << folio->_folio_order;
1865 #endif
1866 }
1867 
1868 /**
1869  * thp_nr_pages - The number of regular pages in this huge page.
1870  * @page: The head page of a huge page.
1871  */
1872 static inline int thp_nr_pages(struct page *page)
1873 {
1874 	return folio_nr_pages((struct folio *)page);
1875 }
1876 
1877 /**
1878  * folio_next - Move to the next physical folio.
1879  * @folio: The folio we're currently operating on.
1880  *
1881  * If you have physically contiguous memory which may span more than
1882  * one folio (eg a &struct bio_vec), use this function to move from one
1883  * folio to the next.  Do not use it if the memory is only virtually
1884  * contiguous as the folios are almost certainly not adjacent to each
1885  * other.  This is the folio equivalent to writing ``page++``.
1886  *
1887  * Context: We assume that the folios are refcounted and/or locked at a
1888  * higher level and do not adjust the reference counts.
1889  * Return: The next struct folio.
1890  */
1891 static inline struct folio *folio_next(struct folio *folio)
1892 {
1893 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1894 }
1895 
1896 /**
1897  * folio_shift - The size of the memory described by this folio.
1898  * @folio: The folio.
1899  *
1900  * A folio represents a number of bytes which is a power-of-two in size.
1901  * This function tells you which power-of-two the folio is.  See also
1902  * folio_size() and folio_order().
1903  *
1904  * Context: The caller should have a reference on the folio to prevent
1905  * it from being split.  It is not necessary for the folio to be locked.
1906  * Return: The base-2 logarithm of the size of this folio.
1907  */
1908 static inline unsigned int folio_shift(struct folio *folio)
1909 {
1910 	return PAGE_SHIFT + folio_order(folio);
1911 }
1912 
1913 /**
1914  * folio_size - The number of bytes in a folio.
1915  * @folio: The folio.
1916  *
1917  * Context: The caller should have a reference on the folio to prevent
1918  * it from being split.  It is not necessary for the folio to be locked.
1919  * Return: The number of bytes in this folio.
1920  */
1921 static inline size_t folio_size(struct folio *folio)
1922 {
1923 	return PAGE_SIZE << folio_order(folio);
1924 }
1925 
1926 /**
1927  * folio_estimated_sharers - Estimate the number of sharers of a folio.
1928  * @folio: The folio.
1929  *
1930  * folio_estimated_sharers() aims to serve as a function to efficiently
1931  * estimate the number of processes sharing a folio. This is done by
1932  * looking at the precise mapcount of the first subpage in the folio, and
1933  * assuming the other subpages are the same. This may not be true for large
1934  * folios. If you want exact mapcounts for exact calculations, look at
1935  * page_mapcount() or folio_total_mapcount().
1936  *
1937  * Return: The estimated number of processes sharing a folio.
1938  */
1939 static inline int folio_estimated_sharers(struct folio *folio)
1940 {
1941 	return page_mapcount(folio_page(folio, 0));
1942 }
1943 
1944 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1945 static inline int arch_make_page_accessible(struct page *page)
1946 {
1947 	return 0;
1948 }
1949 #endif
1950 
1951 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1952 static inline int arch_make_folio_accessible(struct folio *folio)
1953 {
1954 	int ret;
1955 	long i, nr = folio_nr_pages(folio);
1956 
1957 	for (i = 0; i < nr; i++) {
1958 		ret = arch_make_page_accessible(folio_page(folio, i));
1959 		if (ret)
1960 			break;
1961 	}
1962 
1963 	return ret;
1964 }
1965 #endif
1966 
1967 /*
1968  * Some inline functions in vmstat.h depend on page_zone()
1969  */
1970 #include <linux/vmstat.h>
1971 
1972 static __always_inline void *lowmem_page_address(const struct page *page)
1973 {
1974 	return page_to_virt(page);
1975 }
1976 
1977 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1978 #define HASHED_PAGE_VIRTUAL
1979 #endif
1980 
1981 #if defined(WANT_PAGE_VIRTUAL)
1982 static inline void *page_address(const struct page *page)
1983 {
1984 	return page->virtual;
1985 }
1986 static inline void set_page_address(struct page *page, void *address)
1987 {
1988 	page->virtual = address;
1989 }
1990 #define page_address_init()  do { } while(0)
1991 #endif
1992 
1993 #if defined(HASHED_PAGE_VIRTUAL)
1994 void *page_address(const struct page *page);
1995 void set_page_address(struct page *page, void *virtual);
1996 void page_address_init(void);
1997 #endif
1998 
1999 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2000 #define page_address(page) lowmem_page_address(page)
2001 #define set_page_address(page, address)  do { } while(0)
2002 #define page_address_init()  do { } while(0)
2003 #endif
2004 
2005 static inline void *folio_address(const struct folio *folio)
2006 {
2007 	return page_address(&folio->page);
2008 }
2009 
2010 extern void *page_rmapping(struct page *page);
2011 extern pgoff_t __page_file_index(struct page *page);
2012 
2013 /*
2014  * Return the pagecache index of the passed page.  Regular pagecache pages
2015  * use ->index whereas swapcache pages use swp_offset(->private)
2016  */
2017 static inline pgoff_t page_index(struct page *page)
2018 {
2019 	if (unlikely(PageSwapCache(page)))
2020 		return __page_file_index(page);
2021 	return page->index;
2022 }
2023 
2024 /*
2025  * Return true only if the page has been allocated with
2026  * ALLOC_NO_WATERMARKS and the low watermark was not
2027  * met implying that the system is under some pressure.
2028  */
2029 static inline bool page_is_pfmemalloc(const struct page *page)
2030 {
2031 	/*
2032 	 * lru.next has bit 1 set if the page is allocated from the
2033 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2034 	 * they do not need to preserve that information.
2035 	 */
2036 	return (uintptr_t)page->lru.next & BIT(1);
2037 }
2038 
2039 /*
2040  * Return true only if the folio has been allocated with
2041  * ALLOC_NO_WATERMARKS and the low watermark was not
2042  * met implying that the system is under some pressure.
2043  */
2044 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2045 {
2046 	/*
2047 	 * lru.next has bit 1 set if the page is allocated from the
2048 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2049 	 * they do not need to preserve that information.
2050 	 */
2051 	return (uintptr_t)folio->lru.next & BIT(1);
2052 }
2053 
2054 /*
2055  * Only to be called by the page allocator on a freshly allocated
2056  * page.
2057  */
2058 static inline void set_page_pfmemalloc(struct page *page)
2059 {
2060 	page->lru.next = (void *)BIT(1);
2061 }
2062 
2063 static inline void clear_page_pfmemalloc(struct page *page)
2064 {
2065 	page->lru.next = NULL;
2066 }
2067 
2068 /*
2069  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2070  */
2071 extern void pagefault_out_of_memory(void);
2072 
2073 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2074 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2075 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2076 
2077 /*
2078  * Flags passed to show_mem() and show_free_areas() to suppress output in
2079  * various contexts.
