xref: /linux/include/linux/page-flags.h (revision d642ef71)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Macros for manipulating and testing page->flags
4  */
5 
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8 
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16 
17 /*
18  * Various page->flags bits:
19  *
20  * PG_reserved is set for special pages. The "struct page" of such a page
21  * should in general not be touched (e.g. set dirty) except by its owner.
22  * Pages marked as PG_reserved include:
23  * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24  *   initrd, HW tables)
25  * - Pages reserved or allocated early during boot (before the page allocator
26  *   was initialized). This includes (depending on the architecture) the
27  *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28  *   much more. Once (if ever) freed, PG_reserved is cleared and they will
29  *   be given to the page allocator.
30  * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31  *   to read/write these pages might end badly. Don't touch!
32  * - The zero page(s)
33  * - Pages not added to the page allocator when onlining a section because
34  *   they were excluded via the online_page_callback() or because they are
35  *   PG_hwpoison.
36  * - Pages allocated in the context of kexec/kdump (loaded kernel image,
37  *   control pages, vmcoreinfo)
38  * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
39  *   not marked PG_reserved (as they might be in use by somebody else who does
40  *   not respect the caching strategy).
41  * - Pages part of an offline section (struct pages of offline sections should
42  *   not be trusted as they will be initialized when first onlined).
43  * - MCA pages on ia64
44  * - Pages holding CPU notes for POWER Firmware Assisted Dump
45  * - Device memory (e.g. PMEM, DAX, HMM)
46  * Some PG_reserved pages will be excluded from the hibernation image.
47  * PG_reserved does in general not hinder anybody from dumping or swapping
48  * and is no longer required for remap_pfn_range(). ioremap might require it.
49  * Consequently, PG_reserved for a page mapped into user space can indicate
50  * the zero page, the vDSO, MMIO pages or device memory.
51  *
52  * The PG_private bitflag is set on pagecache pages if they contain filesystem
53  * specific data (which is normally at page->private). It can be used by
54  * private allocations for its own usage.
55  *
56  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
57  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
58  * is set before writeback starts and cleared when it finishes.
59  *
60  * PG_locked also pins a page in pagecache, and blocks truncation of the file
61  * while it is held.
62  *
63  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
64  * to become unlocked.
65  *
66  * PG_swapbacked is set when a page uses swap as a backing storage.  This are
67  * usually PageAnon or shmem pages but please note that even anonymous pages
68  * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
69  * a result of MADV_FREE).
70  *
71  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
72  * file-backed pagecache (see mm/vmscan.c).
73  *
74  * PG_error is set to indicate that an I/O error occurred on this page.
75  *
76  * PG_arch_1 is an architecture specific page state bit.  The generic code
77  * guarantees that this bit is cleared for a page when it first is entered into
78  * the page cache.
79  *
80  * PG_hwpoison indicates that a page got corrupted in hardware and contains
81  * data with incorrect ECC bits that triggered a machine check. Accessing is
82  * not safe since it may cause another machine check. Don't touch!
83  */
84 
85 /*
86  * Don't use the pageflags directly.  Use the PageFoo macros.
87  *
88  * The page flags field is split into two parts, the main flags area
89  * which extends from the low bits upwards, and the fields area which
90  * extends from the high bits downwards.
91  *
92  *  | FIELD | ... | FLAGS |
93  *  N-1           ^       0
94  *               (NR_PAGEFLAGS)
95  *
96  * The fields area is reserved for fields mapping zone, node (for NUMA) and
97  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
98  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
99  */
100 enum pageflags {
101 	PG_locked,		/* Page is locked. Don't touch. */
102 	PG_writeback,		/* Page is under writeback */
103 	PG_referenced,
104 	PG_uptodate,
105 	PG_dirty,
106 	PG_lru,
107 	PG_head,		/* Must be in bit 6 */
108 	PG_waiters,		/* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
109 	PG_active,
110 	PG_workingset,
111 	PG_error,
112 	PG_slab,
113 	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use*/
114 	PG_arch_1,
115 	PG_reserved,
116 	PG_private,		/* If pagecache, has fs-private data */
117 	PG_private_2,		/* If pagecache, has fs aux data */
118 	PG_mappedtodisk,	/* Has blocks allocated on-disk */
119 	PG_reclaim,		/* To be reclaimed asap */
120 	PG_swapbacked,		/* Page is backed by RAM/swap */
121 	PG_unevictable,		/* Page is "unevictable"  */
122 #ifdef CONFIG_MMU
123 	PG_mlocked,		/* Page is vma mlocked */
124 #endif
125 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
126 	PG_uncached,		/* Page has been mapped as uncached */
127 #endif
128 #ifdef CONFIG_MEMORY_FAILURE
129 	PG_hwpoison,		/* hardware poisoned page. Don't touch */
130 #endif
131 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
132 	PG_young,
133 	PG_idle,
134 #endif
135 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
136 	PG_arch_2,
137 	PG_arch_3,
138 #endif
139 	__NR_PAGEFLAGS,
140 
141 	PG_readahead = PG_reclaim,
142 
143 	/*
144 	 * Depending on the way an anonymous folio can be mapped into a page
145 	 * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped
146 	 * THP), PG_anon_exclusive may be set only for the head page or for
147 	 * tail pages of an anonymous folio. For now, we only expect it to be
148 	 * set on tail pages for PTE-mapped THP.
