xref: /linux/include/linux/perf_event.h (revision dd093fb0)
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19 
20 /*
21  * Kernel-internal data types and definitions:
22  */
23 
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
29 #define PERF_GUEST_ACTIVE	0x01
30 #define PERF_GUEST_USER	0x02
31 
32 struct perf_guest_info_callbacks {
33 	unsigned int			(*state)(void);
34 	unsigned long			(*get_ip)(void);
35 	unsigned int			(*handle_intel_pt_intr)(void);
36 };
37 
38 #ifdef CONFIG_HAVE_HW_BREAKPOINT
39 #include <linux/rhashtable-types.h>
40 #include <asm/hw_breakpoint.h>
41 #endif
42 
43 #include <linux/list.h>
44 #include <linux/mutex.h>
45 #include <linux/rculist.h>
46 #include <linux/rcupdate.h>
47 #include <linux/spinlock.h>
48 #include <linux/hrtimer.h>
49 #include <linux/fs.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/workqueue.h>
52 #include <linux/ftrace.h>
53 #include <linux/cpu.h>
54 #include <linux/irq_work.h>
55 #include <linux/static_key.h>
56 #include <linux/jump_label_ratelimit.h>
57 #include <linux/atomic.h>
58 #include <linux/sysfs.h>
59 #include <linux/perf_regs.h>
60 #include <linux/cgroup.h>
61 #include <linux/refcount.h>
62 #include <linux/security.h>
63 #include <linux/static_call.h>
64 #include <linux/lockdep.h>
65 #include <asm/local.h>
66 
67 struct perf_callchain_entry {
68 	__u64				nr;
69 	__u64				ip[]; /* /proc/sys/kernel/perf_event_max_stack */
70 };
71 
72 struct perf_callchain_entry_ctx {
73 	struct perf_callchain_entry *entry;
74 	u32			    max_stack;
75 	u32			    nr;
76 	short			    contexts;
77 	bool			    contexts_maxed;
78 };
79 
80 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
81 				     unsigned long off, unsigned long len);
82 
83 struct perf_raw_frag {
84 	union {
85 		struct perf_raw_frag	*next;
86 		unsigned long		pad;
87 	};
88 	perf_copy_f			copy;
89 	void				*data;
90 	u32				size;
91 } __packed;
92 
93 struct perf_raw_record {
94 	struct perf_raw_frag		frag;
95 	u32				size;
96 };
97 
98 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
99 {
100 	return frag->pad < sizeof(u64);
101 }
102 
103 /*
104  * branch stack layout:
105  *  nr: number of taken branches stored in entries[]
106  *  hw_idx: The low level index of raw branch records
107  *          for the most recent branch.
108  *          -1ULL means invalid/unknown.
109  *
110  * Note that nr can vary from sample to sample
111  * branches (to, from) are stored from most recent
112  * to least recent, i.e., entries[0] contains the most
113  * recent branch.
114  * The entries[] is an abstraction of raw branch records,
115  * which may not be stored in age order in HW, e.g. Intel LBR.
116  * The hw_idx is to expose the low level index of raw
117  * branch record for the most recent branch aka entries[0].
118  * The hw_idx index is between -1 (unknown) and max depth,
119  * which can be retrieved in /sys/devices/cpu/caps/branches.
120  * For the architectures whose raw branch records are
121  * already stored in age order, the hw_idx should be 0.
122  */
123 struct perf_branch_stack {
124 	__u64				nr;
125 	__u64				hw_idx;
126 	struct perf_branch_entry	entries[];
127 };
128 
129 struct task_struct;
130 
131 /*
132  * extra PMU register associated with an event
133  */
134 struct hw_perf_event_extra {
135 	u64		config;	/* register value */
136 	unsigned int	reg;	/* register address or index */
137 	int		alloc;	/* extra register already allocated */
138 	int		idx;	/* index in shared_regs->regs[] */
139 };
140 
141 /**
142  * hw_perf_event::flag values
143  *
144  * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific
145  * usage.
146  */
147 #define PERF_EVENT_FLAG_ARCH			0x000fffff
148 #define PERF_EVENT_FLAG_USER_READ_CNT		0x80000000
149 
150 static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0);
151 
152 /**
153  * struct hw_perf_event - performance event hardware details:
154  */
155 struct hw_perf_event {
156 #ifdef CONFIG_PERF_EVENTS
157 	union {
158 		struct { /* hardware */
159 			u64		config;
160 			u64		last_tag;
161 			unsigned long	config_base;
162 			unsigned long	event_base;
163 			int		event_base_rdpmc;
164 			int		idx;
165 			int		last_cpu;
166 			int		flags;
167 
168 			struct hw_perf_event_extra extra_reg;
169 			struct hw_perf_event_extra branch_reg;
170 		};
171 		struct { /* software */
172 			struct hrtimer	hrtimer;
173 		};
174 		struct { /* tracepoint */
175 			/* for tp_event->class */
176 			struct list_head	tp_list;
177 		};
178 		struct { /* amd_power */
179 			u64	pwr_acc;
180 			u64	ptsc;
181 		};
182 #ifdef CONFIG_HAVE_HW_BREAKPOINT
183 		struct { /* breakpoint */
184 			/*
185 			 * Crufty hack to avoid the chicken and egg
186 			 * problem hw_breakpoint has with context
187 			 * creation and event initalization.
188 			 */
189 			struct arch_hw_breakpoint	info;
190 			struct rhlist_head		bp_list;
191 		};
192 #endif
193 		struct { /* amd_iommu */
194 			u8	iommu_bank;
195 			u8	iommu_cntr;
196 			u16	padding;
197 			u64	conf;
198 			u64	conf1;
199 		};
200 	};
201 	/*
202 	 * If the event is a per task event, this will point to the task in
203 	 * question. See the comment in perf_event_alloc().
204 	 */
205 	struct task_struct		*target;
206 
207 	/*
208 	 * PMU would store hardware filter configuration
209 	 * here.
210 	 */
211 	void				*addr_filters;
212 
213 	/* Last sync'ed generation of filters */
214 	unsigned long			addr_filters_gen;
215 
216 /*
217  * hw_perf_event::state flags; used to track the PERF_EF_* state.
218  */
219 #define PERF_HES_STOPPED	0x01 /* the counter is stopped */
220 #define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
221 #define PERF_HES_ARCH		0x04
222 
223 	int				state;
224 
225 	/*
226 	 * The last observed hardware counter value, updated with a
227 	 * local64_cmpxchg() such that pmu::read() can be called nested.
228 	 */
229 	local64_t			prev_count;
230 
231 	/*
232 	 * The period to start the next sample with.
233 	 */
234 	u64				sample_period;
235 
236 	union {
237 		struct { /* Sampling */
238 			/*
239 			 * The period we started this sample with.
240 			 */
241 			u64				last_period;
242 
243 			/*
244 			 * However much is left of the current period;
245 			 * note that this is a full 64bit value and
246 			 * allows for generation of periods longer
247 			 * than hardware might allow.
248 			 */
249 			local64_t			period_left;
250 		};
251 		struct { /* Topdown events counting for context switch */
252 			u64				saved_metric;
253 			u64				saved_slots;
254 		};
255 	};
256 
257 	/*
258 	 * State for throttling the event, see __perf_event_overflow() and
259 	 * perf_adjust_freq_unthr_context().
260 	 */
261 	u64                             interrupts_seq;
262 	u64				interrupts;
263 
264 	/*
265 	 * State for freq target events, see __perf_event_overflow() and
266 	 * perf_adjust_freq_unthr_context().
