xref: /linux/include/linux/page-flags.h (revision c6fbb759)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Macros for manipulating and testing page->flags
4  */
5 
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8 
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16 
17 /*
18  * Various page->flags bits:
19  *
20  * PG_reserved is set for special pages. The "struct page" of such a page
21  * should in general not be touched (e.g. set dirty) except by its owner.
22  * Pages marked as PG_reserved include:
23  * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24  *   initrd, HW tables)
25  * - Pages reserved or allocated early during boot (before the page allocator
26  *   was initialized). This includes (depending on the architecture) the
27  *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28  *   much more. Once (if ever) freed, PG_reserved is cleared and they will
29  *   be given to the page allocator.
30  * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31  *   to read/write these pages might end badly. Don't touch!
32  * - The zero page(s)
33  * - Pages not added to the page allocator when onlining a section because
34  *   they were excluded via the online_page_callback() or because they are
35  *   PG_hwpoison.
36  * - Pages allocated in the context of kexec/kdump (loaded kernel image,
37  *   control pages, vmcoreinfo)
38  * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
39  *   not marked PG_reserved (as they might be in use by somebody else who does
40  *   not respect the caching strategy).
41  * - Pages part of an offline section (struct pages of offline sections should
42  *   not be trusted as they will be initialized when first onlined).
43  * - MCA pages on ia64
44  * - Pages holding CPU notes for POWER Firmware Assisted Dump
45  * - Device memory (e.g. PMEM, DAX, HMM)
46  * Some PG_reserved pages will be excluded from the hibernation image.
47  * PG_reserved does in general not hinder anybody from dumping or swapping
48  * and is no longer required for remap_pfn_range(). ioremap might require it.
49  * Consequently, PG_reserved for a page mapped into user space can indicate
50  * the zero page, the vDSO, MMIO pages or device memory.
51  *
52  * The PG_private bitflag is set on pagecache pages if they contain filesystem
53  * specific data (which is normally at page->private). It can be used by
54  * private allocations for its own usage.
55  *
56  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
57  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
58  * is set before writeback starts and cleared when it finishes.
59  *
60  * PG_locked also pins a page in pagecache, and blocks truncation of the file
61  * while it is held.
62  *
63  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
64  * to become unlocked.
65  *
66  * PG_swapbacked is set when a page uses swap as a backing storage.  This are
67  * usually PageAnon or shmem pages but please note that even anonymous pages
68  * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
69  * a result of MADV_FREE).
70  *
71  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
72  * file-backed pagecache (see mm/vmscan.c).
73  *
74  * PG_error is set to indicate that an I/O error occurred on this page.
75  *
76  * PG_arch_1 is an architecture specific page state bit.  The generic code
77  * guarantees that this bit is cleared for a page when it first is entered into
78  * the page cache.
79  *
80  * PG_hwpoison indicates that a page got corrupted in hardware and contains
81  * data with incorrect ECC bits that triggered a machine check. Accessing is
82  * not safe since it may cause another machine check. Don't touch!
83  */
84 
85 /*
86  * Don't use the pageflags directly.  Use the PageFoo macros.
87  *
88  * The page flags field is split into two parts, the main flags area
89  * which extends from the low bits upwards, and the fields area which
90  * extends from the high bits downwards.
91  *
92  *  | FIELD | ... | FLAGS |
93  *  N-1           ^       0
94  *               (NR_PAGEFLAGS)
95  *
96  * The fields area is reserved for fields mapping zone, node (for NUMA) and
97  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
98  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
99  */
100 enum pageflags {
101 	PG_locked,		/* Page is locked. Don't touch. */
102 	PG_referenced,
103 	PG_uptodate,
104 	PG_dirty,
105 	PG_lru,
106 	PG_active,
107 	PG_workingset,
108 	PG_waiters,		/* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
109 	PG_error,
110 	PG_slab,
111 	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use*/
112 	PG_arch_1,
113 	PG_reserved,
114 	PG_private,		/* If pagecache, has fs-private data */
115 	PG_private_2,		/* If pagecache, has fs aux data */
116 	PG_writeback,		/* Page is under writeback */
117 	PG_head,		/* A head page */
118 	PG_mappedtodisk,	/* Has blocks allocated on-disk */
119 	PG_reclaim,		/* To be reclaimed asap */
120 	PG_swapbacked,		/* Page is backed by RAM/swap */
121 	PG_unevictable,		/* Page is "unevictable"  */
122 #ifdef CONFIG_MMU
123 	PG_mlocked,		/* Page is vma mlocked */
124 #endif
125 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
126 	PG_uncached,		/* Page has been mapped as uncached */
127 #endif
128 #ifdef CONFIG_MEMORY_FAILURE
129 	PG_hwpoison,		/* hardware poisoned page. Don't touch */
130 #endif
131 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
132 	PG_young,
133 	PG_idle,
134 #endif
135 #ifdef CONFIG_64BIT
136 	PG_arch_2,
137 #endif
138 #ifdef CONFIG_KASAN_HW_TAGS
139 	PG_skip_kasan_poison,
140 #endif
141 	__NR_PAGEFLAGS,
142 
143 	PG_readahead = PG_reclaim,
144 
145 	/*
146 	 * Depending on the way an anonymous folio can be mapped into a page
147 	 * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped
148 	 * THP), PG_anon_exclusive may be set only for the head page or for
149 	 * tail pages of an anonymous folio. For now, we only expect it to be
150 	 * set on tail pages for PTE-mapped THP.