149 	 */
150 	PG_anon_exclusive = PG_mappedtodisk,
151 
152 	/* Filesystems */
153 	PG_checked = PG_owner_priv_1,
154 
155 	/* SwapBacked */
156 	PG_swapcache = PG_owner_priv_1,	/* Swap page: swp_entry_t in private */
157 
158 	/* Two page bits are conscripted by FS-Cache to maintain local caching
159 	 * state.  These bits are set on pages belonging to the netfs's inodes
160 	 * when those inodes are being locally cached.
161 	 */
162 	PG_fscache = PG_private_2,	/* page backed by cache */
163 
164 	/* XEN */
165 	/* Pinned in Xen as a read-only pagetable page. */
166 	PG_pinned = PG_owner_priv_1,
167 	/* Pinned as part of domain save (see xen_mm_pin_all()). */
168 	PG_savepinned = PG_dirty,
169 	/* Has a grant mapping of another (foreign) domain's page. */
170 	PG_foreign = PG_owner_priv_1,
171 	/* Remapped by swiotlb-xen. */
172 	PG_xen_remapped = PG_owner_priv_1,
173 
174 	/* non-lru isolated movable page */
175 	PG_isolated = PG_reclaim,
176 
177 	/* Only valid for buddy pages. Used to track pages that are reported */
178 	PG_reported = PG_uptodate,
179 
180 #ifdef CONFIG_MEMORY_HOTPLUG
181 	/* For self-hosted memmap pages */
182 	PG_vmemmap_self_hosted = PG_owner_priv_1,
183 #endif
184 
185 	/*
186 	 * Flags only valid for compound pages.  Stored in first tail page's
187 	 * flags word.  Cannot use the first 8 flags or any flag marked as
188 	 * PF_ANY.
189 	 */
190 
191 	/* At least one page in this folio has the hwpoison flag set */
192 	PG_has_hwpoisoned = PG_error,
193 	PG_hugetlb = PG_active,
194 	PG_large_rmappable = PG_workingset, /* anon or file-backed */
195 };
196 
197 #define PAGEFLAGS_MASK		((1UL << NR_PAGEFLAGS) - 1)
198 
199 #ifndef __GENERATING_BOUNDS_H
200 
201 #ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
202 DECLARE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
203 
204 /*
205  * Return the real head page struct iff the @page is a fake head page, otherwise
206  * return the @page itself. See Documentation/mm/vmemmap_dedup.rst.
207  */
208 static __always_inline const struct page *page_fixed_fake_head(const struct page *page)
209 {
210 	if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key))
211 		return page;
212 
213 	/*
214 	 * Only addresses aligned with PAGE_SIZE of struct page may be fake head
215 	 * struct page. The alignment check aims to avoid access the fields (
216 	 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly)
217 	 * cold cacheline in some cases.
218 	 */
219 	if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) &&
220 	    test_bit(PG_head, &page->flags)) {
221 		/*
222 		 * We can safely access the field of the @page[1] with PG_head
223 		 * because the @page is a compound page composed with at least
224 		 * two contiguous pages.
225 		 */
226 		unsigned long head = READ_ONCE(page[1].compound_head);
227 
228 		if (likely(head & 1))
229 			return (const struct page *)(head - 1);
230 	}
231 	return page;
232 }
233 #else
234 static inline const struct page *page_fixed_fake_head(const struct page *page)
235 {
236 	return page;
237 }
238 #endif
239 
240 static __always_inline int page_is_fake_head(struct page *page)
241 {
242 	return page_fixed_fake_head(page) != page;
243 }
244 
245 static inline unsigned long _compound_head(const struct page *page)
246 {
247 	unsigned long head = READ_ONCE(page->compound_head);
248 
249 	if (unlikely(head & 1))
250 		return head - 1;
251 	return (unsigned long)page_fixed_fake_head(page);
252 }
253 
254 #define compound_head(page)	((typeof(page))_compound_head(page))
255 
256 /**
257  * page_folio - Converts from page to folio.
258  * @p: The page.
259  *
260  * Every page is part of a folio.  This function cannot be called on a
261  * NULL pointer.
262  *
263  * Context: No reference, nor lock is required on @page.  If the caller
264  * does not hold a reference, this call may race with a folio split, so
265  * it should re-check the folio still contains this page after gaining
266  * a reference on the folio.
267  * Return: The folio which contains this page.
268  */
269 #define page_folio(p)		(_Generic((p),				\
270 	const struct page *:	(const struct folio *)_compound_head(p), \
271 	struct page *:		(struct folio *)_compound_head(p)))
272 
273 /**
274  * folio_page - Return a page from a folio.
275  * @folio: The folio.
276  * @n: The page number to return.
277  *
278  * @n is relative to the start of the folio.  This function does not
279  * check that the page number lies within @folio; the caller is presumed
280  * to have a reference to the page.
