xref: /linux/include/linux/mmzone.h (revision 84b9b44b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <asm/page.h>
26 
27 /* Free memory management - zoned buddy allocator.  */
28 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
29 #define MAX_ORDER 10
30 #else
31 #define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
32 #endif
33 #define MAX_ORDER_NR_PAGES (1 << MAX_ORDER)
34 
35 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
36 
37 /*
38  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
39  * costly to service.  That is between allocation orders which should
40  * coalesce naturally under reasonable reclaim pressure and those which
41  * will not.
42  */
43 #define PAGE_ALLOC_COSTLY_ORDER 3
44 
45 enum migratetype {
46 	MIGRATE_UNMOVABLE,
47 	MIGRATE_MOVABLE,
48 	MIGRATE_RECLAIMABLE,
49 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
50 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
51 #ifdef CONFIG_CMA
52 	/*
53 	 * MIGRATE_CMA migration type is designed to mimic the way
54 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
55 	 * from MIGRATE_CMA pageblocks and page allocator never
56 	 * implicitly change migration type of MIGRATE_CMA pageblock.
57 	 *
58 	 * The way to use it is to change migratetype of a range of
59 	 * pageblocks to MIGRATE_CMA which can be done by
60 	 * __free_pageblock_cma() function.
61 	 */
62 	MIGRATE_CMA,
63 #endif
64 #ifdef CONFIG_MEMORY_ISOLATION
65 	MIGRATE_ISOLATE,	/* can't allocate from here */
66 #endif
67 	MIGRATE_TYPES
68 };
69 
70 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
71 extern const char * const migratetype_names[MIGRATE_TYPES];
72 
73 #ifdef CONFIG_CMA
74 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
75 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
76 #else
77 #  define is_migrate_cma(migratetype) false
78 #  define is_migrate_cma_page(_page) false
79 #endif
80 
81 static inline bool is_migrate_movable(int mt)
82 {
83 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
84 }
85 
86 /*
87  * Check whether a migratetype can be merged with another migratetype.
88  *
89  * It is only mergeable when it can fall back to other migratetypes for
90  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
91  */
92 static inline bool migratetype_is_mergeable(int mt)
93 {
94 	return mt < MIGRATE_PCPTYPES;
95 }
96 
97 #define for_each_migratetype_order(order, type) \
98 	for (order = 0; order <= MAX_ORDER; order++) \
99 		for (type = 0; type < MIGRATE_TYPES; type++)
100 
101 extern int page_group_by_mobility_disabled;
102 
103 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
104 
105 #define get_pageblock_migratetype(page)					\
106 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
107 
108 struct free_area {
109 	struct list_head	free_list[MIGRATE_TYPES];
110 	unsigned long		nr_free;
111 };
112 
113 struct pglist_data;
114 
115 #ifdef CONFIG_NUMA
116 enum numa_stat_item {
117 	NUMA_HIT,		/* allocated in intended node */
118 	NUMA_MISS,		/* allocated in non intended node */
119 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
120 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
121 	NUMA_LOCAL,		/* allocation from local node */
122 	NUMA_OTHER,		/* allocation from other node */
123 	NR_VM_NUMA_EVENT_ITEMS
124 };
125 #else
126 #define NR_VM_NUMA_EVENT_ITEMS 0
127 #endif
128 
129 enum zone_stat_item {
130 	/* First 128 byte cacheline (assuming 64 bit words) */
131 	NR_FREE_PAGES,
132 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
133 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
134 	NR_ZONE_ACTIVE_ANON,
135 	NR_ZONE_INACTIVE_FILE,
136 	NR_ZONE_ACTIVE_FILE,
137 	NR_ZONE_UNEVICTABLE,
138 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
139 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
140 	/* Second 128 byte cacheline */
141 	NR_BOUNCE,
142 #if IS_ENABLED(CONFIG_ZSMALLOC)
143 	NR_ZSPAGES,		/* allocated in zsmalloc */
144 #endif
145 	NR_FREE_CMA_PAGES,
146 #ifdef CONFIG_UNACCEPTED_MEMORY
147 	NR_UNACCEPTED,
148 #endif
149 	NR_VM_ZONE_STAT_ITEMS };
150 
151 enum node_stat_item {
152 	NR_LRU_BASE,
153 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
154 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
155 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
156 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
157 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
158 	NR_SLAB_RECLAIMABLE_B,
159 	NR_SLAB_UNRECLAIMABLE_B,
160 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
161 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
162 	WORKINGSET_NODES,
163 	WORKINGSET_REFAULT_BASE,
164 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
165 	WORKINGSET_REFAULT_FILE,
166 	WORKINGSET_ACTIVATE_BASE,
167 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
168 	WORKINGSET_ACTIVATE_FILE,
169 	WORKINGSET_RESTORE_BASE,
170 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
171 	WORKINGSET_RESTORE_FILE,
172 	WORKINGSET_NODERECLAIM,
173 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
174 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
175 			   only modified from process context */
176 	NR_FILE_PAGES,
177 	NR_FILE_DIRTY,
178 	NR_WRITEBACK,
179 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
180 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
181 	NR_SHMEM_THPS,
182 	NR_SHMEM_PMDMAPPED,
183 	NR_FILE_THPS,
184 	NR_FILE_PMDMAPPED,
185 	NR_ANON_THPS,
186 	NR_VMSCAN_WRITE,
187 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
188 	NR_DIRTIED,		/* page dirtyings since bootup */
189 	NR_WRITTEN,		/* page writings since bootup */
190 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
191 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
192 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
193 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
194 	NR_KERNEL_STACK_KB,	/* measured in KiB */
195 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
196 	NR_KERNEL_SCS_KB,	/* measured in KiB */
197 #endif
198 	NR_PAGETABLE,		/* used for pagetables */
199 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
200 #ifdef CONFIG_SWAP
201 	NR_SWAPCACHE,
202 #endif
203 #ifdef CONFIG_NUMA_BALANCING
204 	PGPROMOTE_SUCCESS,	/* promote successfully */
205 	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */
206 #endif
207 	NR_VM_NODE_STAT_ITEMS
208 };
209 
210 /*
211  * Returns true if the item should be printed in THPs (/proc/vmstat
212  * currently prints number of anon, file and shmem THPs. But the item
213  * is charged in pages).
214  */
215 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
216 {
217 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
218 		return false;
219 
220 	return item == NR_ANON_THPS ||
221 	       item == NR_FILE_THPS ||
222 	       item == NR_SHMEM_THPS ||
223 	       item == NR_SHMEM_PMDMAPPED ||
224 	       item == NR_FILE_PMDMAPPED;
225 }
226 
227 /*
228  * Returns true if the value is measured in bytes (most vmstat values are
229  * measured in pages). This defines the API part, the internal representation
230  * might be different.
231  */
232 static __always_inline bool vmstat_item_in_bytes(int idx)
233 {
234 	/*
235 	 * Global and per-node slab counters track slab pages.
236 	 * It's expected that changes are multiples of PAGE_SIZE.
237 	 * Internally values are stored in pages.
238 	 *
239 	 * Per-memcg and per-lruvec counters track memory, consumed
240 	 * by individual slab objects. These counters are actually
241 	 * byte-precise.
