xref: /linux/include/linux/pgtable.h (revision 021bc4b9)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4 
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7 
8 #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
9 #define PUD_ORDER	(PUD_SHIFT - PAGE_SHIFT)
10 
11 #ifndef __ASSEMBLY__
12 #ifdef CONFIG_MMU
13 
14 #include <linux/mm_types.h>
15 #include <linux/bug.h>
16 #include <linux/errno.h>
17 #include <asm-generic/pgtable_uffd.h>
18 #include <linux/page_table_check.h>
19 
20 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
21 	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
22 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
23 #endif
24 
25 /*
26  * On almost all architectures and configurations, 0 can be used as the
27  * upper ceiling to free_pgtables(): on many architectures it has the same
28  * effect as using TASK_SIZE.  However, there is one configuration which
29  * must impose a more careful limit, to avoid freeing kernel pgtables.
30  */
31 #ifndef USER_PGTABLES_CEILING
32 #define USER_PGTABLES_CEILING	0UL
33 #endif
34 
35 /*
36  * This defines the first usable user address. Platforms
37  * can override its value with custom FIRST_USER_ADDRESS
38  * defined in their respective <asm/pgtable.h>.
39  */
40 #ifndef FIRST_USER_ADDRESS
41 #define FIRST_USER_ADDRESS	0UL
42 #endif
43 
44 /*
45  * This defines the generic helper for accessing PMD page
46  * table page. Although platforms can still override this
47  * via their respective <asm/pgtable.h>.
48  */
49 #ifndef pmd_pgtable
50 #define pmd_pgtable(pmd) pmd_page(pmd)
51 #endif
52 
53 /*
54  * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
55  *
56  * The pXx_index() functions return the index of the entry in the page
57  * table page which would control the given virtual address
58  *
59  * As these functions may be used by the same code for different levels of
60  * the page table folding, they are always available, regardless of
61  * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
62  * because in such cases PTRS_PER_PxD equals 1.
63  */
64 
65 static inline unsigned long pte_index(unsigned long address)
66 {
67 	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
68 }
69 
70 #ifndef pmd_index
71 static inline unsigned long pmd_index(unsigned long address)
72 {
73 	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
74 }
75 #define pmd_index pmd_index
76 #endif
77 
78 #ifndef pud_index
79 static inline unsigned long pud_index(unsigned long address)
80 {
81 	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
82 }
83 #define pud_index pud_index
84 #endif
85 
86 #ifndef pgd_index
87 /* Must be a compile-time constant, so implement it as a macro */
88 #define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
89 #endif
90 
91 #ifndef pte_offset_kernel
92 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
93 {
94 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
95 }
96 #define pte_offset_kernel pte_offset_kernel
97 #endif
98 
99 #ifdef CONFIG_HIGHPTE
100 #define __pte_map(pmd, address) \
101 	((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
102 #define pte_unmap(pte)	do {	\
103 	kunmap_local((pte));	\
104 	rcu_read_unlock();	\
105 } while (0)
106 #else
107 static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
108 {
109 	return pte_offset_kernel(pmd, address);
110 }
111 static inline void pte_unmap(pte_t *pte)
112 {
113 	rcu_read_unlock();
114 }
115 #endif
116 
117 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
118 
119 /* Find an entry in the second-level page table.. */
120 #ifndef pmd_offset
121 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
122 {
123 	return pud_pgtable(*pud) + pmd_index(address);
124 }
125 #define pmd_offset pmd_offset
126 #endif
127 
128 #ifndef pud_offset
129 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
130 {
131 	return p4d_pgtable(*p4d) + pud_index(address);
132 }
133 #define pud_offset pud_offset
134 #endif
135 
136 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
137 {
138 	return (pgd + pgd_index(address));
139 };
140 
141 /*
142  * a shortcut to get a pgd_t in a given mm
143  */
144 #ifndef pgd_offset
145 #define pgd_offset(mm, address)		pgd_offset_pgd((mm)->pgd, (address))
146 #endif
147 
148 /*
149  * a shortcut which implies the use of the kernel's pgd, instead
150  * of a process's
151  */
152 #ifndef pgd_offset_k
153 #define pgd_offset_k(address)		pgd_offset(&init_mm, (address))
154 #endif
155 
156 /*
157  * In many cases it is known that a virtual address is mapped at PMD or PTE
158  * level, so instead of traversing all the page table levels, we can get a
159  * pointer to the PMD entry in user or kernel page table or translate a virtual
160  * address to the pointer in the PTE in the kernel page tables with simple
161  * helpers.
162  */
163 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
164 {
165 	return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
166 }
167 
168 static inline pmd_t *pmd_off_k(unsigned long va)
169 {
170 	return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
171 }
172 
173 static inline pte_t *virt_to_kpte(unsigned long vaddr)
174 {
175 	pmd_t *pmd = pmd_off_k(vaddr);
176 
177 	return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
178 }
179 
180 #ifndef pmd_young
181 static inline int pmd_young(pmd_t pmd)
182 {
183 	return 0;
184 }
185 #endif
186 
187 #ifndef pmd_dirty
188 static inline int pmd_dirty(pmd_t pmd)
189 {
190 	return 0;
191 }
192 #endif
193 
194 /*
195  * A facility to provide lazy MMU batching.  This allows PTE updates and
196  * page invalidations to be delayed until a call to leave lazy MMU mode
197  * is issued.  Some architectures may benefit from doing this, and it is
198  * beneficial for both shadow and direct mode hypervisors, which may batch
199  * the PTE updates which happen during this window.  Note that using this
200  * interface requires that read hazards be removed from the code.  A read
201  * hazard could result in the direct mode hypervisor case, since the actual
202  * write to the page tables may not yet have taken place, so reads though
203  * a raw PTE pointer after it has been modified are not guaranteed to be
204  * up to date.  This mode can only be entered and left under the protection of
205  * the page table locks for all page tables which may be modified.  In the UP
206  * case, this is required so that preemption is disabled, and in the SMP case,
207  * it must synchronize the delayed page table writes properly on other CPUs.