267 	 */
268 	u64				freq_time_stamp;
269 	u64				freq_count_stamp;
270 #endif
271 };
272 
273 struct perf_event;
274 struct perf_event_pmu_context;
275 
276 /*
277  * Common implementation detail of pmu::{start,commit,cancel}_txn
278  */
279 #define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
280 #define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
281 
282 /**
283  * pmu::capabilities flags
284  */
285 #define PERF_PMU_CAP_NO_INTERRUPT		0x0001
286 #define PERF_PMU_CAP_NO_NMI			0x0002
287 #define PERF_PMU_CAP_AUX_NO_SG			0x0004
288 #define PERF_PMU_CAP_EXTENDED_REGS		0x0008
289 #define PERF_PMU_CAP_EXCLUSIVE			0x0010
290 #define PERF_PMU_CAP_ITRACE			0x0020
291 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS		0x0040
292 #define PERF_PMU_CAP_NO_EXCLUDE			0x0080
293 #define PERF_PMU_CAP_AUX_OUTPUT			0x0100
294 #define PERF_PMU_CAP_EXTENDED_HW_TYPE		0x0200
295 
296 struct perf_output_handle;
297 
298 /**
299  * struct pmu - generic performance monitoring unit
300  */
301 struct pmu {
302 	struct list_head		entry;
303 
304 	struct module			*module;
305 	struct device			*dev;
306 	const struct attribute_group	**attr_groups;
307 	const struct attribute_group	**attr_update;
308 	const char			*name;
309 	int				type;
310 
311 	/*
312 	 * various common per-pmu feature flags
313 	 */
314 	int				capabilities;
315 
316 	int __percpu			*pmu_disable_count;
317 	struct perf_cpu_pmu_context __percpu *cpu_pmu_context;
318 	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
319 	int				task_ctx_nr;
320 	int				hrtimer_interval_ms;
321 
322 	/* number of address filters this PMU can do */
323 	unsigned int			nr_addr_filters;
324 
325 	/*
326 	 * Fully disable/enable this PMU, can be used to protect from the PMI
327 	 * as well as for lazy/batch writing of the MSRs.
328 	 */
329 	void (*pmu_enable)		(struct pmu *pmu); /* optional */
330 	void (*pmu_disable)		(struct pmu *pmu); /* optional */
331 
332 	/*
333 	 * Try and initialize the event for this PMU.
334 	 *
335 	 * Returns:
336 	 *  -ENOENT	-- @event is not for this PMU
337 	 *
338 	 *  -ENODEV	-- @event is for this PMU but PMU not present
339 	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
340 	 *  -EINVAL	-- @event is for this PMU but @event is not valid
341 	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
342 	 *  -EACCES	-- @event is for this PMU, @event is valid, but no privileges
343 	 *
344 	 *  0		-- @event is for this PMU and valid
345 	 *
346 	 * Other error return values are allowed.
347 	 */
348 	int (*event_init)		(struct perf_event *event);
349 
350 	/*
351 	 * Notification that the event was mapped or unmapped.  Called
352 	 * in the context of the mapping task.
353 	 */
354 	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
355 	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
356 
357 	/*
358 	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
359 	 * matching hw_perf_event::state flags.
360 	 */
361 #define PERF_EF_START	0x01		/* start the counter when adding    */
362 #define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
363 #define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
364 
365 	/*
366 	 * Adds/Removes a counter to/from the PMU, can be done inside a
367 	 * transaction, see the ->*_txn() methods.
368 	 *
369 	 * The add/del callbacks will reserve all hardware resources required
370 	 * to service the event, this includes any counter constraint
371 	 * scheduling etc.
372 	 *
373 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
374 	 * is on.
375 	 *
376 	 * ->add() called without PERF_EF_START should result in the same state
377 	 *  as ->add() followed by ->stop().
378 	 *
379 	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
380 	 *  ->stop() that must deal with already being stopped without
381 	 *  PERF_EF_UPDATE.
382 	 */
383 	int  (*add)			(struct perf_event *event, int flags);
384 	void (*del)			(struct perf_event *event, int flags);
385 
386 	/*
387 	 * Starts/Stops a counter present on the PMU.
388 	 *
389 	 * The PMI handler should stop the counter when perf_event_overflow()
390 	 * returns !0. ->start() will be used to continue.
391 	 *
392 	 * Also used to change the sample period.
393 	 *
394 	 * Called with IRQs disabled and the PMU disabled on the CPU the event
395 	 * is on -- will be called from NMI context with the PMU generates
396 	 * NMIs.
397 	 *
398 	 * ->stop() with PERF_EF_UPDATE will read the counter and update
399 	 *  period/count values like ->read() would.
400 	 *
401 	 * ->start() with PERF_EF_RELOAD will reprogram the counter
402 	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
403 	 */
404 	void (*start)			(struct perf_event *event, int flags);
405 	void (*stop)			(struct perf_event *event, int flags);
406 
407 	/*
408 	 * Updates the counter value of the event.
409 	 *
410 	 * For sampling capable PMUs this will also update the software period
411 	 * hw_perf_event::period_left field.
412 	 */
413 	void (*read)			(struct perf_event *event);
414 
415 	/*
416 	 * Group events scheduling is treated as a transaction, add
417 	 * group events as a whole and perform one schedulability test.
418 	 * If the test fails, roll back the whole group
419 	 *
420 	 * Start the transaction, after this ->add() doesn't need to
421 	 * do schedulability tests.
422 	 *
423 	 * Optional.
424 	 */
425 	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
426 	/*
427 	 * If ->start_txn() disabled the ->add() schedulability test
428 	 * then ->commit_txn() is required to perform one. On success
429 	 * the transaction is closed. On error the transaction is kept
430 	 * open until ->cancel_txn() is called.
431 	 *
432 	 * Optional.
433 	 */
434 	int  (*commit_txn)		(struct pmu *pmu);
435 	/*
436 	 * Will cancel the transaction, assumes ->del() is called
437 	 * for each successful ->add() during the transaction.
438 	 *
439 	 * Optional.
440 	 */
441 	void (*cancel_txn)		(struct pmu *pmu);
442 
443 	/*
444 	 * Will return the value for perf_event_mmap_page::index for this event,
445 	 * if no implementation is provided it will default to: event->hw.idx + 1.
446 	 */
447 	int (*event_idx)		(struct perf_event *event); /*optional */
448 
449 	/*
450 	 * context-switches callback
451 	 */
452 	void (*sched_task)		(struct perf_event_pmu_context *pmu_ctx,
453 					bool sched_in);
454 
455 	/*
456 	 * Kmem cache of PMU specific data
457 	 */
458 	struct kmem_cache		*task_ctx_cache;
459 
460 	/*
461 	 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
462 	 * can be synchronized using this function. See Intel LBR callstack support
463 	 * implementation and Perf core context switch handling callbacks for usage
464 	 * examples.
465 	 */
466 	void (*swap_task_ctx)		(struct perf_event_pmu_context *prev_epc,
467 					 struct perf_event_pmu_context *next_epc);
468 					/* optional */
469 
470 	/*
471 	 * Set up pmu-private data structures for an AUX area
472 	 */
473 	void *(*setup_aux)		(struct perf_event *event, void **pages,
474 					 int nr_pages, bool overwrite);
475 					/* optional */
476 
477 	/*
478 	 * Free pmu-private AUX data structures
479 	 */
480 	void (*free_aux)		(void *aux); /* optional */
481 
482 	/*
483 	 * Take a snapshot of the AUX buffer without touching the event
484 	 * state, so that preempting ->start()/->stop() callbacks does
485 	 * not interfere with their logic. Called in PMI context.
486 	 *
487 	 * Returns the size of AUX data copied to the output handle.
488 	 *
489 	 * Optional.
490 	 */
491 	long (*snapshot_aux)		(struct perf_event *event,
492 					 struct perf_output_handle *handle,
493 					 unsigned long size);
494 
495 	/*
496 	 * Validate address range filters: make sure the HW supports the
497 	 * requested configuration and number of filters; return 0 if the
498 	 * supplied filters are valid, -errno otherwise.
499 	 *
500 	 * Runs in the context of the ioctl()ing process and is not serialized
501 	 * with the rest of the PMU callbacks.