2080  */
2081 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
2082 
2083 extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2084 static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
2085 {
2086 	__show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
2087 }
2088 
2089 /*
2090  * Parameter block passed down to zap_pte_range in exceptional cases.
2091  */
2092 struct zap_details {
2093 	struct folio *single_folio;	/* Locked folio to be unmapped */
2094 	bool even_cows;			/* Zap COWed private pages too? */
2095 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2096 };
2097 
2098 /*
2099  * Whether to drop the pte markers, for example, the uffd-wp information for
2100  * file-backed memory.  This should only be specified when we will completely
2101  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2102  * default, the flag is not set.
2103  */
2104 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2105 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2106 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2107 
2108 #ifdef CONFIG_SCHED_MM_CID
2109 void sched_mm_cid_before_execve(struct task_struct *t);
2110 void sched_mm_cid_after_execve(struct task_struct *t);
2111 void sched_mm_cid_fork(struct task_struct *t);
2112 void sched_mm_cid_exit_signals(struct task_struct *t);
2113 static inline int task_mm_cid(struct task_struct *t)
2114 {
2115 	return t->mm_cid;
2116 }
2117 #else
2118 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2119 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2120 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2121 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2122 static inline int task_mm_cid(struct task_struct *t)
2123 {
2124 	/*
2125 	 * Use the processor id as a fall-back when the mm cid feature is
2126 	 * disabled. This provides functional per-cpu data structure accesses
2127 	 * in user-space, althrough it won't provide the memory usage benefits.
2128 	 */
2129 	return raw_smp_processor_id();
2130 }
2131 #endif
2132 
2133 #ifdef CONFIG_MMU
2134 extern bool can_do_mlock(void);
2135 #else
2136 static inline bool can_do_mlock(void) { return false; }
2137 #endif
2138 extern int user_shm_lock(size_t, struct ucounts *);
2139 extern void user_shm_unlock(size_t, struct ucounts *);
2140 
2141 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2142 			     pte_t pte);
2143 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2144 			     pte_t pte);
2145 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2146 				pmd_t pmd);
2147 
2148 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2149 		  unsigned long size);
2150 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2151 			   unsigned long size, struct zap_details *details);
2152 static inline void zap_vma_pages(struct vm_area_struct *vma)
2153 {
2154 	zap_page_range_single(vma, vma->vm_start,
2155 			      vma->vm_end - vma->vm_start, NULL);
2156 }
2157 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2158 		struct vm_area_struct *start_vma, unsigned long start,
2159 		unsigned long end, bool mm_wr_locked);
2160 
2161 struct mmu_notifier_range;
2162 
2163 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2164 		unsigned long end, unsigned long floor, unsigned long ceiling);
2165 int
2166 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2167 int follow_pte(struct mm_struct *mm, unsigned long address,
2168 	       pte_t **ptepp, spinlock_t **ptlp);
2169 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2170 	unsigned long *pfn);
2171 int follow_phys(struct vm_area_struct *vma, unsigned long address,
2172 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
2173 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2174 			void *buf, int len, int write);
2175 
2176 extern void truncate_pagecache(struct inode *inode, loff_t new);
2177 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2178 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2179 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2180 int generic_error_remove_page(struct address_space *mapping, struct page *page);
2181 
2182 #ifdef CONFIG_MMU
2183 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2184 				  unsigned long address, unsigned int flags,
2185 				  struct pt_regs *regs);
2186 extern int fixup_user_fault(struct mm_struct *mm,
2187 			    unsigned long address, unsigned int fault_flags,
2188 			    bool *unlocked);
2189 void unmap_mapping_pages(struct address_space *mapping,
2190 		pgoff_t start, pgoff_t nr, bool even_cows);
2191 void unmap_mapping_range(struct address_space *mapping,
2192 		loff_t const holebegin, loff_t const holelen, int even_cows);
2193 #else
2194 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2195 					 unsigned long address, unsigned int flags,
2196 					 struct pt_regs *regs)
2197 {
2198 	/* should never happen if there's no MMU */
2199 	BUG();
2200 	return VM_FAULT_SIGBUS;
2201 }
2202 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2203 		unsigned int fault_flags, bool *unlocked)
2204 {
2205 	/* should never happen if there's no MMU */
2206 	BUG();
2207 	return -EFAULT;
2208 }
2209 static inline void unmap_mapping_pages(struct address_space *mapping,
2210 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2211 static inline void unmap_mapping_range(struct address_space *mapping,
2212 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2213 #endif
2214 
2215 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2216 		loff_t const holebegin, loff_t const holelen)
2217 {
2218 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2219 }
2220 
2221 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2222 		void *buf, int len, unsigned int gup_flags);
2223 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2224 		void *buf, int len, unsigned int gup_flags);
2225 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2226 			      void *buf, int len, unsigned int gup_flags);
2227 
2228 long get_user_pages_remote(struct mm_struct *mm,
2229 			    unsigned long start, unsigned long nr_pages,
2230 			    unsigned int gup_flags, struct page **pages,
2231 			    struct vm_area_struct **vmas, int *locked);
2232 long pin_user_pages_remote(struct mm_struct *mm,
2233 			   unsigned long start, unsigned long nr_pages,
2234 			   unsigned int gup_flags, struct page **pages,
2235 			   struct vm_area_struct **vmas, int *locked);
2236 long get_user_pages(unsigned long start, unsigned long nr_pages,
2237 			    unsigned int gup_flags, struct page **pages,
2238 			    struct vm_area_struct **vmas);
2239 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2240 		    unsigned int gup_flags, struct page **pages,
2241 		    struct vm_area_struct **vmas);
2242 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2243 		    struct page **pages, unsigned int gup_flags);
2244 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2245 		    struct page **pages, unsigned int gup_flags);
2246 
2247 int get_user_pages_fast(unsigned long start, int nr_pages,
2248 			unsigned int gup_flags, struct page **pages);
2249 int pin_user_pages_fast(unsigned long start, int nr_pages,
2250 			unsigned int gup_flags, struct page **pages);
2251 
2252 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2253 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2254 			struct task_struct *task, bool bypass_rlim);
2255 
2256 struct kvec;
2257 struct page *get_dump_page(unsigned long addr);
2258 
2259 bool folio_mark_dirty(struct folio *folio);
2260 bool set_page_dirty(struct page *page);
2261 int set_page_dirty_lock(struct page *page);
2262 
2263 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2264 
2265 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2266 		unsigned long old_addr, struct vm_area_struct *new_vma,
2267 		unsigned long new_addr, unsigned long len,
2268 		bool need_rmap_locks);
2269 
2270 /*
2271  * Flags used by change_protection().  For now we make it a bitmap so
2272  * that we can pass in multiple flags just like parameters.  However
2273  * for now all the callers are only use one of the flags at the same
2274  * time.