208  */
209 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
210 #define arch_enter_lazy_mmu_mode()	do {} while (0)
211 #define arch_leave_lazy_mmu_mode()	do {} while (0)
212 #define arch_flush_lazy_mmu_mode()	do {} while (0)
213 #endif
214 
215 #ifndef set_ptes
216 
217 #ifndef pte_next_pfn
218 static inline pte_t pte_next_pfn(pte_t pte)
219 {
220 	return __pte(pte_val(pte) + (1UL << PFN_PTE_SHIFT));
221 }
222 #endif
223 
224 /**
225  * set_ptes - Map consecutive pages to a contiguous range of addresses.
226  * @mm: Address space to map the pages into.
227  * @addr: Address to map the first page at.
228  * @ptep: Page table pointer for the first entry.
229  * @pte: Page table entry for the first page.
230  * @nr: Number of pages to map.
231  *
232  * May be overridden by the architecture, or the architecture can define
233  * set_pte() and PFN_PTE_SHIFT.
234  *
235  * Context: The caller holds the page table lock.  The pages all belong
236  * to the same folio.  The PTEs are all in the same PMD.
237  */
238 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
239 		pte_t *ptep, pte_t pte, unsigned int nr)
240 {
241 	page_table_check_ptes_set(mm, ptep, pte, nr);
242 
243 	arch_enter_lazy_mmu_mode();
244 	for (;;) {
245 		set_pte(ptep, pte);
246 		if (--nr == 0)
247 			break;
248 		ptep++;
249 		pte = pte_next_pfn(pte);
250 	}
251 	arch_leave_lazy_mmu_mode();
252 }
253 #endif
254 #define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
255 
256 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
257 extern int ptep_set_access_flags(struct vm_area_struct *vma,
258 				 unsigned long address, pte_t *ptep,
259 				 pte_t entry, int dirty);
260 #endif
261 
262 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
263 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
264 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
265 				 unsigned long address, pmd_t *pmdp,
266 				 pmd_t entry, int dirty);
267 extern int pudp_set_access_flags(struct vm_area_struct *vma,
268 				 unsigned long address, pud_t *pudp,
269 				 pud_t entry, int dirty);
270 #else
271 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
272 					unsigned long address, pmd_t *pmdp,
273 					pmd_t entry, int dirty)
274 {
275 	BUILD_BUG();
276 	return 0;
277 }
278 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
279 					unsigned long address, pud_t *pudp,
280 					pud_t entry, int dirty)
281 {
282 	BUILD_BUG();
283 	return 0;
284 }
285 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
286 #endif
287 
288 #ifndef ptep_get
289 static inline pte_t ptep_get(pte_t *ptep)
290 {
291 	return READ_ONCE(*ptep);
292 }
293 #endif
294 
295 #ifndef pmdp_get
296 static inline pmd_t pmdp_get(pmd_t *pmdp)
297 {
298 	return READ_ONCE(*pmdp);
299 }
300 #endif
301 
302 #ifndef pudp_get
303 static inline pud_t pudp_get(pud_t *pudp)
304 {
305 	return READ_ONCE(*pudp);
306 }
307 #endif
308 
309 #ifndef p4dp_get
310 static inline p4d_t p4dp_get(p4d_t *p4dp)
311 {
312 	return READ_ONCE(*p4dp);
313 }
314 #endif
315 
316 #ifndef pgdp_get
317 static inline pgd_t pgdp_get(pgd_t *pgdp)
318 {
319 	return READ_ONCE(*pgdp);
320 }
321 #endif
322 
323 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
324 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
325 					    unsigned long address,
326 					    pte_t *ptep)
327 {
328 	pte_t pte = ptep_get(ptep);
329 	int r = 1;
330 	if (!pte_young(pte))
331 		r = 0;
332 	else
333 		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
334 	return r;
335 }
336 #endif
337 
338 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
339 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
340 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
341 					    unsigned long address,
342 					    pmd_t *pmdp)
343 {
344 	pmd_t pmd = *pmdp;
345 	int r = 1;
346 	if (!pmd_young(pmd))
347 		r = 0;
348 	else
349 		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
350 	return r;
351 }
352 #else
353 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
354 					    unsigned long address,
355 					    pmd_t *pmdp)
356 {
357 	BUILD_BUG();
358 	return 0;
359 }
360 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
361 #endif
362 
363 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
364 int ptep_clear_flush_young(struct vm_area_struct *vma,
365 			   unsigned long address, pte_t *ptep);
366 #endif
367 
368 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
369 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
370 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
371 				  unsigned long address, pmd_t *pmdp);
372 #else
373 /*
374  * Despite relevant to THP only, this API is called from generic rmap code
375  * under PageTransHuge(), hence needs a dummy implementation for !THP
376  */
377 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
378 					 unsigned long address, pmd_t *pmdp)
379 {
380 	BUILD_BUG();
381 	return 0;
382 }
383 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
384 #endif
385 
386 #ifndef arch_has_hw_nonleaf_pmd_young
387 /*
388  * Return whether the accessed bit in non-leaf PMD entries is supported on the
389  * local CPU.
390  */
391 static inline bool arch_has_hw_nonleaf_pmd_young(void)
392 {
393 	return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
394 }
395 #endif
396 
397 #ifndef arch_has_hw_pte_young
398 /*
399  * Return whether the accessed bit is supported on the local CPU.
400  *
401  * This stub assumes accessing through an old PTE triggers a page fault.
402  * Architectures that automatically set the access bit should overwrite it.
403  */
404 static inline bool arch_has_hw_pte_young(void)
405 {
406 	return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG);
407 }
408 #endif
409 
410 #ifndef arch_check_zapped_pte
411 static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
412 					 pte_t pte)
413 {
414 }
415 #endif
416 
417 #ifndef arch_check_zapped_pmd
418 static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
419 					 pmd_t pmd)
420 {
421 }
422 #endif
423 
424 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
425 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
426 				       unsigned long address,
427 				       pte_t *ptep)
428 {
429 	pte_t pte = ptep_get(ptep);
430 	pte_clear(mm, address, ptep);
431 	page_table_check_pte_clear(mm, pte);
432 	return pte;
433 }
434 #endif
435 
436 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
437 			      pte_t *ptep)
438 {
439 	ptep_get_and_clear(mm, addr, ptep);
440 }
441 
442 #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
443 /*
444  * For walking the pagetables without holding any locks.  Some architectures
445  * (eg x86-32 PAE) cannot load the entries atomically without using expensive
446  * instructions.  We are guaranteed that a PTE will only either go from not
447  * present to present, or present to not present -- it will not switch to a
448  * completely different present page without a TLB flush inbetween; which we
449  * are blocking by holding interrupts off.