281  */
282 #define folio_page(folio, n)	nth_page(&(folio)->page, n)
283 
284 static __always_inline int PageTail(struct page *page)
285 {
286 	return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page);
287 }
288 
289 static __always_inline int PageCompound(struct page *page)
290 {
291 	return test_bit(PG_head, &page->flags) ||
292 	       READ_ONCE(page->compound_head) & 1;
293 }
294 
295 #define	PAGE_POISON_PATTERN	-1l
296 static inline int PagePoisoned(const struct page *page)
297 {
298 	return READ_ONCE(page->flags) == PAGE_POISON_PATTERN;
299 }
300 
301 #ifdef CONFIG_DEBUG_VM
302 void page_init_poison(struct page *page, size_t size);
303 #else
304 static inline void page_init_poison(struct page *page, size_t size)
305 {
306 }
307 #endif
308 
309 static unsigned long *folio_flags(struct folio *folio, unsigned n)
310 {
311 	struct page *page = &folio->page;
312 
313 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
314 	VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
315 	return &page[n].flags;
316 }
317 
318 /*
319  * Page flags policies wrt compound pages
320  *
321  * PF_POISONED_CHECK
322  *     check if this struct page poisoned/uninitialized
323  *
324  * PF_ANY:
325  *     the page flag is relevant for small, head and tail pages.
326  *
327  * PF_HEAD:
328  *     for compound page all operations related to the page flag applied to
329  *     head page.
330  *
331  * PF_ONLY_HEAD:
332  *     for compound page, callers only ever operate on the head page.
333  *
334  * PF_NO_TAIL:
335  *     modifications of the page flag must be done on small or head pages,
336  *     checks can be done on tail pages too.
337  *
338  * PF_NO_COMPOUND:
339  *     the page flag is not relevant for compound pages.
340  *
341  * PF_SECOND:
342  *     the page flag is stored in the first tail page.
343  */
344 #define PF_POISONED_CHECK(page) ({					\
345 		VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);		\
346 		page; })
347 #define PF_ANY(page, enforce)	PF_POISONED_CHECK(page)
348 #define PF_HEAD(page, enforce)	PF_POISONED_CHECK(compound_head(page))
349 #define PF_ONLY_HEAD(page, enforce) ({					\
350 		VM_BUG_ON_PGFLAGS(PageTail(page), page);		\
351 		PF_POISONED_CHECK(page); })
352 #define PF_NO_TAIL(page, enforce) ({					\
353 		VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);	\
354 		PF_POISONED_CHECK(compound_head(page)); })
355 #define PF_NO_COMPOUND(page, enforce) ({				\
356 		VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page);	\
357 		PF_POISONED_CHECK(page); })
358 #define PF_SECOND(page, enforce) ({					\
359 		VM_BUG_ON_PGFLAGS(!PageHead(page), page);		\
360 		PF_POISONED_CHECK(&page[1]); })
361 
362 /* Which page is the flag stored in */
363 #define FOLIO_PF_ANY		0
364 #define FOLIO_PF_HEAD		0
365 #define FOLIO_PF_ONLY_HEAD	0
366 #define FOLIO_PF_NO_TAIL	0
367 #define FOLIO_PF_NO_COMPOUND	0
368 #define FOLIO_PF_SECOND		1
369 
370 /*
371  * Macros to create function definitions for page flags
372  */
373 #define TESTPAGEFLAG(uname, lname, policy)				\
374 static __always_inline bool folio_test_##lname(struct folio *folio)	\
375 { return test_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }	\
376 static __always_inline int Page##uname(struct page *page)		\
377 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
378 
379 #define SETPAGEFLAG(uname, lname, policy)				\
380 static __always_inline							\
381 void folio_set_##lname(struct folio *folio)				\
382 { set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
383 static __always_inline void SetPage##uname(struct page *page)		\
384 { set_bit(PG_##lname, &policy(page, 1)->flags); }
385 
386 #define CLEARPAGEFLAG(uname, lname, policy)				\
387 static __always_inline							\
388 void folio_clear_##lname(struct folio *folio)				\
389 { clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
390 static __always_inline void ClearPage##uname(struct page *page)		\
391 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
392 
393 #define __SETPAGEFLAG(uname, lname, policy)				\
394 static __always_inline							\
395 void __folio_set_##lname(struct folio *folio)				\
396 { __set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
397 static __always_inline void __SetPage##uname(struct page *page)		\
398 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
399 
400 #define __CLEARPAGEFLAG(uname, lname, policy)				\
401 static __always_inline							\
402 void __folio_clear_##lname(struct folio *folio)				\
403 { __clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }	\
404 static __always_inline void __ClearPage##uname(struct page *page)	\
405 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
406 
407 #define TESTSETFLAG(uname, lname, policy)				\
408 static __always_inline							\
409 bool folio_test_set_##lname(struct folio *folio)			\
410 { return test_and_set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
411 static __always_inline int TestSetPage##uname(struct page *page)	\
412 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
413 
414 #define TESTCLEARFLAG(uname, lname, policy)				\
415 static __always_inline							\