151 	 */
152 	PG_anon_exclusive = PG_mappedtodisk,
153 
154 	/* Filesystems */
155 	PG_checked = PG_owner_priv_1,
156 
157 	/* SwapBacked */
158 	PG_swapcache = PG_owner_priv_1,	/* Swap page: swp_entry_t in private */
159 
160 	/* Two page bits are conscripted by FS-Cache to maintain local caching
161 	 * state.  These bits are set on pages belonging to the netfs's inodes
162 	 * when those inodes are being locally cached.
163 	 */
164 	PG_fscache = PG_private_2,	/* page backed by cache */
165 
166 	/* XEN */
167 	/* Pinned in Xen as a read-only pagetable page. */
168 	PG_pinned = PG_owner_priv_1,
169 	/* Pinned as part of domain save (see xen_mm_pin_all()). */
170 	PG_savepinned = PG_dirty,
171 	/* Has a grant mapping of another (foreign) domain's page. */
172 	PG_foreign = PG_owner_priv_1,
173 	/* Remapped by swiotlb-xen. */
174 	PG_xen_remapped = PG_owner_priv_1,
175 
176 	/* SLOB */
177 	PG_slob_free = PG_private,
178 
179 	/* Compound pages. Stored in first tail page's flags */
180 	PG_double_map = PG_workingset,
181 
182 #ifdef CONFIG_MEMORY_FAILURE
183 	/*
184 	 * Compound pages. Stored in first tail page's flags.
185 	 * Indicates that at least one subpage is hwpoisoned in the
186 	 * THP.
187 	 */
188 	PG_has_hwpoisoned = PG_error,
189 #endif
190 
191 	/* non-lru isolated movable page */
192 	PG_isolated = PG_reclaim,
193 
194 	/* Only valid for buddy pages. Used to track pages that are reported */
195 	PG_reported = PG_uptodate,
196 
197 #ifdef CONFIG_MEMORY_HOTPLUG
198 	/* For self-hosted memmap pages */
199 	PG_vmemmap_self_hosted = PG_owner_priv_1,
200 #endif
201 };
202 
203 #define PAGEFLAGS_MASK		((1UL << NR_PAGEFLAGS) - 1)
204 
205 #ifndef __GENERATING_BOUNDS_H
206 
207 #ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
208 DECLARE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
209 
210 /*
211  * Return the real head page struct iff the @page is a fake head page, otherwise
212  * return the @page itself. See Documentation/mm/vmemmap_dedup.rst.
213  */
214 static __always_inline const struct page *page_fixed_fake_head(const struct page *page)
215 {
216 	if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key))
217 		return page;
218 
219 	/*
220 	 * Only addresses aligned with PAGE_SIZE of struct page may be fake head
221 	 * struct page. The alignment check aims to avoid access the fields (
222 	 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly)
223 	 * cold cacheline in some cases.
224 	 */
225 	if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) &&
226 	    test_bit(PG_head, &page->flags)) {
227 		/*
228 		 * We can safely access the field of the @page[1] with PG_head
229 		 * because the @page is a compound page composed with at least
230 		 * two contiguous pages.
231 		 */
232 		unsigned long head = READ_ONCE(page[1].compound_head);
233 
234 		if (likely(head & 1))
235 			return (const struct page *)(head - 1);
236 	}
237 	return page;
238 }
239 #else
240 static inline const struct page *page_fixed_fake_head(const struct page *page)
241 {
242 	return page;
243 }
244 #endif
245 
246 static __always_inline int page_is_fake_head(struct page *page)
247 {
248 	return page_fixed_fake_head(page) != page;
249 }
250 
251 static inline unsigned long _compound_head(const struct page *page)
252 {
253 	unsigned long head = READ_ONCE(page->compound_head);
254 
255 	if (unlikely(head & 1))
256 		return head - 1;
257 	return (unsigned long)page_fixed_fake_head(page);
258 }
259 
260 #define compound_head(page)	((typeof(page))_compound_head(page))
261 
262 /**
263  * page_folio - Converts from page to folio.
264  * @p: The page.
265  *
266  * Every page is part of a folio.  This function cannot be called on a
267  * NULL pointer.