450  *
451  * Setting ptes from not present to present goes:
452  *
453  *   ptep->pte_high = h;
454  *   smp_wmb();
455  *   ptep->pte_low = l;
456  *
457  * And present to not present goes:
458  *
459  *   ptep->pte_low = 0;
460  *   smp_wmb();
461  *   ptep->pte_high = 0;
462  *
463  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
464  * We load pte_high *after* loading pte_low, which ensures we don't see an older
465  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
466  * picked up a changed pte high. We might have gotten rubbish values from
467  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
468  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
469  * operates on present ptes we're safe.
470  */
471 static inline pte_t ptep_get_lockless(pte_t *ptep)
472 {
473 	pte_t pte;
474 
475 	do {
476 		pte.pte_low = ptep->pte_low;
477 		smp_rmb();
478 		pte.pte_high = ptep->pte_high;
479 		smp_rmb();
480 	} while (unlikely(pte.pte_low != ptep->pte_low));
481 
482 	return pte;
483 }
484 #define ptep_get_lockless ptep_get_lockless
485 
486 #if CONFIG_PGTABLE_LEVELS > 2
487 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
488 {
489 	pmd_t pmd;
490 
491 	do {
492 		pmd.pmd_low = pmdp->pmd_low;
493 		smp_rmb();
494 		pmd.pmd_high = pmdp->pmd_high;
495 		smp_rmb();
496 	} while (unlikely(pmd.pmd_low != pmdp->pmd_low));
497 
498 	return pmd;
499 }
500 #define pmdp_get_lockless pmdp_get_lockless
501 #define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
502 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
503 #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
504 
505 /*
506  * We require that the PTE can be read atomically.
507  */
508 #ifndef ptep_get_lockless
509 static inline pte_t ptep_get_lockless(pte_t *ptep)
510 {
511 	return ptep_get(ptep);
512 }
513 #endif
514 
515 #ifndef pmdp_get_lockless
516 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
517 {
518 	return pmdp_get(pmdp);
519 }
520 static inline void pmdp_get_lockless_sync(void)
521 {
522 }
523 #endif
524 
525 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
526 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
527 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
528 					    unsigned long address,
529 					    pmd_t *pmdp)
530 {
531 	pmd_t pmd = *pmdp;
532 
533 	pmd_clear(pmdp);
534 	page_table_check_pmd_clear(mm, pmd);
535 
536 	return pmd;
537 }
538 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
539 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
540 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
541 					    unsigned long address,
542 					    pud_t *pudp)
543 {
544 	pud_t pud = *pudp;
545 
546 	pud_clear(pudp);
547 	page_table_check_pud_clear(mm, pud);
548 
549 	return pud;
550 }
551 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
552 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
553 
554 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
555 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
556 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
557 					    unsigned long address, pmd_t *pmdp,
558 					    int full)
559 {
560 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
561 }
562 #endif
563 
564 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
565 static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
566 					    unsigned long address, pud_t *pudp,
567 					    int full)
568 {
569 	return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
570 }
571 #endif
572 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
573 
574 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
575 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
576 					    unsigned long address, pte_t *ptep,
577 					    int full)
578 {
579 	return ptep_get_and_clear(mm, address, ptep);
580 }
581 #endif
582 
583 
584 /*
585  * If two threads concurrently fault at the same page, the thread that
586  * won the race updates the PTE and its local TLB/Cache. The other thread
587  * gives up, simply does nothing, and continues; on architectures where
588  * software can update TLB,  local TLB can be updated here to avoid next page
589  * fault. This function updates TLB only, do nothing with cache or others.
590  * It is the difference with function update_mmu_cache.
591  */
592 #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
593 static inline void update_mmu_tlb(struct vm_area_struct *vma,
594 				unsigned long address, pte_t *ptep)
595 {
596 }
597 #define __HAVE_ARCH_UPDATE_MMU_TLB
598 #endif
599 
600 /*
601  * Some architectures may be able to avoid expensive synchronization
602  * primitives when modifications are made to PTE's which are already
603  * not present, or in the process of an address space destruction.
604  */
605 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
606 static inline void pte_clear_not_present_full(struct mm_struct *mm,
607 					      unsigned long address,
608 					      pte_t *ptep,
609 					      int full)
610 {
611 	pte_clear(mm, address, ptep);
612 }
613 #endif
614 
615 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
616 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
617 			      unsigned long address,
618 			      pte_t *ptep);
619 #endif
620 
621 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
622 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
623 			      unsigned long address,
624 			      pmd_t *pmdp);
625 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
626 			      unsigned long address,
627 			      pud_t *pudp);
628 #endif
629 
630 #ifndef pte_mkwrite
631 static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
632 {
633 	return pte_mkwrite_novma(pte);
634 }
635 #endif
636 
637 #if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
638 static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
639 {
640 	return pmd_mkwrite_novma(pmd);
641 }
642 #endif
643 
644 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
645 struct mm_struct;
646 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
647 {
648 	pte_t old_pte = ptep_get(ptep);
649 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
650 }
651 #endif
652 
653 /*
654  * On some architectures hardware does not set page access bit when accessing
655  * memory page, it is responsibility of software setting this bit. It brings
656  * out extra page fault penalty to track page access bit. For optimization page
657  * access bit can be set during all page fault flow on these arches.
658  * To be differentiate with macro pte_mkyoung, this macro is used on platforms
659  * where software maintains page access bit.