242 	 */
243 	return (idx == NR_SLAB_RECLAIMABLE_B ||
244 		idx == NR_SLAB_UNRECLAIMABLE_B);
245 }
246 
247 /*
248  * We do arithmetic on the LRU lists in various places in the code,
249  * so it is important to keep the active lists LRU_ACTIVE higher in
250  * the array than the corresponding inactive lists, and to keep
251  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
252  *
253  * This has to be kept in sync with the statistics in zone_stat_item
254  * above and the descriptions in vmstat_text in mm/vmstat.c
255  */
256 #define LRU_BASE 0
257 #define LRU_ACTIVE 1
258 #define LRU_FILE 2
259 
260 enum lru_list {
261 	LRU_INACTIVE_ANON = LRU_BASE,
262 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
263 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
264 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
265 	LRU_UNEVICTABLE,
266 	NR_LRU_LISTS
267 };
268 
269 enum vmscan_throttle_state {
270 	VMSCAN_THROTTLE_WRITEBACK,
271 	VMSCAN_THROTTLE_ISOLATED,
272 	VMSCAN_THROTTLE_NOPROGRESS,
273 	VMSCAN_THROTTLE_CONGESTED,
274 	NR_VMSCAN_THROTTLE,
275 };
276 
277 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
278 
279 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
280 
281 static inline bool is_file_lru(enum lru_list lru)
282 {
283 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
284 }
285 
286 static inline bool is_active_lru(enum lru_list lru)
287 {
288 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
289 }
290 
291 #define WORKINGSET_ANON 0
292 #define WORKINGSET_FILE 1
293 #define ANON_AND_FILE 2
294 
295 enum lruvec_flags {
296 	LRUVEC_CONGESTED,		/* lruvec has many dirty pages
297 					 * backed by a congested BDI
298 					 */
299 };
300 
301 #endif /* !__GENERATING_BOUNDS_H */
302 
303 /*
304  * Evictable pages are divided into multiple generations. The youngest and the
305  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
306  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
307  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
308  * corresponding generation. The gen counter in folio->flags stores gen+1 while
309  * a page is on one of lrugen->folios[]. Otherwise it stores 0.
310  *
311  * A page is added to the youngest generation on faulting. The aging needs to
312  * check the accessed bit at least twice before handing this page over to the
313  * eviction. The first check takes care of the accessed bit set on the initial
314  * fault; the second check makes sure this page hasn't been used since then.
315  * This process, AKA second chance, requires a minimum of two generations,
316  * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
317  * LRU, e.g., /proc/vmstat, these two generations are considered active; the
318  * rest of generations, if they exist, are considered inactive. See
319  * lru_gen_is_active().
320  *
321  * PG_active is always cleared while a page is on one of lrugen->folios[] so
322  * that the aging needs not to worry about it. And it's set again when a page
323  * considered active is isolated for non-reclaiming purposes, e.g., migration.
324  * See lru_gen_add_folio() and lru_gen_del_folio().
325  *
326  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
327  * number of categories of the active/inactive LRU when keeping track of
328  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
329  * in folio->flags.
330  */
331 #define MIN_NR_GENS		2U
332 #define MAX_NR_GENS		4U
333 
334 /*
335  * Each generation is divided into multiple tiers. A page accessed N times
336  * through file descriptors is in tier order_base_2(N). A page in the first tier
337  * (N=0,1) is marked by PG_referenced unless it was faulted in through page
338  * tables or read ahead. A page in any other tier (N>1) is marked by
339  * PG_referenced and PG_workingset. This implies a minimum of two tiers is
340  * supported without using additional bits in folio->flags.
341  *
342  * In contrast to moving across generations which requires the LRU lock, moving
343  * across tiers only involves atomic operations on folio->flags and therefore
344  * has a negligible cost in the buffered access path. In the eviction path,
345  * comparisons of refaulted/(evicted+protected) from the first tier and the
346  * rest infer whether pages accessed multiple times through file descriptors
347  * are statistically hot and thus worth protecting.
348  *
349  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
350  * number of categories of the active/inactive LRU when keeping track of
351  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
352  * folio->flags.
353  */
354 #define MAX_NR_TIERS		4U
355 
356 #ifndef __GENERATING_BOUNDS_H
357 
358 struct lruvec;
359 struct page_vma_mapped_walk;
360 
361 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
362 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
363 
364 #ifdef CONFIG_LRU_GEN
365 
366 enum {
367 	LRU_GEN_ANON,
368 	LRU_GEN_FILE,
369 };
370 
371 enum {
372 	LRU_GEN_CORE,
373 	LRU_GEN_MM_WALK,
374 	LRU_GEN_NONLEAF_YOUNG,
375 	NR_LRU_GEN_CAPS
376 };
377 
378 #define MIN_LRU_BATCH		BITS_PER_LONG
379 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
380 
381 /* whether to keep historical stats from evicted generations */
382 #ifdef CONFIG_LRU_GEN_STATS
383 #define NR_HIST_GENS		MAX_NR_GENS
384 #else
385 #define NR_HIST_GENS		1U
386 #endif
387 
388 /*
389  * The youngest generation number is stored in max_seq for both anon and file
390  * types as they are aged on an equal footing. The oldest generation numbers are
391  * stored in min_seq[] separately for anon and file types as clean file pages
392  * can be evicted regardless of swap constraints.
393  *
394  * Normally anon and file min_seq are in sync. But if swapping is constrained,
395  * e.g., out of swap space, file min_seq is allowed to advance and leave anon
396  * min_seq behind.
397  *
398  * The number of pages in each generation is eventually consistent and therefore
399  * can be transiently negative when reset_batch_size() is pending.
400  */
401 struct lru_gen_folio {
402 	/* the aging increments the youngest generation number */
403 	unsigned long max_seq;
404 	/* the eviction increments the oldest generation numbers */
405 	unsigned long min_seq[ANON_AND_FILE];
406 	/* the birth time of each generation in jiffies */
407 	unsigned long timestamps[MAX_NR_GENS];
408 	/* the multi-gen LRU lists, lazily sorted on eviction */
409 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
410 	/* the multi-gen LRU sizes, eventually consistent */
411 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
412 	/* the exponential moving average of refaulted */
413 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
414 	/* the exponential moving average of evicted+protected */
415 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
416 	/* the first tier doesn't need protection, hence the minus one */
417 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
418 	/* can be modified without holding the LRU lock */
419 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
420 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
421 	/* whether the multi-gen LRU is enabled */
422 	bool enabled;
423 #ifdef CONFIG_MEMCG
424 	/* the memcg generation this lru_gen_folio belongs to */
425 	u8 gen;
426 	/* the list segment this lru_gen_folio belongs to */
427 	u8 seg;
428 	/* per-node lru_gen_folio list for global reclaim */
429 	struct hlist_nulls_node list;
430 #endif
431 };
432 
433 enum {
434 	MM_LEAF_TOTAL,		/* total leaf entries */
435 	MM_LEAF_OLD,		/* old leaf entries */
436 	MM_LEAF_YOUNG,		/* young leaf entries */
437 	MM_NONLEAF_TOTAL,	/* total non-leaf entries */
438 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
439 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
440 	NR_MM_STATS
441 };
442 
443 /* double-buffering Bloom filters */
444 #define NR_BLOOM_FILTERS	2
445 
446 struct lru_gen_mm_state {
447 	/* set to max_seq after each iteration */
448 	unsigned long seq;
449 	/* where the current iteration continues after */
450 	struct list_head *head;
451 	/* where the last iteration ended before */
452 	struct list_head *tail;
453 	/* Bloom filters flip after each iteration */
454 	unsigned long *filters[NR_BLOOM_FILTERS];
455 	/* the mm stats for debugging */
456 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
457 };
458 
459 struct lru_gen_mm_walk {
460 	/* the lruvec under reclaim */
461 	struct lruvec *lruvec;
462 	/* unstable max_seq from lru_gen_folio */
463 	unsigned long max_seq;
464 	/* the next address within an mm to scan */
465 	unsigned long next_addr;
466 	/* to batch promoted pages */
467 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
468 	/* to batch the mm stats */
469 	int mm_stats[NR_MM_STATS];
470 	/* total batched items */
471 	int batched;
472 	bool can_swap;
473 	bool force_scan;
474 };
475 
476 void lru_gen_init_lruvec(struct lruvec *lruvec);
477 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
478 
479 #ifdef CONFIG_MEMCG
480 
481 /*
482  * For each node, memcgs are divided into two generations: the old and the
483  * young. For each generation, memcgs are randomly sharded into multiple bins
484  * to improve scalability. For each bin, the hlist_nulls is virtually divided
485  * into three segments: the head, the tail and the default.
486  *
487  * An onlining memcg is added to the tail of a random bin in the old generation.
488  * The eviction starts at the head of a random bin in the old generation. The
489  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
490  * the old generation, is incremented when all its bins become empty.