2275  */
2276 /*
2277  * Whether we should manually check if we can map individual PTEs writable,
2278  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2279  * PTEs automatically in a writable mapping.
2280  */
2281 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2282 /* Whether this protection change is for NUMA hints */
2283 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2284 /* Whether this change is for write protecting */
2285 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2286 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2287 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2288 					    MM_CP_UFFD_WP_RESOLVE)
2289 
2290 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2291 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2292 {
2293 	/*
2294 	 * We want to check manually if we can change individual PTEs writable
2295 	 * if we can't do that automatically for all PTEs in a mapping. For
2296 	 * private mappings, that's always the case when we have write
2297 	 * permissions as we properly have to handle COW.
2298 	 */
2299 	if (vma->vm_flags & VM_SHARED)
2300 		return vma_wants_writenotify(vma, vma->vm_page_prot);
2301 	return !!(vma->vm_flags & VM_WRITE);
2302 
2303 }
2304 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2305 			     pte_t pte);
2306 extern long change_protection(struct mmu_gather *tlb,
2307 			      struct vm_area_struct *vma, unsigned long start,
2308 			      unsigned long end, unsigned long cp_flags);
2309 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2310 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2311 	  unsigned long start, unsigned long end, unsigned long newflags);
2312 
2313 /*
2314  * doesn't attempt to fault and will return short.
2315  */
2316 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2317 			     unsigned int gup_flags, struct page **pages);
2318 
2319 static inline bool get_user_page_fast_only(unsigned long addr,
2320 			unsigned int gup_flags, struct page **pagep)
2321 {
2322 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2323 }
2324 /*
2325  * per-process(per-mm_struct) statistics.
2326  */
2327 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2328 {
2329 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2330 }
2331 
2332 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2333 
2334 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2335 {
2336 	percpu_counter_add(&mm->rss_stat[member], value);
2337 
2338 	mm_trace_rss_stat(mm, member);
2339 }
2340 
2341 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2342 {
2343 	percpu_counter_inc(&mm->rss_stat[member]);
2344 
2345 	mm_trace_rss_stat(mm, member);
2346 }
2347 
2348 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2349 {
2350 	percpu_counter_dec(&mm->rss_stat[member]);
2351 
2352 	mm_trace_rss_stat(mm, member);
2353 }
2354 
2355 /* Optimized variant when page is already known not to be PageAnon */
2356 static inline int mm_counter_file(struct page *page)
2357 {
2358 	if (PageSwapBacked(page))
2359 		return MM_SHMEMPAGES;
2360 	return MM_FILEPAGES;
2361 }
2362 
2363 static inline int mm_counter(struct page *page)
2364 {
2365 	if (PageAnon(page))
2366 		return MM_ANONPAGES;
2367 	return mm_counter_file(page);
2368 }
2369 
2370 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2371 {
2372 	return get_mm_counter(mm, MM_FILEPAGES) +
2373 		get_mm_counter(mm, MM_ANONPAGES) +
2374 		get_mm_counter(mm, MM_SHMEMPAGES);
2375 }
2376 
2377 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2378 {
2379 	return max(mm->hiwater_rss, get_mm_rss(mm));
2380 }
2381 
2382 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2383 {
2384 	return max(mm->hiwater_vm, mm->total_vm);
2385 }
2386 
2387 static inline void update_hiwater_rss(struct mm_struct *mm)
2388 {
2389 	unsigned long _rss = get_mm_rss(mm);
2390 
2391 	if ((mm)->hiwater_rss < _rss)
2392 		(mm)->hiwater_rss = _rss;
2393 }
2394 
2395 static inline void update_hiwater_vm(struct mm_struct *mm)
2396 {
2397 	if (mm->hiwater_vm < mm->total_vm)
2398 		mm->hiwater_vm = mm->total_vm;
2399 }
2400 
2401 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2402 {
2403 	mm->hiwater_rss = get_mm_rss(mm);
2404 }
2405 
2406 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2407 					 struct mm_struct *mm)
2408 {
2409 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2410 
2411 	if (*maxrss < hiwater_rss)
2412 		*maxrss = hiwater_rss;
2413 }
2414 
2415 #if defined(SPLIT_RSS_COUNTING)
2416 void sync_mm_rss(struct mm_struct *mm);
2417 #else
2418 static inline void sync_mm_rss(struct mm_struct *mm)
2419 {
2420 }
2421 #endif
2422 
2423 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2424 static inline int pte_special(pte_t pte)
2425 {
2426 	return 0;
2427 }
2428 
2429 static inline pte_t pte_mkspecial(pte_t pte)
2430 {
2431 	return pte;
2432 }
2433 #endif
2434 
2435 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2436 static inline int pte_devmap(pte_t pte)
2437 {
2438 	return 0;
2439 }
2440 #endif
2441 
2442 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2443 			       spinlock_t **ptl);
2444 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2445 				    spinlock_t **ptl)
2446 {
2447 	pte_t *ptep;
2448 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2449 	return ptep;
2450 }
2451 
2452 #ifdef __PAGETABLE_P4D_FOLDED
2453 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2454 						unsigned long address)
2455 {
2456 	return 0;
2457 }
2458 #else
2459 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2460 #endif
2461 
2462 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2463 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2464 						unsigned long address)
2465 {
2466 	return 0;
2467 }
2468 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2469 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2470 
2471 #else
2472 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2473 
2474 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2475 {
2476 	if (mm_pud_folded(mm))
2477 		return;
2478 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2479 }
2480 
2481 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2482 {
2483 	if (mm_pud_folded(mm))
2484 		return;
2485 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2486 }
2487 #endif
2488 
2489 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2490 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2491 						unsigned long address)
2492 {
2493 	return 0;
2494 }
2495 
2496 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2497 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2498 
2499 #else
2500 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2501 
2502 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2503 {
2504 	if (mm_pmd_folded(mm))
2505 		return;
2506 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2507 }
2508 
2509 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2510 {
2511 	if (mm_pmd_folded(mm))
2512 		return;
2513 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2514 }
2515 #endif
2516 
2517 #ifdef CONFIG_MMU
2518 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2519 {
2520 	atomic_long_set(&mm->pgtables_bytes, 0);
2521 }
2522 
2523 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2524 {
2525 	return atomic_long_read(&mm->pgtables_bytes);
2526 }
2527 
2528 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2529 {
2530 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2531 }
2532 
2533 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2534 {
2535 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2536 }
2537 #else
2538 
2539 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2540 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2541 {
2542 	return 0;
2543 }
2544 
2545 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2546 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2547 #endif
2548 
2549 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2550 int __pte_alloc_kernel(pmd_t *pmd);
2551 
2552 #if defined(CONFIG_MMU)
2553 
2554 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2555 		unsigned long address)
2556 {
2557 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2558 		NULL : p4d_offset(pgd, address);
2559 }
2560 
2561 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2562 		unsigned long address)
2563 {
2564 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2565 		NULL : pud_offset(p4d, address);
2566 }
2567 
2568 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2569 {
2570 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2571 		NULL: pmd_offset(pud, address);
2572 }
2573 #endif /* CONFIG_MMU */
2574 
2575 #if USE_SPLIT_PTE_PTLOCKS
2576 #if ALLOC_SPLIT_PTLOCKS
2577 void __init ptlock_cache_init(void);
2578 extern bool ptlock_alloc(struct page *page);
2579 extern void ptlock_free(struct page *page);
2580 
2581 static inline spinlock_t *ptlock_ptr(struct page *page)
2582 {
2583 	return page->ptl;
2584 }
2585 #else /* ALLOC_SPLIT_PTLOCKS */
2586 static inline void ptlock_cache_init(void)
2587 {
2588 }
2589 
2590 static inline bool ptlock_alloc(struct page *page)
2591 {
2592 	return true;
2593 }
2594 
2595 static inline void ptlock_free(struct page *page)
2596 {
2597 }
2598 
2599 static inline spinlock_t *ptlock_ptr(struct page *page)
2600 {
2601 	return &page->ptl;
2602 }
2603 #endif /* ALLOC_SPLIT_PTLOCKS */
2604 
2605 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2606 {
2607 	return ptlock_ptr(pmd_page(*pmd));
2608 }
2609 
2610 static inline bool ptlock_init(struct page *page)
2611 {
2612 	/*
2613 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2614 	 * with 0. Make sure nobody took it in use in between.