660  */
661 #ifndef pte_sw_mkyoung
662 static inline pte_t pte_sw_mkyoung(pte_t pte)
663 {
664 	return pte;
665 }
666 #define pte_sw_mkyoung	pte_sw_mkyoung
667 #endif
668 
669 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
670 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
671 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
672 				      unsigned long address, pmd_t *pmdp)
673 {
674 	pmd_t old_pmd = *pmdp;
675 	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
676 }
677 #else
678 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
679 				      unsigned long address, pmd_t *pmdp)
680 {
681 	BUILD_BUG();
682 }
683 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
684 #endif
685 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
686 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
687 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
688 static inline void pudp_set_wrprotect(struct mm_struct *mm,
689 				      unsigned long address, pud_t *pudp)
690 {
691 	pud_t old_pud = *pudp;
692 
693 	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
694 }
695 #else
696 static inline void pudp_set_wrprotect(struct mm_struct *mm,
697 				      unsigned long address, pud_t *pudp)
698 {
699 	BUILD_BUG();
700 }
701 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
702 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
703 #endif
704 
705 #ifndef pmdp_collapse_flush
706 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
707 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
708 				 unsigned long address, pmd_t *pmdp);
709 #else
710 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
711 					unsigned long address,
712 					pmd_t *pmdp)
713 {
714 	BUILD_BUG();
715 	return *pmdp;
716 }
717 #define pmdp_collapse_flush pmdp_collapse_flush
718 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
719 #endif
720 
721 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
722 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
723 				       pgtable_t pgtable);
724 #endif
725 
726 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
727 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
728 #endif
729 
730 #ifndef arch_needs_pgtable_deposit
731 #define arch_needs_pgtable_deposit() (false)
732 #endif
733 
734 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
735 /*
736  * This is an implementation of pmdp_establish() that is only suitable for an
737  * architecture that doesn't have hardware dirty/accessed bits. In this case we
738  * can't race with CPU which sets these bits and non-atomic approach is fine.
739  */
740 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
741 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
742 {
743 	pmd_t old_pmd = *pmdp;
744 	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
745 	return old_pmd;
746 }
747 #endif
748 
749 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
750 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
751 			    pmd_t *pmdp);
752 #endif
753 
754 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
755 
756 /*
757  * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
758  * hugepage mapping in the page tables. This function is similar to
759  * pmdp_invalidate(), but should only be used if the access and dirty bits would
760  * not be cleared by the software in the new PMD value. The function ensures
761  * that hardware changes of the access and dirty bits updates would not be lost.
762  *
763  * Doing so can allow in certain architectures to avoid a TLB flush in most
764  * cases. Yet, another TLB flush might be necessary later if the PMD update
765  * itself requires such flush (e.g., if protection was set to be stricter). Yet,
766  * even when a TLB flush is needed because of the update, the caller may be able
767  * to batch these TLB flushing operations, so fewer TLB flush operations are
768  * needed.
769  */
770 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
771 				unsigned long address, pmd_t *pmdp);
772 #endif
773 
774 #ifndef __HAVE_ARCH_PTE_SAME
775 static inline int pte_same(pte_t pte_a, pte_t pte_b)
776 {
777 	return pte_val(pte_a) == pte_val(pte_b);
778 }
779 #endif
780 
781 #ifndef __HAVE_ARCH_PTE_UNUSED
782 /*
783  * Some architectures provide facilities to virtualization guests
784  * so that they can flag allocated pages as unused. This allows the
785  * host to transparently reclaim unused pages. This function returns
786  * whether the pte's page is unused.
787  */
788 static inline int pte_unused(pte_t pte)
789 {
790 	return 0;
791 }
792 #endif
793 
794 #ifndef pte_access_permitted
795 #define pte_access_permitted(pte, write) \
796 	(pte_present(pte) && (!(write) || pte_write(pte)))
797 #endif
798 
799 #ifndef pmd_access_permitted
800 #define pmd_access_permitted(pmd, write) \
801 	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
802 #endif
803 
804 #ifndef pud_access_permitted
805 #define pud_access_permitted(pud, write) \
806 	(pud_present(pud) && (!(write) || pud_write(pud)))
807 #endif
808 
809 #ifndef p4d_access_permitted
810 #define p4d_access_permitted(p4d, write) \
811 	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
812 #endif
813 
814 #ifndef pgd_access_permitted
815 #define pgd_access_permitted(pgd, write) \
816 	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
817 #endif
818 
819 #ifndef __HAVE_ARCH_PMD_SAME
820 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
821 {
822 	return pmd_val(pmd_a) == pmd_val(pmd_b);
823 }
824 #endif
825 
826 #ifndef pud_same
827 static inline int pud_same(pud_t pud_a, pud_t pud_b)
828 {
829 	return pud_val(pud_a) == pud_val(pud_b);
830 }
831 #define pud_same pud_same
832 #endif
833 
834 #ifndef __HAVE_ARCH_P4D_SAME
835 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
836 {
837 	return p4d_val(p4d_a) == p4d_val(p4d_b);
838 }
839 #endif
840 
841 #ifndef __HAVE_ARCH_PGD_SAME
842 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
843 {
844 	return pgd_val(pgd_a) == pgd_val(pgd_b);
845 }
846 #endif
847 
848 /*
849  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
850  * TLB flush will be required as a result of the "set". For example, use
851  * in scenarios where it is known ahead of time that the routine is
852  * setting non-present entries, or re-setting an existing entry to the
853  * same value. Otherwise, use the typical "set" helpers and flush the
854  * TLB.
855  */
856 #define set_pte_safe(ptep, pte) \
857 ({ \
858 	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
859 	set_pte(ptep, pte); \
860 })
861 
862 #define set_pmd_safe(pmdp, pmd) \
863 ({ \
864 	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
865 	set_pmd(pmdp, pmd); \
866 })
867 
868 #define set_pud_safe(pudp, pud) \
869 ({ \
870 	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
871 	set_pud(pudp, pud); \
872 })
873 
874 #define set_p4d_safe(p4dp, p4d) \
875 ({ \
876 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
877 	set_p4d(p4dp, p4d); \
878 })
879 
880 #define set_pgd_safe(pgdp, pgd) \
881 ({ \
882 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
883 	set_pgd(pgdp, pgd); \
884 })
885 
886 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
887 /*
888  * Some architectures support metadata associated with a page. When a
889  * page is being swapped out, this metadata must be saved so it can be
890  * restored when the page is swapped back in. SPARC M7 and newer
891  * processors support an ADI (Application Data Integrity) tag for the
892  * page as metadata for the page. arch_do_swap_page() can restore this
893  * metadata when a page is swapped back in.
