xref: /linux/include/linux/perf_event.h (revision 9a6b55ac)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19 
20 /*
21  * Kernel-internal data types and definitions:
22  */
23 
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 struct perf_guest_info_callbacks {
30 	int				(*is_in_guest)(void);
31 	int				(*is_user_mode)(void);
32 	unsigned long			(*get_guest_ip)(void);
33 	void				(*handle_intel_pt_intr)(void);
34 };
35 
36 #ifdef CONFIG_HAVE_HW_BREAKPOINT
37 #include <asm/hw_breakpoint.h>
38 #endif
39 
40 #include <linux/list.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/rcupdate.h>
44 #include <linux/spinlock.h>
45 #include <linux/hrtimer.h>
46 #include <linux/fs.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/workqueue.h>
49 #include <linux/ftrace.h>
50 #include <linux/cpu.h>
51 #include <linux/irq_work.h>
52 #include <linux/static_key.h>
53 #include <linux/jump_label_ratelimit.h>
54 #include <linux/atomic.h>
55 #include <linux/sysfs.h>
56 #include <linux/perf_regs.h>
57 #include <linux/cgroup.h>
58 #include <linux/refcount.h>
59 #include <linux/security.h>
60 #include <asm/local.h>
61 
62 struct perf_callchain_entry {
63 	__u64				nr;
64 	__u64				ip[0]; /* /proc/sys/kernel/perf_event_max_stack */
65 };
66 
67 struct perf_callchain_entry_ctx {
68 	struct perf_callchain_entry *entry;
69 	u32			    max_stack;
70 	u32			    nr;
71 	short			    contexts;
72 	bool			    contexts_maxed;
73 };
74 
75 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
76 				     unsigned long off, unsigned long len);
77 
78 struct perf_raw_frag {
79 	union {
80 		struct perf_raw_frag	*next;
81 		unsigned long		pad;
82 	};
83 	perf_copy_f			copy;
84 	void				*data;
85 	u32				size;
86 } __packed;
87 
88 struct perf_raw_record {
89 	struct perf_raw_frag		frag;
90 	u32				size;
91 };
92 
93 /*
94  * branch stack layout:
95  *  nr: number of taken branches stored in entries[]
96  *
97  * Note that nr can vary from sample to sample
98  * branches (to, from) are stored from most recent
99  * to least recent, i.e., entries[0] contains the most
100  * recent branch.
101  */
102 struct perf_branch_stack {
103 	__u64				nr;
104 	struct perf_branch_entry	entries[0];
105 };
106 
107 struct task_struct;
108 
109 /*
110  * extra PMU register associated with an event
111  */
112 struct hw_perf_event_extra {
113 	u64		config;	/* register value */
114 	unsigned int	reg;	/* register address or index */
115 	int		alloc;	/* extra register already allocated */
116 	int		idx;	/* index in shared_regs->regs[] */
117 };
118 
119 /**
120  * struct hw_perf_event - performance event hardware details:
121  */
122 struct hw_perf_event {
123 #ifdef CONFIG_PERF_EVENTS
124 	union {
125 		struct { /* hardware */
126 			u64		config;
127 			u64		last_tag;
128 			unsigned long	config_base;
129 			unsigned long	event_base;
130 			int		event_base_rdpmc;
131 			int		idx;
132 			int		last_cpu;
133 			int		flags;
134 
135 			struct hw_perf_event_extra extra_reg;
136 			struct hw_perf_event_extra branch_reg;
137 		};
138 		struct { /* software */
139 			struct hrtimer	hrtimer;
140 		};
141 		struct { /* tracepoint */
142 			/* for tp_event->class */
143 			struct list_head	tp_list;
144 		};
145 		struct { /* amd_power */
146 			u64	pwr_acc;
147 			u64	ptsc;
148 		};
149 #ifdef CONFIG_HAVE_HW_BREAKPOINT
150 		struct { /* breakpoint */
151 			/*
152 			 * Crufty hack to avoid the chicken and egg
153 			 * problem hw_breakpoint has with context
154 			 * creation and event initalization.
155 			 */
156 			struct arch_hw_breakpoint	info;
157 			struct list_head		bp_list;
158 		};
159 #endif
160 		struct { /* amd_iommu */
161 			u8	iommu_bank;
162 			u8	iommu_cntr;
163 			u16	padding;
164 			u64	conf;
165 			u64	conf1;
166 		};
167 	};
168 	/*
169 	 * If the event is a per task event, this will point to the task in
170 	 * question. See the comment in perf_event_alloc().
171 	 */
172 	struct task_struct		*target;
173 
174 	/*
175 	 * PMU would store hardware filter configuration
176 	 * here.
177 	 */
178 	void				*addr_filters;
179 
180 	/* Last sync'ed generation of filters */
181 	unsigned long			addr_filters_gen;
182 
183 /*
184  * hw_perf_event::state flags; used to track the PERF_EF_* state.
185  */
186 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
187 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
188 #define PERF_HES_ARCH		0x04
189 
190 	int				state;
191 
192 	/*
193 	 * The last observed hardware counter value, updated with a
194 	 * local64_cmpxchg() such that pmu::read() can be called nested.
195 	 */
196 	local64_t			prev_count;
197 
198 	/*
199 	 * The period to start the next sample with.
200 	 */
201 	u64				sample_period;
202 
203 	/*
204 	 * The period we started this sample with.
205 	 */
206 	u64				last_period;
207 
208 	/*
209 	 * However much is left of the current period; note that this is
210 	 * a full 64bit value and allows for generation of periods longer
211 	 * than hardware might allow.
212 	 */
213 	local64_t			period_left;
214 
215 	/*
216 	 * State for throttling the event, see __perf_event_overflow() and
217 	 * perf_adjust_freq_unthr_context().
218 	 */
219 	u64                             interrupts_seq;
220 	u64				interrupts;
221 
222 	/*
223 	 * State for freq target events, see __perf_event_overflow() and
224 	 * perf_adjust_freq_unthr_context().