416 bool folio_test_clear_##lname(struct folio *folio)			\
417 { return test_and_clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
418 static __always_inline int TestClearPage##uname(struct page *page)	\
419 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
420 
421 #define PAGEFLAG(uname, lname, policy)					\
422 	TESTPAGEFLAG(uname, lname, policy)				\
423 	SETPAGEFLAG(uname, lname, policy)				\
424 	CLEARPAGEFLAG(uname, lname, policy)
425 
426 #define __PAGEFLAG(uname, lname, policy)				\
427 	TESTPAGEFLAG(uname, lname, policy)				\
428 	__SETPAGEFLAG(uname, lname, policy)				\
429 	__CLEARPAGEFLAG(uname, lname, policy)
430 
431 #define TESTSCFLAG(uname, lname, policy)				\
432 	TESTSETFLAG(uname, lname, policy)				\
433 	TESTCLEARFLAG(uname, lname, policy)
434 
435 #define TESTPAGEFLAG_FALSE(uname, lname)				\
436 static inline bool folio_test_##lname(const struct folio *folio) { return false; } \
437 static inline int Page##uname(const struct page *page) { return 0; }
438 
439 #define SETPAGEFLAG_NOOP(uname, lname)					\
440 static inline void folio_set_##lname(struct folio *folio) { }		\
441 static inline void SetPage##uname(struct page *page) {  }
442 
443 #define CLEARPAGEFLAG_NOOP(uname, lname)				\
444 static inline void folio_clear_##lname(struct folio *folio) { }		\
445 static inline void ClearPage##uname(struct page *page) {  }
446 
447 #define __CLEARPAGEFLAG_NOOP(uname, lname)				\
448 static inline void __folio_clear_##lname(struct folio *folio) { }	\
449 static inline void __ClearPage##uname(struct page *page) {  }
450 
451 #define TESTSETFLAG_FALSE(uname, lname)					\
452 static inline bool folio_test_set_##lname(struct folio *folio)		\
453 { return 0; }								\
454 static inline int TestSetPage##uname(struct page *page) { return 0; }
455 
456 #define TESTCLEARFLAG_FALSE(uname, lname)				\
457 static inline bool folio_test_clear_##lname(struct folio *folio)	\
458 { return 0; }								\
459 static inline int TestClearPage##uname(struct page *page) { return 0; }
460 
461 #define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname)	\
462 	SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname)
463 
464 #define TESTSCFLAG_FALSE(uname, lname)					\
465 	TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname)
466 
467 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
468 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
469 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
470 PAGEFLAG(Referenced, referenced, PF_HEAD)
471 	TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
472 	__SETPAGEFLAG(Referenced, referenced, PF_HEAD)
473 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
474 	__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
475 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
476 	TESTCLEARFLAG(LRU, lru, PF_HEAD)
477 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
478 	TESTCLEARFLAG(Active, active, PF_HEAD)
479 PAGEFLAG(Workingset, workingset, PF_HEAD)
480 	TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
481 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
482 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)	   /* Used by some filesystems */
483 
484 /* Xen */
485 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
486 	TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
487 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
488 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
489 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
490 	TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
491 
492 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
493 	__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
494 	__SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
495 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
496 	__CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
497 	__SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
498 
499 /*
500  * Private page markings that may be used by the filesystem that owns the page
501  * for its own purposes.
502  * - PG_private and PG_private_2 cause release_folio() and co to be invoked
503  */
504 PAGEFLAG(Private, private, PF_ANY)
505 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
506 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
507 	TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
508 
509 /*
510  * Only test-and-set exist for PG_writeback.  The unconditional operators are
511  * risky: they bypass page accounting.
512  */
513 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
514 	TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
515 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
516 
517 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
518 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
519 	TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
520 PAGEFLAG(Readahead, readahead, PF_NO_COMPOUND)
521 	TESTCLEARFLAG(Readahead, readahead, PF_NO_COMPOUND)
522 
523 #ifdef CONFIG_HIGHMEM
524 /*
525  * Must use a macro here due to header dependency issues. page_zone() is not
526  * available at this point.
