xref: /linux/include/linux/perf_event.h (revision d642ef71)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19 
20 /*
21  * Kernel-internal data types and definitions:
22  */
23 
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 #define PERF_GUEST_ACTIVE	0x01
30 #define PERF_GUEST_USER	0x02
31 
32 struct perf_guest_info_callbacks {
33 	unsigned int			(*state)(void);
34 	unsigned long			(*get_ip)(void);
35 	unsigned int			(*handle_intel_pt_intr)(void);
36 };
37 
38 #ifdef CONFIG_HAVE_HW_BREAKPOINT
39 #include <linux/rhashtable-types.h>
40 #include <asm/hw_breakpoint.h>
41 #endif
42 
43 #include <linux/list.h>
44 #include <linux/mutex.h>
45 #include <linux/rculist.h>
46 #include <linux/rcupdate.h>
47 #include <linux/spinlock.h>
48 #include <linux/hrtimer.h>
49 #include <linux/fs.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/workqueue.h>
52 #include <linux/ftrace.h>
53 #include <linux/cpu.h>
54 #include <linux/irq_work.h>
55 #include <linux/static_key.h>
56 #include <linux/jump_label_ratelimit.h>
57 #include <linux/atomic.h>
58 #include <linux/sysfs.h>
59 #include <linux/perf_regs.h>
60 #include <linux/cgroup.h>
61 #include <linux/refcount.h>
62 #include <linux/security.h>
63 #include <linux/static_call.h>
64 #include <linux/lockdep.h>
65 #include <asm/local.h>
66 
67 struct perf_callchain_entry {
68 	__u64				nr;
69 	__u64				ip[]; /* /proc/sys/kernel/perf_event_max_stack */
70 };
71 
72 struct perf_callchain_entry_ctx {
73 	struct perf_callchain_entry *entry;
74 	u32			    max_stack;
75 	u32			    nr;
76 	short			    contexts;
77 	bool			    contexts_maxed;
78 };
79 
80 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
81 				     unsigned long off, unsigned long len);
82 
83 struct perf_raw_frag {
84 	union {
85 		struct perf_raw_frag	*next;
86 		unsigned long		pad;
87 	};
88 	perf_copy_f			copy;
89 	void				*data;
90 	u32				size;
91 } __packed;
92 
93 struct perf_raw_record {
94 	struct perf_raw_frag		frag;
95 	u32				size;
96 };
97 
98 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
99 {
100 	return frag->pad < sizeof(u64);
101 }
102 
103 /*
104  * branch stack layout:
105  *  nr: number of taken branches stored in entries[]
106  *  hw_idx: The low level index of raw branch records
107  *          for the most recent branch.
108  *          -1ULL means invalid/unknown.
109  *
110  * Note that nr can vary from sample to sample
111  * branches (to, from) are stored from most recent
112  * to least recent, i.e., entries[0] contains the most
113  * recent branch.
114  * The entries[] is an abstraction of raw branch records,
115  * which may not be stored in age order in HW, e.g. Intel LBR.
116  * The hw_idx is to expose the low level index of raw
117  * branch record for the most recent branch aka entries[0].
118  * The hw_idx index is between -1 (unknown) and max depth,
119  * which can be retrieved in /sys/devices/cpu/caps/branches.
120  * For the architectures whose raw branch records are
121  * already stored in age order, the hw_idx should be 0.
122  */
123 struct perf_branch_stack {
124 	__u64				nr;
125 	__u64				hw_idx;
126 	struct perf_branch_entry	entries[];
127 };
128 
129 struct task_struct;
130 
131 /*
132  * extra PMU register associated with an event
133  */
134 struct hw_perf_event_extra {
135 	u64		config;	/* register value */
136 	unsigned int	reg;	/* register address or index */
137 	int		alloc;	/* extra register already allocated */
138 	int		idx;	/* index in shared_regs->regs[] */
139 };
140 
141 /**
142  * hw_perf_event::flag values
143  *
144  * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific
145  * usage.
146  */
147 #define PERF_EVENT_FLAG_ARCH			0x000fffff
148 #define PERF_EVENT_FLAG_USER_READ_CNT		0x80000000
149 
150 static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0);
151 
152 /**
153  * struct hw_perf_event - performance event hardware details:
154  */
155 struct hw_perf_event {
156 #ifdef CONFIG_PERF_EVENTS
157 	union {
158 		struct { /* hardware */
159 			u64		config;
160 			u64		last_tag;
161 			unsigned long	config_base;
162 			unsigned long	event_base;
163 			int		event_base_rdpmc;
164 			int		idx;
165 			int		last_cpu;
166 			int		flags;
167 
168 			struct hw_perf_event_extra extra_reg;
169 			struct hw_perf_event_extra branch_reg;
170 		};
171 		struct { /* software */
172 			struct hrtimer	hrtimer;
173 		};
174 		struct { /* tracepoint */
175 			/* for tp_event->class */
176 			struct list_head	tp_list;
177 		};
178 		struct { /* amd_power */
179 			u64	pwr_acc;
180 			u64	ptsc;
181 		};
182 #ifdef CONFIG_HAVE_HW_BREAKPOINT
183 		struct { /* breakpoint */
184 			/*
185 			 * Crufty hack to avoid the chicken and egg
186 			 * problem hw_breakpoint has with context
187 			 * creation and event initalization.
188 			 */
189 			struct arch_hw_breakpoint	info;
190 			struct rhlist_head		bp_list;
191 		};
192 #endif
193 		struct { /* amd_iommu */
194 			u8	iommu_bank;
195 			u8	iommu_cntr;
196 			u16	padding;
197 			u64	conf;
198 			u64	conf1;
199 		};
200 	};
201 	/*
202 	 * If the event is a per task event, this will point to the task in
203 	 * question. See the comment in perf_event_alloc().
204 	 */
205 	struct task_struct		*target;
206 
207 	/*
208 	 * PMU would store hardware filter configuration
209 	 * here.
210 	 */
211 	void				*addr_filters;
212 
213 	/* Last sync'ed generation of filters */
214 	unsigned long			addr_filters_gen;
215 
216 /*
217  * hw_perf_event::state flags; used to track the PERF_EF_* state.
218  */
219 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
220 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
221 #define PERF_HES_ARCH		0x04
222 
223 	int				state;
224 
225 	/*
226 	 * The last observed hardware counter value, updated with a
227 	 * local64_cmpxchg() such that pmu::read() can be called nested.
228 	 */
229 	local64_t			prev_count;
230 
231 	/*
232 	 * The period to start the next sample with.
233 	 */
234 	u64				sample_period;
235 
236 	union {
237 		struct { /* Sampling */
238 			/*
239 			 * The period we started this sample with.
240 			 */
241 			u64				last_period;
242 
243 			/*
244 			 * However much is left of the current period;
245 			 * note that this is a full 64bit value and
246 			 * allows for generation of periods longer
247 			 * than hardware might allow.
248 			 */
249 			local64_t			period_left;
250 		};
251 		struct { /* Topdown events counting for context switch */
252 			u64				saved_metric;
253 			u64				saved_slots;
254 		};
255 	};
256 
257 	/*
258 	 * State for throttling the event, see __perf_event_overflow() and
259 	 * perf_adjust_freq_unthr_context().
260 	 */
261 	u64                             interrupts_seq;
262 	u64				interrupts;
263 
264 	/*
265 	 * State for freq target events, see __perf_event_overflow() and
266 	 * perf_adjust_freq_unthr_context().