225 	 */
226 	u64				freq_time_stamp;
227 	u64				freq_count_stamp;
228 #endif
229 };
230 
231 struct perf_event;
232 
233 /*
234  * Common implementation detail of pmu::{start,commit,cancel}_txn
235  */
236 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
237 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
238 
239 /**
240  * pmu::capabilities flags
241  */
242 #define PERF_PMU_CAP_NO_INTERRUPT		0x01
243 #define PERF_PMU_CAP_NO_NMI			0x02
244 #define PERF_PMU_CAP_AUX_NO_SG			0x04
245 #define PERF_PMU_CAP_EXTENDED_REGS		0x08
246 #define PERF_PMU_CAP_EXCLUSIVE			0x10
247 #define PERF_PMU_CAP_ITRACE			0x20
248 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x40
249 #define PERF_PMU_CAP_NO_EXCLUDE			0x80
250 #define PERF_PMU_CAP_AUX_OUTPUT			0x100
251 
252 struct perf_output_handle;
253 
254 /**
255  * struct pmu - generic performance monitoring unit
256  */
257 struct pmu {
258 	struct list_head		entry;
259 
260 	struct module			*module;
261 	struct device			*dev;
262 	const struct attribute_group	**attr_groups;
263 	const struct attribute_group	**attr_update;
264 	const char			*name;
265 	int				type;
266 
267 	/*
268 	 * various common per-pmu feature flags
269 	 */
270 	int				capabilities;
271 
272 	int __percpu			*pmu_disable_count;
273 	struct perf_cpu_context __percpu *pmu_cpu_context;
274 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
275 	int				task_ctx_nr;
276 	int				hrtimer_interval_ms;
277 
278 	/* number of address filters this PMU can do */
279 	unsigned int			nr_addr_filters;
280 
281 	/*
282 	 * Fully disable/enable this PMU, can be used to protect from the PMI
283 	 * as well as for lazy/batch writing of the MSRs.
284 	 */
285 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
286 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
287 
288 	/*
289 	 * Try and initialize the event for this PMU.
290 	 *
291 	 * Returns:
292 	 *  -ENOENT	-- @event is not for this PMU
293 	 *
294 	 *  -ENODEV	-- @event is for this PMU but PMU not present
295 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
296 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
297 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
298 	 *  -EACCES	-- @event is for this PMU, @event is valid, but no privileges
299 	 *
300 	 *  0		-- @event is for this PMU and valid
301 	 *
302 	 * Other error return values are allowed.
303 	 */
304 	int (*event_init)		(struct perf_event *event);
305 
306 	/*
307 	 * Notification that the event was mapped or unmapped.  Called
308 	 * in the context of the mapping task.
309 	 */
310 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
311 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
312 
313 	/*
314 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
315 	 * matching hw_perf_event::state flags.
316 	 */
317 #define PERF_EF_START	0x01		/* start the counter when adding    */
318 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
319 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
320 
321 	/*
322 	 * Adds/Removes a counter to/from the PMU, can be done inside a
323 	 * transaction, see the ->*_txn() methods.
324 	 *
325 	 * The add/del callbacks will reserve all hardware resources required
326 	 * to service the event, this includes any counter constraint
327 	 * scheduling etc.
328 	 *
329 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
330 	 * is on.
331 	 *
332 	 * ->add() called without PERF_EF_START should result in the same state
333 	 *  as ->add() followed by ->stop().
334 	 *
335 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
336 	 *  ->stop() that must deal with already being stopped without
337 	 *  PERF_EF_UPDATE.
338 	 */
339 	int  (*add)			(struct perf_event *event, int flags);
340 	void (*del)			(struct perf_event *event, int flags);
341 
342 	/*
343 	 * Starts/Stops a counter present on the PMU.
344 	 *
345 	 * The PMI handler should stop the counter when perf_event_overflow()
346 	 * returns !0. ->start() will be used to continue.
347 	 *
348 	 * Also used to change the sample period.
349 	 *
350 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
351 	 * is on -- will be called from NMI context with the PMU generates
352 	 * NMIs.
353 	 *
354 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
355 	 *  period/count values like ->read() would.
356 	 *
357 	 * ->start() with PERF_EF_RELOAD will reprogram the the counter
358 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
359 	 */
360 	void (*start)			(struct perf_event *event, int flags);
361 	void (*stop)			(struct perf_event *event, int flags);
362 
363 	/*
364 	 * Updates the counter value of the event.
365 	 *
366 	 * For sampling capable PMUs this will also update the software period
367 	 * hw_perf_event::period_left field.
368 	 */
369 	void (*read)			(struct perf_event *event);
370 
371 	/*
372 	 * Group events scheduling is treated as a transaction, add
373 	 * group events as a whole and perform one schedulability test.
374 	 * If the test fails, roll back the whole group
375 	 *
376 	 * Start the transaction, after this ->add() doesn't need to
377 	 * do schedulability tests.
378 	 *
379 	 * Optional.
380 	 */
381 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
382 	/*
383 	 * If ->start_txn() disabled the ->add() schedulability test
384 	 * then ->commit_txn() is required to perform one. On success
385 	 * the transaction is closed. On error the transaction is kept
386 	 * open until ->cancel_txn() is called.
387 	 *
388 	 * Optional.
389 	 */
390 	int  (*commit_txn)		(struct pmu *pmu);
391 	/*
392 	 * Will cancel the transaction, assumes ->del() is called
393 	 * for each successful ->add() during the transaction.
394 	 *
395 	 * Optional.
396 	 */
397 	void (*cancel_txn)		(struct pmu *pmu);
398 
399 	/*
400 	 * Will return the value for perf_event_mmap_page::index for this event,
401 	 * if no implementation is provided it will default to: event->hw.idx + 1.
402 	 */
403 	int (*event_idx)		(struct perf_event *event); /*optional */
404 
405 	/*
406 	 * context-switches callback
407 	 */
408 	void (*sched_task)		(struct perf_event_context *ctx,
409 					bool sched_in);
410 	/*
411 	 * PMU specific data size
412 	 */
413 	size_t				task_ctx_size;
414 
415 	/*
416 	 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
417 	 * can be synchronized using this function. See Intel LBR callstack support
418 	 * implementation and Perf core context switch handling callbacks for usage
419 	 * examples.