502 	 */
503 	int (*addr_filters_validate)	(struct list_head *filters);
504 					/* optional */
505 
506 	/*
507 	 * Synchronize address range filter configuration:
508 	 * translate hw-agnostic filters into hardware configuration in
509 	 * event::hw::addr_filters.
510 	 *
511 	 * Runs as a part of filter sync sequence that is done in ->start()
512 	 * callback by calling perf_event_addr_filters_sync().
513 	 *
514 	 * May (and should) traverse event::addr_filters::list, for which its
515 	 * caller provides necessary serialization.
516 	 */
517 	void (*addr_filters_sync)	(struct perf_event *event);
518 					/* optional */
519 
520 	/*
521 	 * Check if event can be used for aux_output purposes for
522 	 * events of this PMU.
523 	 *
524 	 * Runs from perf_event_open(). Should return 0 for "no match"
525 	 * or non-zero for "match".
526 	 */
527 	int (*aux_output_match)		(struct perf_event *event);
528 					/* optional */
529 
530 	/*
531 	 * Skip programming this PMU on the given CPU. Typically needed for
532 	 * big.LITTLE things.
533 	 */
534 	bool (*filter)			(struct pmu *pmu, int cpu); /* optional */
535 
536 	/*
537 	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
538 	 */
539 	int (*check_period)		(struct perf_event *event, u64 value); /* optional */
540 };
541 
542 enum perf_addr_filter_action_t {
543 	PERF_ADDR_FILTER_ACTION_STOP = 0,
544 	PERF_ADDR_FILTER_ACTION_START,
545 	PERF_ADDR_FILTER_ACTION_FILTER,
546 };
547 
548 /**
549  * struct perf_addr_filter - address range filter definition
550  * @entry:	event's filter list linkage
551  * @path:	object file's path for file-based filters
552  * @offset:	filter range offset
553  * @size:	filter range size (size==0 means single address trigger)
554  * @action:	filter/start/stop
555  *
556  * This is a hardware-agnostic filter configuration as specified by the user.
557  */
558 struct perf_addr_filter {
559 	struct list_head	entry;
560 	struct path		path;
561 	unsigned long		offset;
562 	unsigned long		size;
563 	enum perf_addr_filter_action_t	action;
564 };
565 
566 /**
567  * struct perf_addr_filters_head - container for address range filters
568  * @list:	list of filters for this event
569  * @lock:	spinlock that serializes accesses to the @list and event's
570  *		(and its children's) filter generations.
571  * @nr_file_filters:	number of file-based filters
572  *
573  * A child event will use parent's @list (and therefore @lock), so they are
574  * bundled together; see perf_event_addr_filters().
575  */
576 struct perf_addr_filters_head {
577 	struct list_head	list;
578 	raw_spinlock_t		lock;
579 	unsigned int		nr_file_filters;
580 };
581 
582 struct perf_addr_filter_range {
583 	unsigned long		start;
584 	unsigned long		size;
585 };
586 
587 /**
588  * enum perf_event_state - the states of an event:
589  */
590 enum perf_event_state {
591 	PERF_EVENT_STATE_DEAD		= -4,
592 	PERF_EVENT_STATE_EXIT		= -3,
593 	PERF_EVENT_STATE_ERROR		= -2,
594 	PERF_EVENT_STATE_OFF		= -1,
595 	PERF_EVENT_STATE_INACTIVE	=  0,
596 	PERF_EVENT_STATE_ACTIVE		=  1,
597 };
598 
599 struct file;
600 struct perf_sample_data;
601 
602 typedef void (*perf_overflow_handler_t)(struct perf_event *,
603 					struct perf_sample_data *,
604 					struct pt_regs *regs);
605 
606 /*
607  * Event capabilities. For event_caps and groups caps.
608  *
609  * PERF_EV_CAP_SOFTWARE: Is a software event.
610  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
611  * from any CPU in the package where it is active.
612  * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
613  * cannot be a group leader. If an event with this flag is detached from the
614  * group it is scheduled out and moved into an unrecoverable ERROR state.
615  */
616 #define PERF_EV_CAP_SOFTWARE		BIT(0)
617 #define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
618 #define PERF_EV_CAP_SIBLING		BIT(2)
619 
620 #define SWEVENT_HLIST_BITS		8
621 #define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
622 
623 struct swevent_hlist {
624 	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
625 	struct rcu_head			rcu_head;
626 };
627 
628 #define PERF_ATTACH_CONTEXT	0x01
629 #define PERF_ATTACH_GROUP	0x02
630 #define PERF_ATTACH_TASK	0x04
631 #define PERF_ATTACH_TASK_DATA	0x08
632 #define PERF_ATTACH_ITRACE	0x10
633 #define PERF_ATTACH_SCHED_CB	0x20
634 #define PERF_ATTACH_CHILD	0x40
635 
636 struct bpf_prog;
637 struct perf_cgroup;
638 struct perf_buffer;
639 
640 struct pmu_event_list {
641 	raw_spinlock_t		lock;
642 	struct list_head	list;
643 };
644 
645 /*
646  * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex
647  * as such iteration must hold either lock. However, since ctx->lock is an IRQ
648  * safe lock, and is only held by the CPU doing the modification, having IRQs
649  * disabled is sufficient since it will hold-off the IPIs.
650  */
651 #ifdef CONFIG_PROVE_LOCKING
652 #define lockdep_assert_event_ctx(event)				\
653 	WARN_ON_ONCE(__lockdep_enabled &&			\
654 		     (this_cpu_read(hardirqs_enabled) &&	\
655 		      lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD))
656 #else
657 #define lockdep_assert_event_ctx(event)
658 #endif
659 
660 #define for_each_sibling_event(sibling, event)			\
661 	lockdep_assert_event_ctx(event);			\
662 	if ((event)->group_leader == (event))			\
663 		list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
664 
665 /**
666  * struct perf_event - performance event kernel representation:
667  */
668 struct perf_event {
669 #ifdef CONFIG_PERF_EVENTS
670 	/*
671 	 * entry onto perf_event_context::event_list;
672 	 *   modifications require ctx->lock
673 	 *   RCU safe iterations.
674 	 */
675 	struct list_head		event_entry;
676 
677 	/*
678 	 * Locked for modification by both ctx->mutex and ctx->lock; holding
679 	 * either sufficies for read.
680 	 */
681 	struct list_head		sibling_list;
682 	struct list_head		active_list;
683 	/*
684 	 * Node on the pinned or flexible tree located at the event context;
685 	 */
686 	struct rb_node			group_node;
687 	u64				group_index;
688 	/*
689 	 * We need storage to track the entries in perf_pmu_migrate_context; we
690 	 * cannot use the event_entry because of RCU and we want to keep the
691 	 * group in tact which avoids us using the other two entries.
692 	 */
693 	struct list_head		migrate_entry;
694 
695 	struct hlist_node		hlist_entry;
696 	struct list_head		active_entry;
697 	int				nr_siblings;
698 
699 	/* Not serialized. Only written during event initialization. */
700 	int				event_caps;
701 	/* The cumulative AND of all event_caps for events in this group. */
702 	int				group_caps;
703 
704 	struct perf_event		*group_leader;
705 	/*
706 	 * event->pmu will always point to pmu in which this event belongs.
707 	 * Whereas event->pmu_ctx->pmu may point to other pmu when group of
708 	 * different pmu events is created.
709 	 */
710 	struct pmu			*pmu;
711 	void				*pmu_private;
712 
713 	enum perf_event_state		state;
714 	unsigned int			attach_state;
715 	local64_t			count;
716 	atomic64_t			child_count;
717 
718 	/*
719 	 * These are the total time in nanoseconds that the event
720 	 * has been enabled (i.e. eligible to run, and the task has
721 	 * been scheduled in, if this is a per-task event)
722 	 * and running (scheduled onto the CPU), respectively.