268  *
269  * Context: No reference, nor lock is required on @page.  If the caller
270  * does not hold a reference, this call may race with a folio split, so
271  * it should re-check the folio still contains this page after gaining
272  * a reference on the folio.
273  * Return: The folio which contains this page.
274  */
275 #define page_folio(p)		(_Generic((p),				\
276 	const struct page *:	(const struct folio *)_compound_head(p), \
277 	struct page *:		(struct folio *)_compound_head(p)))
278 
279 /**
280  * folio_page - Return a page from a folio.
281  * @folio: The folio.
282  * @n: The page number to return.
283  *
284  * @n is relative to the start of the folio.  This function does not
285  * check that the page number lies within @folio; the caller is presumed
286  * to have a reference to the page.
287  */
288 #define folio_page(folio, n)	nth_page(&(folio)->page, n)
289 
290 static __always_inline int PageTail(struct page *page)
291 {
292 	return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page);
293 }
294 
295 static __always_inline int PageCompound(struct page *page)
296 {
297 	return test_bit(PG_head, &page->flags) ||
298 	       READ_ONCE(page->compound_head) & 1;
299 }
300 
301 #define	PAGE_POISON_PATTERN	-1l
302 static inline int PagePoisoned(const struct page *page)
303 {
304 	return READ_ONCE(page->flags) == PAGE_POISON_PATTERN;
305 }
306 
307 #ifdef CONFIG_DEBUG_VM
308 void page_init_poison(struct page *page, size_t size);
309 #else
310 static inline void page_init_poison(struct page *page, size_t size)
311 {
312 }
313 #endif
314 
315 static unsigned long *folio_flags(struct folio *folio, unsigned n)
316 {
317 	struct page *page = &folio->page;
318 
319 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
320 	VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
321 	return &page[n].flags;
322 }
323 
324 /*
325  * Page flags policies wrt compound pages
326  *
327  * PF_POISONED_CHECK
328  *     check if this struct page poisoned/uninitialized
329  *
330  * PF_ANY:
331  *     the page flag is relevant for small, head and tail pages.
332  *
333  * PF_HEAD:
334  *     for compound page all operations related to the page flag applied to
335  *     head page.
336  *
337  * PF_ONLY_HEAD:
338  *     for compound page, callers only ever operate on the head page.
339  *
340  * PF_NO_TAIL:
341  *     modifications of the page flag must be done on small or head pages,
342  *     checks can be done on tail pages too.
343  *
344  * PF_NO_COMPOUND:
345  *     the page flag is not relevant for compound pages.
346  *
347  * PF_SECOND:
348  *     the page flag is stored in the first tail page.
349  */
350 #define PF_POISONED_CHECK(page) ({					\
351 		VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);		\
352 		page; })
353 #define PF_ANY(page, enforce)	PF_POISONED_CHECK(page)
354 #define PF_HEAD(page, enforce)	PF_POISONED_CHECK(compound_head(page))
355 #define PF_ONLY_HEAD(page, enforce) ({					\
356 		VM_BUG_ON_PGFLAGS(PageTail(page), page);		\
357 		PF_POISONED_CHECK(page); })
358 #define PF_NO_TAIL(page, enforce) ({					\
359 		VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);	\
360 		PF_POISONED_CHECK(compound_head(page)); })
361 #define PF_NO_COMPOUND(page, enforce) ({				\
362 		VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page);	\
363 		PF_POISONED_CHECK(page); })
364 #define PF_SECOND(page, enforce) ({					\
365 		VM_BUG_ON_PGFLAGS(!PageHead(page), page);		\
366 		PF_POISONED_CHECK(&page[1]); })
367 
368 /* Which page is the flag stored in */
369 #define FOLIO_PF_ANY		0
370 #define FOLIO_PF_HEAD		0
371 #define FOLIO_PF_ONLY_HEAD	0
372 #define FOLIO_PF_NO_TAIL	0
373 #define FOLIO_PF_NO_COMPOUND	0
374 #define FOLIO_PF_SECOND		1
375 
376 /*
377  * Macros to create function definitions for page flags
378  */
379 #define TESTPAGEFLAG(uname, lname, policy)				\
380 static __always_inline bool folio_test_##lname(struct folio *folio)	\
381 { return test_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }	\
382 static __always_inline int Page##uname(struct page *page)		\
383 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
384 
385 #define SETPAGEFLAG(uname, lname, policy)				\
386 static __always_inline							\
387 void folio_set_##lname(struct folio *folio)				\
388 { set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
389 static __always_inline void SetPage##uname(struct page *page)		\
390 { set_bit(PG_##lname, &policy(page, 1)->flags); }
391 
392 #define CLEARPAGEFLAG(uname, lname, policy)				\
393 static __always_inline							\
394 void folio_clear_##lname(struct folio *folio)				\
395 { clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
396 static __always_inline void ClearPage##uname(struct page *page)		\
397 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
398 
399 #define __SETPAGEFLAG(uname, lname, policy)				\
400 static __always_inline							\
401 void __folio_set_##lname(struct folio *folio)				\
402 { __set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
403 static __always_inline void __SetPage##uname(struct page *page)		\
404 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
405 
406 #define __CLEARPAGEFLAG(uname, lname, policy)				\
407 static __always_inline							\
408 void __folio_clear_##lname(struct folio *folio)				\
409 { __clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }	\
410 static __always_inline void __ClearPage##uname(struct page *page)	\
411 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
412 
413 #define TESTSETFLAG(uname, lname, policy)				\