527  */
528 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
529 #define folio_test_highmem(__f)	is_highmem_idx(folio_zonenum(__f))
530 #else
531 PAGEFLAG_FALSE(HighMem, highmem)
532 #endif
533 
534 #ifdef CONFIG_SWAP
535 static __always_inline bool folio_test_swapcache(struct folio *folio)
536 {
537 	return folio_test_swapbacked(folio) &&
538 			test_bit(PG_swapcache, folio_flags(folio, 0));
539 }
540 
541 static __always_inline bool PageSwapCache(struct page *page)
542 {
543 	return folio_test_swapcache(page_folio(page));
544 }
545 
546 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
547 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
548 #else
549 PAGEFLAG_FALSE(SwapCache, swapcache)
550 #endif
551 
552 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
553 	__CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
554 	TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
555 
556 #ifdef CONFIG_MMU
557 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
558 	__CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
559 	TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
560 #else
561 PAGEFLAG_FALSE(Mlocked, mlocked) __CLEARPAGEFLAG_NOOP(Mlocked, mlocked)
562 	TESTSCFLAG_FALSE(Mlocked, mlocked)
563 #endif
564 
565 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
566 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
567 #else
568 PAGEFLAG_FALSE(Uncached, uncached)
569 #endif
570 
571 #ifdef CONFIG_MEMORY_FAILURE
572 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
573 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
574 #define __PG_HWPOISON (1UL << PG_hwpoison)
575 #define MAGIC_HWPOISON	0x48575053U	/* HWPS */
576 extern void SetPageHWPoisonTakenOff(struct page *page);
577 extern void ClearPageHWPoisonTakenOff(struct page *page);
578 extern bool take_page_off_buddy(struct page *page);
579 extern bool put_page_back_buddy(struct page *page);
580 #else
581 PAGEFLAG_FALSE(HWPoison, hwpoison)
582 #define __PG_HWPOISON 0
583 #endif
584 
585 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
586 TESTPAGEFLAG(Young, young, PF_ANY)
587 SETPAGEFLAG(Young, young, PF_ANY)
588 TESTCLEARFLAG(Young, young, PF_ANY)
589 PAGEFLAG(Idle, idle, PF_ANY)
590 #endif
591 
592 /*
593  * PageReported() is used to track reported free pages within the Buddy
594  * allocator. We can use the non-atomic version of the test and set
595  * operations as both should be shielded with the zone lock to prevent
596  * any possible races on the setting or clearing of the bit.
597  */
598 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
599 
600 #ifdef CONFIG_MEMORY_HOTPLUG
601 PAGEFLAG(VmemmapSelfHosted, vmemmap_self_hosted, PF_ANY)
602 #else
603 PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted)
604 #endif
605 
606 /*
607  * On an anonymous page mapped into a user virtual memory area,
608  * page->mapping points to its anon_vma, not to a struct address_space;
609  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
610  *
611  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
612  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
613  * bit; and then page->mapping points, not to an anon_vma, but to a private
614  * structure which KSM associates with that merged page.  See ksm.h.
615  *
616  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
617  * page and then page->mapping points to a struct movable_operations.
618  *
619  * Please note that, confusingly, "page_mapping" refers to the inode
620  * address_space which maps the page from disk; whereas "page_mapped"
621  * refers to user virtual address space into which the page is mapped.
622  *
623  * For slab pages, since slab reuses the bits in struct page to store its
624  * internal states, the page->mapping does not exist as such, nor do these
625  * flags below.  So in order to avoid testing non-existent bits, please
626  * make sure that PageSlab(page) actually evaluates to false before calling
627  * the following functions (e.g., PageAnon).  See mm/slab.h.
628  */
629 #define PAGE_MAPPING_ANON	0x1
630 #define PAGE_MAPPING_MOVABLE	0x2
631 #define PAGE_MAPPING_KSM	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
632 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
633 
634 /*
635  * Different with flags above, this flag is used only for fsdax mode.  It
636  * indicates that this page->mapping is now under reflink case.
637  */
638 #define PAGE_MAPPING_DAX_SHARED	((void *)0x1)
639 
640 static __always_inline bool folio_mapping_flags(struct folio *folio)
641 {
642 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) != 0;
643 }
644 
645 static __always_inline int PageMappingFlags(struct page *page)
646 {
647 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
648 }
649 
650 static __always_inline bool folio_test_anon(struct folio *folio)
651 {
652 	return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0;
653 }
654 
655 static __always_inline bool PageAnon(struct page *page)
656 {
657 	return folio_test_anon(page_folio(page));
658 }
659 
660 static __always_inline bool __folio_test_movable(const struct folio *folio)
661 {
662 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
663 			PAGE_MAPPING_MOVABLE;
664 }
665 
666 static __always_inline int __PageMovable(struct page *page)
667 {
668 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
669 				PAGE_MAPPING_MOVABLE;
670 }
671 
672 #ifdef CONFIG_KSM
673 /*
674  * A KSM page is one of those write-protected "shared pages" or "merged pages"
675  * which KSM maps into multiple mms, wherever identical anonymous page content
676  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
677  * anon_vma, but to that page's node of the stable tree.
678  */
679 static __always_inline bool folio_test_ksm(struct folio *folio)
680 {
681 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
682 				PAGE_MAPPING_KSM;
683 }
684 
685 static __always_inline bool PageKsm(struct page *page)
686 {
687 	return folio_test_ksm(page_folio(page));
688 }
689 #else
690 TESTPAGEFLAG_FALSE(Ksm, ksm)
691 #endif
692 
693 u64 stable_page_flags(struct page *page);
694 
695 /**
696  * folio_xor_flags_has_waiters - Change some folio flags.
697  * @folio: The folio.
698  * @mask: Bits set in this word will be changed.
699  *
700  * This must only be used for flags which are changed with the folio
701  * lock held.  For example, it is unsafe to use for PG_dirty as that
702  * can be set without the folio lock held.  It can also only be used
703  * on flags which are in the range 0-6 as some of the implementations
704  * only affect those bits.
705  *
706  * Return: Whether there are tasks waiting on the folio.