420 	 */
421 	void (*swap_task_ctx)		(struct perf_event_context *prev,
422 					 struct perf_event_context *next);
423 					/* optional */
424 
425 	/*
426 	 * Set up pmu-private data structures for an AUX area
427 	 */
428 	void *(*setup_aux)		(struct perf_event *event, void **pages,
429 					 int nr_pages, bool overwrite);
430 					/* optional */
431 
432 	/*
433 	 * Free pmu-private AUX data structures
434 	 */
435 	void (*free_aux)		(void *aux); /* optional */
436 
437 	/*
438 	 * Take a snapshot of the AUX buffer without touching the event
439 	 * state, so that preempting ->start()/->stop() callbacks does
440 	 * not interfere with their logic. Called in PMI context.
441 	 *
442 	 * Returns the size of AUX data copied to the output handle.
443 	 *
444 	 * Optional.
445 	 */
446 	long (*snapshot_aux)		(struct perf_event *event,
447 					 struct perf_output_handle *handle,
448 					 unsigned long size);
449 
450 	/*
451 	 * Validate address range filters: make sure the HW supports the
452 	 * requested configuration and number of filters; return 0 if the
453 	 * supplied filters are valid, -errno otherwise.
454 	 *
455 	 * Runs in the context of the ioctl()ing process and is not serialized
456 	 * with the rest of the PMU callbacks.
457 	 */
458 	int (*addr_filters_validate)	(struct list_head *filters);
459 					/* optional */
460 
461 	/*
462 	 * Synchronize address range filter configuration:
463 	 * translate hw-agnostic filters into hardware configuration in
464 	 * event::hw::addr_filters.
465 	 *
466 	 * Runs as a part of filter sync sequence that is done in ->start()
467 	 * callback by calling perf_event_addr_filters_sync().
468 	 *
469 	 * May (and should) traverse event::addr_filters::list, for which its
470 	 * caller provides necessary serialization.
471 	 */
472 	void (*addr_filters_sync)	(struct perf_event *event);
473 					/* optional */
474 
475 	/*
476 	 * Check if event can be used for aux_output purposes for
477 	 * events of this PMU.
478 	 *
479 	 * Runs from perf_event_open(). Should return 0 for "no match"
480 	 * or non-zero for "match".
481 	 */
482 	int (*aux_output_match)		(struct perf_event *event);
483 					/* optional */
484 
485 	/*
486 	 * Filter events for PMU-specific reasons.
487 	 */
488 	int (*filter_match)		(struct perf_event *event); /* optional */
489 
490 	/*
491 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
492 	 */
493 	int (*check_period)		(struct perf_event *event, u64 value); /* optional */
494 };
495 
496 enum perf_addr_filter_action_t {
497 	PERF_ADDR_FILTER_ACTION_STOP = 0,
498 	PERF_ADDR_FILTER_ACTION_START,
499 	PERF_ADDR_FILTER_ACTION_FILTER,
500 };
501 
502 /**
503  * struct perf_addr_filter - address range filter definition
504  * @entry:	event's filter list linkage
505  * @path:	object file's path for file-based filters
506  * @offset:	filter range offset
507  * @size:	filter range size (size==0 means single address trigger)
508  * @action:	filter/start/stop
509  *
510  * This is a hardware-agnostic filter configuration as specified by the user.
511  */
512 struct perf_addr_filter {
513 	struct list_head	entry;
514 	struct path		path;
515 	unsigned long		offset;
516 	unsigned long		size;
517 	enum perf_addr_filter_action_t	action;
518 };
519 
520 /**
521  * struct perf_addr_filters_head - container for address range filters
522  * @list:	list of filters for this event
523  * @lock:	spinlock that serializes accesses to the @list and event's
524  *		(and its children's) filter generations.
525  * @nr_file_filters:	number of file-based filters
526  *
527  * A child event will use parent's @list (and therefore @lock), so they are
528  * bundled together; see perf_event_addr_filters().
529  */
530 struct perf_addr_filters_head {
531 	struct list_head	list;
532 	raw_spinlock_t		lock;
533 	unsigned int		nr_file_filters;
534 };
535 
536 struct perf_addr_filter_range {
537 	unsigned long		start;
538 	unsigned long		size;
539 };
540 
541 /**
542  * enum perf_event_state - the states of an event:
543  */
544 enum perf_event_state {
545 	PERF_EVENT_STATE_DEAD		= -4,
546 	PERF_EVENT_STATE_EXIT		= -3,
547 	PERF_EVENT_STATE_ERROR		= -2,
548 	PERF_EVENT_STATE_OFF		= -1,
549 	PERF_EVENT_STATE_INACTIVE	=  0,
550 	PERF_EVENT_STATE_ACTIVE		=  1,
551 };
552 
553 struct file;
554 struct perf_sample_data;
555 
556 typedef void (*perf_overflow_handler_t)(struct perf_event *,
557 					struct perf_sample_data *,
558 					struct pt_regs *regs);
559 
560 /*
561  * Event capabilities. For event_caps and groups caps.
562  *
563  * PERF_EV_CAP_SOFTWARE: Is a software event.
564  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
565  * from any CPU in the package where it is active.
566  */
567 #define PERF_EV_CAP_SOFTWARE		BIT(0)
568 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
569 
570 #define SWEVENT_HLIST_BITS		8
571 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
572 
573 struct swevent_hlist {
574 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
575 	struct rcu_head			rcu_head;
576 };
577 
578 #define PERF_ATTACH_CONTEXT	0x01
579 #define PERF_ATTACH_GROUP	0x02
580 #define PERF_ATTACH_TASK	0x04
581 #define PERF_ATTACH_TASK_DATA	0x08
582 #define PERF_ATTACH_ITRACE	0x10
583 
584 struct perf_cgroup;
585 struct ring_buffer;
586 
587 struct pmu_event_list {
588 	raw_spinlock_t		lock;
589 	struct list_head	list;
590 };
591 
592 #define for_each_sibling_event(sibling, event)			\
593 	if ((event)->group_leader == (event))			\
594 		list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
595 
596 /**
597  * struct perf_event - performance event kernel representation:
598  */
599 struct perf_event {
600 #ifdef CONFIG_PERF_EVENTS
601 	/*
602 	 * entry onto perf_event_context::event_list;
603 	 *   modifications require ctx->lock
604 	 *   RCU safe iterations.