414 static __always_inline							\
415 bool folio_test_set_##lname(struct folio *folio)			\
416 { return test_and_set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
417 static __always_inline int TestSetPage##uname(struct page *page)	\
418 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
419 
420 #define TESTCLEARFLAG(uname, lname, policy)				\
421 static __always_inline							\
422 bool folio_test_clear_##lname(struct folio *folio)			\
423 { return test_and_clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
424 static __always_inline int TestClearPage##uname(struct page *page)	\
425 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
426 
427 #define PAGEFLAG(uname, lname, policy)					\
428 	TESTPAGEFLAG(uname, lname, policy)				\
429 	SETPAGEFLAG(uname, lname, policy)				\
430 	CLEARPAGEFLAG(uname, lname, policy)
431 
432 #define __PAGEFLAG(uname, lname, policy)				\
433 	TESTPAGEFLAG(uname, lname, policy)				\
434 	__SETPAGEFLAG(uname, lname, policy)				\
435 	__CLEARPAGEFLAG(uname, lname, policy)
436 
437 #define TESTSCFLAG(uname, lname, policy)				\
438 	TESTSETFLAG(uname, lname, policy)				\
439 	TESTCLEARFLAG(uname, lname, policy)
440 
441 #define TESTPAGEFLAG_FALSE(uname, lname)				\
442 static inline bool folio_test_##lname(const struct folio *folio) { return false; } \
443 static inline int Page##uname(const struct page *page) { return 0; }
444 
445 #define SETPAGEFLAG_NOOP(uname, lname)					\
446 static inline void folio_set_##lname(struct folio *folio) { }		\
447 static inline void SetPage##uname(struct page *page) {  }
448 
449 #define CLEARPAGEFLAG_NOOP(uname, lname)				\
450 static inline void folio_clear_##lname(struct folio *folio) { }		\
451 static inline void ClearPage##uname(struct page *page) {  }
452 
453 #define __CLEARPAGEFLAG_NOOP(uname, lname)				\
454 static inline void __folio_clear_##lname(struct folio *folio) { }	\
455 static inline void __ClearPage##uname(struct page *page) {  }
456 
457 #define TESTSETFLAG_FALSE(uname, lname)					\
458 static inline bool folio_test_set_##lname(struct folio *folio)		\
459 { return 0; }								\
460 static inline int TestSetPage##uname(struct page *page) { return 0; }
461 
462 #define TESTCLEARFLAG_FALSE(uname, lname)				\
463 static inline bool folio_test_clear_##lname(struct folio *folio)	\
464 { return 0; }								\
465 static inline int TestClearPage##uname(struct page *page) { return 0; }
466 
467 #define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname)	\
468 	SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname)
469 
470 #define TESTSCFLAG_FALSE(uname, lname)					\
471 	TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname)
472 
473 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
474 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
475 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
476 PAGEFLAG(Referenced, referenced, PF_HEAD)
477 	TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
478 	__SETPAGEFLAG(Referenced, referenced, PF_HEAD)
479 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
480 	__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
481 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
482 	TESTCLEARFLAG(LRU, lru, PF_HEAD)
483 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
484 	TESTCLEARFLAG(Active, active, PF_HEAD)
485 PAGEFLAG(Workingset, workingset, PF_HEAD)
486 	TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
487 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
488 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
489 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)	   /* Used by some filesystems */
490 
491 /* Xen */
492 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
493 	TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
494 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
495 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
496 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
497 	TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
498 
499 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
500 	__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
501 	__SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
502 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
503 	__CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
504 	__SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
505 
506 /*
507  * Private page markings that may be used by the filesystem that owns the page
508  * for its own purposes.
509  * - PG_private and PG_private_2 cause release_folio() and co to be invoked
510  */
511 PAGEFLAG(Private, private, PF_ANY)
512 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
513 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
514 	TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
515 
516 /*
517  * Only test-and-set exist for PG_writeback.  The unconditional operators are
518  * risky: they bypass page accounting.
519  */
520 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
521 	TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
522 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
523 
524 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
525 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
526 	TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
527 PAGEFLAG(Readahead, readahead, PF_NO_COMPOUND)
528 	TESTCLEARFLAG(Readahead, readahead, PF_NO_COMPOUND)
529 
530 #ifdef CONFIG_HIGHMEM
531 /*
532  * Must use a macro here due to header dependency issues. page_zone() is not
533  * available at this point.