707  */
708 static inline bool folio_xor_flags_has_waiters(struct folio *folio,
709 		unsigned long mask)
710 {
711 	return xor_unlock_is_negative_byte(mask, folio_flags(folio, 0));
712 }
713 
714 /**
715  * folio_test_uptodate - Is this folio up to date?
716  * @folio: The folio.
717  *
718  * The uptodate flag is set on a folio when every byte in the folio is
719  * at least as new as the corresponding bytes on storage.  Anonymous
720  * and CoW folios are always uptodate.  If the folio is not uptodate,
721  * some of the bytes in it may be; see the is_partially_uptodate()
722  * address_space operation.
723  */
724 static inline bool folio_test_uptodate(struct folio *folio)
725 {
726 	bool ret = test_bit(PG_uptodate, folio_flags(folio, 0));
727 	/*
728 	 * Must ensure that the data we read out of the folio is loaded
729 	 * _after_ we've loaded folio->flags to check the uptodate bit.
730 	 * We can skip the barrier if the folio is not uptodate, because
731 	 * we wouldn't be reading anything from it.
732 	 *
733 	 * See folio_mark_uptodate() for the other side of the story.
734 	 */
735 	if (ret)
736 		smp_rmb();
737 
738 	return ret;
739 }
740 
741 static inline int PageUptodate(struct page *page)
742 {
743 	return folio_test_uptodate(page_folio(page));
744 }
745 
746 static __always_inline void __folio_mark_uptodate(struct folio *folio)
747 {
748 	smp_wmb();
749 	__set_bit(PG_uptodate, folio_flags(folio, 0));
750 }
751 
752 static __always_inline void folio_mark_uptodate(struct folio *folio)
753 {
754 	/*
755 	 * Memory barrier must be issued before setting the PG_uptodate bit,
756 	 * so that all previous stores issued in order to bring the folio
757 	 * uptodate are actually visible before folio_test_uptodate becomes true.
758 	 */
759 	smp_wmb();
760 	set_bit(PG_uptodate, folio_flags(folio, 0));
761 }
762 
763 static __always_inline void __SetPageUptodate(struct page *page)
764 {
765 	__folio_mark_uptodate((struct folio *)page);
766 }
767 
768 static __always_inline void SetPageUptodate(struct page *page)
769 {
770 	folio_mark_uptodate((struct folio *)page);
771 }
772 
773 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
774 
775 bool __folio_start_writeback(struct folio *folio, bool keep_write);
776 bool set_page_writeback(struct page *page);
777 
778 #define folio_start_writeback(folio)			\
779 	__folio_start_writeback(folio, false)
780 #define folio_start_writeback_keepwrite(folio)	\
781 	__folio_start_writeback(folio, true)
782 
783 static inline bool test_set_page_writeback(struct page *page)
784 {
785 	return set_page_writeback(page);
786 }
787 
788 static __always_inline bool folio_test_head(struct folio *folio)
789 {
790 	return test_bit(PG_head, folio_flags(folio, FOLIO_PF_ANY));
791 }
792 
793 static __always_inline int PageHead(struct page *page)
794 {
795 	PF_POISONED_CHECK(page);
796 	return test_bit(PG_head, &page->flags) && !page_is_fake_head(page);
797 }
798 
799 __SETPAGEFLAG(Head, head, PF_ANY)
800 __CLEARPAGEFLAG(Head, head, PF_ANY)
801 CLEARPAGEFLAG(Head, head, PF_ANY)
802 
803 /**
804  * folio_test_large() - Does this folio contain more than one page?
805  * @folio: The folio to test.
806  *
807  * Return: True if the folio is larger than one page.
808  */
809 static inline bool folio_test_large(struct folio *folio)
810 {
811 	return folio_test_head(folio);
812 }
813 
814 static __always_inline void set_compound_head(struct page *page, struct page *head)
815 {
816 	WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
817 }
818 
819 static __always_inline void clear_compound_head(struct page *page)
820 {
821 	WRITE_ONCE(page->compound_head, 0);
822 }
823 
824 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
825 static inline void ClearPageCompound(struct page *page)
826 {
827 	BUG_ON(!PageHead(page));
828 	ClearPageHead(page);
829 }
830 PAGEFLAG(LargeRmappable, large_rmappable, PF_SECOND)
831 #else
832 TESTPAGEFLAG_FALSE(LargeRmappable, large_rmappable)
833 #endif
834 
835 #define PG_head_mask ((1UL << PG_head))
836 
837 #ifdef CONFIG_HUGETLB_PAGE
838 int PageHuge(struct page *page);
839 SETPAGEFLAG(HugeTLB, hugetlb, PF_SECOND)
840 CLEARPAGEFLAG(HugeTLB, hugetlb, PF_SECOND)
841 
842 /**
843  * folio_test_hugetlb - Determine if the folio belongs to hugetlbfs
844  * @folio: The folio to test.
845  *
846  * Context: Any context.  Caller should have a reference on the folio to
847  * prevent it from being turned into a tail page.
848  * Return: True for hugetlbfs folios, false for anon folios or folios
849  * belonging to other filesystems.