894  */
895 static inline void arch_do_swap_page(struct mm_struct *mm,
896 				     struct vm_area_struct *vma,
897 				     unsigned long addr,
898 				     pte_t pte, pte_t oldpte)
899 {
900 
901 }
902 #endif
903 
904 #ifndef __HAVE_ARCH_UNMAP_ONE
905 /*
906  * Some architectures support metadata associated with a page. When a
907  * page is being swapped out, this metadata must be saved so it can be
908  * restored when the page is swapped back in. SPARC M7 and newer
909  * processors support an ADI (Application Data Integrity) tag for the
910  * page as metadata for the page. arch_unmap_one() can save this
911  * metadata on a swap-out of a page.
912  */
913 static inline int arch_unmap_one(struct mm_struct *mm,
914 				  struct vm_area_struct *vma,
915 				  unsigned long addr,
916 				  pte_t orig_pte)
917 {
918 	return 0;
919 }
920 #endif
921 
922 /*
923  * Allow architectures to preserve additional metadata associated with
924  * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
925  * prototypes must be defined in the arch-specific asm/pgtable.h file.
926  */
927 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
928 static inline int arch_prepare_to_swap(struct page *page)
929 {
930 	return 0;
931 }
932 #endif
933 
934 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
935 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
936 {
937 }
938 
939 static inline void arch_swap_invalidate_area(int type)
940 {
941 }
942 #endif
943 
944 #ifndef __HAVE_ARCH_SWAP_RESTORE
945 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
946 {
947 }
948 #endif
949 
950 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
951 #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
952 #endif
953 
954 #ifndef __HAVE_ARCH_MOVE_PTE
955 #define move_pte(pte, prot, old_addr, new_addr)	(pte)
956 #endif
957 
958 #ifndef pte_accessible
959 # define pte_accessible(mm, pte)	((void)(pte), 1)
960 #endif
961 
962 #ifndef flush_tlb_fix_spurious_fault
963 #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
964 #endif
965 
966 /*
967  * When walking page tables, get the address of the next boundary,
968  * or the end address of the range if that comes earlier.  Although no
969  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
970  */
971 
972 #define pgd_addr_end(addr, end)						\
973 ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
974 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
975 })
976 
977 #ifndef p4d_addr_end
978 #define p4d_addr_end(addr, end)						\
979 ({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
980 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
981 })
982 #endif
983 
984 #ifndef pud_addr_end
985 #define pud_addr_end(addr, end)						\
986 ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
987 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
988 })
989 #endif
990 
991 #ifndef pmd_addr_end
992 #define pmd_addr_end(addr, end)						\
993 ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
994 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
995 })
996 #endif
997 
998 /*
999  * When walking page tables, we usually want to skip any p?d_none entries;
1000  * and any p?d_bad entries - reporting the error before resetting to none.
1001  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
1002  */
1003 void pgd_clear_bad(pgd_t *);
1004 
1005 #ifndef __PAGETABLE_P4D_FOLDED
1006 void p4d_clear_bad(p4d_t *);
1007 #else
1008 #define p4d_clear_bad(p4d)        do { } while (0)
1009 #endif
1010 
1011 #ifndef __PAGETABLE_PUD_FOLDED
1012 void pud_clear_bad(pud_t *);
1013 #else
1014 #define pud_clear_bad(p4d)        do { } while (0)
1015 #endif
1016 
1017 void pmd_clear_bad(pmd_t *);
1018 
1019 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
1020 {
1021 	if (pgd_none(*pgd))
1022 		return 1;
1023 	if (unlikely(pgd_bad(*pgd))) {
1024 		pgd_clear_bad(pgd);
1025 		return 1;
1026 	}
1027 	return 0;
1028 }
1029 
1030 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1031 {
1032 	if (p4d_none(*p4d))
1033 		return 1;
1034 	if (unlikely(p4d_bad(*p4d))) {
1035 		p4d_clear_bad(p4d);
1036 		return 1;
1037 	}
1038 	return 0;
1039 }
1040 
1041 static inline int pud_none_or_clear_bad(pud_t *pud)
1042 {
1043 	if (pud_none(*pud))
1044 		return 1;
1045 	if (unlikely(pud_bad(*pud))) {
1046 		pud_clear_bad(pud);
1047 		return 1;
1048 	}
1049 	return 0;
1050 }
1051 
1052 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1053 {
1054 	if (pmd_none(*pmd))
1055 		return 1;
1056 	if (unlikely(pmd_bad(*pmd))) {
1057 		pmd_clear_bad(pmd);
1058 		return 1;
1059 	}
1060 	return 0;
1061 }
1062 
1063 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1064 					     unsigned long addr,
1065 					     pte_t *ptep)
1066 {
1067 	/*
1068 	 * Get the current pte state, but zero it out to make it
1069 	 * non-present, preventing the hardware from asynchronously
1070 	 * updating it.
1071 	 */
1072 	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1073 }
1074 
1075 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1076 					     unsigned long addr,
1077 					     pte_t *ptep, pte_t pte)
1078 {
1079 	/*
1080 	 * The pte is non-present, so there's no hardware state to
1081 	 * preserve.
1082 	 */
1083 	set_pte_at(vma->vm_mm, addr, ptep, pte);
1084 }
1085 
1086 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1087 /*
1088  * Start a pte protection read-modify-write transaction, which
1089  * protects against asynchronous hardware modifications to the pte.
1090  * The intention is not to prevent the hardware from making pte
1091  * updates, but to prevent any updates it may make from being lost.
1092  *
1093  * This does not protect against other software modifications of the
1094  * pte; the appropriate pte lock must be held over the transaction.