267 	 */
268 	u64				freq_time_stamp;
269 	u64				freq_count_stamp;
270 #endif
271 };
272 
273 struct perf_event;
274 struct perf_event_pmu_context;
275 
276 /*
277  * Common implementation detail of pmu::{start,commit,cancel}_txn
278  */
279 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
280 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
281 
282 /**
283  * pmu::capabilities flags
284  */
285 #define PERF_PMU_CAP_NO_INTERRUPT		0x0001
286 #define PERF_PMU_CAP_NO_NMI			0x0002
287 #define PERF_PMU_CAP_AUX_NO_SG			0x0004
288 #define PERF_PMU_CAP_EXTENDED_REGS		0x0008
289 #define PERF_PMU_CAP_EXCLUSIVE			0x0010
290 #define PERF_PMU_CAP_ITRACE			0x0020
291 #define PERF_PMU_CAP_NO_EXCLUDE			0x0040
292 #define PERF_PMU_CAP_AUX_OUTPUT			0x0080
293 #define PERF_PMU_CAP_EXTENDED_HW_TYPE		0x0100
294 
295 struct perf_output_handle;
296 
297 #define PMU_NULL_DEV	((void *)(~0UL))
298 
299 /**
300  * struct pmu - generic performance monitoring unit
301  */
302 struct pmu {
303 	struct list_head		entry;
304 
305 	struct module			*module;
306 	struct device			*dev;
307 	struct device			*parent;
308 	const struct attribute_group	**attr_groups;
309 	const struct attribute_group	**attr_update;
310 	const char			*name;
311 	int				type;
312 
313 	/*
314 	 * various common per-pmu feature flags
315 	 */
316 	int				capabilities;
317 
318 	int __percpu			*pmu_disable_count;
319 	struct perf_cpu_pmu_context __percpu *cpu_pmu_context;
320 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
321 	int				task_ctx_nr;
322 	int				hrtimer_interval_ms;
323 
324 	/* number of address filters this PMU can do */
325 	unsigned int			nr_addr_filters;
326 
327 	/*
328 	 * Fully disable/enable this PMU, can be used to protect from the PMI
329 	 * as well as for lazy/batch writing of the MSRs.
330 	 */
331 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
332 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
333 
334 	/*
335 	 * Try and initialize the event for this PMU.
336 	 *
337 	 * Returns:
338 	 *  -ENOENT	-- @event is not for this PMU
339 	 *
340 	 *  -ENODEV	-- @event is for this PMU but PMU not present
341 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
342 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
343 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
344 	 *  -EACCES	-- @event is for this PMU, @event is valid, but no privileges
345 	 *
346 	 *  0		-- @event is for this PMU and valid
347 	 *
348 	 * Other error return values are allowed.
349 	 */
350 	int (*event_init)		(struct perf_event *event);
351 
352 	/*
353 	 * Notification that the event was mapped or unmapped.  Called
354 	 * in the context of the mapping task.
355 	 */
356 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
357 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
358 
359 	/*
360 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
361 	 * matching hw_perf_event::state flags.
362 	 */
363 #define PERF_EF_START	0x01		/* start the counter when adding    */
364 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
365 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
366 
367 	/*
368 	 * Adds/Removes a counter to/from the PMU, can be done inside a
369 	 * transaction, see the ->*_txn() methods.
370 	 *
371 	 * The add/del callbacks will reserve all hardware resources required
372 	 * to service the event, this includes any counter constraint
373 	 * scheduling etc.
374 	 *
375 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
376 	 * is on.
377 	 *
378 	 * ->add() called without PERF_EF_START should result in the same state
379 	 *  as ->add() followed by ->stop().
380 	 *
381 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
382 	 *  ->stop() that must deal with already being stopped without
383 	 *  PERF_EF_UPDATE.
384 	 */
385 	int  (*add)			(struct perf_event *event, int flags);
386 	void (*del)			(struct perf_event *event, int flags);
387 
388 	/*
389 	 * Starts/Stops a counter present on the PMU.
390 	 *
391 	 * The PMI handler should stop the counter when perf_event_overflow()
392 	 * returns !0. ->start() will be used to continue.
393 	 *
394 	 * Also used to change the sample period.
395 	 *
396 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
397 	 * is on -- will be called from NMI context with the PMU generates
398 	 * NMIs.
399 	 *
400 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
401 	 *  period/count values like ->read() would.
402 	 *
403 	 * ->start() with PERF_EF_RELOAD will reprogram the counter
404 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
405 	 */
406 	void (*start)			(struct perf_event *event, int flags);
407 	void (*stop)			(struct perf_event *event, int flags);
408 
409 	/*
410 	 * Updates the counter value of the event.
411 	 *
412 	 * For sampling capable PMUs this will also update the software period
413 	 * hw_perf_event::period_left field.
414 	 */
415 	void (*read)			(struct perf_event *event);
416 
417 	/*
418 	 * Group events scheduling is treated as a transaction, add
419 	 * group events as a whole and perform one schedulability test.
420 	 * If the test fails, roll back the whole group
421 	 *
422 	 * Start the transaction, after this ->add() doesn't need to
423 	 * do schedulability tests.
424 	 *
425 	 * Optional.
426 	 */
427 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
428 	/*
429 	 * If ->start_txn() disabled the ->add() schedulability test
430 	 * then ->commit_txn() is required to perform one. On success
431 	 * the transaction is closed. On error the transaction is kept
432 	 * open until ->cancel_txn() is called.
433 	 *
434 	 * Optional.
435 	 */
436 	int  (*commit_txn)		(struct pmu *pmu);
437 	/*
438 	 * Will cancel the transaction, assumes ->del() is called
439 	 * for each successful ->add() during the transaction.
440 	 *
441 	 * Optional.
442 	 */
443 	void (*cancel_txn)		(struct pmu *pmu);
444 
445 	/*
446 	 * Will return the value for perf_event_mmap_page::index for this event,
447 	 * if no implementation is provided it will default to 0 (see
448 	 * perf_event_idx_default).
449 	 */
450 	int (*event_idx)		(struct perf_event *event); /*optional */
451 
452 	/*
453 	 * context-switches callback
454 	 */
455 	void (*sched_task)		(struct perf_event_pmu_context *pmu_ctx,
456 					bool sched_in);
457 
458 	/*
459 	 * Kmem cache of PMU specific data
460 	 */
461 	struct kmem_cache		*task_ctx_cache;
462 
463 	/*
464 	 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
465 	 * can be synchronized using this function. See Intel LBR callstack support
466 	 * implementation and Perf core context switch handling callbacks for usage
467 	 * examples.
468 	 */
469 	void (*swap_task_ctx)		(struct perf_event_pmu_context *prev_epc,
470 					 struct perf_event_pmu_context *next_epc);
471 					/* optional */
472 
473 	/*
474 	 * Set up pmu-private data structures for an AUX area
475 	 */
476 	void *(*setup_aux)		(struct perf_event *event, void **pages,
477 					 int nr_pages, bool overwrite);
478 					/* optional */
479 
480 	/*
481 	 * Free pmu-private AUX data structures
482 	 */
483 	void (*free_aux)		(void *aux); /* optional */
484 
485 	/*
486 	 * Take a snapshot of the AUX buffer without touching the event
487 	 * state, so that preempting ->start()/->stop() callbacks does
488 	 * not interfere with their logic. Called in PMI context.
489 	 *
490 	 * Returns the size of AUX data copied to the output handle.
491 	 *
492 	 * Optional.
493 	 */
494 	long (*snapshot_aux)		(struct perf_event *event,
495 					 struct perf_output_handle *handle,
496 					 unsigned long size);
497 
498 	/*
499 	 * Validate address range filters: make sure the HW supports the
500 	 * requested configuration and number of filters; return 0 if the
501 	 * supplied filters are valid, -errno otherwise.
502 	 *
503 	 * Runs in the context of the ioctl()ing process and is not serialized
504 	 * with the rest of the PMU callbacks.
505 	 */
506 	int (*addr_filters_validate)	(struct list_head *filters);
507 					/* optional */
508 
509 	/*
510 	 * Synchronize address range filter configuration:
511 	 * translate hw-agnostic filters into hardware configuration in
512 	 * event::hw::addr_filters.
513 	 *
514 	 * Runs as a part of filter sync sequence that is done in ->start()
515 	 * callback by calling perf_event_addr_filters_sync().