605 	 */
606 	struct list_head		event_entry;
607 
608 	/*
609 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
610 	 * either sufficies for read.
611 	 */
612 	struct list_head		sibling_list;
613 	struct list_head		active_list;
614 	/*
615 	 * Node on the pinned or flexible tree located at the event context;
616 	 */
617 	struct rb_node			group_node;
618 	u64				group_index;
619 	/*
620 	 * We need storage to track the entries in perf_pmu_migrate_context; we
621 	 * cannot use the event_entry because of RCU and we want to keep the
622 	 * group in tact which avoids us using the other two entries.
623 	 */
624 	struct list_head		migrate_entry;
625 
626 	struct hlist_node		hlist_entry;
627 	struct list_head		active_entry;
628 	int				nr_siblings;
629 
630 	/* Not serialized. Only written during event initialization. */
631 	int				event_caps;
632 	/* The cumulative AND of all event_caps for events in this group. */
633 	int				group_caps;
634 
635 	struct perf_event		*group_leader;
636 	struct pmu			*pmu;
637 	void				*pmu_private;
638 
639 	enum perf_event_state		state;
640 	unsigned int			attach_state;
641 	local64_t			count;
642 	atomic64_t			child_count;
643 
644 	/*
645 	 * These are the total time in nanoseconds that the event
646 	 * has been enabled (i.e. eligible to run, and the task has
647 	 * been scheduled in, if this is a per-task event)
648 	 * and running (scheduled onto the CPU), respectively.
649 	 */
650 	u64				total_time_enabled;
651 	u64				total_time_running;
652 	u64				tstamp;
653 
654 	/*
655 	 * timestamp shadows the actual context timing but it can
656 	 * be safely used in NMI interrupt context. It reflects the
657 	 * context time as it was when the event was last scheduled in.
658 	 *
659 	 * ctx_time already accounts for ctx->timestamp. Therefore to
660 	 * compute ctx_time for a sample, simply add perf_clock().
661 	 */
662 	u64				shadow_ctx_time;
663 
664 	struct perf_event_attr		attr;
665 	u16				header_size;
666 	u16				id_header_size;
667 	u16				read_size;
668 	struct hw_perf_event		hw;
669 
670 	struct perf_event_context	*ctx;
671 	atomic_long_t			refcount;
672 
673 	/*
674 	 * These accumulate total time (in nanoseconds) that children
675 	 * events have been enabled and running, respectively.
676 	 */
677 	atomic64_t			child_total_time_enabled;
678 	atomic64_t			child_total_time_running;
679 
680 	/*
681 	 * Protect attach/detach and child_list:
682 	 */
683 	struct mutex			child_mutex;
684 	struct list_head		child_list;
685 	struct perf_event		*parent;
686 
687 	int				oncpu;
688 	int				cpu;
689 
690 	struct list_head		owner_entry;
691 	struct task_struct		*owner;
692 
693 	/* mmap bits */
694 	struct mutex			mmap_mutex;
695 	atomic_t			mmap_count;
696 
697 	struct ring_buffer		*rb;
698 	struct list_head		rb_entry;
699 	unsigned long			rcu_batches;
700 	int				rcu_pending;
701 
702 	/* poll related */
703 	wait_queue_head_t		waitq;
704 	struct fasync_struct		*fasync;
705 
706 	/* delayed work for NMIs and such */
707 	int				pending_wakeup;
708 	int				pending_kill;
709 	int				pending_disable;
710 	struct irq_work			pending;
711 
712 	atomic_t			event_limit;
713 
714 	/* address range filters */
715 	struct perf_addr_filters_head	addr_filters;
716 	/* vma address array for file-based filders */
717 	struct perf_addr_filter_range	*addr_filter_ranges;
718 	unsigned long			addr_filters_gen;
719 
720 	/* for aux_output events */
721 	struct perf_event		*aux_event;
722 
723 	void (*destroy)(struct perf_event *);
724 	struct rcu_head			rcu_head;
725 
726 	struct pid_namespace		*ns;
727 	u64				id;
728 
729 	u64				(*clock)(void);
730 	perf_overflow_handler_t		overflow_handler;
731 	void				*overflow_handler_context;
732 #ifdef CONFIG_BPF_SYSCALL
733 	perf_overflow_handler_t		orig_overflow_handler;
734 	struct bpf_prog			*prog;
735 #endif
736 
737 #ifdef CONFIG_EVENT_TRACING
738 	struct trace_event_call		*tp_event;
739 	struct event_filter		*filter;
740 #ifdef CONFIG_FUNCTION_TRACER
741 	struct ftrace_ops               ftrace_ops;
742 #endif
743 #endif
744 
745 #ifdef CONFIG_CGROUP_PERF
746 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
747 #endif
748 
749 #ifdef CONFIG_SECURITY
750 	void *security;
751 #endif
752 	struct list_head		sb_list;
753 #endif /* CONFIG_PERF_EVENTS */
754 };
755 
756 
757 struct perf_event_groups {
758 	struct rb_root	tree;
759 	u64		index;
760 };
761 
762 /**
763  * struct perf_event_context - event context structure
764  *
765  * Used as a container for task events and CPU events as well:
766  */
767 struct perf_event_context {
768 	struct pmu			*pmu;
769 	/*
770 	 * Protect the states of the events in the list,
771 	 * nr_active, and the list:
772 	 */
773 	raw_spinlock_t			lock;
774 	/*
775 	 * Protect the list of events.  Locking either mutex or lock
776 	 * is sufficient to ensure the list doesn't change; to change
777 	 * the list you need to lock both the mutex and the spinlock.
778 	 */
779 	struct mutex			mutex;
780 
781 	struct list_head		active_ctx_list;
782 	struct perf_event_groups	pinned_groups;
783 	struct perf_event_groups	flexible_groups;
784 	struct list_head		event_list;
785 
786 	struct list_head		pinned_active;
787 	struct list_head		flexible_active;
788 
789 	int				nr_events;
790 	int				nr_active;
791 	int				is_active;
792 	int				nr_stat;
793 	int				nr_freq;
794 	int				rotate_disable;
795 	/*
796 	 * Set when nr_events != nr_active, except tolerant to events not
797 	 * necessary to be active due to scheduling constraints, such as cgroups.