491  *
492  * There are four operations:
493  * 1. MEMCG_LRU_HEAD, which moves an memcg to the head of a random bin in its
494  *    current generation (old or young) and updates its "seg" to "head";
495  * 2. MEMCG_LRU_TAIL, which moves an memcg to the tail of a random bin in its
496  *    current generation (old or young) and updates its "seg" to "tail";
497  * 3. MEMCG_LRU_OLD, which moves an memcg to the head of a random bin in the old
498  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
499  * 4. MEMCG_LRU_YOUNG, which moves an memcg to the tail of a random bin in the
500  *    young generation, updates its "gen" to "young" and resets its "seg" to
501  *    "default".
502  *
503  * The events that trigger the above operations are:
504  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
505  * 2. The first attempt to reclaim an memcg below low, which triggers
506  *    MEMCG_LRU_TAIL;
507  * 3. The first attempt to reclaim an memcg below reclaimable size threshold,
508  *    which triggers MEMCG_LRU_TAIL;
509  * 4. The second attempt to reclaim an memcg below reclaimable size threshold,
510  *    which triggers MEMCG_LRU_YOUNG;
511  * 5. Attempting to reclaim an memcg below min, which triggers MEMCG_LRU_YOUNG;
512  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
513  * 7. Offlining an memcg, which triggers MEMCG_LRU_OLD.
514  *
515  * Note that memcg LRU only applies to global reclaim, and the round-robin
516  * incrementing of their max_seq counters ensures the eventual fairness to all
517  * eligible memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
518  */
519 #define MEMCG_NR_GENS	2
520 #define MEMCG_NR_BINS	8
521 
522 struct lru_gen_memcg {
523 	/* the per-node memcg generation counter */
524 	unsigned long seq;
525 	/* each memcg has one lru_gen_folio per node */
526 	unsigned long nr_memcgs[MEMCG_NR_GENS];
527 	/* per-node lru_gen_folio list for global reclaim */
528 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
529 	/* protects the above */
530 	spinlock_t lock;
531 };
532 
533 void lru_gen_init_pgdat(struct pglist_data *pgdat);
534 
535 void lru_gen_init_memcg(struct mem_cgroup *memcg);
536 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
537 void lru_gen_online_memcg(struct mem_cgroup *memcg);
538 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
539 void lru_gen_release_memcg(struct mem_cgroup *memcg);
540 void lru_gen_soft_reclaim(struct lruvec *lruvec);
541 
542 #else /* !CONFIG_MEMCG */
543 
544 #define MEMCG_NR_GENS	1
545 
546 struct lru_gen_memcg {
547 };
548 
549 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
550 {
551 }
552 
553 #endif /* CONFIG_MEMCG */
554 
555 #else /* !CONFIG_LRU_GEN */
556 
557 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
558 {
559 }
560 
561 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
562 {
563 }
564 
565 static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
566 {
567 }
568 
569 #ifdef CONFIG_MEMCG
570 
571 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
572 {
573 }
574 
575 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
576 {
577 }
578 
579 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
580 {
581 }
582 
583 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
584 {
585 }
586 
587 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
588 {
589 }
590 
591 static inline void lru_gen_soft_reclaim(struct lruvec *lruvec)
592 {
593 }
594 
595 #endif /* CONFIG_MEMCG */
596 
597 #endif /* CONFIG_LRU_GEN */
598 
599 struct lruvec {
600 	struct list_head		lists[NR_LRU_LISTS];
601 	/* per lruvec lru_lock for memcg */
602 	spinlock_t			lru_lock;
603 	/*
604 	 * These track the cost of reclaiming one LRU - file or anon -
605 	 * over the other. As the observed cost of reclaiming one LRU
606 	 * increases, the reclaim scan balance tips toward the other.
607 	 */
608 	unsigned long			anon_cost;
609 	unsigned long			file_cost;
610 	/* Non-resident age, driven by LRU movement */
611 	atomic_long_t			nonresident_age;
612 	/* Refaults at the time of last reclaim cycle */
613 	unsigned long			refaults[ANON_AND_FILE];
614 	/* Various lruvec state flags (enum lruvec_flags) */
615 	unsigned long			flags;
616 #ifdef CONFIG_LRU_GEN
617 	/* evictable pages divided into generations */
618 	struct lru_gen_folio		lrugen;
619 	/* to concurrently iterate lru_gen_mm_list */
620 	struct lru_gen_mm_state		mm_state;
621 #endif
622 #ifdef CONFIG_MEMCG
623 	struct pglist_data *pgdat;
624 #endif
625 };
626 
627 /* Isolate unmapped pages */
628 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x2)
629 /* Isolate for asynchronous migration */
630 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
631 /* Isolate unevictable pages */
632 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
633 
634 /* LRU Isolation modes. */
635 typedef unsigned __bitwise isolate_mode_t;
636 
637 enum zone_watermarks {
638 	WMARK_MIN,
639 	WMARK_LOW,
640 	WMARK_HIGH,
641 	WMARK_PROMO,
642 	NR_WMARK
643 };
644 
645 /*
646  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
647  * for THP which will usually be GFP_MOVABLE. Even if it is another type,
648  * it should not contribute to serious fragmentation causing THP allocation
649  * failures.
650  */
651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
652 #define NR_PCP_THP 1
653 #else
654 #define NR_PCP_THP 0
655 #endif
656 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
657 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
658 
659 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
660 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
661 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
662 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
663 
664 /* Fields and list protected by pagesets local_lock in page_alloc.c */
665 struct per_cpu_pages {
666 	spinlock_t lock;	/* Protects lists field */
667 	int count;		/* number of pages in the list */
668 	int high;		/* high watermark, emptying needed */
669 	int batch;		/* chunk size for buddy add/remove */
670 	short free_factor;	/* batch scaling factor during free */
671 #ifdef CONFIG_NUMA
672 	short expire;		/* When 0, remote pagesets are drained */
673 #endif
674 
675 	/* Lists of pages, one per migrate type stored on the pcp-lists */
676 	struct list_head lists[NR_PCP_LISTS];
677 } ____cacheline_aligned_in_smp;
678 
679 struct per_cpu_zonestat {
680 #ifdef CONFIG_SMP
681 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
682 	s8 stat_threshold;
683 #endif
684 #ifdef CONFIG_NUMA
685 	/*
686 	 * Low priority inaccurate counters that are only folded
687 	 * on demand. Use a large type to avoid the overhead of
688 	 * folding during refresh_cpu_vm_stats.
689 	 */
690 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
691 #endif
692 };
693 
694 struct per_cpu_nodestat {
695 	s8 stat_threshold;
696 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
697 };
698 
699 #endif /* !__GENERATING_BOUNDS.H */
700 
701 enum zone_type {
702 	/*
703 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
704 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
705 	 * On architectures where this area covers the whole 32 bit address
706 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
707 	 * DMA addressing constraints. This distinction is important as a 32bit
708 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
709 	 * platforms may need both zones as they support peripherals with
710 	 * different DMA addressing limitations.
711 	 */
712 #ifdef CONFIG_ZONE_DMA
713 	ZONE_DMA,
714 #endif
715 #ifdef CONFIG_ZONE_DMA32
716 	ZONE_DMA32,
717 #endif
718 	/*
719 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
720 	 * performed on pages in ZONE_NORMAL if the DMA devices support
721 	 * transfers to all addressable memory.
722 	 */
723 	ZONE_NORMAL,
724 #ifdef CONFIG_HIGHMEM
725 	/*
726 	 * A memory area that is only addressable by the kernel through
727 	 * mapping portions into its own address space. This is for example
728 	 * used by i386 to allow the kernel to address the memory beyond
729 	 * 900MB. The kernel will set up special mappings (page
730 	 * table entries on i386) for each page that the kernel needs to
731 	 * access.
732 	 */
733 	ZONE_HIGHMEM,
734 #endif
735 	/*
736 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
737 	 * movable pages with few exceptional cases described below. Main use
738 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
739 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
740 	 * to increase the number of THP/huge pages. Notable special cases are:
741 	 *
742 	 * 1. Pinned pages: (long-term) pinning of movable pages might
743 	 *    essentially turn such pages unmovable. Therefore, we do not allow
744 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
745 	 *    faulted, they come from the right zone right away. However, it is
746 	 *    still possible that address space already has pages in
747 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
748 	 *    touches that memory before pinning). In such case we migrate them
749 	 *    to a different zone. When migration fails - pinning fails.