1095  *
1096  * Note that this interface is intended to be batchable, meaning that
1097  * ptep_modify_prot_commit may not actually update the pte, but merely
1098  * queue the update to be done at some later time.  The update must be
1099  * actually committed before the pte lock is released, however.
1100  */
1101 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1102 					   unsigned long addr,
1103 					   pte_t *ptep)
1104 {
1105 	return __ptep_modify_prot_start(vma, addr, ptep);
1106 }
1107 
1108 /*
1109  * Commit an update to a pte, leaving any hardware-controlled bits in
1110  * the PTE unmodified.
1111  */
1112 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1113 					   unsigned long addr,
1114 					   pte_t *ptep, pte_t old_pte, pte_t pte)
1115 {
1116 	__ptep_modify_prot_commit(vma, addr, ptep, pte);
1117 }
1118 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1119 #endif /* CONFIG_MMU */
1120 
1121 /*
1122  * No-op macros that just return the current protection value. Defined here
1123  * because these macros can be used even if CONFIG_MMU is not defined.
1124  */
1125 
1126 #ifndef pgprot_nx
1127 #define pgprot_nx(prot)	(prot)
1128 #endif
1129 
1130 #ifndef pgprot_noncached
1131 #define pgprot_noncached(prot)	(prot)
1132 #endif
1133 
1134 #ifndef pgprot_writecombine
1135 #define pgprot_writecombine pgprot_noncached
1136 #endif
1137 
1138 #ifndef pgprot_writethrough
1139 #define pgprot_writethrough pgprot_noncached
1140 #endif
1141 
1142 #ifndef pgprot_device
1143 #define pgprot_device pgprot_noncached
1144 #endif
1145 
1146 #ifndef pgprot_mhp
1147 #define pgprot_mhp(prot)	(prot)
1148 #endif
1149 
1150 #ifdef CONFIG_MMU
1151 #ifndef pgprot_modify
1152 #define pgprot_modify pgprot_modify
1153 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1154 {
1155 	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1156 		newprot = pgprot_noncached(newprot);
1157 	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1158 		newprot = pgprot_writecombine(newprot);
1159 	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1160 		newprot = pgprot_device(newprot);
1161 	return newprot;
1162 }
1163 #endif
1164 #endif /* CONFIG_MMU */
1165 
1166 #ifndef pgprot_encrypted
1167 #define pgprot_encrypted(prot)	(prot)
1168 #endif
1169 
1170 #ifndef pgprot_decrypted
1171 #define pgprot_decrypted(prot)	(prot)
1172 #endif
1173 
1174 /*
1175  * A facility to provide batching of the reload of page tables and
1176  * other process state with the actual context switch code for
1177  * paravirtualized guests.  By convention, only one of the batched
1178  * update (lazy) modes (CPU, MMU) should be active at any given time,
1179  * entry should never be nested, and entry and exits should always be
1180  * paired.  This is for sanity of maintaining and reasoning about the
1181  * kernel code.  In this case, the exit (end of the context switch) is
1182  * in architecture-specific code, and so doesn't need a generic
1183  * definition.
1184  */
1185 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1186 #define arch_start_context_switch(prev)	do {} while (0)
1187 #endif
1188 
1189 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1190 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1191 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1192 {
1193 	return pmd;
1194 }
1195 
1196 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1197 {
1198 	return 0;
1199 }
1200 
1201 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1202 {
1203 	return pmd;
1204 }
1205 #endif
1206 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1207 static inline int pte_soft_dirty(pte_t pte)
1208 {
1209 	return 0;
1210 }
1211 
1212 static inline int pmd_soft_dirty(pmd_t pmd)
1213 {
1214 	return 0;
1215 }
1216 
1217 static inline pte_t pte_mksoft_dirty(pte_t pte)
1218 {
1219 	return pte;
1220 }
1221 
1222 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1223 {
1224 	return pmd;
1225 }
1226 
1227 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1228 {
1229 	return pte;
1230 }
1231 
1232 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1233 {
1234 	return pmd;
1235 }
1236 
1237 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1238 {
1239 	return pte;
1240 }
1241 
1242 static inline int pte_swp_soft_dirty(pte_t pte)
1243 {
1244 	return 0;
1245 }
1246 
1247 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1248 {
1249 	return pte;
1250 }
1251 
1252 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1253 {
1254 	return pmd;
1255 }
1256 
1257 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1258 {
1259 	return 0;
1260 }
1261 
1262 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1263 {
1264 	return pmd;
1265 }
1266 #endif
1267 
1268 #ifndef __HAVE_PFNMAP_TRACKING
1269 /*
1270  * Interfaces that can be used by architecture code to keep track of
1271  * memory type of pfn mappings specified by the remap_pfn_range,
1272  * vmf_insert_pfn.
1273  */
1274 
1275 /*
1276  * track_pfn_remap is called when a _new_ pfn mapping is being established
1277  * by remap_pfn_range() for physical range indicated by pfn and size.
1278  */
1279 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1280 				  unsigned long pfn, unsigned long addr,
1281 				  unsigned long size)
1282 {
1283 	return 0;
1284 }
1285 
1286 /*
1287  * track_pfn_insert is called when a _new_ single pfn is established
1288  * by vmf_insert_pfn().
1289  */
1290 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1291 				    pfn_t pfn)
1292 {
1293 }
1294 
1295 /*
1296  * track_pfn_copy is called when vma that is covering the pfnmap gets
1297  * copied through copy_page_range().
1298  */
1299 static inline int track_pfn_copy(struct vm_area_struct *vma)
1300 {
1301 	return 0;
1302 }
1303 
1304 /*
1305  * untrack_pfn is called while unmapping a pfnmap for a region.
1306  * untrack can be called for a specific region indicated by pfn and size or
1307  * can be for the entire vma (in which case pfn, size are zero).
1308  */
1309 static inline void untrack_pfn(struct vm_area_struct *vma,
1310 			       unsigned long pfn, unsigned long size,
1311 			       bool mm_wr_locked)
1312 {
1313 }
1314 
1315 /*
1316  * untrack_pfn_clear is called while mremapping a pfnmap for a new region
1317  * or fails to copy pgtable during duplicate vm area.