723 	 */
724 	u64				total_time_enabled;
725 	u64				total_time_running;
726 	u64				tstamp;
727 
728 	struct perf_event_attr		attr;
729 	u16				header_size;
730 	u16				id_header_size;
731 	u16				read_size;
732 	struct hw_perf_event		hw;
733 
734 	struct perf_event_context	*ctx;
735 	/*
736 	 * event->pmu_ctx points to perf_event_pmu_context in which the event
737 	 * is added. This pmu_ctx can be of other pmu for sw event when that
738 	 * sw event is part of a group which also contains non-sw events.
739 	 */
740 	struct perf_event_pmu_context	*pmu_ctx;
741 	atomic_long_t			refcount;
742 
743 	/*
744 	 * These accumulate total time (in nanoseconds) that children
745 	 * events have been enabled and running, respectively.
746 	 */
747 	atomic64_t			child_total_time_enabled;
748 	atomic64_t			child_total_time_running;
749 
750 	/*
751 	 * Protect attach/detach and child_list:
752 	 */
753 	struct mutex			child_mutex;
754 	struct list_head		child_list;
755 	struct perf_event		*parent;
756 
757 	int				oncpu;
758 	int				cpu;
759 
760 	struct list_head		owner_entry;
761 	struct task_struct		*owner;
762 
763 	/* mmap bits */
764 	struct mutex			mmap_mutex;
765 	atomic_t			mmap_count;
766 
767 	struct perf_buffer		*rb;
768 	struct list_head		rb_entry;
769 	unsigned long			rcu_batches;
770 	int				rcu_pending;
771 
772 	/* poll related */
773 	wait_queue_head_t		waitq;
774 	struct fasync_struct		*fasync;
775 
776 	/* delayed work for NMIs and such */
777 	unsigned int			pending_wakeup;
778 	unsigned int			pending_kill;
779 	unsigned int			pending_disable;
780 	unsigned int			pending_sigtrap;
781 	unsigned long			pending_addr;	/* SIGTRAP */
782 	struct irq_work			pending_irq;
783 	struct callback_head		pending_task;
784 	unsigned int			pending_work;
785 
786 	atomic_t			event_limit;
787 
788 	/* address range filters */
789 	struct perf_addr_filters_head	addr_filters;
790 	/* vma address array for file-based filders */
791 	struct perf_addr_filter_range	*addr_filter_ranges;
792 	unsigned long			addr_filters_gen;
793 
794 	/* for aux_output events */
795 	struct perf_event		*aux_event;
796 
797 	void (*destroy)(struct perf_event *);
798 	struct rcu_head			rcu_head;
799 
800 	struct pid_namespace		*ns;
801 	u64				id;
802 
803 	atomic64_t			lost_samples;
804 
805 	u64				(*clock)(void);
806 	perf_overflow_handler_t		overflow_handler;
807 	void				*overflow_handler_context;
808 #ifdef CONFIG_BPF_SYSCALL
809 	perf_overflow_handler_t		orig_overflow_handler;
810 	struct bpf_prog			*prog;
811 	u64				bpf_cookie;
812 #endif
813 
814 #ifdef CONFIG_EVENT_TRACING
815 	struct trace_event_call		*tp_event;
816 	struct event_filter		*filter;
817 #ifdef CONFIG_FUNCTION_TRACER
818 	struct ftrace_ops               ftrace_ops;
819 #endif
820 #endif
821 
822 #ifdef CONFIG_CGROUP_PERF
823 	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
824 #endif
825 
826 #ifdef CONFIG_SECURITY
827 	void *security;
828 #endif
829 	struct list_head		sb_list;
830 #endif /* CONFIG_PERF_EVENTS */
831 };
832 
833 /*
834  *           ,-----------------------[1:n]----------------------.
835  *           V                                                  V
836  * perf_event_context <-[1:n]-> perf_event_pmu_context <--- perf_event
837  *           ^                      ^     |                     |
838  *           `--------[1:n]---------'     `-[n:1]-> pmu <-[1:n]-'
839  *
840  *
841  * struct perf_event_pmu_context  lifetime is refcount based and RCU freed
842  * (similar to perf_event_context). Locking is as if it were a member of
843  * perf_event_context; specifically:
844  *
845  *   modification, both: ctx->mutex && ctx->lock
846  *   reading, either:    ctx->mutex || ctx->lock
847  *
848  * There is one exception to this; namely put_pmu_ctx() isn't always called
849  * with ctx->mutex held; this means that as long as we can guarantee the epc
850  * has events the above rules hold.
851  *
852  * Specificially, sys_perf_event_open()'s group_leader case depends on
853  * ctx->mutex pinning the configuration. Since we hold a reference on
854  * group_leader (through the filedesc) it can't go away, therefore it's
855  * associated pmu_ctx must exist and cannot change due to ctx->mutex.
856  */
857 struct perf_event_pmu_context {
858 	struct pmu			*pmu;
859 	struct perf_event_context       *ctx;
860 
861 	struct list_head		pmu_ctx_entry;
862 
863 	struct list_head		pinned_active;
864 	struct list_head		flexible_active;
865 
866 	/* Used to avoid freeing per-cpu perf_event_pmu_context */
867 	unsigned int			embedded : 1;
868 
869 	unsigned int			nr_events;
870 
871 	atomic_t			refcount; /* event <-> epc */
872 	struct rcu_head			rcu_head;
873 
874 	void				*task_ctx_data; /* pmu specific data */
875 	/*
876 	 * Set when one or more (plausibly active) event can't be scheduled
877 	 * due to pmu overcommit or pmu constraints, except tolerant to
878 	 * events not necessary to be active due to scheduling constraints,
879 	 * such as cgroups.
880 	 */
881 	int				rotate_necessary;
882 };
883 
884 struct perf_event_groups {
885 	struct rb_root	tree;
886 	u64		index;
887 };
888 
889 
890 /**
891  * struct perf_event_context - event context structure
892  *
893  * Used as a container for task events and CPU events as well:
894  */
895 struct perf_event_context {
896 	/*
897 	 * Protect the states of the events in the list,
898 	 * nr_active, and the list:
899 	 */
900 	raw_spinlock_t			lock;
901 	/*
902 	 * Protect the list of events.  Locking either mutex or lock
903 	 * is sufficient to ensure the list doesn't change; to change
904 	 * the list you need to lock both the mutex and the spinlock.
905 	 */
906 	struct mutex			mutex;
907 
908 	struct list_head		pmu_ctx_list;
909 	struct perf_event_groups	pinned_groups;
910 	struct perf_event_groups	flexible_groups;
911 	struct list_head		event_list;
912 
913 	int				nr_events;
914 	int				nr_user;
915 	int				is_active;
916 
917 	int				nr_task_data;
918 	int				nr_stat;
919 	int				nr_freq;
920 	int				rotate_disable;
921 
922 	refcount_t			refcount; /* event <-> ctx */
923 	struct task_struct		*task;
924 
925 	/*
926 	 * Context clock, runs when context enabled.
927 	 */
928 	u64				time;
929 	u64				timestamp;
930 	u64				timeoffset;
931 
932 	/*
933 	 * These fields let us detect when two contexts have both
934 	 * been cloned (inherited) from a common ancestor.
935 	 */
936 	struct perf_event_context	*parent_ctx;
937 	u64				parent_gen;
938 	u64				generation;
939 	int				pin_count;
940 #ifdef CONFIG_CGROUP_PERF
941 	int				nr_cgroups;	 /* cgroup evts */
942 #endif
943 	struct rcu_head			rcu_head;
944 
945 	/*
946 	 * Sum (event->pending_sigtrap + event->pending_work)
947 	 *
948 	 * The SIGTRAP is targeted at ctx->task, as such it won't do changing
949 	 * that until the signal is delivered.