516 	 *
517 	 * May (and should) traverse event::addr_filters::list, for which its
518 	 * caller provides necessary serialization.
519 	 */
520 	void (*addr_filters_sync)	(struct perf_event *event);
521 					/* optional */
522 
523 	/*
524 	 * Check if event can be used for aux_output purposes for
525 	 * events of this PMU.
526 	 *
527 	 * Runs from perf_event_open(). Should return 0 for "no match"
528 	 * or non-zero for "match".
529 	 */
530 	int (*aux_output_match)		(struct perf_event *event);
531 					/* optional */
532 
533 	/*
534 	 * Skip programming this PMU on the given CPU. Typically needed for
535 	 * big.LITTLE things.
536 	 */
537 	bool (*filter)			(struct pmu *pmu, int cpu); /* optional */
538 
539 	/*
540 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
541 	 */
542 	int (*check_period)		(struct perf_event *event, u64 value); /* optional */
543 };
544 
545 enum perf_addr_filter_action_t {
546 	PERF_ADDR_FILTER_ACTION_STOP = 0,
547 	PERF_ADDR_FILTER_ACTION_START,
548 	PERF_ADDR_FILTER_ACTION_FILTER,
549 };
550 
551 /**
552  * struct perf_addr_filter - address range filter definition
553  * @entry:	event's filter list linkage
554  * @path:	object file's path for file-based filters
555  * @offset:	filter range offset
556  * @size:	filter range size (size==0 means single address trigger)
557  * @action:	filter/start/stop
558  *
559  * This is a hardware-agnostic filter configuration as specified by the user.
560  */
561 struct perf_addr_filter {
562 	struct list_head	entry;
563 	struct path		path;
564 	unsigned long		offset;
565 	unsigned long		size;
566 	enum perf_addr_filter_action_t	action;
567 };
568 
569 /**
570  * struct perf_addr_filters_head - container for address range filters
571  * @list:	list of filters for this event
572  * @lock:	spinlock that serializes accesses to the @list and event's
573  *		(and its children's) filter generations.
574  * @nr_file_filters:	number of file-based filters
575  *
576  * A child event will use parent's @list (and therefore @lock), so they are
577  * bundled together; see perf_event_addr_filters().
578  */
579 struct perf_addr_filters_head {
580 	struct list_head	list;
581 	raw_spinlock_t		lock;
582 	unsigned int		nr_file_filters;
583 };
584 
585 struct perf_addr_filter_range {
586 	unsigned long		start;
587 	unsigned long		size;
588 };
589 
590 /**
591  * enum perf_event_state - the states of an event:
592  */
593 enum perf_event_state {
594 	PERF_EVENT_STATE_DEAD		= -4,
595 	PERF_EVENT_STATE_EXIT		= -3,
596 	PERF_EVENT_STATE_ERROR		= -2,
597 	PERF_EVENT_STATE_OFF		= -1,
598 	PERF_EVENT_STATE_INACTIVE	=  0,
599 	PERF_EVENT_STATE_ACTIVE		=  1,
600 };
601 
602 struct file;
603 struct perf_sample_data;
604 
605 typedef void (*perf_overflow_handler_t)(struct perf_event *,
606 					struct perf_sample_data *,
607 					struct pt_regs *regs);
608 
609 /*
610  * Event capabilities. For event_caps and groups caps.
611  *
612  * PERF_EV_CAP_SOFTWARE: Is a software event.
613  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
614  * from any CPU in the package where it is active.
615  * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
616  * cannot be a group leader. If an event with this flag is detached from the
617  * group it is scheduled out and moved into an unrecoverable ERROR state.
618  */
619 #define PERF_EV_CAP_SOFTWARE		BIT(0)
620 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
621 #define PERF_EV_CAP_SIBLING		BIT(2)
622 
623 #define SWEVENT_HLIST_BITS		8
624 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
625 
626 struct swevent_hlist {
627 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
628 	struct rcu_head			rcu_head;
629 };
630 
631 #define PERF_ATTACH_CONTEXT	0x01
632 #define PERF_ATTACH_GROUP	0x02
633 #define PERF_ATTACH_TASK	0x04
634 #define PERF_ATTACH_TASK_DATA	0x08
635 #define PERF_ATTACH_ITRACE	0x10
636 #define PERF_ATTACH_SCHED_CB	0x20
637 #define PERF_ATTACH_CHILD	0x40
638 
639 struct bpf_prog;
640 struct perf_cgroup;
641 struct perf_buffer;
642 
643 struct pmu_event_list {
644 	raw_spinlock_t		lock;
645 	struct list_head	list;
646 };
647 
648 /*
649  * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex
650  * as such iteration must hold either lock. However, since ctx->lock is an IRQ
651  * safe lock, and is only held by the CPU doing the modification, having IRQs
652  * disabled is sufficient since it will hold-off the IPIs.
653  */
654 #ifdef CONFIG_PROVE_LOCKING
655 #define lockdep_assert_event_ctx(event)				\
656 	WARN_ON_ONCE(__lockdep_enabled &&			\
657 		     (this_cpu_read(hardirqs_enabled) &&	\
658 		      lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD))
659 #else
660 #define lockdep_assert_event_ctx(event)
661 #endif
662 
663 #define for_each_sibling_event(sibling, event)			\
664 	lockdep_assert_event_ctx(event);			\
665 	if ((event)->group_leader == (event))			\
666 		list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
667 
668 /**
669  * struct perf_event - performance event kernel representation:
670  */
671 struct perf_event {
672 #ifdef CONFIG_PERF_EVENTS
673 	/*
674 	 * entry onto perf_event_context::event_list;
675 	 *   modifications require ctx->lock
676 	 *   RCU safe iterations.
677 	 */
678 	struct list_head		event_entry;
679 
680 	/*
681 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
682 	 * either sufficies for read.
683 	 */
684 	struct list_head		sibling_list;
685 	struct list_head		active_list;
686 	/*
687 	 * Node on the pinned or flexible tree located at the event context;
688 	 */
689 	struct rb_node			group_node;
690 	u64				group_index;
691 	/*
692 	 * We need storage to track the entries in perf_pmu_migrate_context; we
693 	 * cannot use the event_entry because of RCU and we want to keep the
694 	 * group in tact which avoids us using the other two entries.
695 	 */
696 	struct list_head		migrate_entry;
697 
698 	struct hlist_node		hlist_entry;
699 	struct list_head		active_entry;
700 	int				nr_siblings;
701 
702 	/* Not serialized. Only written during event initialization. */
703 	int				event_caps;
704 	/* The cumulative AND of all event_caps for events in this group. */
705 	int				group_caps;
706 
707 	unsigned int			group_generation;
708 	struct perf_event		*group_leader;
709 	/*
710 	 * event->pmu will always point to pmu in which this event belongs.
711 	 * Whereas event->pmu_ctx->pmu may point to other pmu when group of
712 	 * different pmu events is created.
713 	 */
714 	struct pmu			*pmu;
715 	void				*pmu_private;
716 
717 	enum perf_event_state		state;
718 	unsigned int			attach_state;
719 	local64_t			count;
720 	atomic64_t			child_count;
721 
722 	/*
723 	 * These are the total time in nanoseconds that the event
724 	 * has been enabled (i.e. eligible to run, and the task has
725 	 * been scheduled in, if this is a per-task event)
726 	 * and running (scheduled onto the CPU), respectively.
727 	 */
728 	u64				total_time_enabled;
729 	u64				total_time_running;
730 	u64				tstamp;
731 
732 	struct perf_event_attr		attr;
733 	u16				header_size;
734 	u16				id_header_size;
735 	u16				read_size;
736 	struct hw_perf_event		hw;
737 
738 	struct perf_event_context	*ctx;
739 	/*
740 	 * event->pmu_ctx points to perf_event_pmu_context in which the event
741 	 * is added. This pmu_ctx can be of other pmu for sw event when that
742 	 * sw event is part of a group which also contains non-sw events.
