xref: /linux/include/linux/pgtable.h (revision 6c8c1406)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4 
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7 
8 #ifndef __ASSEMBLY__
9 #ifdef CONFIG_MMU
10 
11 #include <linux/mm_types.h>
12 #include <linux/bug.h>
13 #include <linux/errno.h>
14 #include <asm-generic/pgtable_uffd.h>
15 #include <linux/page_table_check.h>
16 
17 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
18 	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
19 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
20 #endif
21 
22 /*
23  * On almost all architectures and configurations, 0 can be used as the
24  * upper ceiling to free_pgtables(): on many architectures it has the same
25  * effect as using TASK_SIZE.  However, there is one configuration which
26  * must impose a more careful limit, to avoid freeing kernel pgtables.
27  */
28 #ifndef USER_PGTABLES_CEILING
29 #define USER_PGTABLES_CEILING	0UL
30 #endif
31 
32 /*
33  * This defines the first usable user address. Platforms
34  * can override its value with custom FIRST_USER_ADDRESS
35  * defined in their respective <asm/pgtable.h>.
36  */
37 #ifndef FIRST_USER_ADDRESS
38 #define FIRST_USER_ADDRESS	0UL
39 #endif
40 
41 /*
42  * This defines the generic helper for accessing PMD page
43  * table page. Although platforms can still override this
44  * via their respective <asm/pgtable.h>.
45  */
46 #ifndef pmd_pgtable
47 #define pmd_pgtable(pmd) pmd_page(pmd)
48 #endif
49 
50 /*
51  * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
52  *
53  * The pXx_index() functions return the index of the entry in the page
54  * table page which would control the given virtual address
55  *
56  * As these functions may be used by the same code for different levels of
57  * the page table folding, they are always available, regardless of
58  * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
59  * because in such cases PTRS_PER_PxD equals 1.
60  */
61 
62 static inline unsigned long pte_index(unsigned long address)
63 {
64 	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
65 }
66 #define pte_index pte_index
67 
68 #ifndef pmd_index
69 static inline unsigned long pmd_index(unsigned long address)
70 {
71 	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
72 }
73 #define pmd_index pmd_index
74 #endif
75 
76 #ifndef pud_index
77 static inline unsigned long pud_index(unsigned long address)
78 {
79 	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
80 }
81 #define pud_index pud_index
82 #endif
83 
84 #ifndef pgd_index
85 /* Must be a compile-time constant, so implement it as a macro */
86 #define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
87 #endif
88 
89 #ifndef pte_offset_kernel
90 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
91 {
92 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
93 }
94 #define pte_offset_kernel pte_offset_kernel
95 #endif
96 
97 #if defined(CONFIG_HIGHPTE)
98 #define pte_offset_map(dir, address)				\
99 	((pte_t *)kmap_atomic(pmd_page(*(dir))) +		\
100 	 pte_index((address)))
101 #define pte_unmap(pte) kunmap_atomic((pte))
102 #else
103 #define pte_offset_map(dir, address)	pte_offset_kernel((dir), (address))
104 #define pte_unmap(pte) ((void)(pte))	/* NOP */
105 #endif
106 
107 /* Find an entry in the second-level page table.. */
108 #ifndef pmd_offset
109 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
110 {
111 	return pud_pgtable(*pud) + pmd_index(address);
112 }
113 #define pmd_offset pmd_offset
114 #endif
115 
116 #ifndef pud_offset
117 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
118 {
119 	return p4d_pgtable(*p4d) + pud_index(address);
120 }
121 #define pud_offset pud_offset
122 #endif
123 
124 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
125 {
126 	return (pgd + pgd_index(address));
127 };
128 
129 /*
130  * a shortcut to get a pgd_t in a given mm
131  */
132 #ifndef pgd_offset
133 #define pgd_offset(mm, address)		pgd_offset_pgd((mm)->pgd, (address))
134 #endif
135 
136 /*
137  * a shortcut which implies the use of the kernel's pgd, instead
138  * of a process's
139  */
140 #ifndef pgd_offset_k
141 #define pgd_offset_k(address)		pgd_offset(&init_mm, (address))
142 #endif
143 
144 /*
145  * In many cases it is known that a virtual address is mapped at PMD or PTE
146  * level, so instead of traversing all the page table levels, we can get a
147  * pointer to the PMD entry in user or kernel page table or translate a virtual
148  * address to the pointer in the PTE in the kernel page tables with simple
149  * helpers.