798 	 */
799 	int				rotate_necessary;
800 	refcount_t			refcount;
801 	struct task_struct		*task;
802 
803 	/*
804 	 * Context clock, runs when context enabled.
805 	 */
806 	u64				time;
807 	u64				timestamp;
808 
809 	/*
810 	 * These fields let us detect when two contexts have both
811 	 * been cloned (inherited) from a common ancestor.
812 	 */
813 	struct perf_event_context	*parent_ctx;
814 	u64				parent_gen;
815 	u64				generation;
816 	int				pin_count;
817 #ifdef CONFIG_CGROUP_PERF
818 	int				nr_cgroups;	 /* cgroup evts */
819 #endif
820 	void				*task_ctx_data; /* pmu specific data */
821 	struct rcu_head			rcu_head;
822 };
823 
824 /*
825  * Number of contexts where an event can trigger:
826  *	task, softirq, hardirq, nmi.
827  */
828 #define PERF_NR_CONTEXTS	4
829 
830 /**
831  * struct perf_event_cpu_context - per cpu event context structure
832  */
833 struct perf_cpu_context {
834 	struct perf_event_context	ctx;
835 	struct perf_event_context	*task_ctx;
836 	int				active_oncpu;
837 	int				exclusive;
838 
839 	raw_spinlock_t			hrtimer_lock;
840 	struct hrtimer			hrtimer;
841 	ktime_t				hrtimer_interval;
842 	unsigned int			hrtimer_active;
843 
844 #ifdef CONFIG_CGROUP_PERF
845 	struct perf_cgroup		*cgrp;
846 	struct list_head		cgrp_cpuctx_entry;
847 #endif
848 
849 	struct list_head		sched_cb_entry;
850 	int				sched_cb_usage;
851 
852 	int				online;
853 };
854 
855 struct perf_output_handle {
856 	struct perf_event		*event;
857 	struct ring_buffer		*rb;
858 	unsigned long			wakeup;
859 	unsigned long			size;
860 	u64				aux_flags;
861 	union {
862 		void			*addr;
863 		unsigned long		head;
864 	};
865 	int				page;
866 };
867 
868 struct bpf_perf_event_data_kern {
869 	bpf_user_pt_regs_t *regs;
870 	struct perf_sample_data *data;
871 	struct perf_event *event;
872 };
873 
874 #ifdef CONFIG_CGROUP_PERF
875 
876 /*
877  * perf_cgroup_info keeps track of time_enabled for a cgroup.
878  * This is a per-cpu dynamically allocated data structure.
879  */
880 struct perf_cgroup_info {
881 	u64				time;
882 	u64				timestamp;
883 };
884 
885 struct perf_cgroup {
886 	struct cgroup_subsys_state	css;
887 	struct perf_cgroup_info	__percpu *info;
888 };
889 
890 /*
891  * Must ensure cgroup is pinned (css_get) before calling
892  * this function. In other words, we cannot call this function
893  * if there is no cgroup event for the current CPU context.
894  */
895 static inline struct perf_cgroup *
896 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
897 {
898 	return container_of(task_css_check(task, perf_event_cgrp_id,
899 					   ctx ? lockdep_is_held(&ctx->lock)
900 					       : true),
901 			    struct perf_cgroup, css);
902 }
903 #endif /* CONFIG_CGROUP_PERF */
904 
905 #ifdef CONFIG_PERF_EVENTS
906 
907 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
908 				   struct perf_event *event);
909 extern void perf_aux_output_end(struct perf_output_handle *handle,
910 				unsigned long size);
911 extern int perf_aux_output_skip(struct perf_output_handle *handle,
912 				unsigned long size);
913 extern void *perf_get_aux(struct perf_output_handle *handle);
914 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
915 extern void perf_event_itrace_started(struct perf_event *event);
916 
917 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
918 extern void perf_pmu_unregister(struct pmu *pmu);
919 
920 extern int perf_num_counters(void);
921 extern const char *perf_pmu_name(void);
922 extern void __perf_event_task_sched_in(struct task_struct *prev,
923 				       struct task_struct *task);
924 extern void __perf_event_task_sched_out(struct task_struct *prev,
925 					struct task_struct *next);
926 extern int perf_event_init_task(struct task_struct *child);
927 extern void perf_event_exit_task(struct task_struct *child);
928 extern void perf_event_free_task(struct task_struct *task);
929 extern void perf_event_delayed_put(struct task_struct *task);
930 extern struct file *perf_event_get(unsigned int fd);
931 extern const struct perf_event *perf_get_event(struct file *file);
932 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
933 extern void perf_event_print_debug(void);
934 extern void perf_pmu_disable(struct pmu *pmu);
935 extern void perf_pmu_enable(struct pmu *pmu);
936 extern void perf_sched_cb_dec(struct pmu *pmu);
937 extern void perf_sched_cb_inc(struct pmu *pmu);
938 extern int perf_event_task_disable(void);
939 extern int perf_event_task_enable(void);
940 
941 extern void perf_pmu_resched(struct pmu *pmu);
942 
943 extern int perf_event_refresh(struct perf_event *event, int refresh);
944 extern void perf_event_update_userpage(struct perf_event *event);
945 extern int perf_event_release_kernel(struct perf_event *event);
946 extern struct perf_event *
947 perf_event_create_kernel_counter(struct perf_event_attr *attr,
948 				int cpu,
949 				struct task_struct *task,
950 				perf_overflow_handler_t callback,
951 				void *context);
952 extern void perf_pmu_migrate_context(struct pmu *pmu,
953 				int src_cpu, int dst_cpu);
954 int perf_event_read_local(struct perf_event *event, u64 *value,
955 			  u64 *enabled, u64 *running);
956 extern u64 perf_event_read_value(struct perf_event *event,
957 				 u64 *enabled, u64 *running);
958 
959 
960 struct perf_sample_data {
961 	/*
962 	 * Fields set by perf_sample_data_init(), group so as to
963 	 * minimize the cachelines touched.