743 	 */
744 	struct perf_event_pmu_context	*pmu_ctx;
745 	atomic_long_t			refcount;
746 
747 	/*
748 	 * These accumulate total time (in nanoseconds) that children
749 	 * events have been enabled and running, respectively.
750 	 */
751 	atomic64_t			child_total_time_enabled;
752 	atomic64_t			child_total_time_running;
753 
754 	/*
755 	 * Protect attach/detach and child_list:
756 	 */
757 	struct mutex			child_mutex;
758 	struct list_head		child_list;
759 	struct perf_event		*parent;
760 
761 	int				oncpu;
762 	int				cpu;
763 
764 	struct list_head		owner_entry;
765 	struct task_struct		*owner;
766 
767 	/* mmap bits */
768 	struct mutex			mmap_mutex;
769 	atomic_t			mmap_count;
770 
771 	struct perf_buffer		*rb;
772 	struct list_head		rb_entry;
773 	unsigned long			rcu_batches;
774 	int				rcu_pending;
775 
776 	/* poll related */
777 	wait_queue_head_t		waitq;
778 	struct fasync_struct		*fasync;
779 
780 	/* delayed work for NMIs and such */
781 	unsigned int			pending_wakeup;
782 	unsigned int			pending_kill;
783 	unsigned int			pending_disable;
784 	unsigned int			pending_sigtrap;
785 	unsigned long			pending_addr;	/* SIGTRAP */
786 	struct irq_work			pending_irq;
787 	struct callback_head		pending_task;
788 	unsigned int			pending_work;
789 
790 	atomic_t			event_limit;
791 
792 	/* address range filters */
793 	struct perf_addr_filters_head	addr_filters;
794 	/* vma address array for file-based filders */
795 	struct perf_addr_filter_range	*addr_filter_ranges;
796 	unsigned long			addr_filters_gen;
797 
798 	/* for aux_output events */
799 	struct perf_event		*aux_event;
800 
801 	void (*destroy)(struct perf_event *);
802 	struct rcu_head			rcu_head;
803 
804 	struct pid_namespace		*ns;
805 	u64				id;
806 
807 	atomic64_t			lost_samples;
808 
809 	u64				(*clock)(void);
810 	perf_overflow_handler_t		overflow_handler;
811 	void				*overflow_handler_context;
812 #ifdef CONFIG_BPF_SYSCALL
813 	perf_overflow_handler_t		orig_overflow_handler;
814 	struct bpf_prog			*prog;
815 	u64				bpf_cookie;
816 #endif
817 
818 #ifdef CONFIG_EVENT_TRACING
819 	struct trace_event_call		*tp_event;
820 	struct event_filter		*filter;
821 #ifdef CONFIG_FUNCTION_TRACER
822 	struct ftrace_ops               ftrace_ops;
823 #endif
824 #endif
825 
826 #ifdef CONFIG_CGROUP_PERF
827 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
828 #endif
829 
830 #ifdef CONFIG_SECURITY
831 	void *security;
832 #endif
833 	struct list_head		sb_list;
834 
835 	/*
836 	 * Certain events gets forwarded to another pmu internally by over-
837 	 * writing kernel copy of event->attr.type without user being aware
838 	 * of it. event->orig_type contains original 'type' requested by
839 	 * user.
840 	 */
841 	__u32				orig_type;
842 #endif /* CONFIG_PERF_EVENTS */
843 };
844 
845 /*
846  *           ,-----------------------[1:n]------------------------.
847  *           V                                                    V
848  * perf_event_context <-[1:n]-> perf_event_pmu_context <-[1:n]- perf_event
849  *                                        |                       |
850  *                                        `--[n:1]-> pmu <-[1:n]--'
851  *
852  *
853  * struct perf_event_pmu_context  lifetime is refcount based and RCU freed
854  * (similar to perf_event_context). Locking is as if it were a member of
855  * perf_event_context; specifically:
856  *
857  *   modification, both: ctx->mutex && ctx->lock
858  *   reading, either:    ctx->mutex || ctx->lock
859  *
860  * There is one exception to this; namely put_pmu_ctx() isn't always called
861  * with ctx->mutex held; this means that as long as we can guarantee the epc
862  * has events the above rules hold.
863  *
864  * Specificially, sys_perf_event_open()'s group_leader case depends on
865  * ctx->mutex pinning the configuration. Since we hold a reference on
866  * group_leader (through the filedesc) it can't go away, therefore it's
867  * associated pmu_ctx must exist and cannot change due to ctx->mutex.
868  *
869  * perf_event holds a refcount on perf_event_context
870  * perf_event holds a refcount on perf_event_pmu_context
871  */
872 struct perf_event_pmu_context {
873 	struct pmu			*pmu;
874 	struct perf_event_context       *ctx;
875 
876 	struct list_head		pmu_ctx_entry;
877 
878 	struct list_head		pinned_active;
879 	struct list_head		flexible_active;
880 
881 	/* Used to avoid freeing per-cpu perf_event_pmu_context */
882 	unsigned int			embedded : 1;
883 
884 	unsigned int			nr_events;
885 	unsigned int			nr_cgroups;
886 
887 	atomic_t			refcount; /* event <-> epc */
888 	struct rcu_head			rcu_head;
889 
890 	void				*task_ctx_data; /* pmu specific data */
891 	/*
892 	 * Set when one or more (plausibly active) event can't be scheduled
893 	 * due to pmu overcommit or pmu constraints, except tolerant to
894 	 * events not necessary to be active due to scheduling constraints,
895 	 * such as cgroups.
896 	 */
897 	int				rotate_necessary;
898 };
899 
900 struct perf_event_groups {
901 	struct rb_root	tree;
902 	u64		index;
903 };
904 
905 
906 /**
907  * struct perf_event_context - event context structure
908  *
909  * Used as a container for task events and CPU events as well:
910  */
911 struct perf_event_context {
912 	/*
913 	 * Protect the states of the events in the list,
914 	 * nr_active, and the list:
915 	 */
916 	raw_spinlock_t			lock;
917 	/*
918 	 * Protect the list of events.  Locking either mutex or lock
919 	 * is sufficient to ensure the list doesn't change; to change
920 	 * the list you need to lock both the mutex and the spinlock.
921 	 */
922 	struct mutex			mutex;
923 
924 	struct list_head		pmu_ctx_list;
925 	struct perf_event_groups	pinned_groups;
926 	struct perf_event_groups	flexible_groups;
927 	struct list_head		event_list;
928 
929 	int				nr_events;
930 	int				nr_user;
931 	int				is_active;
932 
933 	int				nr_task_data;
934 	int				nr_stat;
935 	int				nr_freq;
936 	int				rotate_disable;
937 
938 	refcount_t			refcount; /* event <-> ctx */
939 	struct task_struct		*task;
940 
941 	/*
942 	 * Context clock, runs when context enabled.
943 	 */
944 	u64				time;
945 	u64				timestamp;
946 	u64				timeoffset;
947 
948 	/*
949 	 * These fields let us detect when two contexts have both
950 	 * been cloned (inherited) from a common ancestor.
951 	 */
952 	struct perf_event_context	*parent_ctx;
953 	u64				parent_gen;
954 	u64				generation;
955 	int				pin_count;
956 #ifdef CONFIG_CGROUP_PERF
957 	int				nr_cgroups;	 /* cgroup evts */
958 #endif
959 	struct rcu_head			rcu_head;
960 
961 	/*
962 	 * Sum (event->pending_sigtrap + event->pending_work)
963 	 *
964 	 * The SIGTRAP is targeted at ctx->task, as such it won't do changing
965 	 * that until the signal is delivered.
966 	 */
967 	local_t				nr_pending;
968 };
969 
970 /*
971  * Number of contexts where an event can trigger:
972  *	task, softirq, hardirq, nmi.