950 	 */
951 	local_t				nr_pending;
952 };
953 
954 /*
955  * Number of contexts where an event can trigger:
956  *	task, softirq, hardirq, nmi.
957  */
958 #define PERF_NR_CONTEXTS	4
959 
960 struct perf_cpu_pmu_context {
961 	struct perf_event_pmu_context	epc;
962 	struct perf_event_pmu_context	*task_epc;
963 
964 	struct list_head		sched_cb_entry;
965 	int				sched_cb_usage;
966 
967 	int				active_oncpu;
968 	int				exclusive;
969 
970 	raw_spinlock_t			hrtimer_lock;
971 	struct hrtimer			hrtimer;
972 	ktime_t				hrtimer_interval;
973 	unsigned int			hrtimer_active;
974 };
975 
976 /**
977  * struct perf_event_cpu_context - per cpu event context structure
978  */
979 struct perf_cpu_context {
980 	struct perf_event_context	ctx;
981 	struct perf_event_context	*task_ctx;
982 	int				online;
983 
984 #ifdef CONFIG_CGROUP_PERF
985 	struct perf_cgroup		*cgrp;
986 #endif
987 
988 	/*
989 	 * Per-CPU storage for iterators used in visit_groups_merge. The default
990 	 * storage is of size 2 to hold the CPU and any CPU event iterators.
991 	 */
992 	int				heap_size;
993 	struct perf_event		**heap;
994 	struct perf_event		*heap_default[2];
995 };
996 
997 struct perf_output_handle {
998 	struct perf_event		*event;
999 	struct perf_buffer		*rb;
1000 	unsigned long			wakeup;
1001 	unsigned long			size;
1002 	u64				aux_flags;
1003 	union {
1004 		void			*addr;
1005 		unsigned long		head;
1006 	};
1007 	int				page;
1008 };
1009 
1010 struct bpf_perf_event_data_kern {
1011 	bpf_user_pt_regs_t *regs;
1012 	struct perf_sample_data *data;
1013 	struct perf_event *event;
1014 };
1015 
1016 #ifdef CONFIG_CGROUP_PERF
1017 
1018 /*
1019  * perf_cgroup_info keeps track of time_enabled for a cgroup.
1020  * This is a per-cpu dynamically allocated data structure.
1021  */
1022 struct perf_cgroup_info {
1023 	u64				time;
1024 	u64				timestamp;
1025 	u64				timeoffset;
1026 	int				active;
1027 };
1028 
1029 struct perf_cgroup {
1030 	struct cgroup_subsys_state	css;
1031 	struct perf_cgroup_info	__percpu *info;
1032 };
1033 
1034 /*
1035  * Must ensure cgroup is pinned (css_get) before calling
1036  * this function. In other words, we cannot call this function
1037  * if there is no cgroup event for the current CPU context.
1038  */
1039 static inline struct perf_cgroup *
1040 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
1041 {
1042 	return container_of(task_css_check(task, perf_event_cgrp_id,
1043 					   ctx ? lockdep_is_held(&ctx->lock)
1044 					       : true),
1045 			    struct perf_cgroup, css);
1046 }
1047 #endif /* CONFIG_CGROUP_PERF */
1048 
1049 #ifdef CONFIG_PERF_EVENTS
1050 
1051 extern struct perf_event_context *perf_cpu_task_ctx(void);
1052 
1053 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
1054 				   struct perf_event *event);
1055 extern void perf_aux_output_end(struct perf_output_handle *handle,
1056 				unsigned long size);
1057 extern int perf_aux_output_skip(struct perf_output_handle *handle,
1058 				unsigned long size);
1059 extern void *perf_get_aux(struct perf_output_handle *handle);
1060 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
1061 extern void perf_event_itrace_started(struct perf_event *event);
1062 
1063 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
1064 extern void perf_pmu_unregister(struct pmu *pmu);
1065 
1066 extern void __perf_event_task_sched_in(struct task_struct *prev,
1067 				       struct task_struct *task);
1068 extern void __perf_event_task_sched_out(struct task_struct *prev,
1069 					struct task_struct *next);
1070 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
1071 extern void perf_event_exit_task(struct task_struct *child);
1072 extern void perf_event_free_task(struct task_struct *task);
1073 extern void perf_event_delayed_put(struct task_struct *task);
1074 extern struct file *perf_event_get(unsigned int fd);
1075 extern const struct perf_event *perf_get_event(struct file *file);
1076 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
1077 extern void perf_event_print_debug(void);
1078 extern void perf_pmu_disable(struct pmu *pmu);
1079 extern void perf_pmu_enable(struct pmu *pmu);
1080 extern void perf_sched_cb_dec(struct pmu *pmu);
1081 extern void perf_sched_cb_inc(struct pmu *pmu);
1082 extern int perf_event_task_disable(void);
1083 extern int perf_event_task_enable(void);
1084 
1085 extern void perf_pmu_resched(struct pmu *pmu);
1086 
1087 extern int perf_event_refresh(struct perf_event *event, int refresh);
1088 extern void perf_event_update_userpage(struct perf_event *event);
1089 extern int perf_event_release_kernel(struct perf_event *event);
1090 extern struct perf_event *
1091 perf_event_create_kernel_counter(struct perf_event_attr *attr,
1092 				int cpu,
1093 				struct task_struct *task,
1094 				perf_overflow_handler_t callback,
1095 				void *context);
1096 extern void perf_pmu_migrate_context(struct pmu *pmu,
1097 				int src_cpu, int dst_cpu);
1098 int perf_event_read_local(struct perf_event *event, u64 *value,
1099 			  u64 *enabled, u64 *running);
1100 extern u64 perf_event_read_value(struct perf_event *event,
1101 				 u64 *enabled, u64 *running);
1102 
1103 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1104 
1105 static inline bool branch_sample_no_flags(const struct perf_event *event)
1106 {
1107 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS;
1108 }
1109 
1110 static inline bool branch_sample_no_cycles(const struct perf_event *event)
1111 {
1112 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES;
1113 }
1114 
1115 static inline bool branch_sample_type(const struct perf_event *event)
1116 {
1117 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE;
1118 }
1119 
1120 static inline bool branch_sample_hw_index(const struct perf_event *event)
1121 {
1122 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
1123 }
1124 
1125 static inline bool branch_sample_priv(const struct perf_event *event)
1126 {
1127 	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE;
1128 }
1129 
1130 
1131 struct perf_sample_data {
1132 	/*
1133 	 * Fields set by perf_sample_data_init() unconditionally,
1134 	 * group so as to minimize the cachelines touched.
1135 	 */
1136 	u64				sample_flags;
1137 	u64				period;
1138 	u64				dyn_size;
1139 
1140 	/*
1141 	 * Fields commonly set by __perf_event_header__init_id(),
1142 	 * group so as to minimize the cachelines touched.
1143 	 */
1144 	u64				type;
1145 	struct {
1146 		u32	pid;
1147 		u32	tid;
1148 	}				tid_entry;
1149 	u64				time;
1150 	u64				id;
1151 	struct {
1152 		u32	cpu;
1153 		u32	reserved;
1154 	}				cpu_entry;
1155 
1156 	/*
1157 	 * The other fields, optionally {set,used} by
1158 	 * perf_{prepare,output}_sample().