2615 	 *
2616 	 * It can happen if arch try to use slab for page table allocation:
2617 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2618 	 */
2619 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2620 	if (!ptlock_alloc(page))
2621 		return false;
2622 	spin_lock_init(ptlock_ptr(page));
2623 	return true;
2624 }
2625 
2626 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2627 /*
2628  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2629  */
2630 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2631 {
2632 	return &mm->page_table_lock;
2633 }
2634 static inline void ptlock_cache_init(void) {}
2635 static inline bool ptlock_init(struct page *page) { return true; }
2636 static inline void ptlock_free(struct page *page) {}
2637 #endif /* USE_SPLIT_PTE_PTLOCKS */
2638 
2639 static inline void pgtable_init(void)
2640 {
2641 	ptlock_cache_init();
2642 	pgtable_cache_init();
2643 }
2644 
2645 static inline bool pgtable_pte_page_ctor(struct page *page)
2646 {
2647 	if (!ptlock_init(page))
2648 		return false;
2649 	__SetPageTable(page);
2650 	inc_lruvec_page_state(page, NR_PAGETABLE);
2651 	return true;
2652 }
2653 
2654 static inline void pgtable_pte_page_dtor(struct page *page)
2655 {
2656 	ptlock_free(page);
2657 	__ClearPageTable(page);
2658 	dec_lruvec_page_state(page, NR_PAGETABLE);
2659 }
2660 
2661 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2662 ({							\
2663 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2664 	pte_t *__pte = pte_offset_map(pmd, address);	\
2665 	*(ptlp) = __ptl;				\
2666 	spin_lock(__ptl);				\
2667 	__pte;						\
2668 })
2669 
2670 #define pte_unmap_unlock(pte, ptl)	do {		\
2671 	spin_unlock(ptl);				\
2672 	pte_unmap(pte);					\
2673 } while (0)
2674 
2675 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2676 
2677 #define pte_alloc_map(mm, pmd, address)			\
2678 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2679 
2680 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2681 	(pte_alloc(mm, pmd) ?			\
2682 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2683 
2684 #define pte_alloc_kernel(pmd, address)			\
2685 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2686 		NULL: pte_offset_kernel(pmd, address))
2687 
2688 #if USE_SPLIT_PMD_PTLOCKS
2689 
2690 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
2691 {
2692 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2693 	return virt_to_page((void *)((unsigned long) pmd & mask));
2694 }
2695 
2696 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2697 {
2698 	return ptlock_ptr(pmd_pgtable_page(pmd));
2699 }
2700 
2701 static inline bool pmd_ptlock_init(struct page *page)
2702 {
2703 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2704 	page->pmd_huge_pte = NULL;
2705 #endif
2706 	return ptlock_init(page);
2707 }
2708 
2709 static inline void pmd_ptlock_free(struct page *page)
2710 {
2711 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2712 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2713 #endif
2714 	ptlock_free(page);
2715 }
2716 
2717 #define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
2718 
2719 #else
2720 
2721 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2722 {
2723 	return &mm->page_table_lock;
2724 }
2725 
2726 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2727 static inline void pmd_ptlock_free(struct page *page) {}
2728 
2729 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2730 
2731 #endif
2732 
2733 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2734 {
2735 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2736 	spin_lock(ptl);
2737 	return ptl;
2738 }
2739 
2740 static inline bool pgtable_pmd_page_ctor(struct page *page)
2741 {
2742 	if (!pmd_ptlock_init(page))
2743 		return false;
2744 	__SetPageTable(page);
2745 	inc_lruvec_page_state(page, NR_PAGETABLE);
2746 	return true;
2747 }
2748 
2749 static inline void pgtable_pmd_page_dtor(struct page *page)
2750 {
2751 	pmd_ptlock_free(page);
2752 	__ClearPageTable(page);
2753 	dec_lruvec_page_state(page, NR_PAGETABLE);
2754 }
2755 
2756 /*
2757  * No scalability reason to split PUD locks yet, but follow the same pattern
2758  * as the PMD locks to make it easier if we decide to.  The VM should not be
2759  * considered ready to switch to split PUD locks yet; there may be places
2760  * which need to be converted from page_table_lock.
2761  */
2762 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2763 {
2764 	return &mm->page_table_lock;
2765 }
2766 
2767 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2768 {
2769 	spinlock_t *ptl = pud_lockptr(mm, pud);
2770 
2771 	spin_lock(ptl);
2772 	return ptl;
2773 }
2774 
2775 extern void __init pagecache_init(void);
2776 extern void free_initmem(void);
2777 
2778 /*
2779  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2780  * into the buddy system. The freed pages will be poisoned with pattern
2781  * "poison" if it's within range [0, UCHAR_MAX].
2782  * Return pages freed into the buddy system.
2783  */
2784 extern unsigned long free_reserved_area(void *start, void *end,
2785 					int poison, const char *s);
2786 
2787 extern void adjust_managed_page_count(struct page *page, long count);
2788 extern void mem_init_print_info(void);
2789 
2790 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2791 
2792 /* Free the reserved page into the buddy system, so it gets managed. */
2793 static inline void free_reserved_page(struct page *page)
2794 {
2795 	ClearPageReserved(page);
2796 	init_page_count(page);
2797 	__free_page(page);
2798 	adjust_managed_page_count(page, 1);
2799 }
2800 #define free_highmem_page(page) free_reserved_page(page)
2801 
2802 static inline void mark_page_reserved(struct page *page)
2803 {
2804 	SetPageReserved(page);
2805 	adjust_managed_page_count(page, -1);
2806 }
2807 
2808 /*
2809  * Default method to free all the __init memory into the buddy system.