150  */
151 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
152 {
153 	return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
154 }
155 
156 static inline pmd_t *pmd_off_k(unsigned long va)
157 {
158 	return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
159 }
160 
161 static inline pte_t *virt_to_kpte(unsigned long vaddr)
162 {
163 	pmd_t *pmd = pmd_off_k(vaddr);
164 
165 	return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
166 }
167 
168 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
169 extern int ptep_set_access_flags(struct vm_area_struct *vma,
170 				 unsigned long address, pte_t *ptep,
171 				 pte_t entry, int dirty);
172 #endif
173 
174 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
175 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
176 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
177 				 unsigned long address, pmd_t *pmdp,
178 				 pmd_t entry, int dirty);
179 extern int pudp_set_access_flags(struct vm_area_struct *vma,
180 				 unsigned long address, pud_t *pudp,
181 				 pud_t entry, int dirty);
182 #else
183 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
184 					unsigned long address, pmd_t *pmdp,
185 					pmd_t entry, int dirty)
186 {
187 	BUILD_BUG();
188 	return 0;
189 }
190 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
191 					unsigned long address, pud_t *pudp,
192 					pud_t entry, int dirty)
193 {
194 	BUILD_BUG();
195 	return 0;
196 }
197 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
198 #endif
199 
200 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
201 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
202 					    unsigned long address,
203 					    pte_t *ptep)
204 {
205 	pte_t pte = *ptep;
206 	int r = 1;
207 	if (!pte_young(pte))
208 		r = 0;
209 	else
210 		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
211 	return r;
212 }
213 #endif
214 
215 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
216 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
217 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
218 					    unsigned long address,
219 					    pmd_t *pmdp)
220 {
221 	pmd_t pmd = *pmdp;
222 	int r = 1;
223 	if (!pmd_young(pmd))
224 		r = 0;
225 	else
226 		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
227 	return r;
228 }
229 #else
230 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
231 					    unsigned long address,
232 					    pmd_t *pmdp)
233 {
234 	BUILD_BUG();
235 	return 0;
236 }
237 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
238 #endif
239 
240 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
241 int ptep_clear_flush_young(struct vm_area_struct *vma,
242 			   unsigned long address, pte_t *ptep);
243 #endif
244 
245 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
246 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
247 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
248 				  unsigned long address, pmd_t *pmdp);
249 #else
250 /*
251  * Despite relevant to THP only, this API is called from generic rmap code
252  * under PageTransHuge(), hence needs a dummy implementation for !THP
253  */
254 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
255 					 unsigned long address, pmd_t *pmdp)
256 {
257 	BUILD_BUG();
258 	return 0;
259 }
260 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
261 #endif
262 
263 #ifndef arch_has_hw_pte_young
264 /*
265  * Return whether the accessed bit is supported on the local CPU.
266  *
267  * This stub assumes accessing through an old PTE triggers a page fault.
268  * Architectures that automatically set the access bit should overwrite it.
269  */
270 static inline bool arch_has_hw_pte_young(void)
271 {
272 	return false;
273 }
274 #endif
275 
276 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
277 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
278 				       unsigned long address,
279 				       pte_t *ptep)
280 {
281 	pte_t pte = *ptep;
282 	pte_clear(mm, address, ptep);
283 	page_table_check_pte_clear(mm, address, pte);
284 	return pte;
285 }
286 #endif
287 
288 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
289 			      pte_t *ptep)
290 {
291 	ptep_get_and_clear(mm, addr, ptep);
292 }
293 
294 #ifndef __HAVE_ARCH_PTEP_GET
295 static inline pte_t ptep_get(pte_t *ptep)
296 {
297 	return READ_ONCE(*ptep);
298 }
299 #endif
300 
301 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
302 /*
303  * WARNING: only to be used in the get_user_pages_fast() implementation.
304  *
305  * With get_user_pages_fast(), we walk down the pagetables without taking any
306  * locks.  For this we would like to load the pointers atomically, but sometimes
307  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
308  * we do have is the guarantee that a PTE will only either go from not present
309  * to present, or present to not present or both -- it will not switch to a
310  * completely different present page without a TLB flush in between; something
311  * that we are blocking by holding interrupts off.
312  *
313  * Setting ptes from not present to present goes:
314  *
315  *   ptep->pte_high = h;
316  *   smp_wmb();
317  *   ptep->pte_low = l;
318  *
319  * And present to not present goes:
320  *
321  *   ptep->pte_low = 0;
322  *   smp_wmb();
323  *   ptep->pte_high = 0;
324  *
325  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
326  * We load pte_high *after* loading pte_low, which ensures we don't see an older
327  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
328  * picked up a changed pte high. We might have gotten rubbish values from
329  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
330  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
331  * operates on present ptes we're safe.