964 	 */
965 	u64				addr;
966 	struct perf_raw_record		*raw;
967 	struct perf_branch_stack	*br_stack;
968 	u64				period;
969 	u64				weight;
970 	u64				txn;
971 	union  perf_mem_data_src	data_src;
972 
973 	/*
974 	 * The other fields, optionally {set,used} by
975 	 * perf_{prepare,output}_sample().
976 	 */
977 	u64				type;
978 	u64				ip;
979 	struct {
980 		u32	pid;
981 		u32	tid;
982 	}				tid_entry;
983 	u64				time;
984 	u64				id;
985 	u64				stream_id;
986 	struct {
987 		u32	cpu;
988 		u32	reserved;
989 	}				cpu_entry;
990 	struct perf_callchain_entry	*callchain;
991 	u64				aux_size;
992 
993 	/*
994 	 * regs_user may point to task_pt_regs or to regs_user_copy, depending
995 	 * on arch details.
996 	 */
997 	struct perf_regs		regs_user;
998 	struct pt_regs			regs_user_copy;
999 
1000 	struct perf_regs		regs_intr;
1001 	u64				stack_user_size;
1002 
1003 	u64				phys_addr;
1004 } ____cacheline_aligned;
1005 
1006 /* default value for data source */
1007 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
1008 		    PERF_MEM_S(LVL, NA)   |\
1009 		    PERF_MEM_S(SNOOP, NA) |\
1010 		    PERF_MEM_S(LOCK, NA)  |\
1011 		    PERF_MEM_S(TLB, NA))
1012 
1013 static inline void perf_sample_data_init(struct perf_sample_data *data,
1014 					 u64 addr, u64 period)
1015 {
1016 	/* remaining struct members initialized in perf_prepare_sample() */
1017 	data->addr = addr;
1018 	data->raw  = NULL;
1019 	data->br_stack = NULL;
1020 	data->period = period;
1021 	data->weight = 0;
1022 	data->data_src.val = PERF_MEM_NA;
1023 	data->txn = 0;
1024 }
1025 
1026 extern void perf_output_sample(struct perf_output_handle *handle,
1027 			       struct perf_event_header *header,
1028 			       struct perf_sample_data *data,
1029 			       struct perf_event *event);
1030 extern void perf_prepare_sample(struct perf_event_header *header,
1031 				struct perf_sample_data *data,
1032 				struct perf_event *event,
1033 				struct pt_regs *regs);
1034 
1035 extern int perf_event_overflow(struct perf_event *event,
1036 				 struct perf_sample_data *data,
1037 				 struct pt_regs *regs);
1038 
1039 extern void perf_event_output_forward(struct perf_event *event,
1040 				     struct perf_sample_data *data,
1041 				     struct pt_regs *regs);
1042 extern void perf_event_output_backward(struct perf_event *event,
1043 				       struct perf_sample_data *data,
1044 				       struct pt_regs *regs);
1045 extern int perf_event_output(struct perf_event *event,
1046 			     struct perf_sample_data *data,
1047 			     struct pt_regs *regs);
1048 
1049 static inline bool
1050 is_default_overflow_handler(struct perf_event *event)
1051 {
1052 	if (likely(event->overflow_handler == perf_event_output_forward))
1053 		return true;
1054 	if (unlikely(event->overflow_handler == perf_event_output_backward))
1055 		return true;
1056 	return false;
1057 }
1058 
1059 extern void
1060 perf_event_header__init_id(struct perf_event_header *header,
1061 			   struct perf_sample_data *data,
1062 			   struct perf_event *event);
1063 extern void
1064 perf_event__output_id_sample(struct perf_event *event,
1065 			     struct perf_output_handle *handle,
1066 			     struct perf_sample_data *sample);
1067 
1068 extern void
1069 perf_log_lost_samples(struct perf_event *event, u64 lost);
1070 
1071 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1072 {
1073 	struct perf_event_attr *attr = &event->attr;
1074 
1075 	return attr->exclude_idle || attr->exclude_user ||
1076 	       attr->exclude_kernel || attr->exclude_hv ||
1077 	       attr->exclude_guest || attr->exclude_host;
1078 }
1079 
1080 static inline bool is_sampling_event(struct perf_event *event)
1081 {
1082 	return event->attr.sample_period != 0;
1083 }
1084 
1085 /*
1086  * Return 1 for a software event, 0 for a hardware event
1087  */
1088 static inline int is_software_event(struct perf_event *event)
1089 {
1090 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1091 }
1092 
1093 /*
1094  * Return 1 for event in sw context, 0 for event in hw context
1095  */
1096 static inline int in_software_context(struct perf_event *event)
1097 {
1098 	return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1099 }
1100 
1101 static inline int is_exclusive_pmu(struct pmu *pmu)
1102 {
1103 	return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1104 }
1105 
1106 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1107 
1108 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1109 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1110 
1111 #ifndef perf_arch_fetch_caller_regs
1112 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1113 #endif
1114 
1115 /*
1116  * When generating a perf sample in-line, instead of from an interrupt /
1117  * exception, we lack a pt_regs. This is typically used from software events
1118  * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1119  *
1120  * We typically don't need a full set, but (for x86) do require:
1121  * - ip for PERF_SAMPLE_IP
1122  * - cs for user_mode() tests
1123  * - sp for PERF_SAMPLE_CALLCHAIN
1124  * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1125  *
1126  * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1127  * things like PERF_SAMPLE_REGS_INTR.
1128  */
1129 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1130 {
1131 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1132 }
1133 
1134 static __always_inline void
1135 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1136 {
1137 	if (static_key_false(&perf_swevent_enabled[event_id]))
1138 		__perf_sw_event(event_id, nr, regs, addr);
1139 }
1140 
1141 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1142 
1143 /*
1144  * 'Special' version for the scheduler, it hard assumes no recursion,
1145  * which is guaranteed by us not actually scheduling inside other swevents
1146  * because those disable preemption.