2810  * The freed pages will be poisoned with pattern "poison" if it's within
2811  * range [0, UCHAR_MAX].
2812  * Return pages freed into the buddy system.
2813  */
2814 static inline unsigned long free_initmem_default(int poison)
2815 {
2816 	extern char __init_begin[], __init_end[];
2817 
2818 	return free_reserved_area(&__init_begin, &__init_end,
2819 				  poison, "unused kernel image (initmem)");
2820 }
2821 
2822 static inline unsigned long get_num_physpages(void)
2823 {
2824 	int nid;
2825 	unsigned long phys_pages = 0;
2826 
2827 	for_each_online_node(nid)
2828 		phys_pages += node_present_pages(nid);
2829 
2830 	return phys_pages;
2831 }
2832 
2833 /*
2834  * Using memblock node mappings, an architecture may initialise its
2835  * zones, allocate the backing mem_map and account for memory holes in an
2836  * architecture independent manner.
2837  *
2838  * An architecture is expected to register range of page frames backed by
2839  * physical memory with memblock_add[_node]() before calling
2840  * free_area_init() passing in the PFN each zone ends at. At a basic
2841  * usage, an architecture is expected to do something like
2842  *
2843  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2844  * 							 max_highmem_pfn};
2845  * for_each_valid_physical_page_range()
2846  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
2847  * free_area_init(max_zone_pfns);
2848  */
2849 void free_area_init(unsigned long *max_zone_pfn);
2850 unsigned long node_map_pfn_alignment(void);
2851 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2852 						unsigned long end_pfn);
2853 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2854 						unsigned long end_pfn);
2855 extern void get_pfn_range_for_nid(unsigned int nid,
2856 			unsigned long *start_pfn, unsigned long *end_pfn);
2857 
2858 #ifndef CONFIG_NUMA
2859 static inline int early_pfn_to_nid(unsigned long pfn)
2860 {
2861 	return 0;
2862 }
2863 #else
2864 /* please see mm/page_alloc.c */
2865 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2866 #endif
2867 
2868 extern void set_dma_reserve(unsigned long new_dma_reserve);
2869 extern void memmap_init_range(unsigned long, int, unsigned long,
2870 		unsigned long, unsigned long, enum meminit_context,
2871 		struct vmem_altmap *, int migratetype);
2872 extern void setup_per_zone_wmarks(void);
2873 extern void calculate_min_free_kbytes(void);
2874 extern int __meminit init_per_zone_wmark_min(void);
2875 extern void mem_init(void);
2876 extern void __init mmap_init(void);
2877 
2878 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2879 static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
2880 {
2881 	__show_mem(flags, nodemask, MAX_NR_ZONES - 1);
2882 }
2883 extern long si_mem_available(void);
2884 extern void si_meminfo(struct sysinfo * val);
2885 extern void si_meminfo_node(struct sysinfo *val, int nid);
2886 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2887 extern unsigned long arch_reserved_kernel_pages(void);
2888 #endif
2889 
2890 extern __printf(3, 4)
2891 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2892 
2893 extern void setup_per_cpu_pageset(void);
2894 
2895 /* page_alloc.c */
2896 extern int min_free_kbytes;
2897 extern int watermark_boost_factor;
2898 extern int watermark_scale_factor;
2899 extern bool arch_has_descending_max_zone_pfns(void);
2900 
2901 /* nommu.c */
2902 extern atomic_long_t mmap_pages_allocated;
2903 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2904 
2905 /* interval_tree.c */
2906 void vma_interval_tree_insert(struct vm_area_struct *node,
2907 			      struct rb_root_cached *root);
2908 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2909 				    struct vm_area_struct *prev,
2910 				    struct rb_root_cached *root);
2911 void vma_interval_tree_remove(struct vm_area_struct *node,
2912 			      struct rb_root_cached *root);
2913 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2914 				unsigned long start, unsigned long last);
2915 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2916 				unsigned long start, unsigned long last);
2917 
2918 #define vma_interval_tree_foreach(vma, root, start, last)		\
2919 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2920 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2921 
2922 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2923 				   struct rb_root_cached *root);
2924 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2925 				   struct rb_root_cached *root);
2926 struct anon_vma_chain *
2927 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2928 				  unsigned long start, unsigned long last);
2929 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2930 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2931 #ifdef CONFIG_DEBUG_VM_RB
2932 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2933 #endif
2934 
2935 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2936 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2937 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2938 
2939 /* mmap.c */
2940 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2941 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
2942 		      unsigned long start, unsigned long end, pgoff_t pgoff,
2943 		      struct vm_area_struct *next);
2944 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
2945 		       unsigned long start, unsigned long end, pgoff_t pgoff);
2946 extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
2947 	struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
2948 	unsigned long end, unsigned long vm_flags, struct anon_vma *,
2949 	struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
2950 	struct anon_vma_name *);
2951 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2952 extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
2953 		       unsigned long addr, int new_below);
2954 extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
2955 			 unsigned long addr, int new_below);
2956 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2957 extern void unlink_file_vma(struct vm_area_struct *);
2958 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2959 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2960 	bool *need_rmap_locks);
2961 extern void exit_mmap(struct mm_struct *);
2962 
2963 static inline int check_data_rlimit(unsigned long rlim,
2964 				    unsigned long new,
2965 				    unsigned long start,
2966 				    unsigned long end_data,
2967 				    unsigned long start_data)
2968 {
2969 	if (rlim < RLIM_INFINITY) {
2970 		if (((new - start) + (end_data - start_data)) > rlim)
2971 			return -ENOSPC;
2972 	}
2973 
2974 	return 0;
2975 }
2976 
2977 extern int mm_take_all_locks(struct mm_struct *mm);
2978 extern void mm_drop_all_locks(struct mm_struct *mm);
2979 
2980 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2981 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2982 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2983 extern struct file *get_task_exe_file(struct task_struct *task);
2984 
2985 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2986 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2987 
2988 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2989 				   const struct vm_special_mapping *sm);
2990 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2991 				   unsigned long addr, unsigned long len,
2992 				   unsigned long flags,
2993 				   const struct vm_special_mapping *spec);
2994 /* This is an obsolete alternative to _install_special_mapping. */
2995 extern int install_special_mapping(struct mm_struct *mm,
2996 				   unsigned long addr, unsigned long len,
2997 				   unsigned long flags, struct page **pages);
2998 
2999 unsigned long randomize_stack_top(unsigned long stack_top);
3000 unsigned long randomize_page(unsigned long start, unsigned long range);
3001 
3002 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3003 
3004 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3005 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3006 	struct list_head *uf);
3007 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3008 	unsigned long len, unsigned long prot, unsigned long flags,