534  */
535 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
536 #else
537 PAGEFLAG_FALSE(HighMem, highmem)
538 #endif
539 
540 #ifdef CONFIG_SWAP
541 static __always_inline bool folio_test_swapcache(struct folio *folio)
542 {
543 	return folio_test_swapbacked(folio) &&
544 			test_bit(PG_swapcache, folio_flags(folio, 0));
545 }
546 
547 static __always_inline bool PageSwapCache(struct page *page)
548 {
549 	return folio_test_swapcache(page_folio(page));
550 }
551 
552 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
553 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
554 #else
555 PAGEFLAG_FALSE(SwapCache, swapcache)
556 #endif
557 
558 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
559 	__CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
560 	TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
561 
562 #ifdef CONFIG_MMU
563 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
564 	__CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
565 	TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
566 #else
567 PAGEFLAG_FALSE(Mlocked, mlocked) __CLEARPAGEFLAG_NOOP(Mlocked, mlocked)
568 	TESTSCFLAG_FALSE(Mlocked, mlocked)
569 #endif
570 
571 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
572 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
573 #else
574 PAGEFLAG_FALSE(Uncached, uncached)
575 #endif
576 
577 #ifdef CONFIG_MEMORY_FAILURE
578 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
579 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
580 #define __PG_HWPOISON (1UL << PG_hwpoison)
581 #define MAGIC_HWPOISON	0x48575053U	/* HWPS */
582 extern void SetPageHWPoisonTakenOff(struct page *page);
583 extern void ClearPageHWPoisonTakenOff(struct page *page);
584 extern bool take_page_off_buddy(struct page *page);
585 extern bool put_page_back_buddy(struct page *page);
586 #else
587 PAGEFLAG_FALSE(HWPoison, hwpoison)
588 #define __PG_HWPOISON 0
589 #endif
590 
591 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
592 TESTPAGEFLAG(Young, young, PF_ANY)
593 SETPAGEFLAG(Young, young, PF_ANY)
594 TESTCLEARFLAG(Young, young, PF_ANY)
595 PAGEFLAG(Idle, idle, PF_ANY)
596 #endif
597 
598 #ifdef CONFIG_KASAN_HW_TAGS
599 PAGEFLAG(SkipKASanPoison, skip_kasan_poison, PF_HEAD)
600 #else
601 PAGEFLAG_FALSE(SkipKASanPoison, skip_kasan_poison)
602 #endif
603 
604 /*
605  * PageReported() is used to track reported free pages within the Buddy
606  * allocator. We can use the non-atomic version of the test and set
607  * operations as both should be shielded with the zone lock to prevent
608  * any possible races on the setting or clearing of the bit.
609  */
610 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
611 
612 #ifdef CONFIG_MEMORY_HOTPLUG
613 PAGEFLAG(VmemmapSelfHosted, vmemmap_self_hosted, PF_ANY)
614 #else
615 PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted)
616 #endif
617 
618 /*
619  * On an anonymous page mapped into a user virtual memory area,
620  * page->mapping points to its anon_vma, not to a struct address_space;
621  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
622  *
623  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
624  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
625  * bit; and then page->mapping points, not to an anon_vma, but to a private
626  * structure which KSM associates with that merged page.  See ksm.h.
627  *
628  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
629  * page and then page->mapping points to a struct movable_operations.
630  *
631  * Please note that, confusingly, "page_mapping" refers to the inode
632  * address_space which maps the page from disk; whereas "page_mapped"
633  * refers to user virtual address space into which the page is mapped.
634  */
635 #define PAGE_MAPPING_ANON	0x1
636 #define PAGE_MAPPING_MOVABLE	0x2
637 #define PAGE_MAPPING_KSM	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
638 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
639 
640 /*
641  * Different with flags above, this flag is used only for fsdax mode.  It
642  * indicates that this page->mapping is now under reflink case.
643  */
644 #define PAGE_MAPPING_DAX_COW	0x1
645 
646 static __always_inline bool folio_mapping_flags(struct folio *folio)
647 {
648 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) != 0;
649 }
650 
651 static __always_inline int PageMappingFlags(struct page *page)
652 {
653 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
654 }
655 
656 static __always_inline bool folio_test_anon(struct folio *folio)
657 {
658 	return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0;
659 }
660 
661 static __always_inline bool PageAnon(struct page *page)
662 {
663 	return folio_test_anon(page_folio(page));
664 }
665 
666 static __always_inline bool __folio_test_movable(const struct folio *folio)
667 {
668 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
669 			PAGE_MAPPING_MOVABLE;
670 }
671 
672 static __always_inline int __PageMovable(struct page *page)
673 {
674 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
675 				PAGE_MAPPING_MOVABLE;
676 }
677 
678 #ifdef CONFIG_KSM
679 /*
680  * A KSM page is one of those write-protected "shared pages" or "merged pages"
681  * which KSM maps into multiple mms, wherever identical anonymous page content
682  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
683  * anon_vma, but to that page's node of the stable tree.
