xref: /linux/include/linux/pgtable.h (revision 0be3ff0c)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4 
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7 
8 #ifndef __ASSEMBLY__
9 #ifdef CONFIG_MMU
10 
11 #include <linux/mm_types.h>
12 #include <linux/bug.h>
13 #include <linux/errno.h>
14 #include <asm-generic/pgtable_uffd.h>
15 
16 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
17 	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
18 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
19 #endif
20 
21 /*
22  * On almost all architectures and configurations, 0 can be used as the
23  * upper ceiling to free_pgtables(): on many architectures it has the same
24  * effect as using TASK_SIZE.  However, there is one configuration which
25  * must impose a more careful limit, to avoid freeing kernel pgtables.
26  */
27 #ifndef USER_PGTABLES_CEILING
28 #define USER_PGTABLES_CEILING	0UL
29 #endif
30 
31 /*
32  * This defines the first usable user address. Platforms
33  * can override its value with custom FIRST_USER_ADDRESS
34  * defined in their respective <asm/pgtable.h>.
35  */
36 #ifndef FIRST_USER_ADDRESS
37 #define FIRST_USER_ADDRESS	0UL
38 #endif
39 
40 /*
41  * This defines the generic helper for accessing PMD page
42  * table page. Although platforms can still override this
43  * via their respective <asm/pgtable.h>.
44  */
45 #ifndef pmd_pgtable
46 #define pmd_pgtable(pmd) pmd_page(pmd)
47 #endif
48 
49 /*
50  * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
51  *
52  * The pXx_index() functions return the index of the entry in the page
53  * table page which would control the given virtual address
54  *
55  * As these functions may be used by the same code for different levels of
56  * the page table folding, they are always available, regardless of
57  * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
58  * because in such cases PTRS_PER_PxD equals 1.
59  */
60 
61 static inline unsigned long pte_index(unsigned long address)
62 {
63 	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
64 }
65 #define pte_index pte_index
66 
67 #ifndef pmd_index
68 static inline unsigned long pmd_index(unsigned long address)
69 {
70 	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
71 }
72 #define pmd_index pmd_index
73 #endif
74 
75 #ifndef pud_index
76 static inline unsigned long pud_index(unsigned long address)
77 {
78 	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
79 }
80 #define pud_index pud_index
81 #endif
82 
83 #ifndef pgd_index
84 /* Must be a compile-time constant, so implement it as a macro */
85 #define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
86 #endif
87 
88 #ifndef pte_offset_kernel
89 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
90 {
91 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
92 }
93 #define pte_offset_kernel pte_offset_kernel
94 #endif
95 
96 #if defined(CONFIG_HIGHPTE)
97 #define pte_offset_map(dir, address)				\
98 	((pte_t *)kmap_atomic(pmd_page(*(dir))) +		\
99 	 pte_index((address)))
100 #define pte_unmap(pte) kunmap_atomic((pte))
101 #else
102 #define pte_offset_map(dir, address)	pte_offset_kernel((dir), (address))
103 #define pte_unmap(pte) ((void)(pte))	/* NOP */
104 #endif
105 
106 /* Find an entry in the second-level page table.. */
107 #ifndef pmd_offset
108 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
109 {
110 	return pud_pgtable(*pud) + pmd_index(address);
111 }
112 #define pmd_offset pmd_offset
113 #endif
114 
115 #ifndef pud_offset
116 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
117 {
118 	return p4d_pgtable(*p4d) + pud_index(address);
119 }
120 #define pud_offset pud_offset
121 #endif
122 
123 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
124 {
125 	return (pgd + pgd_index(address));
126 };
127 
128 /*
129  * a shortcut to get a pgd_t in a given mm
130  */
131 #ifndef pgd_offset
132 #define pgd_offset(mm, address)		pgd_offset_pgd((mm)->pgd, (address))
133 #endif
134 
135 /*
136  * a shortcut which implies the use of the kernel's pgd, instead
137  * of a process's
138  */
139 #ifndef pgd_offset_k
140 #define pgd_offset_k(address)		pgd_offset(&init_mm, (address))
141 #endif
142 
143 /*
144  * In many cases it is known that a virtual address is mapped at PMD or PTE
145  * level, so instead of traversing all the page table levels, we can get a
146  * pointer to the PMD entry in user or kernel page table or translate a virtual
147  * address to the pointer in the PTE in the kernel page tables with simple
148  * helpers.