3009 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
3010 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3011 			 unsigned long start, size_t len, struct list_head *uf,
3012 			 bool downgrade);
3013 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3014 		     struct list_head *uf);
3015 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3016 
3017 #ifdef CONFIG_MMU
3018 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3019 			 unsigned long start, unsigned long end,
3020 			 struct list_head *uf, bool downgrade);
3021 extern int __mm_populate(unsigned long addr, unsigned long len,
3022 			 int ignore_errors);
3023 static inline void mm_populate(unsigned long addr, unsigned long len)
3024 {
3025 	/* Ignore errors */
3026 	(void) __mm_populate(addr, len, 1);
3027 }
3028 #else
3029 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3030 #endif
3031 
3032 /* These take the mm semaphore themselves */
3033 extern int __must_check vm_brk(unsigned long, unsigned long);
3034 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3035 extern int vm_munmap(unsigned long, size_t);
3036 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3037         unsigned long, unsigned long,
3038         unsigned long, unsigned long);
3039 
3040 struct vm_unmapped_area_info {
3041 #define VM_UNMAPPED_AREA_TOPDOWN 1
3042 	unsigned long flags;
3043 	unsigned long length;
3044 	unsigned long low_limit;
3045 	unsigned long high_limit;
3046 	unsigned long align_mask;
3047 	unsigned long align_offset;
3048 };
3049 
3050 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3051 
3052 /* truncate.c */
3053 extern void truncate_inode_pages(struct address_space *, loff_t);
3054 extern void truncate_inode_pages_range(struct address_space *,
3055 				       loff_t lstart, loff_t lend);
3056 extern void truncate_inode_pages_final(struct address_space *);
3057 
3058 /* generic vm_area_ops exported for stackable file systems */
3059 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3060 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3061 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3062 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3063 
3064 extern unsigned long stack_guard_gap;
3065 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3066 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
3067 
3068 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3069 extern int expand_downwards(struct vm_area_struct *vma,
3070 		unsigned long address);
3071 #if VM_GROWSUP
3072 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
3073 #else
3074   #define expand_upwards(vma, address) (0)
3075 #endif
3076 
3077 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3078 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3079 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3080 					     struct vm_area_struct **pprev);
3081 
3082 /*
3083  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3084  * NULL if none.  Assume start_addr < end_addr.
3085  */
3086 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3087 			unsigned long start_addr, unsigned long end_addr);
3088 
3089 /**
3090  * vma_lookup() - Find a VMA at a specific address
3091  * @mm: The process address space.
3092  * @addr: The user address.
3093  *
3094  * Return: The vm_area_struct at the given address, %NULL otherwise.
3095  */
3096 static inline
3097 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3098 {
3099 	return mtree_load(&mm->mm_mt, addr);
3100 }
3101 
3102 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3103 {
3104 	unsigned long vm_start = vma->vm_start;
3105 
3106 	if (vma->vm_flags & VM_GROWSDOWN) {
3107 		vm_start -= stack_guard_gap;
3108 		if (vm_start > vma->vm_start)
3109 			vm_start = 0;
3110 	}
3111 	return vm_start;
3112 }
3113 
3114 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3115 {
3116 	unsigned long vm_end = vma->vm_end;
3117 
3118 	if (vma->vm_flags & VM_GROWSUP) {
3119 		vm_end += stack_guard_gap;
3120 		if (vm_end < vma->vm_end)
3121 			vm_end = -PAGE_SIZE;
3122 	}
3123 	return vm_end;
3124 }
3125 
3126 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3127 {
3128 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3129 }
3130 
3131 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3132 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3133 				unsigned long vm_start, unsigned long vm_end)
3134 {
3135 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3136 
3137 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3138 		vma = NULL;
3139 
3140 	return vma;
3141 }
3142 
3143 static inline bool range_in_vma(struct vm_area_struct *vma,
3144 				unsigned long start, unsigned long end)
3145 {
3146 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3147 }
3148 
3149 #ifdef CONFIG_MMU
3150 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3151 void vma_set_page_prot(struct vm_area_struct *vma);
3152 #else
3153 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3154 {
3155 	return __pgprot(0);
3156 }
3157 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3158 {
3159 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3160 }
3161 #endif
3162 
3163 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3164 
3165 #ifdef CONFIG_NUMA_BALANCING
3166 unsigned long change_prot_numa(struct vm_area_struct *vma,
3167 			unsigned long start, unsigned long end);
3168 #endif
3169 
3170 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
3171 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3172 			unsigned long pfn, unsigned long size, pgprot_t);
3173 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3174 		unsigned long pfn, unsigned long size, pgprot_t prot);
3175 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3176 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3177 			struct page **pages, unsigned long *num);
3178 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3179 				unsigned long num);
3180 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3181 				unsigned long num);
3182 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3183 			unsigned long pfn);
3184 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3185 			unsigned long pfn, pgprot_t pgprot);
3186 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3187 			pfn_t pfn);
3188 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
3189 			pfn_t pfn, pgprot_t pgprot);
3190 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3191 		unsigned long addr, pfn_t pfn);
3192 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3193 
3194 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3195 				unsigned long addr, struct page *page)
3196 {
3197 	int err = vm_insert_page(vma, addr, page);
3198 
3199 	if (err == -ENOMEM)
3200 		return VM_FAULT_OOM;
3201 	if (err < 0 && err != -EBUSY)
3202 		return VM_FAULT_SIGBUS;
3203 
3204 	return VM_FAULT_NOPAGE;
3205 }
3206 
3207 #ifndef io_remap_pfn_range
3208 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3209 				     unsigned long addr, unsigned long pfn,
3210 				     unsigned long size, pgprot_t prot)
3211 {
3212 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3213 }
3214 #endif
3215 
3216 static inline vm_fault_t vmf_error(int err)
3217 {
3218 	if (err == -ENOMEM)
3219 		return VM_FAULT_OOM;
3220 	return VM_FAULT_SIGBUS;
3221 }
3222 
3223 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3224 			 unsigned int foll_flags);
3225 
3226 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3227 {
3228 	if (vm_fault & VM_FAULT_OOM)
3229 		return -ENOMEM;
3230 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3231 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3232 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3233 		return -EFAULT;
3234 	return 0;
3235 }
3236 
3237 /*
3238  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3239  * a (NUMA hinting) fault is required.
3240  */
3241 static inline bool gup_can_follow_protnone(unsigned int flags)
3242 {
3243 	/*
3244 	 * FOLL_FORCE has to be able to make progress even if the VMA is
3245 	 * inaccessible. Further, FOLL_FORCE access usually does not represent
3246 	 * application behaviour and we should avoid triggering NUMA hinting
3247 	 * faults.