1318  */
1319 static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1320 {
1321 }
1322 #else
1323 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1324 			   unsigned long pfn, unsigned long addr,
1325 			   unsigned long size);
1326 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1327 			     pfn_t pfn);
1328 extern int track_pfn_copy(struct vm_area_struct *vma);
1329 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1330 			unsigned long size, bool mm_wr_locked);
1331 extern void untrack_pfn_clear(struct vm_area_struct *vma);
1332 #endif
1333 
1334 #ifdef CONFIG_MMU
1335 #ifdef __HAVE_COLOR_ZERO_PAGE
1336 static inline int is_zero_pfn(unsigned long pfn)
1337 {
1338 	extern unsigned long zero_pfn;
1339 	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1340 	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1341 }
1342 
1343 #define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
1344 
1345 #else
1346 static inline int is_zero_pfn(unsigned long pfn)
1347 {
1348 	extern unsigned long zero_pfn;
1349 	return pfn == zero_pfn;
1350 }
1351 
1352 static inline unsigned long my_zero_pfn(unsigned long addr)
1353 {
1354 	extern unsigned long zero_pfn;
1355 	return zero_pfn;
1356 }
1357 #endif
1358 #else
1359 static inline int is_zero_pfn(unsigned long pfn)
1360 {
1361 	return 0;
1362 }
1363 
1364 static inline unsigned long my_zero_pfn(unsigned long addr)
1365 {
1366 	return 0;
1367 }
1368 #endif /* CONFIG_MMU */
1369 
1370 #ifdef CONFIG_MMU
1371 
1372 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
1373 static inline int pmd_trans_huge(pmd_t pmd)
1374 {
1375 	return 0;
1376 }
1377 #ifndef pmd_write
1378 static inline int pmd_write(pmd_t pmd)
1379 {
1380 	BUG();
1381 	return 0;
1382 }
1383 #endif /* pmd_write */
1384 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1385 
1386 #ifndef pud_write
1387 static inline int pud_write(pud_t pud)
1388 {
1389 	BUG();
1390 	return 0;
1391 }
1392 #endif /* pud_write */
1393 
1394 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1395 static inline int pmd_devmap(pmd_t pmd)
1396 {
1397 	return 0;
1398 }
1399 static inline int pud_devmap(pud_t pud)
1400 {
1401 	return 0;
1402 }
1403 static inline int pgd_devmap(pgd_t pgd)
1404 {
1405 	return 0;
1406 }
1407 #endif
1408 
1409 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1410 	!defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1411 static inline int pud_trans_huge(pud_t pud)
1412 {
1413 	return 0;
1414 }
1415 #endif
1416 
1417 static inline int pud_trans_unstable(pud_t *pud)
1418 {
1419 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1420 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1421 	pud_t pudval = READ_ONCE(*pud);
1422 
1423 	if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1424 		return 1;
1425 	if (unlikely(pud_bad(pudval))) {
1426 		pud_clear_bad(pud);
1427 		return 1;
1428 	}
1429 #endif
1430 	return 0;
1431 }
1432 
1433 #ifndef CONFIG_NUMA_BALANCING
1434 /*
1435  * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1436  * perfectly valid to indicate "no" in that case, which is why our default
1437  * implementation defaults to "always no".
1438  *
1439  * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1440  * page protection due to NUMA hinting. NUMA hinting faults only apply in
1441  * accessible VMAs.
1442  *
1443  * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1444  * looking at the VMA accessibility is sufficient.
1445  */
1446 static inline int pte_protnone(pte_t pte)
1447 {
1448 	return 0;
1449 }
1450 
1451 static inline int pmd_protnone(pmd_t pmd)
1452 {
1453 	return 0;
1454 }
1455 #endif /* CONFIG_NUMA_BALANCING */
1456 
1457 #endif /* CONFIG_MMU */
1458 
1459 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1460 
1461 #ifndef __PAGETABLE_P4D_FOLDED
1462 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1463 void p4d_clear_huge(p4d_t *p4d);
1464 #else
1465 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1466 {
1467 	return 0;
1468 }
1469 static inline void p4d_clear_huge(p4d_t *p4d) { }
1470 #endif /* !__PAGETABLE_P4D_FOLDED */
1471 
1472 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1473 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1474 int pud_clear_huge(pud_t *pud);
1475 int pmd_clear_huge(pmd_t *pmd);
1476 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1477 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1478 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1479 #else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1480 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1481 {
1482 	return 0;
1483 }
1484 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1485 {
1486 	return 0;
1487 }
1488 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1489 {
1490 	return 0;
1491 }
1492 static inline void p4d_clear_huge(p4d_t *p4d) { }
1493 static inline int pud_clear_huge(pud_t *pud)
1494 {
1495 	return 0;
1496 }
1497 static inline int pmd_clear_huge(pmd_t *pmd)
1498 {
1499 	return 0;
1500 }
1501 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1502 {
1503 	return 0;
1504 }
1505 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1506 {
1507 	return 0;
1508 }
1509 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1510 {
1511 	return 0;
1512 }
1513 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
1514 
1515 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1517 /*
1518  * ARCHes with special requirements for evicting THP backing TLB entries can
1519  * implement this. Otherwise also, it can help optimize normal TLB flush in
1520  * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1521  * entire TLB if flush span is greater than a threshold, which will
1522  * likely be true for a single huge page. Thus a single THP flush will
1523  * invalidate the entire TLB which is not desirable.
1524  * e.g. see arch/arc: flush_pmd_tlb_range
1525  */
1526 #define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1527 #define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1528 #else
1529 #define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
1530 #define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
1531 #endif
1532 #endif
1533 
1534 struct file;
1535 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1536 			unsigned long size, pgprot_t *vma_prot);
1537 
1538 #ifndef CONFIG_X86_ESPFIX64
1539 static inline void init_espfix_bsp(void) { }
1540 #endif
1541 
1542 extern void __init pgtable_cache_init(void);
1543 
1544 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1545 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1546 {
1547 	return true;
1548 }
1549 
1550 static inline bool arch_has_pfn_modify_check(void)
1551 {
1552 	return false;
1553 }
1554 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1555 
1556 /*
1557  * Architecture PAGE_KERNEL_* fallbacks
1558  *
1559  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1560  * because they really don't support them, or the port needs to be updated to
1561  * reflect the required functionality. Below are a set of relatively safe
1562  * fallbacks, as best effort, which we can count on in lieu of the architectures
1563  * not defining them on their own yet.