149  */
150 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
151 {
152 	return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
153 }
154 
155 static inline pmd_t *pmd_off_k(unsigned long va)
156 {
157 	return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
158 }
159 
160 static inline pte_t *virt_to_kpte(unsigned long vaddr)
161 {
162 	pmd_t *pmd = pmd_off_k(vaddr);
163 
164 	return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
165 }
166 
167 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
168 extern int ptep_set_access_flags(struct vm_area_struct *vma,
169 				 unsigned long address, pte_t *ptep,
170 				 pte_t entry, int dirty);
171 #endif
172 
173 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
174 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
175 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
176 				 unsigned long address, pmd_t *pmdp,
177 				 pmd_t entry, int dirty);
178 extern int pudp_set_access_flags(struct vm_area_struct *vma,
179 				 unsigned long address, pud_t *pudp,
180 				 pud_t entry, int dirty);
181 #else
182 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
183 					unsigned long address, pmd_t *pmdp,
184 					pmd_t entry, int dirty)
185 {
186 	BUILD_BUG();
187 	return 0;
188 }
189 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
190 					unsigned long address, pud_t *pudp,
191 					pud_t entry, int dirty)
192 {
193 	BUILD_BUG();
194 	return 0;
195 }
196 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
197 #endif
198 
199 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
200 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
201 					    unsigned long address,
202 					    pte_t *ptep)
203 {
204 	pte_t pte = *ptep;
205 	int r = 1;
206 	if (!pte_young(pte))
207 		r = 0;
208 	else
209 		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
210 	return r;
211 }
212 #endif
213 
214 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
215 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
216 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
217 					    unsigned long address,
218 					    pmd_t *pmdp)
219 {
220 	pmd_t pmd = *pmdp;
221 	int r = 1;
222 	if (!pmd_young(pmd))
223 		r = 0;
224 	else
225 		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
226 	return r;
227 }
228 #else
229 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
230 					    unsigned long address,
231 					    pmd_t *pmdp)
232 {
233 	BUILD_BUG();
234 	return 0;
235 }
236 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
237 #endif
238 
239 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
240 int ptep_clear_flush_young(struct vm_area_struct *vma,
241 			   unsigned long address, pte_t *ptep);
242 #endif
243 
244 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
247 				  unsigned long address, pmd_t *pmdp);
248 #else
249 /*
250  * Despite relevant to THP only, this API is called from generic rmap code
251  * under PageTransHuge(), hence needs a dummy implementation for !THP
252  */
253 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
254 					 unsigned long address, pmd_t *pmdp)
255 {
256 	BUILD_BUG();
257 	return 0;
258 }
259 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
260 #endif
261 
262 #ifndef __HAVE_ARCH_PTEP_CLEAR
263 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
264 			      pte_t *ptep)
265 {
266 	pte_clear(mm, addr, ptep);
267 }
268 #endif
269 
270 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
271 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
272 				       unsigned long address,
273 				       pte_t *ptep)
274 {
275 	pte_t pte = *ptep;
276 	pte_clear(mm, address, ptep);
277 	return pte;
278 }
279 #endif
280 
281 #ifndef __HAVE_ARCH_PTEP_GET
282 static inline pte_t ptep_get(pte_t *ptep)
283 {
284 	return READ_ONCE(*ptep);
285 }
286 #endif
287 
288 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
289 /*
290  * WARNING: only to be used in the get_user_pages_fast() implementation.
291  *
292  * With get_user_pages_fast(), we walk down the pagetables without taking any
293  * locks.  For this we would like to load the pointers atomically, but sometimes
294  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
295  * we do have is the guarantee that a PTE will only either go from not present
296  * to present, or present to not present or both -- it will not switch to a
297  * completely different present page without a TLB flush in between; something
298  * that we are blocking by holding interrupts off.
299  *
300  * Setting ptes from not present to present goes:
301  *
302  *   ptep->pte_high = h;
303  *   smp_wmb();
304  *   ptep->pte_low = l;
305  *
306  * And present to not present goes:
307  *
308  *   ptep->pte_low = 0;
309  *   smp_wmb();
310  *   ptep->pte_high = 0;
311  *
312  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
313  * We load pte_high *after* loading pte_low, which ensures we don't see an older
314  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
315  * picked up a changed pte high. We might have gotten rubbish values from
316  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
317  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
318  * operates on present ptes we're safe.
319  */
320 static inline pte_t ptep_get_lockless(pte_t *ptep)
321 {
322 	pte_t pte;
323 
324 	do {
325 		pte.pte_low = ptep->pte_low;
326 		smp_rmb();
327 		pte.pte_high = ptep->pte_high;
328 		smp_rmb();
329 	} while (unlikely(pte.pte_low != ptep->pte_low));
330 
331 	return pte;
332 }
333 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
334 /*
335  * We require that the PTE can be read atomically.
336  */
337 static inline pte_t ptep_get_lockless(pte_t *ptep)
338 {
339 	return ptep_get(ptep);
340 }
341 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
342 
343 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
344 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
345 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
346 					    unsigned long address,
347 					    pmd_t *pmdp)
348 {
349 	pmd_t pmd = *pmdp;
350 	pmd_clear(pmdp);
351 	return pmd;
352 }
353 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
354 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
355 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
356 					    unsigned long address,
357 					    pud_t *pudp)
358 {
359 	pud_t pud = *pudp;
360 
361 	pud_clear(pudp);
362 	return pud;
363 }
364 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
365 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
366 
367 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
368 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
369 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
370 					    unsigned long address, pmd_t *pmdp,
371 					    int full)
372 {
373 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
374 }
375 #endif
376 
377 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
378 static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
379 					    unsigned long address, pud_t *pudp,
380 					    int full)
381 {
382 	return pudp_huge_get_and_clear(mm, address, pudp);
383 }
384 #endif
385 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
386 
387 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
388 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
389 					    unsigned long address, pte_t *ptep,
390 					    int full)
391 {
392 	pte_t pte;
393 	pte = ptep_get_and_clear(mm, address, ptep);
394 	return pte;
395 }
396 #endif
397 
398 
399 /*
400  * If two threads concurrently fault at the same page, the thread that
401  * won the race updates the PTE and its local TLB/Cache. The other thread
402  * gives up, simply does nothing, and continues; on architectures where
403  * software can update TLB,  local TLB can be updated here to avoid next page
404  * fault. This function updates TLB only, do nothing with cache or others.
405  * It is the difference with function update_mmu_cache.
406  */
407 #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
408 static inline void update_mmu_tlb(struct vm_area_struct *vma,
409 				unsigned long address, pte_t *ptep)
410 {
411 }
412 #define __HAVE_ARCH_UPDATE_MMU_TLB
413 #endif
414 
415 /*
416  * Some architectures may be able to avoid expensive synchronization
417  * primitives when modifications are made to PTE's which are already
418  * not present, or in the process of an address space destruction.