1147  */
1148 static __always_inline void
1149 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1150 {
1151 	if (static_key_false(&perf_swevent_enabled[event_id])) {
1152 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1153 
1154 		perf_fetch_caller_regs(regs);
1155 		___perf_sw_event(event_id, nr, regs, addr);
1156 	}
1157 }
1158 
1159 extern struct static_key_false perf_sched_events;
1160 
1161 static __always_inline bool
1162 perf_sw_migrate_enabled(void)
1163 {
1164 	if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1165 		return true;
1166 	return false;
1167 }
1168 
1169 static inline void perf_event_task_migrate(struct task_struct *task)
1170 {
1171 	if (perf_sw_migrate_enabled())
1172 		task->sched_migrated = 1;
1173 }
1174 
1175 static inline void perf_event_task_sched_in(struct task_struct *prev,
1176 					    struct task_struct *task)
1177 {
1178 	if (static_branch_unlikely(&perf_sched_events))
1179 		__perf_event_task_sched_in(prev, task);
1180 
1181 	if (perf_sw_migrate_enabled() && task->sched_migrated) {
1182 		struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1183 
1184 		perf_fetch_caller_regs(regs);
1185 		___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1186 		task->sched_migrated = 0;
1187 	}
1188 }
1189 
1190 static inline void perf_event_task_sched_out(struct task_struct *prev,
1191 					     struct task_struct *next)
1192 {
1193 	perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1194 
1195 	if (static_branch_unlikely(&perf_sched_events))
1196 		__perf_event_task_sched_out(prev, next);
1197 }
1198 
1199 extern void perf_event_mmap(struct vm_area_struct *vma);
1200 
1201 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1202 			       bool unregister, const char *sym);
1203 extern void perf_event_bpf_event(struct bpf_prog *prog,
1204 				 enum perf_bpf_event_type type,
1205 				 u16 flags);
1206 
1207 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1208 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1209 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1210 
1211 extern void perf_event_exec(void);
1212 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1213 extern void perf_event_namespaces(struct task_struct *tsk);
1214 extern void perf_event_fork(struct task_struct *tsk);
1215 
1216 /* Callchains */
1217 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1218 
1219 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1220 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1221 extern struct perf_callchain_entry *
1222 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1223 		   u32 max_stack, bool crosstask, bool add_mark);
1224 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1225 extern int get_callchain_buffers(int max_stack);
1226 extern void put_callchain_buffers(void);
1227 
1228 extern int sysctl_perf_event_max_stack;
1229 extern int sysctl_perf_event_max_contexts_per_stack;
1230 
1231 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1232 {
1233 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1234 		struct perf_callchain_entry *entry = ctx->entry;
1235 		entry->ip[entry->nr++] = ip;
1236 		++ctx->contexts;
1237 		return 0;
1238 	} else {
1239 		ctx->contexts_maxed = true;
1240 		return -1; /* no more room, stop walking the stack */
1241 	}
1242 }
1243 
1244 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1245 {
1246 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1247 		struct perf_callchain_entry *entry = ctx->entry;
1248 		entry->ip[entry->nr++] = ip;
1249 		++ctx->nr;
1250 		return 0;
1251 	} else {
1252 		return -1; /* no more room, stop walking the stack */
1253 	}
1254 }
1255 
1256 extern int sysctl_perf_event_paranoid;
1257 extern int sysctl_perf_event_mlock;
1258 extern int sysctl_perf_event_sample_rate;
1259 extern int sysctl_perf_cpu_time_max_percent;
1260 
1261 extern void perf_sample_event_took(u64 sample_len_ns);
1262 
1263 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1264 		void __user *buffer, size_t *lenp,
1265 		loff_t *ppos);
1266 extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1267 		void __user *buffer, size_t *lenp,
1268 		loff_t *ppos);
1269 
1270 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1271 				 void __user *buffer, size_t *lenp, loff_t *ppos);
1272 
1273 /* Access to perf_event_open(2) syscall. */
1274 #define PERF_SECURITY_OPEN		0
1275 
1276 /* Finer grained perf_event_open(2) access control. */
1277 #define PERF_SECURITY_CPU		1
1278 #define PERF_SECURITY_KERNEL		2
1279 #define PERF_SECURITY_TRACEPOINT	3
1280 
1281 static inline int perf_is_paranoid(void)
1282 {
1283 	return sysctl_perf_event_paranoid > -1;
1284 }
1285 
1286 static inline int perf_allow_kernel(struct perf_event_attr *attr)
1287 {
1288 	if (sysctl_perf_event_paranoid > 1 && !capable(CAP_SYS_ADMIN))
1289 		return -EACCES;
1290 
1291 	return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1292 }
1293 
1294 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1295 {
1296 	if (sysctl_perf_event_paranoid > 0 && !capable(CAP_SYS_ADMIN))
1297 		return -EACCES;
1298 
1299 	return security_perf_event_open(attr, PERF_SECURITY_CPU);
1300 }
1301 
1302 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1303 {
1304 	if (sysctl_perf_event_paranoid > -1 && !capable(CAP_SYS_ADMIN))
1305 		return -EPERM;
1306 
1307 	return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1308 }
1309 
1310 extern void perf_event_init(void);
1311 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1312 			  int entry_size, struct pt_regs *regs,
1313 			  struct hlist_head *head, int rctx,
1314 			  struct task_struct *task);
1315 extern void perf_bp_event(struct perf_event *event, void *data);
1316 
1317 #ifndef perf_misc_flags
1318 # define perf_misc_flags(regs) \
1319 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1320 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1321 #endif
1322 #ifndef perf_arch_bpf_user_pt_regs
1323 # define perf_arch_bpf_user_pt_regs(regs) regs
1324 #endif
1325 
1326 static inline bool has_branch_stack(struct perf_event *event)
1327 {
1328 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1329 }
1330 
1331 static inline bool needs_branch_stack(struct perf_event *event)
1332 {
1333 	return event->attr.branch_sample_type != 0;
1334 }
1335 
1336 static inline bool has_aux(struct perf_event *event)
1337 {
1338 	return event->pmu->setup_aux;
1339 }
1340 
1341 static inline bool is_write_backward(struct perf_event *event)
1342 {
1343 	return !!event->attr.write_backward;
1344 }
1345 
1346 static inline bool has_addr_filter(struct perf_event *event)
1347 {
1348 	return event->pmu->nr_addr_filters;
1349 }
1350 
1351 /*
1352  * An inherited event uses parent's filters
1353  */
1354 static inline struct perf_addr_filters_head *
1355 perf_event_addr_filters(struct perf_event *event)
1356 {
1357 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1358 
1359 	if (event->parent)
1360 		ifh = &event->parent->addr_filters;
1361 
1362 	return ifh;
1363 }
1364 
1365 extern void perf_event_addr_filters_sync(struct perf_event *event);
1366 
1367 extern int perf_output_begin(struct perf_output_handle *handle,