750 	 * 2. memblock allocations: kernelcore/movablecore setups might create
751 	 *    situations where ZONE_MOVABLE contains unmovable allocations
752 	 *    after boot. Memory offlining and allocations fail early.
753 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
754 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
755 	 *    for example, if we have sections that are only partially
756 	 *    populated. Memory offlining and allocations fail early.
757 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
758 	 *    memory offlining, such pages cannot be allocated.
759 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
760 	 *    hotplugged memory blocks might only partially be managed by the
761 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
762 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
763 	 *    some cases (virtio-mem), such pages can be skipped during
764 	 *    memory offlining, however, cannot be moved/allocated. These
765 	 *    techniques might use alloc_contig_range() to hide previously
766 	 *    exposed pages from the buddy again (e.g., to implement some sort
767 	 *    of memory unplug in virtio-mem).
768 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
769 	 *    situations where ZERO_PAGE(0) which is allocated differently
770 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
771 	 *    cannot be migrated.
772 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
773 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
774 	 *    such zone. Such pages cannot be really moved around as they are
775 	 *    self-stored in the range, but they are treated as movable when
776 	 *    the range they describe is about to be offlined.
777 	 *
778 	 * In general, no unmovable allocations that degrade memory offlining
779 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
780 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
781 	 * if has_unmovable_pages() states that there are no unmovable pages,
782 	 * there can be false negatives).
783 	 */
784 	ZONE_MOVABLE,
785 #ifdef CONFIG_ZONE_DEVICE
786 	ZONE_DEVICE,
787 #endif
788 	__MAX_NR_ZONES
789 
790 };
791 
792 #ifndef __GENERATING_BOUNDS_H
793 
794 #define ASYNC_AND_SYNC 2
795 
796 struct zone {
797 	/* Read-mostly fields */
798 
799 	/* zone watermarks, access with *_wmark_pages(zone) macros */
800 	unsigned long _watermark[NR_WMARK];
801 	unsigned long watermark_boost;
802 
803 	unsigned long nr_reserved_highatomic;
804 
805 	/*
806 	 * We don't know if the memory that we're going to allocate will be
807 	 * freeable or/and it will be released eventually, so to avoid totally
808 	 * wasting several GB of ram we must reserve some of the lower zone
809 	 * memory (otherwise we risk to run OOM on the lower zones despite
810 	 * there being tons of freeable ram on the higher zones).  This array is
811 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
812 	 * changes.
813 	 */
814 	long lowmem_reserve[MAX_NR_ZONES];
815 
816 #ifdef CONFIG_NUMA
817 	int node;
818 #endif
819 	struct pglist_data	*zone_pgdat;
820 	struct per_cpu_pages	__percpu *per_cpu_pageset;
821 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
822 	/*
823 	 * the high and batch values are copied to individual pagesets for
824 	 * faster access
825 	 */
826 	int pageset_high;
827 	int pageset_batch;
828 
829 #ifndef CONFIG_SPARSEMEM
830 	/*
831 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
832 	 * In SPARSEMEM, this map is stored in struct mem_section
833 	 */
834 	unsigned long		*pageblock_flags;
835 #endif /* CONFIG_SPARSEMEM */
836 
837 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
838 	unsigned long		zone_start_pfn;
839 
840 	/*
841 	 * spanned_pages is the total pages spanned by the zone, including
842 	 * holes, which is calculated as:
843 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
844 	 *
845 	 * present_pages is physical pages existing within the zone, which
846 	 * is calculated as:
847 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
848 	 *
849 	 * present_early_pages is present pages existing within the zone
850 	 * located on memory available since early boot, excluding hotplugged
851 	 * memory.
852 	 *
853 	 * managed_pages is present pages managed by the buddy system, which
854 	 * is calculated as (reserved_pages includes pages allocated by the
855 	 * bootmem allocator):
856 	 *	managed_pages = present_pages - reserved_pages;
857 	 *
858 	 * cma pages is present pages that are assigned for CMA use
859 	 * (MIGRATE_CMA).
860 	 *
861 	 * So present_pages may be used by memory hotplug or memory power
862 	 * management logic to figure out unmanaged pages by checking
863 	 * (present_pages - managed_pages). And managed_pages should be used
864 	 * by page allocator and vm scanner to calculate all kinds of watermarks
865 	 * and thresholds.
866 	 *
867 	 * Locking rules:
868 	 *
869 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
870 	 * It is a seqlock because it has to be read outside of zone->lock,
871 	 * and it is done in the main allocator path.  But, it is written
872 	 * quite infrequently.
873 	 *
874 	 * The span_seq lock is declared along with zone->lock because it is
875 	 * frequently read in proximity to zone->lock.  It's good to
876 	 * give them a chance of being in the same cacheline.
877 	 *
878 	 * Write access to present_pages at runtime should be protected by
879 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
880 	 * present_pages should use get_online_mems() to get a stable value.
881 	 */
882 	atomic_long_t		managed_pages;
883 	unsigned long		spanned_pages;
884 	unsigned long		present_pages;
885 #if defined(CONFIG_MEMORY_HOTPLUG)
886 	unsigned long		present_early_pages;
887 #endif
888 #ifdef CONFIG_CMA
889 	unsigned long		cma_pages;
890 #endif
891 
892 	const char		*name;
893 
894 #ifdef CONFIG_MEMORY_ISOLATION
895 	/*
896 	 * Number of isolated pageblock. It is used to solve incorrect
897 	 * freepage counting problem due to racy retrieving migratetype
898 	 * of pageblock. Protected by zone->lock.
899 	 */
900 	unsigned long		nr_isolate_pageblock;
901 #endif
902 
903 #ifdef CONFIG_MEMORY_HOTPLUG
904 	/* see spanned/present_pages for more description */
905 	seqlock_t		span_seqlock;
906 #endif
907 
908 	int initialized;
909 
910 	/* Write-intensive fields used from the page allocator */
911 	CACHELINE_PADDING(_pad1_);
912 
913 	/* free areas of different sizes */
914 	struct free_area	free_area[MAX_ORDER + 1];
915 
916 #ifdef CONFIG_UNACCEPTED_MEMORY
917 	/* Pages to be accepted. All pages on the list are MAX_ORDER */
918 	struct list_head	unaccepted_pages;
919 #endif
920 
921 	/* zone flags, see below */
922 	unsigned long		flags;
923 
924 	/* Primarily protects free_area */
925 	spinlock_t		lock;
926 
927 	/* Write-intensive fields used by compaction and vmstats. */
928 	CACHELINE_PADDING(_pad2_);
929 
930 	/*
931 	 * When free pages are below this point, additional steps are taken
932 	 * when reading the number of free pages to avoid per-cpu counter
933 	 * drift allowing watermarks to be breached
934 	 */
935 	unsigned long percpu_drift_mark;
936 
937 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
938 	/* pfn where compaction free scanner should start */
939 	unsigned long		compact_cached_free_pfn;
940 	/* pfn where compaction migration scanner should start */
941 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
942 	unsigned long		compact_init_migrate_pfn;
943 	unsigned long		compact_init_free_pfn;
944 #endif
945 
946 #ifdef CONFIG_COMPACTION
947 	/*
948 	 * On compaction failure, 1<<compact_defer_shift compactions
949 	 * are skipped before trying again. The number attempted since
950 	 * last failure is tracked with compact_considered.
951 	 * compact_order_failed is the minimum compaction failed order.
952 	 */
953 	unsigned int		compact_considered;
954 	unsigned int		compact_defer_shift;
955 	int			compact_order_failed;
956 #endif
957 
958 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
959 	/* Set to true when the PG_migrate_skip bits should be cleared */
960 	bool			compact_blockskip_flush;
961 #endif
962 
963 	bool			contiguous;
964 
965 	CACHELINE_PADDING(_pad3_);
966 	/* Zone statistics */
967 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
968 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
969 } ____cacheline_internodealigned_in_smp;
970 
971 enum pgdat_flags {
972 	PGDAT_DIRTY,			/* reclaim scanning has recently found
973 					 * many dirty file pages at the tail
974 					 * of the LRU.