419  */
420 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
421 static inline void pte_clear_not_present_full(struct mm_struct *mm,
422 					      unsigned long address,
423 					      pte_t *ptep,
424 					      int full)
425 {
426 	pte_clear(mm, address, ptep);
427 }
428 #endif
429 
430 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
431 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
432 			      unsigned long address,
433 			      pte_t *ptep);
434 #endif
435 
436 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
437 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
438 			      unsigned long address,
439 			      pmd_t *pmdp);
440 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
441 			      unsigned long address,
442 			      pud_t *pudp);
443 #endif
444 
445 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
446 struct mm_struct;
447 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
448 {
449 	pte_t old_pte = *ptep;
450 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
451 }
452 #endif
453 
454 /*
455  * On some architectures hardware does not set page access bit when accessing
456  * memory page, it is responsibility of software setting this bit. It brings
457  * out extra page fault penalty to track page access bit. For optimization page
458  * access bit can be set during all page fault flow on these arches.
459  * To be differentiate with macro pte_mkyoung, this macro is used on platforms
460  * where software maintains page access bit.
461  */
462 #ifndef pte_sw_mkyoung
463 static inline pte_t pte_sw_mkyoung(pte_t pte)
464 {
465 	return pte;
466 }
467 #define pte_sw_mkyoung	pte_sw_mkyoung
468 #endif
469 
470 #ifndef pte_savedwrite
471 #define pte_savedwrite pte_write
472 #endif
473 
474 #ifndef pte_mk_savedwrite
475 #define pte_mk_savedwrite pte_mkwrite
476 #endif
477 
478 #ifndef pte_clear_savedwrite
479 #define pte_clear_savedwrite pte_wrprotect
480 #endif
481 
482 #ifndef pmd_savedwrite
483 #define pmd_savedwrite pmd_write
484 #endif
485 
486 #ifndef pmd_mk_savedwrite
487 #define pmd_mk_savedwrite pmd_mkwrite
488 #endif
489 
490 #ifndef pmd_clear_savedwrite
491 #define pmd_clear_savedwrite pmd_wrprotect
492 #endif
493 
494 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
495 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
496 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
497 				      unsigned long address, pmd_t *pmdp)
498 {
499 	pmd_t old_pmd = *pmdp;
500 	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
501 }
502 #else
503 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
504 				      unsigned long address, pmd_t *pmdp)
505 {
506 	BUILD_BUG();
507 }
508 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
509 #endif
510 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
511 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
512 static inline void pudp_set_wrprotect(struct mm_struct *mm,
513 				      unsigned long address, pud_t *pudp)
514 {
515 	pud_t old_pud = *pudp;
516 
517 	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
518 }
519 #else
520 static inline void pudp_set_wrprotect(struct mm_struct *mm,
521 				      unsigned long address, pud_t *pudp)
522 {
523 	BUILD_BUG();
524 }
525 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
526 #endif
527 
528 #ifndef pmdp_collapse_flush
529 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
530 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
531 				 unsigned long address, pmd_t *pmdp);
532 #else
533 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
534 					unsigned long address,
535 					pmd_t *pmdp)
536 {
537 	BUILD_BUG();
538 	return *pmdp;
539 }
540 #define pmdp_collapse_flush pmdp_collapse_flush
541 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
542 #endif
543 
544 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
545 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
546 				       pgtable_t pgtable);
547 #endif
548 
549 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
550 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
551 #endif
552 
553 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
554 /*
555  * This is an implementation of pmdp_establish() that is only suitable for an
556  * architecture that doesn't have hardware dirty/accessed bits. In this case we
557  * can't race with CPU which sets these bits and non-atomic approach is fine.
558  */
559 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
560 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
561 {
562 	pmd_t old_pmd = *pmdp;
563 	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
564 	return old_pmd;
565 }
566 #endif
567 
568 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
569 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
570 			    pmd_t *pmdp);
571 #endif
572 
573 #ifndef __HAVE_ARCH_PTE_SAME
574 static inline int pte_same(pte_t pte_a, pte_t pte_b)
575 {
576 	return pte_val(pte_a) == pte_val(pte_b);
577 }
578 #endif
579 
580 #ifndef __HAVE_ARCH_PTE_UNUSED
581 /*
582  * Some architectures provide facilities to virtualization guests
583  * so that they can flag allocated pages as unused. This allows the
584  * host to transparently reclaim unused pages. This function returns
585  * whether the pte's page is unused.
586  */
587 static inline int pte_unused(pte_t pte)
588 {
589 	return 0;
590 }
591 #endif
592 
593 #ifndef pte_access_permitted
594 #define pte_access_permitted(pte, write) \
595 	(pte_present(pte) && (!(write) || pte_write(pte)))
596 #endif
597 
598 #ifndef pmd_access_permitted
599 #define pmd_access_permitted(pmd, write) \
600 	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
601 #endif
602 
603 #ifndef pud_access_permitted
604 #define pud_access_permitted(pud, write) \
605 	(pud_present(pud) && (!(write) || pud_write(pud)))
606 #endif
607 
608 #ifndef p4d_access_permitted
609 #define p4d_access_permitted(p4d, write) \
610 	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
611 #endif
612 
613 #ifndef pgd_access_permitted
614 #define pgd_access_permitted(pgd, write) \
615 	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
616 #endif
617 
618 #ifndef __HAVE_ARCH_PMD_SAME
619 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
620 {
621 	return pmd_val(pmd_a) == pmd_val(pmd_b);
622 }
623 
624 static inline int pud_same(pud_t pud_a, pud_t pud_b)
625 {
626 	return pud_val(pud_a) == pud_val(pud_b);
627 }
628 #endif
629 
630 #ifndef __HAVE_ARCH_P4D_SAME
631 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
632 {
633 	return p4d_val(p4d_a) == p4d_val(p4d_b);
634 }
635 #endif
636 
637 #ifndef __HAVE_ARCH_PGD_SAME
638 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
639 {
640 	return pgd_val(pgd_a) == pgd_val(pgd_b);
641 }
642 #endif
643 
644 /*
645  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
646  * TLB flush will be required as a result of the "set". For example, use
647  * in scenarios where it is known ahead of time that the routine is
648  * setting non-present entries, or re-setting an existing entry to the
649  * same value. Otherwise, use the typical "set" helpers and flush the
650  * TLB.