684  */
685 static __always_inline bool folio_test_ksm(struct folio *folio)
686 {
687 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
688 				PAGE_MAPPING_KSM;
689 }
690 
691 static __always_inline bool PageKsm(struct page *page)
692 {
693 	return folio_test_ksm(page_folio(page));
694 }
695 #else
696 TESTPAGEFLAG_FALSE(Ksm, ksm)
697 #endif
698 
699 u64 stable_page_flags(struct page *page);
700 
701 /**
702  * folio_test_uptodate - Is this folio up to date?
703  * @folio: The folio.
704  *
705  * The uptodate flag is set on a folio when every byte in the folio is
706  * at least as new as the corresponding bytes on storage.  Anonymous
707  * and CoW folios are always uptodate.  If the folio is not uptodate,
708  * some of the bytes in it may be; see the is_partially_uptodate()
709  * address_space operation.
710  */
711 static inline bool folio_test_uptodate(struct folio *folio)
712 {
713 	bool ret = test_bit(PG_uptodate, folio_flags(folio, 0));
714 	/*
715 	 * Must ensure that the data we read out of the folio is loaded
716 	 * _after_ we've loaded folio->flags to check the uptodate bit.
717 	 * We can skip the barrier if the folio is not uptodate, because
718 	 * we wouldn't be reading anything from it.
719 	 *
720 	 * See folio_mark_uptodate() for the other side of the story.
721 	 */
722 	if (ret)
723 		smp_rmb();
724 
725 	return ret;
726 }
727 
728 static inline int PageUptodate(struct page *page)
729 {
730 	return folio_test_uptodate(page_folio(page));
731 }
732 
733 static __always_inline void __folio_mark_uptodate(struct folio *folio)
734 {
735 	smp_wmb();
736 	__set_bit(PG_uptodate, folio_flags(folio, 0));
737 }
738 
739 static __always_inline void folio_mark_uptodate(struct folio *folio)
740 {
741 	/*
742 	 * Memory barrier must be issued before setting the PG_uptodate bit,
743 	 * so that all previous stores issued in order to bring the folio
744 	 * uptodate are actually visible before folio_test_uptodate becomes true.
745 	 */
746 	smp_wmb();
747 	set_bit(PG_uptodate, folio_flags(folio, 0));
748 }
749 
750 static __always_inline void __SetPageUptodate(struct page *page)
751 {
752 	__folio_mark_uptodate((struct folio *)page);
753 }
754 
755 static __always_inline void SetPageUptodate(struct page *page)
756 {
757 	folio_mark_uptodate((struct folio *)page);
758 }
759 
760 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
761 
762 bool __folio_start_writeback(struct folio *folio, bool keep_write);
763 bool set_page_writeback(struct page *page);
764 
765 #define folio_start_writeback(folio)			\
766 	__folio_start_writeback(folio, false)
767 #define folio_start_writeback_keepwrite(folio)	\
768 	__folio_start_writeback(folio, true)
769 
770 static inline void set_page_writeback_keepwrite(struct page *page)
771 {
772 	folio_start_writeback_keepwrite(page_folio(page));
773 }
774 
775 static inline bool test_set_page_writeback(struct page *page)
776 {
777 	return set_page_writeback(page);
778 }
779 
780 static __always_inline bool folio_test_head(struct folio *folio)
781 {
782 	return test_bit(PG_head, folio_flags(folio, FOLIO_PF_ANY));
783 }
784 
785 static __always_inline int PageHead(struct page *page)
786 {
787 	PF_POISONED_CHECK(page);
788 	return test_bit(PG_head, &page->flags) && !page_is_fake_head(page);
789 }
790 
791 __SETPAGEFLAG(Head, head, PF_ANY)
792 __CLEARPAGEFLAG(Head, head, PF_ANY)
793 CLEARPAGEFLAG(Head, head, PF_ANY)
794 
795 /**
796  * folio_test_large() - Does this folio contain more than one page?
797  * @folio: The folio to test.
798  *
799  * Return: True if the folio is larger than one page.
800  */
801 static inline bool folio_test_large(struct folio *folio)
802 {
803 	return folio_test_head(folio);
804 }
805 
806 static __always_inline void set_compound_head(struct page *page, struct page *head)
807 {
808 	WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
809 }
810 
811 static __always_inline void clear_compound_head(struct page *page)
812 {
813 	WRITE_ONCE(page->compound_head, 0);
814 }
815 
816 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
817 static inline void ClearPageCompound(struct page *page)
818 {
819 	BUG_ON(!PageHead(page));
820 	ClearPageHead(page);
821 }
822 #endif
823 
824 #define PG_head_mask ((1UL << PG_head))
825 
826 #ifdef CONFIG_HUGETLB_PAGE
827 int PageHuge(struct page *page);
828 int PageHeadHuge(struct page *page);
829 static inline bool folio_test_hugetlb(struct folio *folio)
830 {
831 	return PageHeadHuge(&folio->page);
832 }
833 #else
834 TESTPAGEFLAG_FALSE(Huge, hugetlb)
835 TESTPAGEFLAG_FALSE(HeadHuge, headhuge)
836 #endif
837 
838 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
839 /*
840  * PageHuge() only returns true for hugetlbfs pages, but not for
841  * normal or transparent huge pages.