3248 	 */
3249 	return flags & FOLL_FORCE;
3250 }
3251 
3252 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3253 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3254 			       unsigned long size, pte_fn_t fn, void *data);
3255 extern int apply_to_existing_page_range(struct mm_struct *mm,
3256 				   unsigned long address, unsigned long size,
3257 				   pte_fn_t fn, void *data);
3258 
3259 extern void __init init_mem_debugging_and_hardening(void);
3260 #ifdef CONFIG_PAGE_POISONING
3261 extern void __kernel_poison_pages(struct page *page, int numpages);
3262 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3263 extern bool _page_poisoning_enabled_early;
3264 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3265 static inline bool page_poisoning_enabled(void)
3266 {
3267 	return _page_poisoning_enabled_early;
3268 }
3269 /*
3270  * For use in fast paths after init_mem_debugging() has run, or when a
3271  * false negative result is not harmful when called too early.
3272  */
3273 static inline bool page_poisoning_enabled_static(void)
3274 {
3275 	return static_branch_unlikely(&_page_poisoning_enabled);
3276 }
3277 static inline void kernel_poison_pages(struct page *page, int numpages)
3278 {
3279 	if (page_poisoning_enabled_static())
3280 		__kernel_poison_pages(page, numpages);
3281 }
3282 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3283 {
3284 	if (page_poisoning_enabled_static())
3285 		__kernel_unpoison_pages(page, numpages);
3286 }
3287 #else
3288 static inline bool page_poisoning_enabled(void) { return false; }
3289 static inline bool page_poisoning_enabled_static(void) { return false; }
3290 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3291 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3292 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3293 #endif
3294 
3295 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3296 static inline bool want_init_on_alloc(gfp_t flags)
3297 {
3298 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3299 				&init_on_alloc))
3300 		return true;
3301 	return flags & __GFP_ZERO;
3302 }
3303 
3304 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3305 static inline bool want_init_on_free(void)
3306 {
3307 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3308 				   &init_on_free);
3309 }
3310 
3311 extern bool _debug_pagealloc_enabled_early;
3312 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3313 
3314 static inline bool debug_pagealloc_enabled(void)
3315 {
3316 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3317 		_debug_pagealloc_enabled_early;
3318 }
3319 
3320 /*
3321  * For use in fast paths after init_debug_pagealloc() has run, or when a
3322  * false negative result is not harmful when called too early.
3323  */
3324 static inline bool debug_pagealloc_enabled_static(void)
3325 {
3326 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3327 		return false;
3328 
3329 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3330 }
3331 
3332 #ifdef CONFIG_DEBUG_PAGEALLOC
3333 /*
3334  * To support DEBUG_PAGEALLOC architecture must ensure that
3335  * __kernel_map_pages() never fails
3336  */
3337 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3338 
3339 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3340 {
3341 	if (debug_pagealloc_enabled_static())
3342 		__kernel_map_pages(page, numpages, 1);
3343 }
3344 
3345 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3346 {
3347 	if (debug_pagealloc_enabled_static())
3348 		__kernel_map_pages(page, numpages, 0);
3349 }
3350 #else	/* CONFIG_DEBUG_PAGEALLOC */
3351 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3352 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3353 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3354 
3355 #ifdef __HAVE_ARCH_GATE_AREA
3356 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3357 extern int in_gate_area_no_mm(unsigned long addr);
3358 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3359 #else
3360 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3361 {
3362 	return NULL;
3363 }
3364 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3365 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3366 {
3367 	return 0;
3368 }
3369 #endif	/* __HAVE_ARCH_GATE_AREA */
3370 
3371 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3372 
3373 #ifdef CONFIG_SYSCTL
3374 extern int sysctl_drop_caches;
3375 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3376 		loff_t *);
3377 #endif
3378 
3379 void drop_slab(void);
3380 
3381 #ifndef CONFIG_MMU
3382 #define randomize_va_space 0
3383 #else
3384 extern int randomize_va_space;
3385 #endif
3386 
3387 const char * arch_vma_name(struct vm_area_struct *vma);
3388 #ifdef CONFIG_MMU
3389 void print_vma_addr(char *prefix, unsigned long rip);
3390 #else
3391 static inline void print_vma_addr(char *prefix, unsigned long rip)
3392 {
3393 }
3394 #endif
3395 
3396 void *sparse_buffer_alloc(unsigned long size);
3397 struct page * __populate_section_memmap(unsigned long pfn,
3398 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3399 		struct dev_pagemap *pgmap);
3400 void pmd_init(void *addr);
3401 void pud_init(void *addr);
3402 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3403 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3404 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3405 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3406 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3407 			    struct vmem_altmap *altmap, struct page *reuse);
3408 void *vmemmap_alloc_block(unsigned long size, int node);
3409 struct vmem_altmap;
3410 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3411 			      struct vmem_altmap *altmap);
3412 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3413 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3414 		     unsigned long addr, unsigned long next);
3415 int vmemmap_check_pmd(pmd_t *pmd, int node,
3416 		      unsigned long addr, unsigned long next);
3417 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3418 			       int node, struct vmem_altmap *altmap);
3419 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3420 			       int node, struct vmem_altmap *altmap);
3421 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3422 		struct vmem_altmap *altmap);
3423 void vmemmap_populate_print_last(void);
3424 #ifdef CONFIG_MEMORY_HOTPLUG
3425 void vmemmap_free(unsigned long start, unsigned long end,
3426 		struct vmem_altmap *altmap);
3427 #endif
3428 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3429 				  unsigned long nr_pages);
3430 
3431 enum mf_flags {
3432 	MF_COUNT_INCREASED = 1 << 0,
3433 	MF_ACTION_REQUIRED = 1 << 1,
3434 	MF_MUST_KILL = 1 << 2,
3435 	MF_SOFT_OFFLINE = 1 << 3,
3436 	MF_UNPOISON = 1 << 4,
3437 	MF_SW_SIMULATED = 1 << 5,
3438 	MF_NO_RETRY = 1 << 6,
3439 };
3440 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3441 		      unsigned long count, int mf_flags);
3442 extern int memory_failure(unsigned long pfn, int flags);
3443 extern void memory_failure_queue_kick(int cpu);
3444 extern int unpoison_memory(unsigned long pfn);
3445 extern int sysctl_memory_failure_early_kill;
3446 extern int sysctl_memory_failure_recovery;
3447 extern void shake_page(struct page *p);
3448 extern atomic_long_t num_poisoned_pages __read_mostly;
3449 extern int soft_offline_page(unsigned long pfn, int flags);
3450 #ifdef CONFIG_MEMORY_FAILURE
3451 extern void memory_failure_queue(unsigned long pfn, int flags);
3452 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3453 					bool *migratable_cleared);
3454 void num_poisoned_pages_inc(unsigned long pfn);
3455 void num_poisoned_pages_sub(unsigned long pfn, long i);
3456 #else
3457 static inline void memory_failure_queue(unsigned long pfn, int flags)
3458 {
3459 }
3460 
3461 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3462 					bool *migratable_cleared)
3463 {
3464 	return 0;
3465 }
3466 
3467 static inline void num_poisoned_pages_inc(unsigned long pfn)
3468 {
3469 }
3470 
3471 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3472 {
3473 }
3474 #endif
3475 
3476 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3477 extern void memblk_nr_poison_inc(unsigned long pfn);
3478 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3479 #else
3480 static inline void memblk_nr_poison_inc(unsigned long pfn)
3481 {
3482 }
3483 
3484 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3485 {
3486 }
3487 #endif
3488 
3489 #ifndef arch_memory_failure
3490 static inline int arch_memory_failure(unsigned long pfn, int flags)
3491 {
3492 	return -ENXIO;
3493 }
3494 #endif
3495 
3496 #ifndef arch_is_platform_page
3497 static inline bool arch_is_platform_page(u64 paddr)
3498 {
3499 	return false;
3500 }
3501 #endif
3502 
3503 /*
3504  * Error handlers for various types of pages.