973  */
974 #define PERF_NR_CONTEXTS	4
975 
976 struct perf_cpu_pmu_context {
977 	struct perf_event_pmu_context	epc;
978 	struct perf_event_pmu_context	*task_epc;
979 
980 	struct list_head		sched_cb_entry;
981 	int				sched_cb_usage;
982 
983 	int				active_oncpu;
984 	int				exclusive;
985 
986 	raw_spinlock_t			hrtimer_lock;
987 	struct hrtimer			hrtimer;
988 	ktime_t				hrtimer_interval;
989 	unsigned int			hrtimer_active;
990 };
991 
992 /**
993  * struct perf_event_cpu_context - per cpu event context structure
994  */
995 struct perf_cpu_context {
996 	struct perf_event_context	ctx;
997 	struct perf_event_context	*task_ctx;
998 	int				online;
999 
1000 #ifdef CONFIG_CGROUP_PERF
1001 	struct perf_cgroup		*cgrp;
1002 #endif
1003 
1004 	/*
1005 	 * Per-CPU storage for iterators used in visit_groups_merge. The default
1006 	 * storage is of size 2 to hold the CPU and any CPU event iterators.
1007 	 */
1008 	int				heap_size;
1009 	struct perf_event		**heap;
1010 	struct perf_event		*heap_default[2];
1011 };
1012 
1013 struct perf_output_handle {
1014 	struct perf_event		*event;
1015 	struct perf_buffer		*rb;
1016 	unsigned long			wakeup;
1017 	unsigned long			size;
1018 	u64				aux_flags;
1019 	union {
1020 		void			*addr;
1021 		unsigned long		head;
1022 	};
1023 	int				page;
1024 };
1025 
1026 struct bpf_perf_event_data_kern {
1027 	bpf_user_pt_regs_t *regs;
1028 	struct perf_sample_data *data;
1029 	struct perf_event *event;
1030 };
1031 
1032 #ifdef CONFIG_CGROUP_PERF
1033 
1034 /*
1035  * perf_cgroup_info keeps track of time_enabled for a cgroup.
1036  * This is a per-cpu dynamically allocated data structure.
1037  */
1038 struct perf_cgroup_info {
1039 	u64				time;
1040 	u64				timestamp;
1041 	u64				timeoffset;
1042 	int				active;
1043 };
1044 
1045 struct perf_cgroup {
1046 	struct cgroup_subsys_state	css;
1047 	struct perf_cgroup_info	__percpu *info;
1048 };
1049 
1050 /*
1051  * Must ensure cgroup is pinned (css_get) before calling
1052  * this function. In other words, we cannot call this function
1053  * if there is no cgroup event for the current CPU context.
1054  */
1055 static inline struct perf_cgroup *
1056 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
1057 {
1058 	return container_of(task_css_check(task, perf_event_cgrp_id,
1059 					   ctx ? lockdep_is_held(&ctx->lock)
1060 					       : true),
1061 			    struct perf_cgroup, css);
1062 }
1063 #endif /* CONFIG_CGROUP_PERF */
1064 
1065 #ifdef CONFIG_PERF_EVENTS
1066 
1067 extern struct perf_event_context *perf_cpu_task_ctx(void);
1068 
1069 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
1070 				   struct perf_event *event);
1071 extern void perf_aux_output_end(struct perf_output_handle *handle,
1072 				unsigned long size);
1073 extern int perf_aux_output_skip(struct perf_output_handle *handle,
1074 				unsigned long size);
1075 extern void *perf_get_aux(struct perf_output_handle *handle);
1076 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
1077 extern void perf_event_itrace_started(struct perf_event *event);
1078 
1079 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
1080 extern void perf_pmu_unregister(struct pmu *pmu);
1081 
1082 extern void __perf_event_task_sched_in(struct task_struct *prev,
1083 				       struct task_struct *task);
1084 extern void __perf_event_task_sched_out(struct task_struct *prev,
1085 					struct task_struct *next);
1086 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
1087 extern void perf_event_exit_task(struct task_struct *child);
1088 extern void perf_event_free_task(struct task_struct *task);
1089 extern void perf_event_delayed_put(struct task_struct *task);
1090 extern struct file *perf_event_get(unsigned int fd);
1091 extern const struct perf_event *perf_get_event(struct file *file);
1092 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
1093 extern void perf_event_print_debug(void);
1094 extern void perf_pmu_disable(struct pmu *pmu);
1095 extern void perf_pmu_enable(struct pmu *pmu);
1096 extern void perf_sched_cb_dec(struct pmu *pmu);
1097 extern void perf_sched_cb_inc(struct pmu *pmu);
1098 extern int perf_event_task_disable(void);
1099 extern int perf_event_task_enable(void);
1100 
1101 extern void perf_pmu_resched(struct pmu *pmu);
1102 
1103 extern int perf_event_refresh(struct perf_event *event, int refresh);
1104 extern void perf_event_update_userpage(struct perf_event *event);
1105 extern int perf_event_release_kernel(struct perf_event *event);
1106 extern struct perf_event *
1107 perf_event_create_kernel_counter(struct perf_event_attr *attr,
1108 				int cpu,
1109 				struct task_struct *task,
1110 				perf_overflow_handler_t callback,
1111 				void *context);
1112 extern void perf_pmu_migrate_context(struct pmu *pmu,
1113 				int src_cpu, int dst_cpu);
1114 int perf_event_read_local(struct perf_event *event, u64 *value,
1115 			  u64 *enabled, u64 *running);
1116 extern u64 perf_event_read_value(struct perf_event *event,
1117 				 u64 *enabled, u64 *running);
1118 
1119 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1120 
1121 static inline bool branch_sample_no_flags(const struct perf_event *event)
1122 {
1123 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS;
1124 }
1125 
1126 static inline bool branch_sample_no_cycles(const struct perf_event *event)
1127 {
1128 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES;
1129 }
1130 
1131 static inline bool branch_sample_type(const struct perf_event *event)
1132 {
1133 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE;
1134 }
1135 
1136 static inline bool branch_sample_hw_index(const struct perf_event *event)
1137 {
1138 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
1139 }
1140 
1141 static inline bool branch_sample_priv(const struct perf_event *event)
1142 {
1143 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE;
1144 }
1145 
1146 
1147 struct perf_sample_data {
1148 	/*
1149 	 * Fields set by perf_sample_data_init() unconditionally,
1150 	 * group so as to minimize the cachelines touched.
1151 	 */
1152 	u64				sample_flags;
1153 	u64				period;
1154 	u64				dyn_size;
1155 
1156 	/*
1157 	 * Fields commonly set by __perf_event_header__init_id(),
1158 	 * group so as to minimize the cachelines touched.
1159 	 */
1160 	u64				type;
1161 	struct {
1162 		u32	pid;
1163 		u32	tid;
1164 	}				tid_entry;
1165 	u64				time;
1166 	u64				id;
1167 	struct {
1168 		u32	cpu;
1169 		u32	reserved;
1170 	}				cpu_entry;
1171 
1172 	/*
1173 	 * The other fields, optionally {set,used} by
1174 	 * perf_{prepare,output}_sample().