842  *
843  * PageTransHuge() returns true for both transparent huge and
844  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
845  * called only in the core VM paths where hugetlbfs pages can't exist.
846  */
847 static inline int PageTransHuge(struct page *page)
848 {
849 	VM_BUG_ON_PAGE(PageTail(page), page);
850 	return PageHead(page);
851 }
852 
853 static inline bool folio_test_transhuge(struct folio *folio)
854 {
855 	return folio_test_head(folio);
856 }
857 
858 /*
859  * PageTransCompound returns true for both transparent huge pages
860  * and hugetlbfs pages, so it should only be called when it's known
861  * that hugetlbfs pages aren't involved.
862  */
863 static inline int PageTransCompound(struct page *page)
864 {
865 	return PageCompound(page);
866 }
867 
868 /*
869  * PageTransTail returns true for both transparent huge pages
870  * and hugetlbfs pages, so it should only be called when it's known
871  * that hugetlbfs pages aren't involved.
872  */
873 static inline int PageTransTail(struct page *page)
874 {
875 	return PageTail(page);
876 }
877 
878 /*
879  * PageDoubleMap indicates that the compound page is mapped with PTEs as well
880  * as PMDs.
881  *
882  * This is required for optimization of rmap operations for THP: we can postpone
883  * per small page mapcount accounting (and its overhead from atomic operations)
884  * until the first PMD split.
885  *
886  * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
887  * by one. This reference will go away with last compound_mapcount.
888  *
889  * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
890  */
891 PAGEFLAG(DoubleMap, double_map, PF_SECOND)
892 	TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
893 #else
894 TESTPAGEFLAG_FALSE(TransHuge, transhuge)
895 TESTPAGEFLAG_FALSE(TransCompound, transcompound)
896 TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap)
897 TESTPAGEFLAG_FALSE(TransTail, transtail)
898 PAGEFLAG_FALSE(DoubleMap, double_map)
899 	TESTSCFLAG_FALSE(DoubleMap, double_map)
900 #endif
901 
902 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
903 /*
904  * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
905  * compound page.
906  *
907  * This flag is set by hwpoison handler.  Cleared by THP split or free page.
908  */
909 PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
910 	TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
911 #else
912 PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
913 	TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
914 #endif
915 
916 /*
917  * Check if a page is currently marked HWPoisoned. Note that this check is
918  * best effort only and inherently racy: there is no way to synchronize with
919  * failing hardware.
920  */
921 static inline bool is_page_hwpoison(struct page *page)
922 {
923 	if (PageHWPoison(page))
924 		return true;
925 	return PageHuge(page) && PageHWPoison(compound_head(page));
926 }
927 
928 /*
929  * For pages that are never mapped to userspace (and aren't PageSlab),
930  * page_type may be used.  Because it is initialised to -1, we invert the
931  * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
932  * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
933  * low bits so that an underflow or overflow of page_mapcount() won't be
934  * mistaken for a page type value.
935  */
936 
937 #define PAGE_TYPE_BASE	0xf0000000
938 /* Reserve		0x0000007f to catch underflows of page_mapcount */
939 #define PAGE_MAPCOUNT_RESERVE	-128
940 #define PG_buddy	0x00000080
941 #define PG_offline	0x00000100
942 #define PG_table	0x00000200
943 #define PG_guard	0x00000400
944 
945 #define PageType(page, flag)						\
946 	((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
947 
948 static inline int page_has_type(struct page *page)
949 {
950 	return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
951 }
952 
953 #define PAGE_TYPE_OPS(uname, lname)					\
954 static __always_inline int Page##uname(struct page *page)		\
955 {									\
956 	return PageType(page, PG_##lname);				\
957 }									\
958 static __always_inline void __SetPage##uname(struct page *page)		\
959 {									\
960 	VM_BUG_ON_PAGE(!PageType(page, 0), page);			\
961 	page->page_type &= ~PG_##lname;					\
962 }									\
963 static __always_inline void __ClearPage##uname(struct page *page)	\
964 {									\
965 	VM_BUG_ON_PAGE(!Page##uname(page), page);			\
966 	page->page_type |= PG_##lname;					\
967 }
968 
969 /*
970  * PageBuddy() indicates that the page is free and in the buddy system
971  * (see mm/page_alloc.c).