332  */
333 static inline pte_t ptep_get_lockless(pte_t *ptep)
334 {
335 	pte_t pte;
336 
337 	do {
338 		pte.pte_low = ptep->pte_low;
339 		smp_rmb();
340 		pte.pte_high = ptep->pte_high;
341 		smp_rmb();
342 	} while (unlikely(pte.pte_low != ptep->pte_low));
343 
344 	return pte;
345 }
346 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
347 /*
348  * We require that the PTE can be read atomically.
349  */
350 static inline pte_t ptep_get_lockless(pte_t *ptep)
351 {
352 	return ptep_get(ptep);
353 }
354 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
355 
356 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
357 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
358 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
359 					    unsigned long address,
360 					    pmd_t *pmdp)
361 {
362 	pmd_t pmd = *pmdp;
363 
364 	pmd_clear(pmdp);
365 	page_table_check_pmd_clear(mm, address, pmd);
366 
367 	return pmd;
368 }
369 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
370 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
371 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
372 					    unsigned long address,
373 					    pud_t *pudp)
374 {
375 	pud_t pud = *pudp;
376 
377 	pud_clear(pudp);
378 	page_table_check_pud_clear(mm, address, pud);
379 
380 	return pud;
381 }
382 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
383 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
384 
385 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
386 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
387 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
388 					    unsigned long address, pmd_t *pmdp,
389 					    int full)
390 {
391 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
392 }
393 #endif
394 
395 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
396 static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
397 					    unsigned long address, pud_t *pudp,
398 					    int full)
399 {
400 	return pudp_huge_get_and_clear(mm, address, pudp);
401 }
402 #endif
403 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
404 
405 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
406 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
407 					    unsigned long address, pte_t *ptep,
408 					    int full)
409 {
410 	pte_t pte;
411 	pte = ptep_get_and_clear(mm, address, ptep);
412 	return pte;
413 }
414 #endif
415 
416 
417 /*
418  * If two threads concurrently fault at the same page, the thread that
419  * won the race updates the PTE and its local TLB/Cache. The other thread
420  * gives up, simply does nothing, and continues; on architectures where
421  * software can update TLB,  local TLB can be updated here to avoid next page
422  * fault. This function updates TLB only, do nothing with cache or others.
423  * It is the difference with function update_mmu_cache.
424  */
425 #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
426 static inline void update_mmu_tlb(struct vm_area_struct *vma,
427 				unsigned long address, pte_t *ptep)
428 {
429 }
430 #define __HAVE_ARCH_UPDATE_MMU_TLB
431 #endif
432 
433 /*
434  * Some architectures may be able to avoid expensive synchronization
435  * primitives when modifications are made to PTE's which are already
436  * not present, or in the process of an address space destruction.
437  */
438 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
439 static inline void pte_clear_not_present_full(struct mm_struct *mm,
440 					      unsigned long address,
441 					      pte_t *ptep,
442 					      int full)
443 {
444 	pte_clear(mm, address, ptep);
445 }
446 #endif
447 
448 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
449 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
450 			      unsigned long address,
451 			      pte_t *ptep);
452 #endif
453 
454 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
455 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
456 			      unsigned long address,
457 			      pmd_t *pmdp);
458 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
459 			      unsigned long address,
460 			      pud_t *pudp);
461 #endif
462 
463 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
464 struct mm_struct;
465 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
466 {
467 	pte_t old_pte = *ptep;
468 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
469 }
470 #endif
471 
472 /*
473  * On some architectures hardware does not set page access bit when accessing
474  * memory page, it is responsibility of software setting this bit. It brings
475  * out extra page fault penalty to track page access bit. For optimization page
476  * access bit can be set during all page fault flow on these arches.
477  * To be differentiate with macro pte_mkyoung, this macro is used on platforms
478  * where software maintains page access bit.