1564  */
1565 
1566 #ifndef PAGE_KERNEL_RO
1567 # define PAGE_KERNEL_RO PAGE_KERNEL
1568 #endif
1569 
1570 #ifndef PAGE_KERNEL_EXEC
1571 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1572 #endif
1573 
1574 /*
1575  * Page Table Modification bits for pgtbl_mod_mask.
1576  *
1577  * These are used by the p?d_alloc_track*() set of functions an in the generic
1578  * vmalloc/ioremap code to track at which page-table levels entries have been
1579  * modified. Based on that the code can better decide when vmalloc and ioremap
1580  * mapping changes need to be synchronized to other page-tables in the system.
1581  */
1582 #define		__PGTBL_PGD_MODIFIED	0
1583 #define		__PGTBL_P4D_MODIFIED	1
1584 #define		__PGTBL_PUD_MODIFIED	2
1585 #define		__PGTBL_PMD_MODIFIED	3
1586 #define		__PGTBL_PTE_MODIFIED	4
1587 
1588 #define		PGTBL_PGD_MODIFIED	BIT(__PGTBL_PGD_MODIFIED)
1589 #define		PGTBL_P4D_MODIFIED	BIT(__PGTBL_P4D_MODIFIED)
1590 #define		PGTBL_PUD_MODIFIED	BIT(__PGTBL_PUD_MODIFIED)
1591 #define		PGTBL_PMD_MODIFIED	BIT(__PGTBL_PMD_MODIFIED)
1592 #define		PGTBL_PTE_MODIFIED	BIT(__PGTBL_PTE_MODIFIED)
1593 
1594 /* Page-Table Modification Mask */
1595 typedef unsigned int pgtbl_mod_mask;
1596 
1597 #endif /* !__ASSEMBLY__ */
1598 
1599 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1600 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1601 /*
1602  * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1603  * with physical address space extension, but falls back to
1604  * BITS_PER_LONG otherwise.
1605  */
1606 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1607 #else
1608 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1609 #endif
1610 #endif
1611 
1612 #ifndef has_transparent_hugepage
1613 #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1614 #endif
1615 
1616 #ifndef has_transparent_pud_hugepage
1617 #define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1618 #endif
1619 /*
1620  * On some architectures it depends on the mm if the p4d/pud or pmd
1621  * layer of the page table hierarchy is folded or not.
1622  */
1623 #ifndef mm_p4d_folded
1624 #define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
1625 #endif
1626 
1627 #ifndef mm_pud_folded
1628 #define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
1629 #endif
1630 
1631 #ifndef mm_pmd_folded
1632 #define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
1633 #endif
1634 
1635 #ifndef p4d_offset_lockless
1636 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1637 #endif
1638 #ifndef pud_offset_lockless
1639 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1640 #endif
1641 #ifndef pmd_offset_lockless
1642 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1643 #endif
1644 
1645 /*
1646  * p?d_leaf() - true if this entry is a final mapping to a physical address.
1647  * This differs from p?d_huge() by the fact that they are always available (if
1648  * the architecture supports large pages at the appropriate level) even
1649  * if CONFIG_HUGETLB_PAGE is not defined.
1650  * Only meaningful when called on a valid entry.
1651  */
1652 #ifndef pgd_leaf
1653 #define pgd_leaf(x)	0
1654 #endif
1655 #ifndef p4d_leaf
1656 #define p4d_leaf(x)	0
1657 #endif
1658 #ifndef pud_leaf
1659 #define pud_leaf(x)	0
1660 #endif
1661 #ifndef pmd_leaf
1662 #define pmd_leaf(x)	0
1663 #endif
1664 
1665 #ifndef pgd_leaf_size
1666 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1667 #endif
1668 #ifndef p4d_leaf_size
1669 #define p4d_leaf_size(x) P4D_SIZE
1670 #endif
1671 #ifndef pud_leaf_size
1672 #define pud_leaf_size(x) PUD_SIZE
1673 #endif
1674 #ifndef pmd_leaf_size
1675 #define pmd_leaf_size(x) PMD_SIZE
1676 #endif
1677 #ifndef pte_leaf_size
1678 #define pte_leaf_size(x) PAGE_SIZE
1679 #endif
1680 
1681 /*
1682  * Some architectures have MMUs that are configurable or selectable at boot
1683  * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1684  * helps to have a static maximum value.
1685  */
1686 
1687 #ifndef MAX_PTRS_PER_PTE
1688 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1689 #endif
1690 
1691 #ifndef MAX_PTRS_PER_PMD
1692 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1693 #endif
1694 
1695 #ifndef MAX_PTRS_PER_PUD
1696 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1697 #endif
1698 
1699 #ifndef MAX_PTRS_PER_P4D
1700 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1701 #endif
1702 
1703 /* description of effects of mapping type and prot in current implementation.
1704  * this is due to the limited x86 page protection hardware.  The expected
1705  * behavior is in parens:
1706  *
1707  * map_type	prot
1708  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
1709  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1710  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
1711  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1712  *
1713  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1714  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
1715  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1716  *
1717  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1718  * MAP_PRIVATE (with Enhanced PAN supported):
1719  *								r: (no) no
1720  *								w: (no) no
1721  *								x: (yes) yes
1722  */
1723 #define DECLARE_VM_GET_PAGE_PROT					\
1724 pgprot_t vm_get_page_prot(unsigned long vm_flags)			\
1725 {									\
1726 		return protection_map[vm_flags &			\
1727 			(VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)];	\
1728 }									\
1729 EXPORT_SYMBOL(vm_get_page_prot);
1730 
1731 #endif /* _LINUX_PGTABLE_H */
1732