1175 	 */
1176 	u64				ip;
1177 	struct perf_callchain_entry	*callchain;
1178 	struct perf_raw_record		*raw;
1179 	struct perf_branch_stack	*br_stack;
1180 	union perf_sample_weight	weight;
1181 	union  perf_mem_data_src	data_src;
1182 	u64				txn;
1183 
1184 	struct perf_regs		regs_user;
1185 	struct perf_regs		regs_intr;
1186 	u64				stack_user_size;
1187 
1188 	u64				stream_id;
1189 	u64				cgroup;
1190 	u64				addr;
1191 	u64				phys_addr;
1192 	u64				data_page_size;
1193 	u64				code_page_size;
1194 	u64				aux_size;
1195 } ____cacheline_aligned;
1196 
1197 /* default value for data source */
1198 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
1199 		    PERF_MEM_S(LVL, NA)   |\
1200 		    PERF_MEM_S(SNOOP, NA) |\
1201 		    PERF_MEM_S(LOCK, NA)  |\
1202 		    PERF_MEM_S(TLB, NA)   |\
1203 		    PERF_MEM_S(LVLNUM, NA))
1204 
1205 static inline void perf_sample_data_init(struct perf_sample_data *data,
1206 					 u64 addr, u64 period)
1207 {
1208 	/* remaining struct members initialized in perf_prepare_sample() */
1209 	data->sample_flags = PERF_SAMPLE_PERIOD;
1210 	data->period = period;
1211 	data->dyn_size = 0;
1212 
1213 	if (addr) {
1214 		data->addr = addr;
1215 		data->sample_flags |= PERF_SAMPLE_ADDR;
1216 	}
1217 }
1218 
1219 static inline void perf_sample_save_callchain(struct perf_sample_data *data,
1220 					      struct perf_event *event,
1221 					      struct pt_regs *regs)
1222 {
1223 	int size = 1;
1224 
1225 	data->callchain = perf_callchain(event, regs);
1226 	size += data->callchain->nr;
1227 
1228 	data->dyn_size += size * sizeof(u64);
1229 	data->sample_flags |= PERF_SAMPLE_CALLCHAIN;
1230 }
1231 
1232 static inline void perf_sample_save_raw_data(struct perf_sample_data *data,
1233 					     struct perf_raw_record *raw)
1234 {
1235 	struct perf_raw_frag *frag = &raw->frag;
1236 	u32 sum = 0;
1237 	int size;
1238 
1239 	do {
1240 		sum += frag->size;
1241 		if (perf_raw_frag_last(frag))
1242 			break;
1243 		frag = frag->next;
1244 	} while (1);
1245 
1246 	size = round_up(sum + sizeof(u32), sizeof(u64));
1247 	raw->size = size - sizeof(u32);
1248 	frag->pad = raw->size - sum;
1249 
1250 	data->raw = raw;
1251 	data->dyn_size += size;
1252 	data->sample_flags |= PERF_SAMPLE_RAW;
1253 }
1254 
1255 static inline void perf_sample_save_brstack(struct perf_sample_data *data,
1256 					    struct perf_event *event,
1257 					    struct perf_branch_stack *brs)
1258 {
1259 	int size = sizeof(u64); /* nr */
1260 
1261 	if (branch_sample_hw_index(event))
1262 		size += sizeof(u64);
1263 	size += brs->nr * sizeof(struct perf_branch_entry);
1264 
1265 	data->br_stack = brs;
1266 	data->dyn_size += size;
1267 	data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1268 }
1269 
1270 static inline u32 perf_sample_data_size(struct perf_sample_data *data,
1271 					struct perf_event *event)
1272 {
1273 	u32 size = sizeof(struct perf_event_header);
1274 
1275 	size += event->header_size + event->id_header_size;
1276 	size += data->dyn_size;
1277 
1278 	return size;
1279 }
1280 
1281 /*
1282  * Clear all bitfields in the perf_branch_entry.
1283  * The to and from fields are not cleared because they are
1284  * systematically modified by caller.
1285  */
1286 static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br)
1287 {
1288 	br->mispred = 0;
1289 	br->predicted = 0;
1290 	br->in_tx = 0;
1291 	br->abort = 0;
1292 	br->cycles = 0;
1293 	br->type = 0;
1294 	br->spec = PERF_BR_SPEC_NA;
1295 	br->reserved = 0;
1296 }
1297 
1298 extern void perf_output_sample(struct perf_output_handle *handle,
1299 			       struct perf_event_header *header,
1300 			       struct perf_sample_data *data,
1301 			       struct perf_event *event);
1302 extern void perf_prepare_sample(struct perf_sample_data *data,
1303 				struct perf_event *event,
1304 				struct pt_regs *regs);
1305 extern void perf_prepare_header(struct perf_event_header *header,
1306 				struct perf_sample_data *data,
1307 				struct perf_event *event,
1308 				struct pt_regs *regs);
1309 
1310 extern int perf_event_overflow(struct perf_event *event,
1311 				 struct perf_sample_data *data,
1312 				 struct pt_regs *regs);
1313 
1314 extern void perf_event_output_forward(struct perf_event *event,
1315 				     struct perf_sample_data *data,
1316 				     struct pt_regs *regs);
1317 extern void perf_event_output_backward(struct perf_event *event,
1318 				       struct perf_sample_data *data,
1319 				       struct pt_regs *regs);
1320 extern int perf_event_output(struct perf_event *event,
1321 			     struct perf_sample_data *data,
1322 			     struct pt_regs *regs);
1323 
1324 static inline bool
1325 __is_default_overflow_handler(perf_overflow_handler_t overflow_handler)
1326 {
1327 	if (likely(overflow_handler == perf_event_output_forward))
1328 		return true;
1329 	if (unlikely(overflow_handler == perf_event_output_backward))
1330 		return true;
1331 	return false;
1332 }
1333 
1334 #define is_default_overflow_handler(event) \
1335 	__is_default_overflow_handler((event)->overflow_handler)
1336 
1337 #ifdef CONFIG_BPF_SYSCALL
1338 static inline bool uses_default_overflow_handler(struct perf_event *event)
1339 {
1340 	if (likely(is_default_overflow_handler(event)))
1341 		return true;
1342 
1343 	return __is_default_overflow_handler(event->orig_overflow_handler);
1344 }
1345 #else
1346 #define uses_default_overflow_handler(event) \
1347 	is_default_overflow_handler(event)
1348 #endif
1349 
1350 extern void
1351 perf_event_header__init_id(struct perf_event_header *header,
1352 			   struct perf_sample_data *data,
1353 			   struct perf_event *event);
1354 extern void
1355 perf_event__output_id_sample(struct perf_event *event,
1356 			     struct perf_output_handle *handle,
1357 			     struct perf_sample_data *sample);
1358 
1359 extern void
1360 perf_log_lost_samples(struct perf_event *event, u64 lost);
1361 
1362 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1363 {
1364 	struct perf_event_attr *attr = &event->attr;
1365 
1366 	return attr->exclude_idle || attr->exclude_user ||
1367 	       attr->exclude_kernel || attr->exclude_hv ||
1368 	       attr->exclude_guest || attr->exclude_host;
1369 }
1370 
1371 static inline bool is_sampling_event(struct perf_event *event)
1372 {
1373 	return event->attr.sample_period != 0;
1374 }
1375 
1376 /*
1377  * Return 1 for a software event, 0 for a hardware event
1378  */
1379 static inline int is_software_event(struct perf_event *event)
1380 {
1381 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1382 }
1383 
1384 /*
1385  * Return 1 for event in sw context, 0 for event in hw context
1386  */
1387 static inline int in_software_context(struct perf_event *event)
1388 {
1389 	return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context;
1390 }
1391 
1392 static inline int is_exclusive_pmu(struct pmu *pmu)
1393 {
1394 	return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1395 }
1396 
1397 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1398 
1399 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1400 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1401 
1402 #ifndef perf_arch_fetch_caller_regs
1403 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1404 #endif
1405 
1406 /*
1407  * When generating a perf sample in-line, instead of from an interrupt /
1408  * exception, we lack a pt_regs. This is typically used from software events
1409  * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1410  *
1411  * We typically don't need a full set, but (for x86) do require:
1412  * - ip for PERF_SAMPLE_IP
1413  * - cs for user_mode() tests
1414  * - sp for PERF_SAMPLE_CALLCHAIN
1415  * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1416  *
1417  * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1418  * things like PERF_SAMPLE_REGS_INTR.