975 					 */
976 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
977 					 * many pages under writeback
978 					 */
979 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
980 };
981 
982 enum zone_flags {
983 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
984 					 * Cleared when kswapd is woken.
985 					 */
986 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
987 };
988 
989 static inline unsigned long zone_managed_pages(struct zone *zone)
990 {
991 	return (unsigned long)atomic_long_read(&zone->managed_pages);
992 }
993 
994 static inline unsigned long zone_cma_pages(struct zone *zone)
995 {
996 #ifdef CONFIG_CMA
997 	return zone->cma_pages;
998 #else
999 	return 0;
1000 #endif
1001 }
1002 
1003 static inline unsigned long zone_end_pfn(const struct zone *zone)
1004 {
1005 	return zone->zone_start_pfn + zone->spanned_pages;
1006 }
1007 
1008 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1009 {
1010 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1011 }
1012 
1013 static inline bool zone_is_initialized(struct zone *zone)
1014 {
1015 	return zone->initialized;
1016 }
1017 
1018 static inline bool zone_is_empty(struct zone *zone)
1019 {
1020 	return zone->spanned_pages == 0;
1021 }
1022 
1023 #ifndef BUILD_VDSO32_64
1024 /*
1025  * The zone field is never updated after free_area_init_core()
1026  * sets it, so none of the operations on it need to be atomic.
1027  */
1028 
1029 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1030 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1031 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1032 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1033 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1034 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1035 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1036 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1037 
1038 /*
1039  * Define the bit shifts to access each section.  For non-existent
1040  * sections we define the shift as 0; that plus a 0 mask ensures
1041  * the compiler will optimise away reference to them.
1042  */
1043 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1044 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1045 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1046 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1047 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1048 
1049 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1050 #ifdef NODE_NOT_IN_PAGE_FLAGS
1051 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1052 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1053 						SECTIONS_PGOFF : ZONES_PGOFF)
1054 #else
1055 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1056 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1057 						NODES_PGOFF : ZONES_PGOFF)
1058 #endif
1059 
1060 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1061 
1062 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1063 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1064 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1065 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1066 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1067 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1068 
1069 static inline enum zone_type page_zonenum(const struct page *page)
1070 {
1071 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1072 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1073 }
1074 
1075 static inline enum zone_type folio_zonenum(const struct folio *folio)
1076 {
1077 	return page_zonenum(&folio->page);
1078 }
1079 
1080 #ifdef CONFIG_ZONE_DEVICE
1081 static inline bool is_zone_device_page(const struct page *page)
1082 {
1083 	return page_zonenum(page) == ZONE_DEVICE;
1084 }
1085 
1086 /*
1087  * Consecutive zone device pages should not be merged into the same sgl
1088  * or bvec segment with other types of pages or if they belong to different
1089  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1090  * without scanning the entire segment. This helper returns true either if
1091  * both pages are not zone device pages or both pages are zone device pages
1092  * with the same pgmap.
1093  */
1094 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1095 						     const struct page *b)
1096 {
1097 	if (is_zone_device_page(a) != is_zone_device_page(b))
1098 		return false;
1099 	if (!is_zone_device_page(a))
1100 		return true;
1101 	return a->pgmap == b->pgmap;
1102 }
1103 
1104 extern void memmap_init_zone_device(struct zone *, unsigned long,
1105 				    unsigned long, struct dev_pagemap *);
1106 #else
1107 static inline bool is_zone_device_page(const struct page *page)
1108 {
1109 	return false;
1110 }
1111 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1112 						     const struct page *b)
1113 {
1114 	return true;
1115 }
1116 #endif
1117 
1118 static inline bool folio_is_zone_device(const struct folio *folio)
1119 {
1120 	return is_zone_device_page(&folio->page);
1121 }
1122 
1123 static inline bool is_zone_movable_page(const struct page *page)
1124 {
1125 	return page_zonenum(page) == ZONE_MOVABLE;
1126 }
1127 #endif
1128 
1129 /*
1130  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1131  * intersection with the given zone
1132  */
1133 static inline bool zone_intersects(struct zone *zone,
1134 		unsigned long start_pfn, unsigned long nr_pages)
1135 {
1136 	if (zone_is_empty(zone))
1137 		return false;
1138 	if (start_pfn >= zone_end_pfn(zone) ||
1139 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1140 		return false;
1141 
1142 	return true;
1143 }
1144 
1145 /*
1146  * The "priority" of VM scanning is how much of the queues we will scan in one
1147  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1148  * queues ("queue_length >> 12") during an aging round.
1149  */
1150 #define DEF_PRIORITY 12
1151 
1152 /* Maximum number of zones on a zonelist */
1153 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1154 
1155 enum {
1156 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1157 #ifdef CONFIG_NUMA
1158 	/*
1159 	 * The NUMA zonelists are doubled because we need zonelists that
1160 	 * restrict the allocations to a single node for __GFP_THISNODE.
1161 	 */
1162 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1163 #endif
1164 	MAX_ZONELISTS
1165 };
1166 
1167 /*
1168  * This struct contains information about a zone in a zonelist. It is stored
1169  * here to avoid dereferences into large structures and lookups of tables
1170  */
1171 struct zoneref {
1172 	struct zone *zone;	/* Pointer to actual zone */
1173 	int zone_idx;		/* zone_idx(zoneref->zone) */
1174 };
1175 
1176 /*
1177  * One allocation request operates on a zonelist. A zonelist
1178  * is a list of zones, the first one is the 'goal' of the
1179  * allocation, the other zones are fallback zones, in decreasing
1180  * priority.
1181  *
1182  * To speed the reading of the zonelist, the zonerefs contain the zone index
1183  * of the entry being read. Helper functions to access information given
1184  * a struct zoneref are
1185  *
1186  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1187  * zonelist_zone_idx()	- Return the index of the zone for an entry
1188  * zonelist_node_idx()	- Return the index of the node for an entry
1189  */
1190 struct zonelist {
1191 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1192 };
1193 
1194 /*
1195  * The array of struct pages for flatmem.
1196  * It must be declared for SPARSEMEM as well because there are configurations
1197  * that rely on that.
1198  */
1199 extern struct page *mem_map;
1200 
1201 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1202 struct deferred_split {
1203 	spinlock_t split_queue_lock;
1204 	struct list_head split_queue;
1205 	unsigned long split_queue_len;
1206 };
1207 #endif
1208 
1209 #ifdef CONFIG_MEMORY_FAILURE
1210 /*
1211  * Per NUMA node memory failure handling statistics.
1212  */
1213 struct memory_failure_stats {
1214 	/*
1215 	 * Number of raw pages poisoned.
1216 	 * Cases not accounted: memory outside kernel control, offline page,
1217 	 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1218 	 * error events, and unpoison actions from hwpoison_unpoison.
1219 	 */
1220 	unsigned long total;
1221 	/*
1222 	 * Recovery results of poisoned raw pages handled by memory_failure,
1223 	 * in sync with mf_result.
1224 	 * total = ignored + failed + delayed + recovered.
1225 	 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1226 	 */
1227 	unsigned long ignored;
1228 	unsigned long failed;
1229 	unsigned long delayed;
1230 	unsigned long recovered;
1231 };
1232 #endif
1233 
1234 /*
1235  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1236  * it's memory layout. On UMA machines there is a single pglist_data which
1237  * describes the whole memory.
1238  *
1239  * Memory statistics and page replacement data structures are maintained on a
1240  * per-zone basis.
1241  */
1242 typedef struct pglist_data {
1243 	/*
1244 	 * node_zones contains just the zones for THIS node. Not all of the
1245 	 * zones may be populated, but it is the full list. It is referenced by
1246 	 * this node's node_zonelists as well as other node's node_zonelists.
1247 	 */
1248 	struct zone node_zones[MAX_NR_ZONES];
1249 
1250 	/*
1251 	 * node_zonelists contains references to all zones in all nodes.