3505  */
3506 enum mf_result {
3507 	MF_IGNORED,	/* Error: cannot be handled */
3508 	MF_FAILED,	/* Error: handling failed */
3509 	MF_DELAYED,	/* Will be handled later */
3510 	MF_RECOVERED,	/* Successfully recovered */
3511 };
3512 
3513 enum mf_action_page_type {
3514 	MF_MSG_KERNEL,
3515 	MF_MSG_KERNEL_HIGH_ORDER,
3516 	MF_MSG_SLAB,
3517 	MF_MSG_DIFFERENT_COMPOUND,
3518 	MF_MSG_HUGE,
3519 	MF_MSG_FREE_HUGE,
3520 	MF_MSG_UNMAP_FAILED,
3521 	MF_MSG_DIRTY_SWAPCACHE,
3522 	MF_MSG_CLEAN_SWAPCACHE,
3523 	MF_MSG_DIRTY_MLOCKED_LRU,
3524 	MF_MSG_CLEAN_MLOCKED_LRU,
3525 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3526 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3527 	MF_MSG_DIRTY_LRU,
3528 	MF_MSG_CLEAN_LRU,
3529 	MF_MSG_TRUNCATED_LRU,
3530 	MF_MSG_BUDDY,
3531 	MF_MSG_DAX,
3532 	MF_MSG_UNSPLIT_THP,
3533 	MF_MSG_UNKNOWN,
3534 };
3535 
3536 /*
3537  * Sysfs entries for memory failure handling statistics.
3538  */
3539 extern const struct attribute_group memory_failure_attr_group;
3540 
3541 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3542 extern void clear_huge_page(struct page *page,
3543 			    unsigned long addr_hint,
3544 			    unsigned int pages_per_huge_page);
3545 extern void copy_user_huge_page(struct page *dst, struct page *src,
3546 				unsigned long addr_hint,
3547 				struct vm_area_struct *vma,
3548 				unsigned int pages_per_huge_page);
3549 extern long copy_huge_page_from_user(struct page *dst_page,
3550 				const void __user *usr_src,
3551 				unsigned int pages_per_huge_page,
3552 				bool allow_pagefault);
3553 
3554 /**
3555  * vma_is_special_huge - Are transhuge page-table entries considered special?
3556  * @vma: Pointer to the struct vm_area_struct to consider
3557  *
3558  * Whether transhuge page-table entries are considered "special" following
3559  * the definition in vm_normal_page().
3560  *
3561  * Return: true if transhuge page-table entries should be considered special,
3562  * false otherwise.
3563  */
3564 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3565 {
3566 	return vma_is_dax(vma) || (vma->vm_file &&
3567 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3568 }
3569 
3570 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3571 
3572 #ifdef CONFIG_DEBUG_PAGEALLOC
3573 extern unsigned int _debug_guardpage_minorder;
3574 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3575 
3576 static inline unsigned int debug_guardpage_minorder(void)
3577 {
3578 	return _debug_guardpage_minorder;
3579 }
3580 
3581 static inline bool debug_guardpage_enabled(void)
3582 {
3583 	return static_branch_unlikely(&_debug_guardpage_enabled);
3584 }
3585 
3586 static inline bool page_is_guard(struct page *page)
3587 {
3588 	if (!debug_guardpage_enabled())
3589 		return false;
3590 
3591 	return PageGuard(page);
3592 }
3593 #else
3594 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3595 static inline bool debug_guardpage_enabled(void) { return false; }
3596 static inline bool page_is_guard(struct page *page) { return false; }
3597 #endif /* CONFIG_DEBUG_PAGEALLOC */
3598 
3599 #if MAX_NUMNODES > 1
3600 void __init setup_nr_node_ids(void);
3601 #else
3602 static inline void setup_nr_node_ids(void) {}
3603 #endif
3604 
3605 extern int memcmp_pages(struct page *page1, struct page *page2);
3606 
3607 static inline int pages_identical(struct page *page1, struct page *page2)
3608 {
3609 	return !memcmp_pages(page1, page2);
3610 }
3611 
3612 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3613 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3614 						pgoff_t first_index, pgoff_t nr,
3615 						pgoff_t bitmap_pgoff,
3616 						unsigned long *bitmap,
3617 						pgoff_t *start,
3618 						pgoff_t *end);
3619 
3620 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3621 				      pgoff_t first_index, pgoff_t nr);
3622 #endif
3623 
3624 extern int sysctl_nr_trim_pages;
3625 
3626 #ifdef CONFIG_PRINTK
3627 void mem_dump_obj(void *object);
3628 #else
3629 static inline void mem_dump_obj(void *object) {}
3630 #endif
3631 
3632 /**
3633  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3634  * @seals: the seals to check
3635  * @vma: the vma to operate on
3636  *
3637  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3638  * the vma flags.  Return 0 if check pass, or <0 for errors.
3639  */
3640 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3641 {
3642 	if (seals & F_SEAL_FUTURE_WRITE) {
3643 		/*
3644 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3645 		 * "future write" seal active.
3646 		 */
3647 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3648 			return -EPERM;
3649 
3650 		/*
3651 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3652 		 * MAP_SHARED and read-only, take care to not allow mprotect to
3653 		 * revert protections on such mappings. Do this only for shared
3654 		 * mappings. For private mappings, don't need to mask
3655 		 * VM_MAYWRITE as we still want them to be COW-writable.
3656 		 */
3657 		if (vma->vm_flags & VM_SHARED)
3658 			vm_flags_clear(vma, VM_MAYWRITE);
3659 	}
3660 
3661 	return 0;
3662 }
3663 
3664 #ifdef CONFIG_ANON_VMA_NAME
3665 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3666 			  unsigned long len_in,
3667 			  struct anon_vma_name *anon_name);
3668 #else
3669 static inline int
3670 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3671 		      unsigned long len_in, struct anon_vma_name *anon_name) {
3672 	return 0;
3673 }
3674 #endif
3675 
3676 #endif /* _LINUX_MM_H */
3677