1159 	 */
1160 	u64				ip;
1161 	struct perf_callchain_entry	*callchain;
1162 	struct perf_raw_record		*raw;
1163 	struct perf_branch_stack	*br_stack;
1164 	union perf_sample_weight	weight;
1165 	union  perf_mem_data_src	data_src;
1166 	u64				txn;
1167 
1168 	struct perf_regs		regs_user;
1169 	struct perf_regs		regs_intr;
1170 	u64				stack_user_size;
1171 
1172 	u64				stream_id;
1173 	u64				cgroup;
1174 	u64				addr;
1175 	u64				phys_addr;
1176 	u64				data_page_size;
1177 	u64				code_page_size;
1178 	u64				aux_size;
1179 } ____cacheline_aligned;
1180 
1181 /* default value for data source */
1182 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
1183 		    PERF_MEM_S(LVL, NA)   |\
1184 		    PERF_MEM_S(SNOOP, NA) |\
1185 		    PERF_MEM_S(LOCK, NA)  |\
1186 		    PERF_MEM_S(TLB, NA))
1187 
1188 static inline void perf_sample_data_init(struct perf_sample_data *data,
1189 					 u64 addr, u64 period)
1190 {
1191 	/* remaining struct members initialized in perf_prepare_sample() */
1192 	data->sample_flags = PERF_SAMPLE_PERIOD;
1193 	data->period = period;
1194 	data->dyn_size = 0;
1195 
1196 	if (addr) {
1197 		data->addr = addr;
1198 		data->sample_flags |= PERF_SAMPLE_ADDR;
1199 	}
1200 }
1201 
1202 static inline void perf_sample_save_callchain(struct perf_sample_data *data,
1203 					      struct perf_event *event,
1204 					      struct pt_regs *regs)
1205 {
1206 	int size = 1;
1207 
1208 	data->callchain = perf_callchain(event, regs);
1209 	size += data->callchain->nr;
1210 
1211 	data->dyn_size += size * sizeof(u64);
1212 	data->sample_flags |= PERF_SAMPLE_CALLCHAIN;
1213 }
1214 
1215 static inline void perf_sample_save_raw_data(struct perf_sample_data *data,
1216 					     struct perf_raw_record *raw)
1217 {
1218 	struct perf_raw_frag *frag = &raw->frag;
1219 	u32 sum = 0;
1220 	int size;
1221 
1222 	do {
1223 		sum += frag->size;
1224 		if (perf_raw_frag_last(frag))
1225 			break;
1226 		frag = frag->next;
1227 	} while (1);
1228 
1229 	size = round_up(sum + sizeof(u32), sizeof(u64));
1230 	raw->size = size - sizeof(u32);
1231 	frag->pad = raw->size - sum;
1232 
1233 	data->raw = raw;
1234 	data->dyn_size += size;
1235 	data->sample_flags |= PERF_SAMPLE_RAW;
1236 }
1237 
1238 static inline void perf_sample_save_brstack(struct perf_sample_data *data,
1239 					    struct perf_event *event,
1240 					    struct perf_branch_stack *brs)
1241 {
1242 	int size = sizeof(u64); /* nr */
1243 
1244 	if (branch_sample_hw_index(event))
1245 		size += sizeof(u64);
1246 	size += brs->nr * sizeof(struct perf_branch_entry);
1247 
1248 	data->br_stack = brs;
1249 	data->dyn_size += size;
1250 	data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1251 }
1252 
1253 static inline u32 perf_sample_data_size(struct perf_sample_data *data,
1254 					struct perf_event *event)
1255 {
1256 	u32 size = sizeof(struct perf_event_header);
1257 
1258 	size += event->header_size + event->id_header_size;
1259 	size += data->dyn_size;
1260 
1261 	return size;
1262 }
1263 
1264 /*
1265  * Clear all bitfields in the perf_branch_entry.
1266  * The to and from fields are not cleared because they are
1267  * systematically modified by caller.
1268  */
1269 static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br)
1270 {
1271 	br->mispred = 0;
1272 	br->predicted = 0;
1273 	br->in_tx = 0;
1274 	br->abort = 0;
1275 	br->cycles = 0;
1276 	br->type = 0;
1277 	br->spec = PERF_BR_SPEC_NA;
1278 	br->reserved = 0;
1279 }
1280 
1281 extern void perf_output_sample(struct perf_output_handle *handle,
1282 			       struct perf_event_header *header,
1283 			       struct perf_sample_data *data,
1284 			       struct perf_event *event);
1285 extern void perf_prepare_sample(struct perf_sample_data *data,
1286 				struct perf_event *event,
1287 				struct pt_regs *regs);
1288 extern void perf_prepare_header(struct perf_event_header *header,
1289 				struct perf_sample_data *data,
1290 				struct perf_event *event,
1291 				struct pt_regs *regs);
1292 
1293 extern int perf_event_overflow(struct perf_event *event,
1294 				 struct perf_sample_data *data,
1295 				 struct pt_regs *regs);
1296 
1297 extern void perf_event_output_forward(struct perf_event *event,
1298 				     struct perf_sample_data *data,
1299 				     struct pt_regs *regs);
1300 extern void perf_event_output_backward(struct perf_event *event,
1301 				       struct perf_sample_data *data,
1302 				       struct pt_regs *regs);
1303 extern int perf_event_output(struct perf_event *event,
1304 			     struct perf_sample_data *data,
1305 			     struct pt_regs *regs);
1306 
1307 static inline bool
1308 is_default_overflow_handler(struct perf_event *event)
1309 {
1310 	if (likely(event->overflow_handler == perf_event_output_forward))
1311 		return true;
1312 	if (unlikely(event->overflow_handler == perf_event_output_backward))
1313 		return true;
1314 	return false;
1315 }
1316 
1317 extern void
1318 perf_event_header__init_id(struct perf_event_header *header,
1319 			   struct perf_sample_data *data,
1320 			   struct perf_event *event);
1321 extern void
1322 perf_event__output_id_sample(struct perf_event *event,
1323 			     struct perf_output_handle *handle,
1324 			     struct perf_sample_data *sample);
1325 
1326 extern void
1327 perf_log_lost_samples(struct perf_event *event, u64 lost);
1328 
1329 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1330 {
1331 	struct perf_event_attr *attr = &event->attr;
1332 
1333 	return attr->exclude_idle || attr->exclude_user ||
1334 	       attr->exclude_kernel || attr->exclude_hv ||
1335 	       attr->exclude_guest || attr->exclude_host;
1336 }
1337 
1338 static inline bool is_sampling_event(struct perf_event *event)
1339 {
1340 	return event->attr.sample_period != 0;
1341 }
1342 
1343 /*
1344  * Return 1 for a software event, 0 for a hardware event
1345  */
1346 static inline int is_software_event(struct perf_event *event)
1347 {
1348 	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1349 }
1350 
1351 /*
1352  * Return 1 for event in sw context, 0 for event in hw context
1353  */
1354 static inline int in_software_context(struct perf_event *event)
1355 {
1356 	return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context;
1357 }
1358 
1359 static inline int is_exclusive_pmu(struct pmu *pmu)
1360 {
1361 	return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1362 }
1363 
1364 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1365 
1366 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1367 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1368 
1369 #ifndef perf_arch_fetch_caller_regs
1370 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1371 #endif
1372 
1373 /*
1374  * When generating a perf sample in-line, instead of from an interrupt /
1375  * exception, we lack a pt_regs. This is typically used from software events
1376  * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1377  *
1378  * We typically don't need a full set, but (for x86) do require:
1379  * - ip for PERF_SAMPLE_IP
1380  * - cs for user_mode() tests
1381  * - sp for PERF_SAMPLE_CALLCHAIN
1382  * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1383  *
1384  * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1385  * things like PERF_SAMPLE_REGS_INTR.
1386  */
1387 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1388 {
1389 	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1390 }
1391 
1392 static __always_inline void
1393 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1394 {
1395 	if (static_key_false(&perf_swevent_enabled[event_id]))
1396 		__perf_sw_event(event_id, nr, regs, addr);
1397 }
1398 
1399 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1400 
1401 /*
1402  * 'Special' version for the scheduler, it hard assumes no recursion,
1403  * which is guaranteed by us not actually scheduling inside other swevents
1404  * because those disable preemption.