1252 	 * Generally the first zones will be references to this node's
1253 	 * node_zones.
1254 	 */
1255 	struct zonelist node_zonelists[MAX_ZONELISTS];
1256 
1257 	int nr_zones; /* number of populated zones in this node */
1258 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1259 	struct page *node_mem_map;
1260 #ifdef CONFIG_PAGE_EXTENSION
1261 	struct page_ext *node_page_ext;
1262 #endif
1263 #endif
1264 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1265 	/*
1266 	 * Must be held any time you expect node_start_pfn,
1267 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1268 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1269 	 * init.
1270 	 *
1271 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1272 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1273 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1274 	 *
1275 	 * Nests above zone->lock and zone->span_seqlock
1276 	 */
1277 	spinlock_t node_size_lock;
1278 #endif
1279 	unsigned long node_start_pfn;
1280 	unsigned long node_present_pages; /* total number of physical pages */
1281 	unsigned long node_spanned_pages; /* total size of physical page
1282 					     range, including holes */
1283 	int node_id;
1284 	wait_queue_head_t kswapd_wait;
1285 	wait_queue_head_t pfmemalloc_wait;
1286 
1287 	/* workqueues for throttling reclaim for different reasons. */
1288 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1289 
1290 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1291 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1292 					 * when throttling started. */
1293 #ifdef CONFIG_MEMORY_HOTPLUG
1294 	struct mutex kswapd_lock;
1295 #endif
1296 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1297 	int kswapd_order;
1298 	enum zone_type kswapd_highest_zoneidx;
1299 
1300 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
1301 
1302 #ifdef CONFIG_COMPACTION
1303 	int kcompactd_max_order;
1304 	enum zone_type kcompactd_highest_zoneidx;
1305 	wait_queue_head_t kcompactd_wait;
1306 	struct task_struct *kcompactd;
1307 	bool proactive_compact_trigger;
1308 #endif
1309 	/*
1310 	 * This is a per-node reserve of pages that are not available
1311 	 * to userspace allocations.
1312 	 */
1313 	unsigned long		totalreserve_pages;
1314 
1315 #ifdef CONFIG_NUMA
1316 	/*
1317 	 * node reclaim becomes active if more unmapped pages exist.
1318 	 */
1319 	unsigned long		min_unmapped_pages;
1320 	unsigned long		min_slab_pages;
1321 #endif /* CONFIG_NUMA */
1322 
1323 	/* Write-intensive fields used by page reclaim */
1324 	CACHELINE_PADDING(_pad1_);
1325 
1326 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1327 	/*
1328 	 * If memory initialisation on large machines is deferred then this
1329 	 * is the first PFN that needs to be initialised.
1330 	 */
1331 	unsigned long first_deferred_pfn;
1332 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1333 
1334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1335 	struct deferred_split deferred_split_queue;
1336 #endif
1337 
1338 #ifdef CONFIG_NUMA_BALANCING
1339 	/* start time in ms of current promote rate limit period */
1340 	unsigned int nbp_rl_start;
1341 	/* number of promote candidate pages at start time of current rate limit period */
1342 	unsigned long nbp_rl_nr_cand;
1343 	/* promote threshold in ms */
1344 	unsigned int nbp_threshold;
1345 	/* start time in ms of current promote threshold adjustment period */
1346 	unsigned int nbp_th_start;
1347 	/*
1348 	 * number of promote candidate pages at start time of current promote
1349 	 * threshold adjustment period
1350 	 */
1351 	unsigned long nbp_th_nr_cand;
1352 #endif
1353 	/* Fields commonly accessed by the page reclaim scanner */
1354 
1355 	/*
1356 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1357 	 *
1358 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1359 	 */
1360 	struct lruvec		__lruvec;
1361 
1362 	unsigned long		flags;
1363 
1364 #ifdef CONFIG_LRU_GEN
1365 	/* kswap mm walk data */
1366 	struct lru_gen_mm_walk mm_walk;
1367 	/* lru_gen_folio list */
1368 	struct lru_gen_memcg memcg_lru;
1369 #endif
1370 
1371 	CACHELINE_PADDING(_pad2_);
1372 
1373 	/* Per-node vmstats */
1374 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1375 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1376 #ifdef CONFIG_NUMA
1377 	struct memory_tier __rcu *memtier;
1378 #endif
1379 #ifdef CONFIG_MEMORY_FAILURE
1380 	struct memory_failure_stats mf_stats;
1381 #endif
1382 } pg_data_t;
1383 
1384 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1385 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1386 
1387 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1388 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1389 
1390 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1391 {
1392 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1393 }
1394 
1395 #include <linux/memory_hotplug.h>
1396 
1397 void build_all_zonelists(pg_data_t *pgdat);
1398 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1399 		   enum zone_type highest_zoneidx);
1400 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1401 			 int highest_zoneidx, unsigned int alloc_flags,
1402 			 long free_pages);
1403 bool zone_watermark_ok(struct zone *z, unsigned int order,
1404 		unsigned long mark, int highest_zoneidx,
1405 		unsigned int alloc_flags);
1406 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1407 		unsigned long mark, int highest_zoneidx);
1408 /*
1409  * Memory initialization context, use to differentiate memory added by
1410  * the platform statically or via memory hotplug interface.
1411  */
1412 enum meminit_context {
1413 	MEMINIT_EARLY,
1414 	MEMINIT_HOTPLUG,
1415 };
1416 
1417 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1418 				     unsigned long size);
1419 
1420 extern void lruvec_init(struct lruvec *lruvec);
1421 
1422 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1423 {
1424 #ifdef CONFIG_MEMCG
1425 	return lruvec->pgdat;
1426 #else
1427 	return container_of(lruvec, struct pglist_data, __lruvec);
1428 #endif
1429 }
1430 
1431 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1432 int local_memory_node(int node_id);
1433 #else
1434 static inline int local_memory_node(int node_id) { return node_id; };
1435 #endif
1436 
1437 /*
1438  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1439  */
1440 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1441 
1442 #ifdef CONFIG_ZONE_DEVICE
1443 static inline bool zone_is_zone_device(struct zone *zone)
1444 {
1445 	return zone_idx(zone) == ZONE_DEVICE;
1446 }
1447 #else
1448 static inline bool zone_is_zone_device(struct zone *zone)
1449 {
1450 	return false;
1451 }
1452 #endif
1453 
1454 /*
1455  * Returns true if a zone has pages managed by the buddy allocator.
1456  * All the reclaim decisions have to use this function rather than
1457  * populated_zone(). If the whole zone is reserved then we can easily
1458  * end up with populated_zone() && !managed_zone().