972  */
973 PAGE_TYPE_OPS(Buddy, buddy)
974 
975 /*
976  * PageOffline() indicates that the page is logically offline although the
977  * containing section is online. (e.g. inflated in a balloon driver or
978  * not onlined when onlining the section).
979  * The content of these pages is effectively stale. Such pages should not
980  * be touched (read/write/dump/save) except by their owner.
981  *
982  * If a driver wants to allow to offline unmovable PageOffline() pages without
983  * putting them back to the buddy, it can do so via the memory notifier by
984  * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
985  * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
986  * pages (now with a reference count of zero) are treated like free pages,
987  * allowing the containing memory block to get offlined. A driver that
988  * relies on this feature is aware that re-onlining the memory block will
989  * require to re-set the pages PageOffline() and not giving them to the
990  * buddy via online_page_callback_t.
991  *
992  * There are drivers that mark a page PageOffline() and expect there won't be
993  * any further access to page content. PFN walkers that read content of random
994  * pages should check PageOffline() and synchronize with such drivers using
995  * page_offline_freeze()/page_offline_thaw().
996  */
997 PAGE_TYPE_OPS(Offline, offline)
998 
999 extern void page_offline_freeze(void);
1000 extern void page_offline_thaw(void);
1001 extern void page_offline_begin(void);
1002 extern void page_offline_end(void);
1003 
1004 /*
1005  * Marks pages in use as page tables.
1006  */
1007 PAGE_TYPE_OPS(Table, table)
1008 
1009 /*
1010  * Marks guardpages used with debug_pagealloc.
1011  */
1012 PAGE_TYPE_OPS(Guard, guard)
1013 
1014 extern bool is_free_buddy_page(struct page *page);
1015 
1016 PAGEFLAG(Isolated, isolated, PF_ANY);
1017 
1018 static __always_inline int PageAnonExclusive(struct page *page)
1019 {
1020 	VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1021 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1022 	return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1023 }
1024 
1025 static __always_inline void SetPageAnonExclusive(struct page *page)
1026 {
1027 	VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page);
1028 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1029 	set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1030 }
1031 
1032 static __always_inline void ClearPageAnonExclusive(struct page *page)
1033 {
1034 	VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page);
1035 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1036 	clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1037 }
1038 
1039 static __always_inline void __ClearPageAnonExclusive(struct page *page)
1040 {
1041 	VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1042 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1043 	__clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1044 }
1045 
1046 #ifdef CONFIG_MMU
1047 #define __PG_MLOCKED		(1UL << PG_mlocked)
1048 #else
1049 #define __PG_MLOCKED		0
1050 #endif
1051 
1052 /*
1053  * Flags checked when a page is freed.  Pages being freed should not have
1054  * these flags set.  If they are, there is a problem.
1055  */
1056 #define PAGE_FLAGS_CHECK_AT_FREE				\
1057 	(1UL << PG_lru		| 1UL << PG_locked	|	\
1058 	 1UL << PG_private	| 1UL << PG_private_2	|	\
1059 	 1UL << PG_writeback	| 1UL << PG_reserved	|	\
1060 	 1UL << PG_slab		| 1UL << PG_active 	|	\
1061 	 1UL << PG_unevictable	| __PG_MLOCKED | LRU_GEN_MASK)
1062 
1063 /*
1064  * Flags checked when a page is prepped for return by the page allocator.
1065  * Pages being prepped should not have these flags set.  If they are set,
1066  * there has been a kernel bug or struct page corruption.
1067  *
1068  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
1069  * alloc-free cycle to prevent from reusing the page.
1070  */
1071 #define PAGE_FLAGS_CHECK_AT_PREP	\
1072 	((PAGEFLAGS_MASK & ~__PG_HWPOISON) | LRU_GEN_MASK | LRU_REFS_MASK)
1073 
1074 #define PAGE_FLAGS_PRIVATE				\
1075 	(1UL << PG_private | 1UL << PG_private_2)
1076 /**
1077  * page_has_private - Determine if page has private stuff
1078  * @page: The page to be checked
1079  *
1080  * Determine if a page has private stuff, indicating that release routines
1081  * should be invoked upon it.
1082  */
1083 static inline int page_has_private(struct page *page)
1084 {
1085 	return !!(page->flags & PAGE_FLAGS_PRIVATE);
1086 }
1087 
1088 static inline bool folio_has_private(struct folio *folio)
1089 {
1090 	return page_has_private(&folio->page);
1091 }
1092 
1093 #undef PF_ANY
1094 #undef PF_HEAD
1095 #undef PF_ONLY_HEAD
1096 #undef PF_NO_TAIL
1097 #undef PF_NO_COMPOUND
1098 #undef PF_SECOND
1099 #endif /* !__GENERATING_BOUNDS_H */
1100 
1101 #endif	/* PAGE_FLAGS_H */
1102