651  */
652 #define set_pte_safe(ptep, pte) \
653 ({ \
654 	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
655 	set_pte(ptep, pte); \
656 })
657 
658 #define set_pmd_safe(pmdp, pmd) \
659 ({ \
660 	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
661 	set_pmd(pmdp, pmd); \
662 })
663 
664 #define set_pud_safe(pudp, pud) \
665 ({ \
666 	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
667 	set_pud(pudp, pud); \
668 })
669 
670 #define set_p4d_safe(p4dp, p4d) \
671 ({ \
672 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
673 	set_p4d(p4dp, p4d); \
674 })
675 
676 #define set_pgd_safe(pgdp, pgd) \
677 ({ \
678 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
679 	set_pgd(pgdp, pgd); \
680 })
681 
682 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
683 /*
684  * Some architectures support metadata associated with a page. When a
685  * page is being swapped out, this metadata must be saved so it can be
686  * restored when the page is swapped back in. SPARC M7 and newer
687  * processors support an ADI (Application Data Integrity) tag for the
688  * page as metadata for the page. arch_do_swap_page() can restore this
689  * metadata when a page is swapped back in.
690  */
691 static inline void arch_do_swap_page(struct mm_struct *mm,
692 				     struct vm_area_struct *vma,
693 				     unsigned long addr,
694 				     pte_t pte, pte_t oldpte)
695 {
696 
697 }
698 #endif
699 
700 #ifndef __HAVE_ARCH_UNMAP_ONE
701 /*
702  * Some architectures support metadata associated with a page. When a
703  * page is being swapped out, this metadata must be saved so it can be
704  * restored when the page is swapped back in. SPARC M7 and newer
705  * processors support an ADI (Application Data Integrity) tag for the
706  * page as metadata for the page. arch_unmap_one() can save this
707  * metadata on a swap-out of a page.
708  */
709 static inline int arch_unmap_one(struct mm_struct *mm,
710 				  struct vm_area_struct *vma,
711 				  unsigned long addr,
712 				  pte_t orig_pte)
713 {
714 	return 0;
715 }
716 #endif
717 
718 /*
719  * Allow architectures to preserve additional metadata associated with
720  * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
721  * prototypes must be defined in the arch-specific asm/pgtable.h file.
722  */
723 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
724 static inline int arch_prepare_to_swap(struct page *page)
725 {
726 	return 0;
727 }
728 #endif
729 
730 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
731 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
732 {
733 }
734 
735 static inline void arch_swap_invalidate_area(int type)
736 {
737 }
738 #endif
739 
740 #ifndef __HAVE_ARCH_SWAP_RESTORE
741 static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
742 {
743 }
744 #endif
745 
746 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
747 #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
748 #endif
749 
750 #ifndef __HAVE_ARCH_MOVE_PTE
751 #define move_pte(pte, prot, old_addr, new_addr)	(pte)
752 #endif
753 
754 #ifndef pte_accessible
755 # define pte_accessible(mm, pte)	((void)(pte), 1)
756 #endif
757 
758 #ifndef flush_tlb_fix_spurious_fault
759 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
760 #endif
761 
762 /*
763  * When walking page tables, get the address of the next boundary,
764  * or the end address of the range if that comes earlier.  Although no
765  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
766  */
767 
768 #define pgd_addr_end(addr, end)						\
769 ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
770 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
771 })
772 
773 #ifndef p4d_addr_end
774 #define p4d_addr_end(addr, end)						\
775 ({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
776 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
777 })
778 #endif
779 
780 #ifndef pud_addr_end
781 #define pud_addr_end(addr, end)						\
782 ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
783 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
784 })
785 #endif
786 
787 #ifndef pmd_addr_end
788 #define pmd_addr_end(addr, end)						\
789 ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
790 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
791 })
792 #endif
793 
794 /*
795  * When walking page tables, we usually want to skip any p?d_none entries;
796  * and any p?d_bad entries - reporting the error before resetting to none.
797  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
798  */
799 void pgd_clear_bad(pgd_t *);
800 
801 #ifndef __PAGETABLE_P4D_FOLDED
802 void p4d_clear_bad(p4d_t *);
803 #else
804 #define p4d_clear_bad(p4d)        do { } while (0)
805 #endif
806 
807 #ifndef __PAGETABLE_PUD_FOLDED
808 void pud_clear_bad(pud_t *);
809 #else
810 #define pud_clear_bad(p4d)        do { } while (0)
811 #endif
812 
813 void pmd_clear_bad(pmd_t *);
814 
815 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
816 {
817 	if (pgd_none(*pgd))
818 		return 1;
819 	if (unlikely(pgd_bad(*pgd))) {
820 		pgd_clear_bad(pgd);
821 		return 1;
822 	}
823 	return 0;
824 }
825 
826 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
827 {
828 	if (p4d_none(*p4d))
829 		return 1;
830 	if (unlikely(p4d_bad(*p4d))) {
831 		p4d_clear_bad(p4d);
832 		return 1;
833 	}
834 	return 0;
835 }
836 
837 static inline int pud_none_or_clear_bad(pud_t *pud)
838 {
839 	if (pud_none(*pud))
840 		return 1;
841 	if (unlikely(pud_bad(*pud))) {
842 		pud_clear_bad(pud);
843 		return 1;
844 	}
845 	return 0;
846 }
847 
848 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
849 {
850 	if (pmd_none(*pmd))
851 		return 1;
852 	if (unlikely(pmd_bad(*pmd))) {
853 		pmd_clear_bad(pmd);
854 		return 1;
855 	}
856 	return 0;
857 }
858 
859 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
860 					     unsigned long addr,
861 					     pte_t *ptep)
862 {
863 	/*
864 	 * Get the current pte state, but zero it out to make it
865 	 * non-present, preventing the hardware from asynchronously
866 	 * updating it.