1459  */
1460 static inline bool managed_zone(struct zone *zone)
1461 {
1462 	return zone_managed_pages(zone);
1463 }
1464 
1465 /* Returns true if a zone has memory */
1466 static inline bool populated_zone(struct zone *zone)
1467 {
1468 	return zone->present_pages;
1469 }
1470 
1471 #ifdef CONFIG_NUMA
1472 static inline int zone_to_nid(struct zone *zone)
1473 {
1474 	return zone->node;
1475 }
1476 
1477 static inline void zone_set_nid(struct zone *zone, int nid)
1478 {
1479 	zone->node = nid;
1480 }
1481 #else
1482 static inline int zone_to_nid(struct zone *zone)
1483 {
1484 	return 0;
1485 }
1486 
1487 static inline void zone_set_nid(struct zone *zone, int nid) {}
1488 #endif
1489 
1490 extern int movable_zone;
1491 
1492 static inline int is_highmem_idx(enum zone_type idx)
1493 {
1494 #ifdef CONFIG_HIGHMEM
1495 	return (idx == ZONE_HIGHMEM ||
1496 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1497 #else
1498 	return 0;
1499 #endif
1500 }
1501 
1502 /**
1503  * is_highmem - helper function to quickly check if a struct zone is a
1504  *              highmem zone or not.  This is an attempt to keep references
1505  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1506  * @zone: pointer to struct zone variable
1507  * Return: 1 for a highmem zone, 0 otherwise
1508  */
1509 static inline int is_highmem(struct zone *zone)
1510 {
1511 	return is_highmem_idx(zone_idx(zone));
1512 }
1513 
1514 #ifdef CONFIG_ZONE_DMA
1515 bool has_managed_dma(void);
1516 #else
1517 static inline bool has_managed_dma(void)
1518 {
1519 	return false;
1520 }
1521 #endif
1522 
1523 /* These two functions are used to setup the per zone pages min values */
1524 struct ctl_table;
1525 
1526 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
1527 		loff_t *);
1528 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
1529 		size_t *, loff_t *);
1530 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
1531 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1532 		size_t *, loff_t *);
1533 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int,
1534 		void *, size_t *, loff_t *);
1535 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
1536 		void *, size_t *, loff_t *);
1537 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
1538 		void *, size_t *, loff_t *);
1539 int numa_zonelist_order_handler(struct ctl_table *, int,
1540 		void *, size_t *, loff_t *);
1541 extern int percpu_pagelist_high_fraction;
1542 extern char numa_zonelist_order[];
1543 #define NUMA_ZONELIST_ORDER_LEN	16
1544 
1545 #ifndef CONFIG_NUMA
1546 
1547 extern struct pglist_data contig_page_data;
1548 static inline struct pglist_data *NODE_DATA(int nid)
1549 {
1550 	return &contig_page_data;
1551 }
1552 
1553 #else /* CONFIG_NUMA */
1554 
1555 #include <asm/mmzone.h>
1556 
1557 #endif /* !CONFIG_NUMA */
1558 
1559 extern struct pglist_data *first_online_pgdat(void);
1560 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1561 extern struct zone *next_zone(struct zone *zone);
1562 
1563 /**
1564  * for_each_online_pgdat - helper macro to iterate over all online nodes
1565  * @pgdat: pointer to a pg_data_t variable
1566  */
1567 #define for_each_online_pgdat(pgdat)			\
1568 	for (pgdat = first_online_pgdat();		\
1569 	     pgdat;					\
1570 	     pgdat = next_online_pgdat(pgdat))
1571 /**
1572  * for_each_zone - helper macro to iterate over all memory zones
1573  * @zone: pointer to struct zone variable
1574  *
1575  * The user only needs to declare the zone variable, for_each_zone
1576  * fills it in.
1577  */
1578 #define for_each_zone(zone)			        \
1579 	for (zone = (first_online_pgdat())->node_zones; \
1580 	     zone;					\
1581 	     zone = next_zone(zone))
1582 
1583 #define for_each_populated_zone(zone)		        \
1584 	for (zone = (first_online_pgdat())->node_zones; \
1585 	     zone;					\
1586 	     zone = next_zone(zone))			\
1587 		if (!populated_zone(zone))		\
1588 			; /* do nothing */		\
1589 		else
1590 
1591 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1592 {
1593 	return zoneref->zone;
1594 }
1595 
1596 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1597 {
1598 	return zoneref->zone_idx;
1599 }
1600 
1601 static inline int zonelist_node_idx(struct zoneref *zoneref)
1602 {
1603 	return zone_to_nid(zoneref->zone);
1604 }
1605 
1606 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1607 					enum zone_type highest_zoneidx,
1608 					nodemask_t *nodes);
1609 
1610 /**
1611  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1612  * @z: The cursor used as a starting point for the search
1613  * @highest_zoneidx: The zone index of the highest zone to return
1614  * @nodes: An optional nodemask to filter the zonelist with
1615  *
1616  * This function returns the next zone at or below a given zone index that is
1617  * within the allowed nodemask using a cursor as the starting point for the
1618  * search. The zoneref returned is a cursor that represents the current zone
1619  * being examined. It should be advanced by one before calling
1620  * next_zones_zonelist again.
1621  *
1622  * Return: the next zone at or below highest_zoneidx within the allowed
1623  * nodemask using a cursor within a zonelist as a starting point
1624  */
1625 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1626 					enum zone_type highest_zoneidx,
1627 					nodemask_t *nodes)
1628 {
1629 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1630 		return z;
1631 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1632 }
1633 
1634 /**
1635  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1636  * @zonelist: The zonelist to search for a suitable zone
1637  * @highest_zoneidx: The zone index of the highest zone to return
1638  * @nodes: An optional nodemask to filter the zonelist with
1639  *
1640  * This function returns the first zone at or below a given zone index that is
1641  * within the allowed nodemask. The zoneref returned is a cursor that can be
1642  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1643  * one before calling.
1644  *
1645  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1646  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1647  * update due to cpuset modification.
1648  *
1649  * Return: Zoneref pointer for the first suitable zone found
1650  */
1651 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1652 					enum zone_type highest_zoneidx,
1653 					nodemask_t *nodes)
1654 {
1655 	return next_zones_zonelist(zonelist->_zonerefs,
1656 							highest_zoneidx, nodes);
1657 }
1658 
1659 /**
1660  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1661  * @zone: The current zone in the iterator
1662  * @z: The current pointer within zonelist->_zonerefs being iterated
1663  * @zlist: The zonelist being iterated
1664  * @highidx: The zone index of the highest zone to return
1665  * @nodemask: Nodemask allowed by the allocator
1666  *
1667  * This iterator iterates though all zones at or below a given zone index and
1668  * within a given nodemask
1669  */
1670 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1671 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1672 		zone;							\
1673 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1674 			zone = zonelist_zone(z))
1675 
1676 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1677 	for (zone = z->zone;	\
1678 		zone;							\
1679 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1680 			zone = zonelist_zone(z))
1681 
1682 
1683 /**
1684  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1685  * @zone: The current zone in the iterator
1686  * @z: The current pointer within zonelist->zones being iterated
1687  * @zlist: The zonelist being iterated
1688  * @highidx: The zone index of the highest zone to return
1689  *
1690  * This iterator iterates though all zones at or below a given zone index.
1691  */
1692 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1693 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1694 
1695 /* Whether the 'nodes' are all movable nodes */
1696 static inline bool movable_only_nodes(nodemask_t *nodes)
1697 {
1698 	struct zonelist *zonelist;
1699 	struct zoneref *z;
1700 	int nid;
1701 
1702 	if (nodes_empty(*nodes))
1703 		return false;
1704 
1705 	/*
1706 	 * We can chose arbitrary node from the nodemask to get a
1707 	 * zonelist as they are interlinked. We just need to find
1708 	 * at least one zone that can satisfy kernel allocations.
1709 	 */
1710 	nid = first_node(*nodes);
1711 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1712 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1713 	return (!z->zone) ? true : false;
1714 }
1715 
1716 
1717 #ifdef CONFIG_SPARSEMEM
1718 #include <asm/sparsemem.h>
1719 #endif
1720 
1721 #ifdef CONFIG_FLATMEM
1722 #define pfn_to_nid(pfn)		(0)
1723 #endif
1724 
1725 #ifdef CONFIG_SPARSEMEM
1726 
1727 /*
1728  * PA_SECTION_SHIFT		physical address to/from section number
1729  * PFN_SECTION_SHIFT		pfn to/from section number
1730  */
1731 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1732 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1733 
1734 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1735 
1736 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1737 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1738 
1739 #define SECTION_BLOCKFLAGS_BITS \
1740 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1741 
1742 #if (MAX_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1743 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1744 #endif
1745 
1746 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1747 {
1748 	return pfn >> PFN_SECTION_SHIFT;
1749 }
1750 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1751 {
1752 	return sec << PFN_SECTION_SHIFT;
1753 }
1754 
1755 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1756 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1757 
1758 #define SUBSECTION_SHIFT 21
1759 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1760 
1761 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1762 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1763 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1764 
1765 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1766 #error Subsection size exceeds section size
1767 #else
1768 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1769 #endif
1770 
1771 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1772 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1773 
1774 struct mem_section_usage {
1775 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1776 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1777 #endif
1778 	/* See declaration of similar field in struct zone */
1779 	unsigned long pageblock_flags[0];
1780 };
1781 
1782 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1783 
1784 struct page;
1785 struct page_ext;
1786 struct mem_section {
1787 	/*
1788 	 * This is, logically, a pointer to an array of struct
1789 	 * pages.  However, it is stored with some other magic.