479  */
480 #ifndef pte_sw_mkyoung
481 static inline pte_t pte_sw_mkyoung(pte_t pte)
482 {
483 	return pte;
484 }
485 #define pte_sw_mkyoung	pte_sw_mkyoung
486 #endif
487 
488 #ifndef pte_savedwrite
489 #define pte_savedwrite pte_write
490 #endif
491 
492 #ifndef pte_mk_savedwrite
493 #define pte_mk_savedwrite pte_mkwrite
494 #endif
495 
496 #ifndef pte_clear_savedwrite
497 #define pte_clear_savedwrite pte_wrprotect
498 #endif
499 
500 #ifndef pmd_savedwrite
501 #define pmd_savedwrite pmd_write
502 #endif
503 
504 #ifndef pmd_mk_savedwrite
505 #define pmd_mk_savedwrite pmd_mkwrite
506 #endif
507 
508 #ifndef pmd_clear_savedwrite
509 #define pmd_clear_savedwrite pmd_wrprotect
510 #endif
511 
512 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
514 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
515 				      unsigned long address, pmd_t *pmdp)
516 {
517 	pmd_t old_pmd = *pmdp;
518 	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
519 }
520 #else
521 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
522 				      unsigned long address, pmd_t *pmdp)
523 {
524 	BUILD_BUG();
525 }
526 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
527 #endif
528 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
529 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
530 static inline void pudp_set_wrprotect(struct mm_struct *mm,
531 				      unsigned long address, pud_t *pudp)
532 {
533 	pud_t old_pud = *pudp;
534 
535 	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
536 }
537 #else
538 static inline void pudp_set_wrprotect(struct mm_struct *mm,
539 				      unsigned long address, pud_t *pudp)
540 {
541 	BUILD_BUG();
542 }
543 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
544 #endif
545 
546 #ifndef pmdp_collapse_flush
547 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
548 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
549 				 unsigned long address, pmd_t *pmdp);
550 #else
551 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
552 					unsigned long address,
553 					pmd_t *pmdp)
554 {
555 	BUILD_BUG();
556 	return *pmdp;
557 }
558 #define pmdp_collapse_flush pmdp_collapse_flush
559 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
560 #endif
561 
562 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
563 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
564 				       pgtable_t pgtable);
565 #endif
566 
567 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
568 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
569 #endif
570 
571 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
572 /*
573  * This is an implementation of pmdp_establish() that is only suitable for an
574  * architecture that doesn't have hardware dirty/accessed bits. In this case we
575  * can't race with CPU which sets these bits and non-atomic approach is fine.
576  */
577 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
578 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
579 {
580 	pmd_t old_pmd = *pmdp;
581 	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
582 	return old_pmd;
583 }
584 #endif
585 
586 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
587 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
588 			    pmd_t *pmdp);
589 #endif
590 
591 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
592 
593 /*
594  * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
595  * hugepage mapping in the page tables. This function is similar to
596  * pmdp_invalidate(), but should only be used if the access and dirty bits would
597  * not be cleared by the software in the new PMD value. The function ensures
598  * that hardware changes of the access and dirty bits updates would not be lost.
599  *
600  * Doing so can allow in certain architectures to avoid a TLB flush in most
601  * cases. Yet, another TLB flush might be necessary later if the PMD update
602  * itself requires such flush (e.g., if protection was set to be stricter). Yet,
603  * even when a TLB flush is needed because of the update, the caller may be able
604  * to batch these TLB flushing operations, so fewer TLB flush operations are
605  * needed.
606  */
607 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
608 				unsigned long address, pmd_t *pmdp);
609 #endif
610 
611 #ifndef __HAVE_ARCH_PTE_SAME
612 static inline int pte_same(pte_t pte_a, pte_t pte_b)
613 {
614 	return pte_val(pte_a) == pte_val(pte_b);
615 }
616 #endif
617 
618 #ifndef __HAVE_ARCH_PTE_UNUSED
619 /*
620  * Some architectures provide facilities to virtualization guests
621  * so that they can flag allocated pages as unused. This allows the
622  * host to transparently reclaim unused pages. This function returns
623  * whether the pte's page is unused.
624  */
625 static inline int pte_unused(pte_t pte)
626 {
627 	return 0;
628 }
629 #endif
630 
631 #ifndef pte_access_permitted
632 #define pte_access_permitted(pte, write) \
633 	(pte_present(pte) && (!(write) || pte_write(pte)))
634 #endif
635 
636 #ifndef pmd_access_permitted
637 #define pmd_access_permitted(pmd, write) \
638 	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
639 #endif
640 
641 #ifndef pud_access_permitted
642 #define pud_access_permitted(pud, write) \
643 	(pud_present(pud) && (!(write) || pud_write(pud)))
644 #endif
645 
646 #ifndef p4d_access_permitted
647 #define p4d_access_permitted(p4d, write) \
648 	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
649 #endif
650 
651 #ifndef pgd_access_permitted
652 #define pgd_access_permitted(pgd, write) \
653 	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
654 #endif
655 
656 #ifndef __HAVE_ARCH_PMD_SAME
657 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
658 {
659 	return pmd_val(pmd_a) == pmd_val(pmd_b);
660 }
661 
662 static inline int pud_same(pud_t pud_a, pud_t pud_b)
663 {
664 	return pud_val(pud_a) == pud_val(pud_b);
665 }
666 #endif
667 
668 #ifndef __HAVE_ARCH_P4D_SAME
669 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
670 {
671 	return p4d_val(p4d_a) == p4d_val(p4d_b);
672 }
673 #endif
674 
675 #ifndef __HAVE_ARCH_PGD_SAME
676 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
677 {
678 	return pgd_val(pgd_a) == pgd_val(pgd_b);
679 }
680 #endif
681 
682 /*
683  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
684  * TLB flush will be required as a result of the "set". For example, use
685  * in scenarios where it is known ahead of time that the routine is
686  * setting non-present entries, or re-setting an existing entry to the
687  * same value. Otherwise, use the typical "set" helpers and flush the
688  * TLB.