867 	 */
868 	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
869 }
870 
871 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
872 					     unsigned long addr,
873 					     pte_t *ptep, pte_t pte)
874 {
875 	/*
876 	 * The pte is non-present, so there's no hardware state to
877 	 * preserve.
878 	 */
879 	set_pte_at(vma->vm_mm, addr, ptep, pte);
880 }
881 
882 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
883 /*
884  * Start a pte protection read-modify-write transaction, which
885  * protects against asynchronous hardware modifications to the pte.
886  * The intention is not to prevent the hardware from making pte
887  * updates, but to prevent any updates it may make from being lost.
888  *
889  * This does not protect against other software modifications of the
890  * pte; the appropriate pte lock must be held over the transaction.
891  *
892  * Note that this interface is intended to be batchable, meaning that
893  * ptep_modify_prot_commit may not actually update the pte, but merely
894  * queue the update to be done at some later time.  The update must be
895  * actually committed before the pte lock is released, however.
896  */
897 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
898 					   unsigned long addr,
899 					   pte_t *ptep)
900 {
901 	return __ptep_modify_prot_start(vma, addr, ptep);
902 }
903 
904 /*
905  * Commit an update to a pte, leaving any hardware-controlled bits in
906  * the PTE unmodified.
907  */
908 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
909 					   unsigned long addr,
910 					   pte_t *ptep, pte_t old_pte, pte_t pte)
911 {
912 	__ptep_modify_prot_commit(vma, addr, ptep, pte);
913 }
914 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
915 #endif /* CONFIG_MMU */
916 
917 /*
918  * No-op macros that just return the current protection value. Defined here
919  * because these macros can be used even if CONFIG_MMU is not defined.
920  */
921 
922 #ifndef pgprot_nx
923 #define pgprot_nx(prot)	(prot)
924 #endif
925 
926 #ifndef pgprot_noncached
927 #define pgprot_noncached(prot)	(prot)
928 #endif
929 
930 #ifndef pgprot_writecombine
931 #define pgprot_writecombine pgprot_noncached
932 #endif
933 
934 #ifndef pgprot_writethrough
935 #define pgprot_writethrough pgprot_noncached
936 #endif
937 
938 #ifndef pgprot_device
939 #define pgprot_device pgprot_noncached
940 #endif
941 
942 #ifndef pgprot_mhp
943 #define pgprot_mhp(prot)	(prot)
944 #endif
945 
946 #ifdef CONFIG_MMU
947 #ifndef pgprot_modify
948 #define pgprot_modify pgprot_modify
949 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
950 {
951 	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
952 		newprot = pgprot_noncached(newprot);
953 	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
954 		newprot = pgprot_writecombine(newprot);
955 	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
956 		newprot = pgprot_device(newprot);
957 	return newprot;
958 }
959 #endif
960 #endif /* CONFIG_MMU */
961 
962 #ifndef pgprot_encrypted
963 #define pgprot_encrypted(prot)	(prot)
964 #endif
965 
966 #ifndef pgprot_decrypted
967 #define pgprot_decrypted(prot)	(prot)
968 #endif
969 
970 /*
971  * A facility to provide lazy MMU batching.  This allows PTE updates and
972  * page invalidations to be delayed until a call to leave lazy MMU mode
973  * is issued.  Some architectures may benefit from doing this, and it is
974  * beneficial for both shadow and direct mode hypervisors, which may batch
975  * the PTE updates which happen during this window.  Note that using this
976  * interface requires that read hazards be removed from the code.  A read
977  * hazard could result in the direct mode hypervisor case, since the actual
978  * write to the page tables may not yet have taken place, so reads though
979  * a raw PTE pointer after it has been modified are not guaranteed to be
980  * up to date.  This mode can only be entered and left under the protection of
981  * the page table locks for all page tables which may be modified.  In the UP
982  * case, this is required so that preemption is disabled, and in the SMP case,
983  * it must synchronize the delayed page table writes properly on other CPUs.
984  */
985 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
986 #define arch_enter_lazy_mmu_mode()	do {} while (0)
987 #define arch_leave_lazy_mmu_mode()	do {} while (0)
988 #define arch_flush_lazy_mmu_mode()	do {} while (0)
989 #endif
990 
991 /*
992  * A facility to provide batching of the reload of page tables and
993  * other process state with the actual context switch code for
994  * paravirtualized guests.  By convention, only one of the batched
995  * update (lazy) modes (CPU, MMU) should be active at any given time,
996  * entry should never be nested, and entry and exits should always be
997  * paired.  This is for sanity of maintaining and reasoning about the
998  * kernel code.  In this case, the exit (end of the context switch) is
999  * in architecture-specific code, and so doesn't need a generic
1000  * definition.
1001  */
1002 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1003 #define arch_start_context_switch(prev)	do {} while (0)
1004 #endif
1005 
1006 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1007 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1008 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1009 {
1010 	return pmd;
1011 }
1012 
1013 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1014 {
1015 	return 0;
1016 }
1017 
1018 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1019 {
1020 	return pmd;
1021 }
1022 #endif
1023 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1024 static inline int pte_soft_dirty(pte_t pte)
1025 {
1026 	return 0;
1027 }
1028 
1029 static inline int pmd_soft_dirty(pmd_t pmd)
1030 {
1031 	return 0;
1032 }
1033 
1034 static inline pte_t pte_mksoft_dirty(pte_t pte)
1035 {
1036 	return pte;
1037 }
1038 
1039 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1040 {
1041 	return pmd;
1042 }
1043 
1044 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1045 {
1046 	return pte;
1047 }
1048 
1049 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1050 {
1051 	return pmd;
1052 }
1053 
1054 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1055 {
1056 	return pte;
1057 }
1058 
1059 static inline int pte_swp_soft_dirty(pte_t pte)
1060 {
1061 	return 0;
1062 }
1063 
1064 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1065 {
1066 	return pte;
1067 }
1068 
1069 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1070 {
1071 	return pmd;
1072 }
1073 
1074 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1075 {
1076 	return 0;
1077 }
1078 
1079 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1080 {
1081 	return pmd;
1082 }
1083 #endif
1084 
1085 #ifndef __HAVE_PFNMAP_TRACKING
1086 /*
1087  * Interfaces that can be used by architecture code to keep track of
1088  * memory type of pfn mappings specified by the remap_pfn_range,
1089  * vmf_insert_pfn.