1790 	 * (see sparse.c::sparse_init_one_section())
1791 	 *
1792 	 * Additionally during early boot we encode node id of
1793 	 * the location of the section here to guide allocation.
1794 	 * (see sparse.c::memory_present())
1795 	 *
1796 	 * Making it a UL at least makes someone do a cast
1797 	 * before using it wrong.
1798 	 */
1799 	unsigned long section_mem_map;
1800 
1801 	struct mem_section_usage *usage;
1802 #ifdef CONFIG_PAGE_EXTENSION
1803 	/*
1804 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1805 	 * section. (see page_ext.h about this.)
1806 	 */
1807 	struct page_ext *page_ext;
1808 	unsigned long pad;
1809 #endif
1810 	/*
1811 	 * WARNING: mem_section must be a power-of-2 in size for the
1812 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1813 	 */
1814 };
1815 
1816 #ifdef CONFIG_SPARSEMEM_EXTREME
1817 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1818 #else
1819 #define SECTIONS_PER_ROOT	1
1820 #endif
1821 
1822 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1823 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1824 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1825 
1826 #ifdef CONFIG_SPARSEMEM_EXTREME
1827 extern struct mem_section **mem_section;
1828 #else
1829 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1830 #endif
1831 
1832 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1833 {
1834 	return ms->usage->pageblock_flags;
1835 }
1836 
1837 static inline struct mem_section *__nr_to_section(unsigned long nr)
1838 {
1839 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1840 
1841 	if (unlikely(root >= NR_SECTION_ROOTS))
1842 		return NULL;
1843 
1844 #ifdef CONFIG_SPARSEMEM_EXTREME
1845 	if (!mem_section || !mem_section[root])
1846 		return NULL;
1847 #endif
1848 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1849 }
1850 extern size_t mem_section_usage_size(void);
1851 
1852 /*
1853  * We use the lower bits of the mem_map pointer to store
1854  * a little bit of information.  The pointer is calculated
1855  * as mem_map - section_nr_to_pfn(pnum).  The result is
1856  * aligned to the minimum alignment of the two values:
1857  *   1. All mem_map arrays are page-aligned.
1858  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1859  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1860  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1861  *      worst combination is powerpc with 256k pages,
1862  *      which results in PFN_SECTION_SHIFT equal 6.
1863  * To sum it up, at least 6 bits are available on all architectures.
1864  * However, we can exceed 6 bits on some other architectures except
1865  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1866  * with the worst case of 64K pages on arm64) if we make sure the
1867  * exceeded bit is not applicable to powerpc.
1868  */
1869 enum {
1870 	SECTION_MARKED_PRESENT_BIT,
1871 	SECTION_HAS_MEM_MAP_BIT,
1872 	SECTION_IS_ONLINE_BIT,
1873 	SECTION_IS_EARLY_BIT,
1874 #ifdef CONFIG_ZONE_DEVICE
1875 	SECTION_TAINT_ZONE_DEVICE_BIT,
1876 #endif
1877 	SECTION_MAP_LAST_BIT,
1878 };
1879 
1880 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1881 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1882 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1883 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1884 #ifdef CONFIG_ZONE_DEVICE
1885 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1886 #endif
1887 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1888 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1889 
1890 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1891 {
1892 	unsigned long map = section->section_mem_map;
1893 	map &= SECTION_MAP_MASK;
1894 	return (struct page *)map;
1895 }
1896 
1897 static inline int present_section(struct mem_section *section)
1898 {
1899 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1900 }
1901 
1902 static inline int present_section_nr(unsigned long nr)
1903 {
1904 	return present_section(__nr_to_section(nr));
1905 }
1906 
1907 static inline int valid_section(struct mem_section *section)
1908 {
1909 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1910 }
1911 
1912 static inline int early_section(struct mem_section *section)
1913 {
1914 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1915 }
1916 
1917 static inline int valid_section_nr(unsigned long nr)
1918 {
1919 	return valid_section(__nr_to_section(nr));
1920 }
1921 
1922 static inline int online_section(struct mem_section *section)
1923 {
1924 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1925 }
1926 
1927 #ifdef CONFIG_ZONE_DEVICE
1928 static inline int online_device_section(struct mem_section *section)
1929 {
1930 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1931 
1932 	return section && ((section->section_mem_map & flags) == flags);
1933 }
1934 #else
1935 static inline int online_device_section(struct mem_section *section)
1936 {
1937 	return 0;
1938 }
1939 #endif
1940 
1941 static inline int online_section_nr(unsigned long nr)
1942 {
1943 	return online_section(__nr_to_section(nr));
1944 }
1945 
1946 #ifdef CONFIG_MEMORY_HOTPLUG
1947 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1948 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1949 #endif
1950 
1951 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1952 {
1953 	return __nr_to_section(pfn_to_section_nr(pfn));
1954 }
1955 
1956 extern unsigned long __highest_present_section_nr;
1957 
1958 static inline int subsection_map_index(unsigned long pfn)
1959 {
1960 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1961 }
1962 
1963 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1964 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1965 {
1966 	int idx = subsection_map_index(pfn);
1967 
1968 	return test_bit(idx, ms->usage->subsection_map);
1969 }
1970 #else
1971 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1972 {
1973 	return 1;
1974 }
1975 #endif
1976 
1977 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1978 /**
1979  * pfn_valid - check if there is a valid memory map entry for a PFN
1980  * @pfn: the page frame number to check
1981  *
1982  * Check if there is a valid memory map entry aka struct page for the @pfn.
1983  * Note, that availability of the memory map entry does not imply that
1984  * there is actual usable memory at that @pfn. The struct page may
1985  * represent a hole or an unusable page frame.
1986  *
1987  * Return: 1 for PFNs that have memory map entries and 0 otherwise
1988  */
1989 static inline int pfn_valid(unsigned long pfn)
1990 {
1991 	struct mem_section *ms;
1992 
1993 	/*
1994 	 * Ensure the upper PAGE_SHIFT bits are clear in the
1995 	 * pfn. Else it might lead to false positives when
1996 	 * some of the upper bits are set, but the lower bits
1997 	 * match a valid pfn.
1998 	 */
1999 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2000 		return 0;
2001 
2002 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2003 		return 0;
2004 	ms = __pfn_to_section(pfn);
2005 	if (!valid_section(ms))
2006 		return 0;
2007 	/*
2008 	 * Traditionally early sections always returned pfn_valid() for
2009 	 * the entire section-sized span.
2010 	 */
2011 	return early_section(ms) || pfn_section_valid(ms, pfn);
2012 }
2013 #endif
2014 
2015 static inline int pfn_in_present_section(unsigned long pfn)
2016 {
2017 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2018 		return 0;
2019 	return present_section(__pfn_to_section(pfn));
2020 }
2021 
2022 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2023 {
2024 	while (++section_nr <= __highest_present_section_nr) {
2025 		if (present_section_nr(section_nr))
2026 			return section_nr;
2027 	}
2028 
2029 	return -1;
2030 }
2031 
2032 /*
2033  * These are _only_ used during initialisation, therefore they
2034  * can use __initdata ...  They could have names to indicate
2035  * this restriction.
2036  */
2037 #ifdef CONFIG_NUMA
2038 #define pfn_to_nid(pfn)							\
2039 ({									\
2040 	unsigned long __pfn_to_nid_pfn = (pfn);				\
2041 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2042 })
2043 #else
2044 #define pfn_to_nid(pfn)		(0)
2045 #endif
2046 
2047 void sparse_init(void);
2048 #else
2049 #define sparse_init()	do {} while (0)
2050 #define sparse_index_init(_sec, _nid)  do {} while (0)
2051 #define pfn_in_present_section pfn_valid
2052 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2053 #endif /* CONFIG_SPARSEMEM */
2054 
2055 #endif /* !__GENERATING_BOUNDS.H */
2056 #endif /* !__ASSEMBLY__ */
2057 #endif /* _LINUX_MMZONE_H */
2058