1419  */
1420 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1421 {
1422 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1423 }
1424 
1425 static __always_inline void
1426 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1427 {
1428 	if (static_key_false(&perf_swevent_enabled[event_id]))
1429 		__perf_sw_event(event_id, nr, regs, addr);
1430 }
1431 
1432 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1433 
1434 /*
1435  * 'Special' version for the scheduler, it hard assumes no recursion,
1436  * which is guaranteed by us not actually scheduling inside other swevents
1437  * because those disable preemption.
1438  */
1439 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1440 {
1441 	struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1442 
1443 	perf_fetch_caller_regs(regs);
1444 	___perf_sw_event(event_id, nr, regs, addr);
1445 }
1446 
1447 extern struct static_key_false perf_sched_events;
1448 
1449 static __always_inline bool __perf_sw_enabled(int swevt)
1450 {
1451 	return static_key_false(&perf_swevent_enabled[swevt]);
1452 }
1453 
1454 static inline void perf_event_task_migrate(struct task_struct *task)
1455 {
1456 	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1457 		task->sched_migrated = 1;
1458 }
1459 
1460 static inline void perf_event_task_sched_in(struct task_struct *prev,
1461 					    struct task_struct *task)
1462 {
1463 	if (static_branch_unlikely(&perf_sched_events))
1464 		__perf_event_task_sched_in(prev, task);
1465 
1466 	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1467 	    task->sched_migrated) {
1468 		__perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1469 		task->sched_migrated = 0;
1470 	}
1471 }
1472 
1473 static inline void perf_event_task_sched_out(struct task_struct *prev,
1474 					     struct task_struct *next)
1475 {
1476 	if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1477 		__perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1478 
1479 #ifdef CONFIG_CGROUP_PERF
1480 	if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1481 	    perf_cgroup_from_task(prev, NULL) !=
1482 	    perf_cgroup_from_task(next, NULL))
1483 		__perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1484 #endif
1485 
1486 	if (static_branch_unlikely(&perf_sched_events))
1487 		__perf_event_task_sched_out(prev, next);
1488 }
1489 
1490 extern void perf_event_mmap(struct vm_area_struct *vma);
1491 
1492 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1493 			       bool unregister, const char *sym);
1494 extern void perf_event_bpf_event(struct bpf_prog *prog,
1495 				 enum perf_bpf_event_type type,
1496 				 u16 flags);
1497 
1498 #ifdef CONFIG_GUEST_PERF_EVENTS
1499 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
1500 
1501 DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state);
1502 DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
1503 DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
1504 
1505 static inline unsigned int perf_guest_state(void)
1506 {
1507 	return static_call(__perf_guest_state)();
1508 }
1509 static inline unsigned long perf_guest_get_ip(void)
1510 {
1511 	return static_call(__perf_guest_get_ip)();
1512 }
1513 static inline unsigned int perf_guest_handle_intel_pt_intr(void)
1514 {
1515 	return static_call(__perf_guest_handle_intel_pt_intr)();
1516 }
1517 extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1518 extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1519 #else
1520 static inline unsigned int perf_guest_state(void)		 { return 0; }
1521 static inline unsigned long perf_guest_get_ip(void)		 { return 0; }
1522 static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; }
1523 #endif /* CONFIG_GUEST_PERF_EVENTS */
1524 
1525 extern void perf_event_exec(void);
1526 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1527 extern void perf_event_namespaces(struct task_struct *tsk);
1528 extern void perf_event_fork(struct task_struct *tsk);
1529 extern void perf_event_text_poke(const void *addr,
1530 				 const void *old_bytes, size_t old_len,
1531 				 const void *new_bytes, size_t new_len);
1532 
1533 /* Callchains */
1534 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1535 
1536 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1537 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1538 extern struct perf_callchain_entry *
1539 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1540 		   u32 max_stack, bool crosstask, bool add_mark);
1541 extern int get_callchain_buffers(int max_stack);
1542 extern void put_callchain_buffers(void);
1543 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1544 extern void put_callchain_entry(int rctx);
1545 
1546 extern int sysctl_perf_event_max_stack;
1547 extern int sysctl_perf_event_max_contexts_per_stack;
1548 
1549 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1550 {
1551 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1552 		struct perf_callchain_entry *entry = ctx->entry;
1553 		entry->ip[entry->nr++] = ip;
1554 		++ctx->contexts;
1555 		return 0;
1556 	} else {
1557 		ctx->contexts_maxed = true;
1558 		return -1; /* no more room, stop walking the stack */
1559 	}
1560 }
1561 
1562 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1563 {
1564 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1565 		struct perf_callchain_entry *entry = ctx->entry;
1566 		entry->ip[entry->nr++] = ip;
1567 		++ctx->nr;
1568 		return 0;
1569 	} else {
1570 		return -1; /* no more room, stop walking the stack */
1571 	}
1572 }
1573 
1574 extern int sysctl_perf_event_paranoid;
1575 extern int sysctl_perf_event_mlock;
1576 extern int sysctl_perf_event_sample_rate;
1577 extern int sysctl_perf_cpu_time_max_percent;
1578 
1579 extern void perf_sample_event_took(u64 sample_len_ns);
1580 
1581 int perf_event_max_sample_rate_handler(struct ctl_table *table, int write,
1582 		void *buffer, size_t *lenp, loff_t *ppos);
1583 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1584 		void *buffer, size_t *lenp, loff_t *ppos);
1585 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1586 		void *buffer, size_t *lenp, loff_t *ppos);
1587 
1588 /* Access to perf_event_open(2) syscall. */
1589 #define PERF_SECURITY_OPEN		0
1590 
1591 /* Finer grained perf_event_open(2) access control. */
1592 #define PERF_SECURITY_CPU		1
1593 #define PERF_SECURITY_KERNEL		2
1594 #define PERF_SECURITY_TRACEPOINT	3
1595 
1596 static inline int perf_is_paranoid(void)
1597 {
1598 	return sysctl_perf_event_paranoid > -1;
1599 }
1600 
1601 static inline int perf_allow_kernel(struct perf_event_attr *attr)
1602 {
1603 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1604 		return -EACCES;
1605 
1606 	return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1607 }
1608 
1609 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1610 {
1611 	if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1612 		return -EACCES;
1613 
1614 	return security_perf_event_open(attr, PERF_SECURITY_CPU);
1615 }
1616 
1617 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1618 {
1619 	if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1620 		return -EPERM;
1621 
1622 	return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1623 }
1624 
1625 extern void perf_event_init(void);
1626 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1627 			  int entry_size, struct pt_regs *regs,
1628 			  struct hlist_head *head, int rctx,
1629 			  struct task_struct *task);
1630 extern void perf_bp_event(struct perf_event *event, void *data);
1631 
1632 #ifndef perf_misc_flags
1633 # define perf_misc_flags(regs) \
1634 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1635 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1636 #endif
1637 #ifndef perf_arch_bpf_user_pt_regs
1638 # define perf_arch_bpf_user_pt_regs(regs) regs
1639 #endif
1640 
1641 static inline bool has_branch_stack(struct perf_event *event)
1642 {
1643 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1644 }
1645 
1646 static inline bool needs_branch_stack(struct perf_event *event)
1647 {
1648 	return event->attr.branch_sample_type != 0;
1649 }
1650 
1651 static inline bool has_aux(struct perf_event *event)
1652 {
1653 	return event->pmu->setup_aux;
1654 }
1655 
1656 static inline bool is_write_backward(struct perf_event *event)
1657 {
1658 	return !!event->attr.write_backward;
1659 }
1660 
1661 static inline bool has_addr_filter(struct perf_event *event)
1662 {
1663 	return event->pmu->nr_addr_filters;
1664 }
1665 
1666 /*
1667  * An inherited event uses parent's filters
1668  */
1669 static inline struct perf_addr_filters_head *
1670 perf_event_addr_filters(struct perf_event *event)
1671 {
1672 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1673 
1674 	if (event->parent)
1675 		ifh = &event->parent->addr_filters;
1676 
1677 	return ifh;
1678 }
1679 
1680 extern void perf_event_addr_filters_sync(struct perf_event *event);
1681 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);