1090  */
1091 
1092 /*
1093  * track_pfn_remap is called when a _new_ pfn mapping is being established
1094  * by remap_pfn_range() for physical range indicated by pfn and size.
1095  */
1096 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1097 				  unsigned long pfn, unsigned long addr,
1098 				  unsigned long size)
1099 {
1100 	return 0;
1101 }
1102 
1103 /*
1104  * track_pfn_insert is called when a _new_ single pfn is established
1105  * by vmf_insert_pfn().
1106  */
1107 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1108 				    pfn_t pfn)
1109 {
1110 }
1111 
1112 /*
1113  * track_pfn_copy is called when vma that is covering the pfnmap gets
1114  * copied through copy_page_range().
1115  */
1116 static inline int track_pfn_copy(struct vm_area_struct *vma)
1117 {
1118 	return 0;
1119 }
1120 
1121 /*
1122  * untrack_pfn is called while unmapping a pfnmap for a region.
1123  * untrack can be called for a specific region indicated by pfn and size or
1124  * can be for the entire vma (in which case pfn, size are zero).
1125  */
1126 static inline void untrack_pfn(struct vm_area_struct *vma,
1127 			       unsigned long pfn, unsigned long size)
1128 {
1129 }
1130 
1131 /*
1132  * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1133  */
1134 static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1135 {
1136 }
1137 #else
1138 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1139 			   unsigned long pfn, unsigned long addr,
1140 			   unsigned long size);
1141 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1142 			     pfn_t pfn);
1143 extern int track_pfn_copy(struct vm_area_struct *vma);
1144 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1145 			unsigned long size);
1146 extern void untrack_pfn_moved(struct vm_area_struct *vma);
1147 #endif
1148 
1149 #ifdef CONFIG_MMU
1150 #ifdef __HAVE_COLOR_ZERO_PAGE
1151 static inline int is_zero_pfn(unsigned long pfn)
1152 {
1153 	extern unsigned long zero_pfn;
1154 	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1155 	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1156 }
1157 
1158 #define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
1159 
1160 #else
1161 static inline int is_zero_pfn(unsigned long pfn)
1162 {
1163 	extern unsigned long zero_pfn;
1164 	return pfn == zero_pfn;
1165 }
1166 
1167 static inline unsigned long my_zero_pfn(unsigned long addr)
1168 {
1169 	extern unsigned long zero_pfn;
1170 	return zero_pfn;
1171 }
1172 #endif
1173 #else
1174 static inline int is_zero_pfn(unsigned long pfn)
1175 {
1176 	return 0;
1177 }
1178 
1179 static inline unsigned long my_zero_pfn(unsigned long addr)
1180 {
1181 	return 0;
1182 }
1183 #endif /* CONFIG_MMU */
1184 
1185 #ifdef CONFIG_MMU
1186 
1187 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
1188 static inline int pmd_trans_huge(pmd_t pmd)
1189 {
1190 	return 0;
1191 }
1192 #ifndef pmd_write
1193 static inline int pmd_write(pmd_t pmd)
1194 {
1195 	BUG();
1196 	return 0;
1197 }
1198 #endif /* pmd_write */
1199 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1200 
1201 #ifndef pud_write
1202 static inline int pud_write(pud_t pud)
1203 {
1204 	BUG();
1205 	return 0;
1206 }
1207 #endif /* pud_write */
1208 
1209 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1210 static inline int pmd_devmap(pmd_t pmd)
1211 {
1212 	return 0;
1213 }
1214 static inline int pud_devmap(pud_t pud)
1215 {
1216 	return 0;
1217 }
1218 static inline int pgd_devmap(pgd_t pgd)
1219 {
1220 	return 0;
1221 }
1222 #endif
1223 
1224 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1225 	(defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1226 	 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
1227 static inline int pud_trans_huge(pud_t pud)
1228 {
1229 	return 0;
1230 }
1231 #endif
1232 
1233 /* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
1234 static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1235 {
1236 	pud_t pudval = READ_ONCE(*pud);
1237 
1238 	if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1239 		return 1;
1240 	if (unlikely(pud_bad(pudval))) {
1241 		pud_clear_bad(pud);
1242 		return 1;
1243 	}
1244 	return 0;
1245 }
1246 
1247 /* See pmd_trans_unstable for discussion. */
1248 static inline int pud_trans_unstable(pud_t *pud)
1249 {
1250 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
1251 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1252 	return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1253 #else
1254 	return 0;
1255 #endif
1256 }
1257 
1258 #ifndef pmd_read_atomic
1259 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1260 {
1261 	/*
1262 	 * Depend on compiler for an atomic pmd read. NOTE: this is
1263 	 * only going to work, if the pmdval_t isn't larger than
1264 	 * an unsigned long.
1265 	 */
1266 	return *pmdp;
1267 }
1268 #endif
1269 
1270 #ifndef arch_needs_pgtable_deposit
1271 #define arch_needs_pgtable_deposit() (false)
1272 #endif
1273 /*
1274  * This function is meant to be used by sites walking pagetables with
1275  * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1276  * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1277  * into a null pmd and the transhuge page fault can convert a null pmd
1278  * into an hugepmd or into a regular pmd (if the hugepage allocation
1279  * fails). While holding the mmap_lock in read mode the pmd becomes
1280  * stable and stops changing under us only if it's not null and not a
1281  * transhuge pmd. When those races occurs and this function makes a
1282  * difference vs the standard pmd_none_or_clear_bad, the result is
1283  * undefined so behaving like if the pmd was none is safe (because it
1284  * can return none anyway). The compiler level barrier() is critically
1285  * important to compute the two checks atomically on the same pmdval.