850  */
851 static inline bool folio_test_hugetlb(struct folio *folio)
852 {
853 	return folio_test_large(folio) &&
854 		test_bit(PG_hugetlb, folio_flags(folio, 1));
855 }
856 #else
857 TESTPAGEFLAG_FALSE(Huge, hugetlb)
858 #endif
859 
860 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
861 /*
862  * PageHuge() only returns true for hugetlbfs pages, but not for
863  * normal or transparent huge pages.
864  *
865  * PageTransHuge() returns true for both transparent huge and
866  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
867  * called only in the core VM paths where hugetlbfs pages can't exist.
868  */
869 static inline int PageTransHuge(struct page *page)
870 {
871 	VM_BUG_ON_PAGE(PageTail(page), page);
872 	return PageHead(page);
873 }
874 
875 /*
876  * PageTransCompound returns true for both transparent huge pages
877  * and hugetlbfs pages, so it should only be called when it's known
878  * that hugetlbfs pages aren't involved.
879  */
880 static inline int PageTransCompound(struct page *page)
881 {
882 	return PageCompound(page);
883 }
884 
885 /*
886  * PageTransTail returns true for both transparent huge pages
887  * and hugetlbfs pages, so it should only be called when it's known
888  * that hugetlbfs pages aren't involved.
889  */
890 static inline int PageTransTail(struct page *page)
891 {
892 	return PageTail(page);
893 }
894 #else
895 TESTPAGEFLAG_FALSE(TransHuge, transhuge)
896 TESTPAGEFLAG_FALSE(TransCompound, transcompound)
897 TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap)
898 TESTPAGEFLAG_FALSE(TransTail, transtail)
899 #endif
900 
901 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
902 /*
903  * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
904  * compound page.
905  *
906  * This flag is set by hwpoison handler.  Cleared by THP split or free page.
907  */
908 PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
909 	TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
910 #else
911 PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
912 	TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
913 #endif
914 
915 /*
916  * Check if a page is currently marked HWPoisoned. Note that this check is
917  * best effort only and inherently racy: there is no way to synchronize with
918  * failing hardware.
919  */
920 static inline bool is_page_hwpoison(struct page *page)
921 {
922 	if (PageHWPoison(page))
923 		return true;
924 	return PageHuge(page) && PageHWPoison(compound_head(page));
925 }
926 
927 /*
928  * For pages that are never mapped to userspace (and aren't PageSlab),
929  * page_type may be used.  Because it is initialised to -1, we invert the
930  * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
931  * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
932  * low bits so that an underflow or overflow of page_mapcount() won't be
933  * mistaken for a page type value.
934  */
935 
936 #define PAGE_TYPE_BASE	0xf0000000
937 /* Reserve		0x0000007f to catch underflows of page_mapcount */
938 #define PAGE_MAPCOUNT_RESERVE	-128
939 #define PG_buddy	0x00000080
940 #define PG_offline	0x00000100
941 #define PG_table	0x00000200
942 #define PG_guard	0x00000400
943 
944 #define PageType(page, flag)						\
945 	((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
946 #define folio_test_type(folio, flag)					\
947 	((folio->page.page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
948 
949 static inline int page_type_has_type(unsigned int page_type)
950 {
951 	return (int)page_type < PAGE_MAPCOUNT_RESERVE;
952 }
953 
954 static inline int page_has_type(struct page *page)
955 {
956 	return page_type_has_type(page->page_type);
957 }
958 
959 #define PAGE_TYPE_OPS(uname, lname, fname)				\
960 static __always_inline int Page##uname(const struct page *page)		\
961 {									\
962 	return PageType(page, PG_##lname);				\
963 }									\
964 static __always_inline int folio_test_##fname(const struct folio *folio)\
965 {									\
966 	return folio_test_type(folio, PG_##lname);			\
967 }									\
968 static __always_inline void __SetPage##uname(struct page *page)		\
969 {									\
970 	VM_BUG_ON_PAGE(!PageType(page, 0), page);			\
971 	page->page_type &= ~PG_##lname;					\
972 }									\
973 static __always_inline void __folio_set_##fname(struct folio *folio)	\
974 {									\
975 	VM_BUG_ON_FOLIO(!folio_test_type(folio, 0), folio);		\
976 	folio->page.page_type &= ~PG_##lname;				\
977 }									\
978 static __always_inline void __ClearPage##uname(struct page *page)	\
979 {									\
980 	VM_BUG_ON_PAGE(!Page##uname(page), page);			\
981 	page->page_type |= PG_##lname;					\
982 }									\
983 static __always_inline void __folio_clear_##fname(struct folio *folio)	\
984 {									\
985 	VM_BUG_ON_FOLIO(!folio_test_##fname(folio), folio);		\
986 	folio->page.page_type |= PG_##lname;				\
987 }									\
988 
989 /*
990  * PageBuddy() indicates that the page is free and in the buddy system
991  * (see mm/page_alloc.c).
992  */
993 PAGE_TYPE_OPS(Buddy, buddy, buddy)
994 
995 /*
996  * PageOffline() indicates that the page is logically offline although the
997  * containing section is online. (e.g. inflated in a balloon driver or
998  * not onlined when onlining the section).