1682 
1683 extern int perf_output_begin(struct perf_output_handle *handle,
1684 			     struct perf_sample_data *data,
1685 			     struct perf_event *event, unsigned int size);
1686 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1687 				     struct perf_sample_data *data,
1688 				     struct perf_event *event,
1689 				     unsigned int size);
1690 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1691 				      struct perf_sample_data *data,
1692 				      struct perf_event *event,
1693 				      unsigned int size);
1694 
1695 extern void perf_output_end(struct perf_output_handle *handle);
1696 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1697 			     const void *buf, unsigned int len);
1698 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1699 				     unsigned int len);
1700 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1701 				 struct perf_output_handle *handle,
1702 				 unsigned long from, unsigned long to);
1703 extern int perf_swevent_get_recursion_context(void);
1704 extern void perf_swevent_put_recursion_context(int rctx);
1705 extern u64 perf_swevent_set_period(struct perf_event *event);
1706 extern void perf_event_enable(struct perf_event *event);
1707 extern void perf_event_disable(struct perf_event *event);
1708 extern void perf_event_disable_local(struct perf_event *event);
1709 extern void perf_event_disable_inatomic(struct perf_event *event);
1710 extern void perf_event_task_tick(void);
1711 extern int perf_event_account_interrupt(struct perf_event *event);
1712 extern int perf_event_period(struct perf_event *event, u64 value);
1713 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1714 #else /* !CONFIG_PERF_EVENTS: */
1715 static inline void *
1716 perf_aux_output_begin(struct perf_output_handle *handle,
1717 		      struct perf_event *event)				{ return NULL; }
1718 static inline void
1719 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1720 									{ }
1721 static inline int
1722 perf_aux_output_skip(struct perf_output_handle *handle,
1723 		     unsigned long size)				{ return -EINVAL; }
1724 static inline void *
1725 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1726 static inline void
1727 perf_event_task_migrate(struct task_struct *task)			{ }
1728 static inline void
1729 perf_event_task_sched_in(struct task_struct *prev,
1730 			 struct task_struct *task)			{ }
1731 static inline void
1732 perf_event_task_sched_out(struct task_struct *prev,
1733 			  struct task_struct *next)			{ }
1734 static inline int perf_event_init_task(struct task_struct *child,
1735 				       u64 clone_flags)			{ return 0; }
1736 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1737 static inline void perf_event_free_task(struct task_struct *task)	{ }
1738 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1739 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1740 static inline const struct perf_event *perf_get_event(struct file *file)
1741 {
1742 	return ERR_PTR(-EINVAL);
1743 }
1744 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1745 {
1746 	return ERR_PTR(-EINVAL);
1747 }
1748 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1749 					u64 *enabled, u64 *running)
1750 {
1751 	return -EINVAL;
1752 }
1753 static inline void perf_event_print_debug(void)				{ }
1754 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1755 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1756 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1757 {
1758 	return -EINVAL;
1759 }
1760 
1761 static inline void
1762 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1763 static inline void
1764 perf_bp_event(struct perf_event *event, void *data)			{ }
1765 
1766 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1767 
1768 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1769 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1770 				      bool unregister, const char *sym)	{ }
1771 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1772 					enum perf_bpf_event_type type,
1773 					u16 flags)			{ }
1774 static inline void perf_event_exec(void)				{ }
1775 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1776 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
1777 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1778 static inline void perf_event_text_poke(const void *addr,
1779 					const void *old_bytes,
1780 					size_t old_len,
1781 					const void *new_bytes,
1782 					size_t new_len)			{ }
1783 static inline void perf_event_init(void)				{ }
1784 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1785 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1786 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1787 static inline void perf_event_enable(struct perf_event *event)		{ }
1788 static inline void perf_event_disable(struct perf_event *event)		{ }
1789 static inline int __perf_event_disable(void *info)			{ return -1; }
1790 static inline void perf_event_task_tick(void)				{ }
1791 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1792 static inline int perf_event_period(struct perf_event *event, u64 value)
1793 {
1794 	return -EINVAL;
1795 }
1796 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1797 {
1798 	return 0;
1799 }
1800 #endif
1801 
1802 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1803 extern void perf_restore_debug_store(void);
1804 #else
1805 static inline void perf_restore_debug_store(void)			{ }
1806 #endif
1807 
1808 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1809 
1810 struct perf_pmu_events_attr {
1811 	struct device_attribute attr;
1812 	u64 id;
1813 	const char *event_str;
1814 };
1815 
1816 struct perf_pmu_events_ht_attr {
1817 	struct device_attribute			attr;
1818 	u64					id;
1819 	const char				*event_str_ht;
1820 	const char				*event_str_noht;
1821 };
1822 
1823 struct perf_pmu_events_hybrid_attr {
1824 	struct device_attribute			attr;
1825 	u64					id;
1826 	const char				*event_str;
1827 	u64					pmu_type;
1828 };
1829 
1830 struct perf_pmu_format_hybrid_attr {
1831 	struct device_attribute			attr;
1832 	u64					pmu_type;
1833 };
1834 
1835 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1836 			      char *page);
1837 
1838 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1839 static struct perf_pmu_events_attr _var = {				\
1840 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1841 	.id   =  _id,							\
1842 };
1843 
1844 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1845 static struct perf_pmu_events_attr _var = {				    \
1846 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1847 	.id		= 0,						    \
1848 	.event_str	= _str,						    \
1849 };
1850 
1851 #define PMU_EVENT_ATTR_ID(_name, _show, _id)				\
1852 	(&((struct perf_pmu_events_attr[]) {				\
1853 		{ .attr = __ATTR(_name, 0444, _show, NULL),		\
1854 		  .id = _id, }						\
1855 	})[0].attr.attr)
1856 
1857 #define PMU_FORMAT_ATTR_SHOW(_name, _format)				\
1858 static ssize_t								\
1859 _name##_show(struct device *dev,					\
1860 			       struct device_attribute *attr,		\
1861 			       char *page)				\
1862 {									\
1863 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1864 	return sprintf(page, _format "\n");				\
1865 }									\
1866 
1867 #define PMU_FORMAT_ATTR(_name, _format)					\
1868 	PMU_FORMAT_ATTR_SHOW(_name, _format)				\
1869 									\
1870 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1871 
1872 /* Performance counter hotplug functions */
1873 #ifdef CONFIG_PERF_EVENTS
1874 int perf_event_init_cpu(unsigned int cpu);
1875 int perf_event_exit_cpu(unsigned int cpu);
1876 #else
1877 #define perf_event_init_cpu	NULL
1878 #define perf_event_exit_cpu	NULL
1879 #endif
1880 
1881 extern void arch_perf_update_userpage(struct perf_event *event,
1882 				      struct perf_event_mmap_page *userpg,
1883 				      u64 now);
1884 
1885 /*
1886  * Snapshot branch stack on software events.
1887  *
1888  * Branch stack can be very useful in understanding software events. For
1889  * example, when a long function, e.g. sys_perf_event_open, returns an
1890  * errno, it is not obvious why the function failed. Branch stack could
1891  * provide very helpful information in this type of scenarios.
1892  *
1893  * On software event, it is necessary to stop the hardware branch recorder
1894  * fast. Otherwise, the hardware register/buffer will be flushed with
1895  * entries of the triggering event. Therefore, static call is used to
1896  * stop the hardware recorder.
1897  */
1898 
1899 /*
1900  * cnt is the number of entries allocated for entries.
1901  * Return number of entries copied to .
1902  */
1903 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries,
1904 					   unsigned int cnt);
1905 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
1906 
1907 #ifndef PERF_NEEDS_LOPWR_CB
1908 static inline void perf_lopwr_cb(bool mode)
1909 {
1910 }
1911 #endif
1912 
1913 #endif /* _LINUX_PERF_EVENT_H */
1914