1286  *
1287  * For 32bit kernels with a 64bit large pmd_t this automatically takes
1288  * care of reading the pmd atomically to avoid SMP race conditions
1289  * against pmd_populate() when the mmap_lock is hold for reading by the
1290  * caller (a special atomic read not done by "gcc" as in the generic
1291  * version above, is also needed when THP is disabled because the page
1292  * fault can populate the pmd from under us).
1293  */
1294 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1295 {
1296 	pmd_t pmdval = pmd_read_atomic(pmd);
1297 	/*
1298 	 * The barrier will stabilize the pmdval in a register or on
1299 	 * the stack so that it will stop changing under the code.
1300 	 *
1301 	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1302 	 * pmd_read_atomic is allowed to return a not atomic pmdval
1303 	 * (for example pointing to an hugepage that has never been
1304 	 * mapped in the pmd). The below checks will only care about
1305 	 * the low part of the pmd with 32bit PAE x86 anyway, with the
1306 	 * exception of pmd_none(). So the important thing is that if
1307 	 * the low part of the pmd is found null, the high part will
1308 	 * be also null or the pmd_none() check below would be
1309 	 * confused.
1310 	 */
1311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1312 	barrier();
1313 #endif
1314 	/*
1315 	 * !pmd_present() checks for pmd migration entries
1316 	 *
1317 	 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1318 	 * But using that requires moving current function and pmd_trans_unstable()
1319 	 * to linux/swapops.h to resolve dependency, which is too much code move.
1320 	 *
1321 	 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1322 	 * because !pmd_present() pages can only be under migration not swapped
1323 	 * out.
1324 	 *
1325 	 * pmd_none() is preserved for future condition checks on pmd migration
1326 	 * entries and not confusing with this function name, although it is
1327 	 * redundant with !pmd_present().
1328 	 */
1329 	if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1330 		(IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1331 		return 1;
1332 	if (unlikely(pmd_bad(pmdval))) {
1333 		pmd_clear_bad(pmd);
1334 		return 1;
1335 	}
1336 	return 0;
1337 }
1338 
1339 /*
1340  * This is a noop if Transparent Hugepage Support is not built into
1341  * the kernel. Otherwise it is equivalent to
1342  * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1343  * places that already verified the pmd is not none and they want to
1344  * walk ptes while holding the mmap sem in read mode (write mode don't
1345  * need this). If THP is not enabled, the pmd can't go away under the
1346  * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1347  * run a pmd_trans_unstable before walking the ptes after
1348  * split_huge_pmd returns (because it may have run when the pmd become
1349  * null, but then a page fault can map in a THP and not a regular page).
1350  */
1351 static inline int pmd_trans_unstable(pmd_t *pmd)
1352 {
1353 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1354 	return pmd_none_or_trans_huge_or_clear_bad(pmd);
1355 #else
1356 	return 0;
1357 #endif
1358 }
1359 
1360 /*
1361  * the ordering of these checks is important for pmds with _page_devmap set.
1362  * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
1363  * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
1364  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
1365  */
1366 static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
1367 {
1368 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
1369 }
1370 
1371 #ifndef CONFIG_NUMA_BALANCING
1372 /*
1373  * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1374  * the only case the kernel cares is for NUMA balancing and is only ever set
1375  * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1376  * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1377  * is the responsibility of the caller to distinguish between PROT_NONE
1378  * protections and NUMA hinting fault protections.
1379  */
1380 static inline int pte_protnone(pte_t pte)
1381 {
1382 	return 0;
1383 }
1384 
1385 static inline int pmd_protnone(pmd_t pmd)
1386 {
1387 	return 0;
1388 }
1389 #endif /* CONFIG_NUMA_BALANCING */
1390 
1391 #endif /* CONFIG_MMU */
1392 
1393 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1394 
1395 #ifndef __PAGETABLE_P4D_FOLDED
1396 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1397 int p4d_clear_huge(p4d_t *p4d);
1398 #else
1399 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1400 {
1401 	return 0;
1402 }
1403 static inline int p4d_clear_huge(p4d_t *p4d)
1404 {
1405 	return 0;
1406 }
1407 #endif /* !__PAGETABLE_P4D_FOLDED */
1408 
1409 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1410 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1411 int pud_clear_huge(pud_t *pud);
1412 int pmd_clear_huge(pmd_t *pmd);
1413 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1414 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1415 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1416 #else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1417 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1418 {
1419 	return 0;
1420 }
1421 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1422 {
1423 	return 0;
1424 }
1425 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1426 {
1427 	return 0;
1428 }
1429 static inline int p4d_clear_huge(p4d_t *p4d)
1430 {
1431 	return 0;
1432 }
1433 static inline int pud_clear_huge(pud_t *pud)
1434 {
1435 	return 0;
1436 }
1437 static inline int pmd_clear_huge(pmd_t *pmd)
1438 {
1439 	return 0;
1440 }
1441 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1442 {
1443 	return 0;
1444 }
1445 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1446 {
1447 	return 0;
1448 }
1449 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1450 {
1451 	return 0;
1452 }
1453 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
1454 
1455 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1456 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1457 /*
1458  * ARCHes with special requirements for evicting THP backing TLB entries can
1459  * implement this. Otherwise also, it can help optimize normal TLB flush in
1460  * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1461  * entire TLB if flush span is greater than a threshold, which will
1462  * likely be true for a single huge page. Thus a single THP flush will
1463  * invalidate the entire TLB which is not desirable.