1368 			     struct perf_event *event, unsigned int size);
1369 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1370 				    struct perf_event *event,
1371 				    unsigned int size);
1372 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1373 				      struct perf_event *event,
1374 				      unsigned int size);
1375 
1376 extern void perf_output_end(struct perf_output_handle *handle);
1377 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1378 			     const void *buf, unsigned int len);
1379 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1380 				     unsigned int len);
1381 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1382 				 struct perf_output_handle *handle,
1383 				 unsigned long from, unsigned long to);
1384 extern int perf_swevent_get_recursion_context(void);
1385 extern void perf_swevent_put_recursion_context(int rctx);
1386 extern u64 perf_swevent_set_period(struct perf_event *event);
1387 extern void perf_event_enable(struct perf_event *event);
1388 extern void perf_event_disable(struct perf_event *event);
1389 extern void perf_event_disable_local(struct perf_event *event);
1390 extern void perf_event_disable_inatomic(struct perf_event *event);
1391 extern void perf_event_task_tick(void);
1392 extern int perf_event_account_interrupt(struct perf_event *event);
1393 extern int perf_event_period(struct perf_event *event, u64 value);
1394 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1395 #else /* !CONFIG_PERF_EVENTS: */
1396 static inline void *
1397 perf_aux_output_begin(struct perf_output_handle *handle,
1398 		      struct perf_event *event)				{ return NULL; }
1399 static inline void
1400 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1401 									{ }
1402 static inline int
1403 perf_aux_output_skip(struct perf_output_handle *handle,
1404 		     unsigned long size)				{ return -EINVAL; }
1405 static inline void *
1406 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1407 static inline void
1408 perf_event_task_migrate(struct task_struct *task)			{ }
1409 static inline void
1410 perf_event_task_sched_in(struct task_struct *prev,
1411 			 struct task_struct *task)			{ }
1412 static inline void
1413 perf_event_task_sched_out(struct task_struct *prev,
1414 			  struct task_struct *next)			{ }
1415 static inline int perf_event_init_task(struct task_struct *child)	{ return 0; }
1416 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1417 static inline void perf_event_free_task(struct task_struct *task)	{ }
1418 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1419 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1420 static inline const struct perf_event *perf_get_event(struct file *file)
1421 {
1422 	return ERR_PTR(-EINVAL);
1423 }
1424 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1425 {
1426 	return ERR_PTR(-EINVAL);
1427 }
1428 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1429 					u64 *enabled, u64 *running)
1430 {
1431 	return -EINVAL;
1432 }
1433 static inline void perf_event_print_debug(void)				{ }
1434 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1435 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1436 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1437 {
1438 	return -EINVAL;
1439 }
1440 
1441 static inline void
1442 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1443 static inline void
1444 perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)			{ }
1445 static inline void
1446 perf_bp_event(struct perf_event *event, void *data)			{ }
1447 
1448 static inline int perf_register_guest_info_callbacks
1449 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1450 static inline int perf_unregister_guest_info_callbacks
1451 (struct perf_guest_info_callbacks *callbacks)				{ return 0; }
1452 
1453 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1454 
1455 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1456 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1457 				      bool unregister, const char *sym)	{ }
1458 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1459 					enum perf_bpf_event_type type,
1460 					u16 flags)			{ }
1461 static inline void perf_event_exec(void)				{ }
1462 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1463 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
1464 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1465 static inline void perf_event_init(void)				{ }
1466 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1467 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1468 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1469 static inline void perf_event_enable(struct perf_event *event)		{ }
1470 static inline void perf_event_disable(struct perf_event *event)		{ }
1471 static inline int __perf_event_disable(void *info)			{ return -1; }
1472 static inline void perf_event_task_tick(void)				{ }
1473 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1474 static inline int perf_event_period(struct perf_event *event, u64 value)
1475 {
1476 	return -EINVAL;
1477 }
1478 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1479 {
1480 	return 0;
1481 }
1482 #endif
1483 
1484 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1485 extern void perf_restore_debug_store(void);
1486 #else
1487 static inline void perf_restore_debug_store(void)			{ }
1488 #endif
1489 
1490 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1491 {
1492 	return frag->pad < sizeof(u64);
1493 }
1494 
1495 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1496 
1497 struct perf_pmu_events_attr {
1498 	struct device_attribute attr;
1499 	u64 id;
1500 	const char *event_str;
1501 };
1502 
1503 struct perf_pmu_events_ht_attr {
1504 	struct device_attribute			attr;
1505 	u64					id;
1506 	const char				*event_str_ht;
1507 	const char				*event_str_noht;
1508 };
1509 
1510 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1511 			      char *page);
1512 
1513 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1514 static struct perf_pmu_events_attr _var = {				\
1515 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1516 	.id   =  _id,							\
1517 };
1518 
1519 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1520 static struct perf_pmu_events_attr _var = {				    \
1521 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1522 	.id		= 0,						    \
1523 	.event_str	= _str,						    \
1524 };
1525 
1526 #define PMU_FORMAT_ATTR(_name, _format)					\
1527 static ssize_t								\
1528 _name##_show(struct device *dev,					\
1529 			       struct device_attribute *attr,		\
1530 			       char *page)				\
1531 {									\
1532 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1533 	return sprintf(page, _format "\n");				\
1534 }									\
1535 									\
1536 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1537 
1538 /* Performance counter hotplug functions */
1539 #ifdef CONFIG_PERF_EVENTS
1540 int perf_event_init_cpu(unsigned int cpu);
1541 int perf_event_exit_cpu(unsigned int cpu);
1542 #else
1543 #define perf_event_init_cpu	NULL
1544 #define perf_event_exit_cpu	NULL
1545 #endif
1546 
1547 #endif /* _LINUX_PERF_EVENT_H */
1548