1405  */
1406 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1407 {
1408 	struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1409 
1410 	perf_fetch_caller_regs(regs);
1411 	___perf_sw_event(event_id, nr, regs, addr);
1412 }
1413 
1414 extern struct static_key_false perf_sched_events;
1415 
1416 static __always_inline bool __perf_sw_enabled(int swevt)
1417 {
1418 	return static_key_false(&perf_swevent_enabled[swevt]);
1419 }
1420 
1421 static inline void perf_event_task_migrate(struct task_struct *task)
1422 {
1423 	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1424 		task->sched_migrated = 1;
1425 }
1426 
1427 static inline void perf_event_task_sched_in(struct task_struct *prev,
1428 					    struct task_struct *task)
1429 {
1430 	if (static_branch_unlikely(&perf_sched_events))
1431 		__perf_event_task_sched_in(prev, task);
1432 
1433 	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1434 	    task->sched_migrated) {
1435 		__perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1436 		task->sched_migrated = 0;
1437 	}
1438 }
1439 
1440 static inline void perf_event_task_sched_out(struct task_struct *prev,
1441 					     struct task_struct *next)
1442 {
1443 	if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1444 		__perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1445 
1446 #ifdef CONFIG_CGROUP_PERF
1447 	if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1448 	    perf_cgroup_from_task(prev, NULL) !=
1449 	    perf_cgroup_from_task(next, NULL))
1450 		__perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1451 #endif
1452 
1453 	if (static_branch_unlikely(&perf_sched_events))
1454 		__perf_event_task_sched_out(prev, next);
1455 }
1456 
1457 extern void perf_event_mmap(struct vm_area_struct *vma);
1458 
1459 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1460 			       bool unregister, const char *sym);
1461 extern void perf_event_bpf_event(struct bpf_prog *prog,
1462 				 enum perf_bpf_event_type type,
1463 				 u16 flags);
1464 
1465 #ifdef CONFIG_GUEST_PERF_EVENTS
1466 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
1467 
1468 DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state);
1469 DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
1470 DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
1471 
1472 static inline unsigned int perf_guest_state(void)
1473 {
1474 	return static_call(__perf_guest_state)();
1475 }
1476 static inline unsigned long perf_guest_get_ip(void)
1477 {
1478 	return static_call(__perf_guest_get_ip)();
1479 }
1480 static inline unsigned int perf_guest_handle_intel_pt_intr(void)
1481 {
1482 	return static_call(__perf_guest_handle_intel_pt_intr)();
1483 }
1484 extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1485 extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1486 #else
1487 static inline unsigned int perf_guest_state(void)		 { return 0; }
1488 static inline unsigned long perf_guest_get_ip(void)		 { return 0; }
1489 static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; }
1490 #endif /* CONFIG_GUEST_PERF_EVENTS */
1491 
1492 extern void perf_event_exec(void);
1493 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1494 extern void perf_event_namespaces(struct task_struct *tsk);
1495 extern void perf_event_fork(struct task_struct *tsk);
1496 extern void perf_event_text_poke(const void *addr,
1497 				 const void *old_bytes, size_t old_len,
1498 				 const void *new_bytes, size_t new_len);
1499 
1500 /* Callchains */
1501 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1502 
1503 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1504 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1505 extern struct perf_callchain_entry *
1506 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1507 		   u32 max_stack, bool crosstask, bool add_mark);
1508 extern int get_callchain_buffers(int max_stack);
1509 extern void put_callchain_buffers(void);
1510 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1511 extern void put_callchain_entry(int rctx);
1512 
1513 extern int sysctl_perf_event_max_stack;
1514 extern int sysctl_perf_event_max_contexts_per_stack;
1515 
1516 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1517 {
1518 	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1519 		struct perf_callchain_entry *entry = ctx->entry;
1520 		entry->ip[entry->nr++] = ip;
1521 		++ctx->contexts;
1522 		return 0;
1523 	} else {
1524 		ctx->contexts_maxed = true;
1525 		return -1; /* no more room, stop walking the stack */
1526 	}
1527 }
1528 
1529 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1530 {
1531 	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1532 		struct perf_callchain_entry *entry = ctx->entry;
1533 		entry->ip[entry->nr++] = ip;
1534 		++ctx->nr;
1535 		return 0;
1536 	} else {
1537 		return -1; /* no more room, stop walking the stack */
1538 	}
1539 }
1540 
1541 extern int sysctl_perf_event_paranoid;
1542 extern int sysctl_perf_event_mlock;
1543 extern int sysctl_perf_event_sample_rate;
1544 extern int sysctl_perf_cpu_time_max_percent;
1545 
1546 extern void perf_sample_event_took(u64 sample_len_ns);
1547 
1548 int perf_proc_update_handler(struct ctl_table *table, int write,
1549 		void *buffer, size_t *lenp, loff_t *ppos);
1550 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1551 		void *buffer, size_t *lenp, loff_t *ppos);
1552 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1553 		void *buffer, size_t *lenp, loff_t *ppos);
1554 
1555 /* Access to perf_event_open(2) syscall. */
1556 #define PERF_SECURITY_OPEN		0
1557 
1558 /* Finer grained perf_event_open(2) access control. */
1559 #define PERF_SECURITY_CPU		1
1560 #define PERF_SECURITY_KERNEL		2
1561 #define PERF_SECURITY_TRACEPOINT	3
1562 
1563 static inline int perf_is_paranoid(void)
1564 {
1565 	return sysctl_perf_event_paranoid > -1;
1566 }
1567 
1568 static inline int perf_allow_kernel(struct perf_event_attr *attr)
1569 {
1570 	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1571 		return -EACCES;
1572 
1573 	return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1574 }
1575 
1576 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1577 {
1578 	if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1579 		return -EACCES;
1580 
1581 	return security_perf_event_open(attr, PERF_SECURITY_CPU);
1582 }
1583 
1584 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1585 {
1586 	if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1587 		return -EPERM;
1588 
1589 	return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1590 }
1591 
1592 extern void perf_event_init(void);
1593 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1594 			  int entry_size, struct pt_regs *regs,
1595 			  struct hlist_head *head, int rctx,
1596 			  struct task_struct *task);
1597 extern void perf_bp_event(struct perf_event *event, void *data);
1598 
1599 #ifndef perf_misc_flags
1600 # define perf_misc_flags(regs) \
1601 		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1602 # define perf_instruction_pointer(regs)	instruction_pointer(regs)
1603 #endif
1604 #ifndef perf_arch_bpf_user_pt_regs
1605 # define perf_arch_bpf_user_pt_regs(regs) regs
1606 #endif
1607 
1608 static inline bool has_branch_stack(struct perf_event *event)
1609 {
1610 	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1611 }
1612 
1613 static inline bool needs_branch_stack(struct perf_event *event)
1614 {
1615 	return event->attr.branch_sample_type != 0;
1616 }
1617 
1618 static inline bool has_aux(struct perf_event *event)
1619 {
1620 	return event->pmu->setup_aux;
1621 }
1622 
1623 static inline bool is_write_backward(struct perf_event *event)
1624 {
1625 	return !!event->attr.write_backward;
1626 }
1627 
1628 static inline bool has_addr_filter(struct perf_event *event)
1629 {
1630 	return event->pmu->nr_addr_filters;
1631 }
1632 
1633 /*
1634  * An inherited event uses parent's filters
1635  */
1636 static inline struct perf_addr_filters_head *
1637 perf_event_addr_filters(struct perf_event *event)
1638 {
1639 	struct perf_addr_filters_head *ifh = &event->addr_filters;
1640 
1641 	if (event->parent)
1642 		ifh = &event->parent->addr_filters;
1643 
1644 	return ifh;
1645 }
1646 
1647 extern void perf_event_addr_filters_sync(struct perf_event *event);
1648 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);
1649 
1650 extern int perf_output_begin(struct perf_output_handle *handle,
1651 			     struct perf_sample_data *data,
1652 			     struct perf_event *event, unsigned int size);
1653 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1654 				     struct perf_sample_data *data,
1655 				     struct perf_event *event,
1656 				     unsigned int size);