999  * The content of these pages is effectively stale. Such pages should not
1000  * be touched (read/write/dump/save) except by their owner.
1001  *
1002  * If a driver wants to allow to offline unmovable PageOffline() pages without
1003  * putting them back to the buddy, it can do so via the memory notifier by
1004  * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
1005  * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
1006  * pages (now with a reference count of zero) are treated like free pages,
1007  * allowing the containing memory block to get offlined. A driver that
1008  * relies on this feature is aware that re-onlining the memory block will
1009  * require to re-set the pages PageOffline() and not giving them to the
1010  * buddy via online_page_callback_t.
1011  *
1012  * There are drivers that mark a page PageOffline() and expect there won't be
1013  * any further access to page content. PFN walkers that read content of random
1014  * pages should check PageOffline() and synchronize with such drivers using
1015  * page_offline_freeze()/page_offline_thaw().
1016  */
1017 PAGE_TYPE_OPS(Offline, offline, offline)
1018 
1019 extern void page_offline_freeze(void);
1020 extern void page_offline_thaw(void);
1021 extern void page_offline_begin(void);
1022 extern void page_offline_end(void);
1023 
1024 /*
1025  * Marks pages in use as page tables.
1026  */
1027 PAGE_TYPE_OPS(Table, table, pgtable)
1028 
1029 /*
1030  * Marks guardpages used with debug_pagealloc.
1031  */
1032 PAGE_TYPE_OPS(Guard, guard, guard)
1033 
1034 extern bool is_free_buddy_page(struct page *page);
1035 
1036 PAGEFLAG(Isolated, isolated, PF_ANY);
1037 
1038 static __always_inline int PageAnonExclusive(struct page *page)
1039 {
1040 	VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1041 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1042 	return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1043 }
1044 
1045 static __always_inline void SetPageAnonExclusive(struct page *page)
1046 {
1047 	VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page);
1048 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1049 	set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1050 }
1051 
1052 static __always_inline void ClearPageAnonExclusive(struct page *page)
1053 {
1054 	VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page);
1055 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1056 	clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1057 }
1058 
1059 static __always_inline void __ClearPageAnonExclusive(struct page *page)
1060 {
1061 	VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1062 	VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1063 	__clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1064 }
1065 
1066 #ifdef CONFIG_MMU
1067 #define __PG_MLOCKED		(1UL << PG_mlocked)
1068 #else
1069 #define __PG_MLOCKED		0
1070 #endif
1071 
1072 /*
1073  * Flags checked when a page is freed.  Pages being freed should not have
1074  * these flags set.  If they are, there is a problem.
1075  */
1076 #define PAGE_FLAGS_CHECK_AT_FREE				\
1077 	(1UL << PG_lru		| 1UL << PG_locked	|	\
1078 	 1UL << PG_private	| 1UL << PG_private_2	|	\
1079 	 1UL << PG_writeback	| 1UL << PG_reserved	|	\
1080 	 1UL << PG_slab		| 1UL << PG_active 	|	\
1081 	 1UL << PG_unevictable	| __PG_MLOCKED | LRU_GEN_MASK)
1082 
1083 /*
1084  * Flags checked when a page is prepped for return by the page allocator.
1085  * Pages being prepped should not have these flags set.  If they are set,
1086  * there has been a kernel bug or struct page corruption.
1087  *
1088  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
1089  * alloc-free cycle to prevent from reusing the page.
1090  */
1091 #define PAGE_FLAGS_CHECK_AT_PREP	\
1092 	((PAGEFLAGS_MASK & ~__PG_HWPOISON) | LRU_GEN_MASK | LRU_REFS_MASK)
1093 
1094 /*
1095  * Flags stored in the second page of a compound page.  They may overlap
1096  * the CHECK_AT_FREE flags above, so need to be cleared.
1097  */
1098 #define PAGE_FLAGS_SECOND						\
1099 	(0xffUL /* order */		| 1UL << PG_has_hwpoisoned |	\
1100 	 1UL << PG_hugetlb		| 1UL << PG_large_rmappable)
1101 
1102 #define PAGE_FLAGS_PRIVATE				\
1103 	(1UL << PG_private | 1UL << PG_private_2)
1104 /**
1105  * page_has_private - Determine if page has private stuff
1106  * @page: The page to be checked
1107  *
1108  * Determine if a page has private stuff, indicating that release routines
1109  * should be invoked upon it.
1110  */
1111 static inline int page_has_private(struct page *page)
1112 {
1113 	return !!(page->flags & PAGE_FLAGS_PRIVATE);
1114 }
1115 
1116 static inline bool folio_has_private(struct folio *folio)
1117 {
1118 	return page_has_private(&folio->page);
1119 }
1120 
1121 #undef PF_ANY
1122 #undef PF_HEAD
1123 #undef PF_ONLY_HEAD
1124 #undef PF_NO_TAIL
1125 #undef PF_NO_COMPOUND
1126 #undef PF_SECOND
1127 #endif /* !__GENERATING_BOUNDS_H */
1128 
1129 #endif	/* PAGE_FLAGS_H */
1130