1464  * e.g. see arch/arc: flush_pmd_tlb_range
1465  */
1466 #define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1467 #define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1468 #else
1469 #define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
1470 #define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
1471 #endif
1472 #endif
1473 
1474 struct file;
1475 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1476 			unsigned long size, pgprot_t *vma_prot);
1477 
1478 #ifndef CONFIG_X86_ESPFIX64
1479 static inline void init_espfix_bsp(void) { }
1480 #endif
1481 
1482 extern void __init pgtable_cache_init(void);
1483 
1484 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1485 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1486 {
1487 	return true;
1488 }
1489 
1490 static inline bool arch_has_pfn_modify_check(void)
1491 {
1492 	return false;
1493 }
1494 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1495 
1496 /*
1497  * Architecture PAGE_KERNEL_* fallbacks
1498  *
1499  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1500  * because they really don't support them, or the port needs to be updated to
1501  * reflect the required functionality. Below are a set of relatively safe
1502  * fallbacks, as best effort, which we can count on in lieu of the architectures
1503  * not defining them on their own yet.
1504  */
1505 
1506 #ifndef PAGE_KERNEL_RO
1507 # define PAGE_KERNEL_RO PAGE_KERNEL
1508 #endif
1509 
1510 #ifndef PAGE_KERNEL_EXEC
1511 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1512 #endif
1513 
1514 /*
1515  * Page Table Modification bits for pgtbl_mod_mask.
1516  *
1517  * These are used by the p?d_alloc_track*() set of functions an in the generic
1518  * vmalloc/ioremap code to track at which page-table levels entries have been
1519  * modified. Based on that the code can better decide when vmalloc and ioremap
1520  * mapping changes need to be synchronized to other page-tables in the system.
1521  */
1522 #define		__PGTBL_PGD_MODIFIED	0
1523 #define		__PGTBL_P4D_MODIFIED	1
1524 #define		__PGTBL_PUD_MODIFIED	2
1525 #define		__PGTBL_PMD_MODIFIED	3
1526 #define		__PGTBL_PTE_MODIFIED	4
1527 
1528 #define		PGTBL_PGD_MODIFIED	BIT(__PGTBL_PGD_MODIFIED)
1529 #define		PGTBL_P4D_MODIFIED	BIT(__PGTBL_P4D_MODIFIED)
1530 #define		PGTBL_PUD_MODIFIED	BIT(__PGTBL_PUD_MODIFIED)
1531 #define		PGTBL_PMD_MODIFIED	BIT(__PGTBL_PMD_MODIFIED)
1532 #define		PGTBL_PTE_MODIFIED	BIT(__PGTBL_PTE_MODIFIED)
1533 
1534 /* Page-Table Modification Mask */
1535 typedef unsigned int pgtbl_mod_mask;
1536 
1537 #endif /* !__ASSEMBLY__ */
1538 
1539 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1540 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1541 /*
1542  * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1543  * with physical address space extension, but falls back to
1544  * BITS_PER_LONG otherwise.
1545  */
1546 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1547 #else
1548 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1549 #endif
1550 #endif
1551 
1552 #ifndef has_transparent_hugepage
1553 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1554 #define has_transparent_hugepage() 1
1555 #else
1556 #define has_transparent_hugepage() 0
1557 #endif
1558 #endif
1559 
1560 /*
1561  * On some architectures it depends on the mm if the p4d/pud or pmd
1562  * layer of the page table hierarchy is folded or not.
1563  */
1564 #ifndef mm_p4d_folded
1565 #define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
1566 #endif
1567 
1568 #ifndef mm_pud_folded
1569 #define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
1570 #endif
1571 
1572 #ifndef mm_pmd_folded
1573 #define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
1574 #endif
1575 
1576 #ifndef p4d_offset_lockless
1577 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1578 #endif
1579 #ifndef pud_offset_lockless
1580 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1581 #endif
1582 #ifndef pmd_offset_lockless
1583 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1584 #endif
1585 
1586 /*
1587  * p?d_leaf() - true if this entry is a final mapping to a physical address.
1588  * This differs from p?d_huge() by the fact that they are always available (if
1589  * the architecture supports large pages at the appropriate level) even
1590  * if CONFIG_HUGETLB_PAGE is not defined.
1591  * Only meaningful when called on a valid entry.
1592  */
1593 #ifndef pgd_leaf
1594 #define pgd_leaf(x)	0
1595 #endif
1596 #ifndef p4d_leaf
1597 #define p4d_leaf(x)	0
1598 #endif
1599 #ifndef pud_leaf
1600 #define pud_leaf(x)	0
1601 #endif
1602 #ifndef pmd_leaf
1603 #define pmd_leaf(x)	0
1604 #endif
1605 
1606 #ifndef pgd_leaf_size
1607 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1608 #endif
1609 #ifndef p4d_leaf_size
1610 #define p4d_leaf_size(x) P4D_SIZE
1611 #endif
1612 #ifndef pud_leaf_size
1613 #define pud_leaf_size(x) PUD_SIZE
1614 #endif
1615 #ifndef pmd_leaf_size
1616 #define pmd_leaf_size(x) PMD_SIZE
1617 #endif
1618 #ifndef pte_leaf_size
1619 #define pte_leaf_size(x) PAGE_SIZE
1620 #endif
1621 
1622 /*
1623  * Some architectures have MMUs that are configurable or selectable at boot
1624  * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1625  * helps to have a static maximum value.
1626  */
1627 
1628 #ifndef MAX_PTRS_PER_PTE
1629 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1630 #endif
1631 
1632 #ifndef MAX_PTRS_PER_PMD
1633 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1634 #endif
1635 
1636 #ifndef MAX_PTRS_PER_PUD
1637 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1638 #endif
1639 
1640 #ifndef MAX_PTRS_PER_P4D
1641 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1642 #endif
1643 
1644 #endif /* _LINUX_PGTABLE_H */
1645