1657 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1658 				      struct perf_sample_data *data,
1659 				      struct perf_event *event,
1660 				      unsigned int size);
1661 
1662 extern void perf_output_end(struct perf_output_handle *handle);
1663 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1664 			     const void *buf, unsigned int len);
1665 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1666 				     unsigned int len);
1667 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1668 				 struct perf_output_handle *handle,
1669 				 unsigned long from, unsigned long to);
1670 extern int perf_swevent_get_recursion_context(void);
1671 extern void perf_swevent_put_recursion_context(int rctx);
1672 extern u64 perf_swevent_set_period(struct perf_event *event);
1673 extern void perf_event_enable(struct perf_event *event);
1674 extern void perf_event_disable(struct perf_event *event);
1675 extern void perf_event_disable_local(struct perf_event *event);
1676 extern void perf_event_disable_inatomic(struct perf_event *event);
1677 extern void perf_event_task_tick(void);
1678 extern int perf_event_account_interrupt(struct perf_event *event);
1679 extern int perf_event_period(struct perf_event *event, u64 value);
1680 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1681 #else /* !CONFIG_PERF_EVENTS: */
1682 static inline void *
1683 perf_aux_output_begin(struct perf_output_handle *handle,
1684 		      struct perf_event *event)				{ return NULL; }
1685 static inline void
1686 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1687 									{ }
1688 static inline int
1689 perf_aux_output_skip(struct perf_output_handle *handle,
1690 		     unsigned long size)				{ return -EINVAL; }
1691 static inline void *
1692 perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1693 static inline void
1694 perf_event_task_migrate(struct task_struct *task)			{ }
1695 static inline void
1696 perf_event_task_sched_in(struct task_struct *prev,
1697 			 struct task_struct *task)			{ }
1698 static inline void
1699 perf_event_task_sched_out(struct task_struct *prev,
1700 			  struct task_struct *next)			{ }
1701 static inline int perf_event_init_task(struct task_struct *child,
1702 				       u64 clone_flags)			{ return 0; }
1703 static inline void perf_event_exit_task(struct task_struct *child)	{ }
1704 static inline void perf_event_free_task(struct task_struct *task)	{ }
1705 static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1706 static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1707 static inline const struct perf_event *perf_get_event(struct file *file)
1708 {
1709 	return ERR_PTR(-EINVAL);
1710 }
1711 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1712 {
1713 	return ERR_PTR(-EINVAL);
1714 }
1715 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1716 					u64 *enabled, u64 *running)
1717 {
1718 	return -EINVAL;
1719 }
1720 static inline void perf_event_print_debug(void)				{ }
1721 static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1722 static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1723 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1724 {
1725 	return -EINVAL;
1726 }
1727 
1728 static inline void
1729 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1730 static inline void
1731 perf_bp_event(struct perf_event *event, void *data)			{ }
1732 
1733 static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1734 
1735 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1736 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1737 				      bool unregister, const char *sym)	{ }
1738 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1739 					enum perf_bpf_event_type type,
1740 					u16 flags)			{ }
1741 static inline void perf_event_exec(void)				{ }
1742 static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1743 static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
1744 static inline void perf_event_fork(struct task_struct *tsk)		{ }
1745 static inline void perf_event_text_poke(const void *addr,
1746 					const void *old_bytes,
1747 					size_t old_len,
1748 					const void *new_bytes,
1749 					size_t new_len)			{ }
1750 static inline void perf_event_init(void)				{ }
1751 static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1752 static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1753 static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1754 static inline void perf_event_enable(struct perf_event *event)		{ }
1755 static inline void perf_event_disable(struct perf_event *event)		{ }
1756 static inline int __perf_event_disable(void *info)			{ return -1; }
1757 static inline void perf_event_task_tick(void)				{ }
1758 static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1759 static inline int perf_event_period(struct perf_event *event, u64 value)
1760 {
1761 	return -EINVAL;
1762 }
1763 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1764 {
1765 	return 0;
1766 }
1767 #endif
1768 
1769 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1770 extern void perf_restore_debug_store(void);
1771 #else
1772 static inline void perf_restore_debug_store(void)			{ }
1773 #endif
1774 
1775 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1776 
1777 struct perf_pmu_events_attr {
1778 	struct device_attribute attr;
1779 	u64 id;
1780 	const char *event_str;
1781 };
1782 
1783 struct perf_pmu_events_ht_attr {
1784 	struct device_attribute			attr;
1785 	u64					id;
1786 	const char				*event_str_ht;
1787 	const char				*event_str_noht;
1788 };
1789 
1790 struct perf_pmu_events_hybrid_attr {
1791 	struct device_attribute			attr;
1792 	u64					id;
1793 	const char				*event_str;
1794 	u64					pmu_type;
1795 };
1796 
1797 struct perf_pmu_format_hybrid_attr {
1798 	struct device_attribute			attr;
1799 	u64					pmu_type;
1800 };
1801 
1802 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1803 			      char *page);
1804 
1805 #define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1806 static struct perf_pmu_events_attr _var = {				\
1807 	.attr = __ATTR(_name, 0444, _show, NULL),			\
1808 	.id   =  _id,							\
1809 };
1810 
1811 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1812 static struct perf_pmu_events_attr _var = {				    \
1813 	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1814 	.id		= 0,						    \
1815 	.event_str	= _str,						    \
1816 };
1817 
1818 #define PMU_EVENT_ATTR_ID(_name, _show, _id)				\
1819 	(&((struct perf_pmu_events_attr[]) {				\
1820 		{ .attr = __ATTR(_name, 0444, _show, NULL),		\
1821 		  .id = _id, }						\
1822 	})[0].attr.attr)
1823 
1824 #define PMU_FORMAT_ATTR_SHOW(_name, _format)				\
1825 static ssize_t								\
1826 _name##_show(struct device *dev,					\
1827 			       struct device_attribute *attr,		\
1828 			       char *page)				\
1829 {									\
1830 	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1831 	return sprintf(page, _format "\n");				\
1832 }									\
1833 
1834 #define PMU_FORMAT_ATTR(_name, _format)					\
1835 	PMU_FORMAT_ATTR_SHOW(_name, _format)				\
1836 									\
1837 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1838 
1839 /* Performance counter hotplug functions */
1840 #ifdef CONFIG_PERF_EVENTS
1841 int perf_event_init_cpu(unsigned int cpu);
1842 int perf_event_exit_cpu(unsigned int cpu);
1843 #else
1844 #define perf_event_init_cpu	NULL
1845 #define perf_event_exit_cpu	NULL
1846 #endif
1847 
1848 extern void __weak arch_perf_update_userpage(struct perf_event *event,
1849 					     struct perf_event_mmap_page *userpg,
1850 					     u64 now);
1851 
1852 #ifdef CONFIG_MMU
1853 extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr);
1854 #endif
1855 
1856 /*
1857  * Snapshot branch stack on software events.
1858  *
1859  * Branch stack can be very useful in understanding software events. For
1860  * example, when a long function, e.g. sys_perf_event_open, returns an
1861  * errno, it is not obvious why the function failed. Branch stack could
1862  * provide very helpful information in this type of scenarios.
1863  *
1864  * On software event, it is necessary to stop the hardware branch recorder
1865  * fast. Otherwise, the hardware register/buffer will be flushed with
1866  * entries of the triggering event. Therefore, static call is used to
1867  * stop the hardware recorder.
1868  */
1869 
1870 /*
1871  * cnt is the number of entries allocated for entries.
1872  * Return number of entries copied to .
1873  */
1874 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries,
1875 					   unsigned int cnt);
1876 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
1877 
1878 #ifndef PERF_NEEDS_LOPWR_CB
1879 static inline void perf_lopwr_cb(bool mode)
1880 {
1881 }
1882 #endif
1883 
1884 #endif /* _LINUX_PERF_EVENT_H */
1885