689  */
690 #define set_pte_safe(ptep, pte) \
691 ({ \
692 	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
693 	set_pte(ptep, pte); \
694 })
695 
696 #define set_pmd_safe(pmdp, pmd) \
697 ({ \
698 	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
699 	set_pmd(pmdp, pmd); \
700 })
701 
702 #define set_pud_safe(pudp, pud) \
703 ({ \
704 	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
705 	set_pud(pudp, pud); \
706 })
707 
708 #define set_p4d_safe(p4dp, p4d) \
709 ({ \
710 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
711 	set_p4d(p4dp, p4d); \
712 })
713 
714 #define set_pgd_safe(pgdp, pgd) \
715 ({ \
716 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
717 	set_pgd(pgdp, pgd); \
718 })
719 
720 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
721 /*
722  * Some architectures support metadata associated with a page. When a
723  * page is being swapped out, this metadata must be saved so it can be
724  * restored when the page is swapped back in. SPARC M7 and newer
725  * processors support an ADI (Application Data Integrity) tag for the
726  * page as metadata for the page. arch_do_swap_page() can restore this
727  * metadata when a page is swapped back in.
728  */
729 static inline void arch_do_swap_page(struct mm_struct *mm,
730 				     struct vm_area_struct *vma,
731 				     unsigned long addr,
732 				     pte_t pte, pte_t oldpte)
733 {
734 
735 }
736 #endif
737 
738 #ifndef __HAVE_ARCH_UNMAP_ONE
739 /*
740  * Some architectures support metadata associated with a page. When a
741  * page is being swapped out, this metadata must be saved so it can be
742  * restored when the page is swapped back in. SPARC M7 and newer
743  * processors support an ADI (Application Data Integrity) tag for the
744  * page as metadata for the page. arch_unmap_one() can save this
745  * metadata on a swap-out of a page.
746  */
747 static inline int arch_unmap_one(struct mm_struct *mm,
748 				  struct vm_area_struct *vma,
749 				  unsigned long addr,
750 				  pte_t orig_pte)
751 {
752 	return 0;
753 }
754 #endif
755 
756 /*
757  * Allow architectures to preserve additional metadata associated with
758  * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
759  * prototypes must be defined in the arch-specific asm/pgtable.h file.
760  */
761 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
762 static inline int arch_prepare_to_swap(struct page *page)
763 {
764 	return 0;
765 }
766 #endif
767 
768 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
769 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
770 {
771 }
772 
773 static inline void arch_swap_invalidate_area(int type)
774 {
775 }
776 #endif
777 
778 #ifndef __HAVE_ARCH_SWAP_RESTORE
779 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
780 {
781 }
782 #endif
783 
784 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
785 #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
786 #endif
787 
788 #ifndef __HAVE_ARCH_MOVE_PTE
789 #define move_pte(pte, prot, old_addr, new_addr)	(pte)
790 #endif
791 
792 #ifndef pte_accessible
793 # define pte_accessible(mm, pte)	((void)(pte), 1)
794 #endif
795 
796 #ifndef flush_tlb_fix_spurious_fault
797 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
798 #endif
799 
800 /*
801  * When walking page tables, get the address of the next boundary,
802  * or the end address of the range if that comes earlier.  Although no
803  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
804  */
805 
806 #define pgd_addr_end(addr, end)						\
807 ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
808 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
809 })
810 
811 #ifndef p4d_addr_end
812 #define p4d_addr_end(addr, end)						\
813 ({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
814 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
815 })
816 #endif
817 
818 #ifndef pud_addr_end
819 #define pud_addr_end(addr, end)						\
820 ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
821 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
822 })
823 #endif
824 
825 #ifndef pmd_addr_end
826 #define pmd_addr_end(addr, end)						\
827 ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
828 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
829 })
830 #endif
831 
832 /*
833  * When walking page tables, we usually want to skip any p?d_none entries;
834  * and any p?d_bad entries - reporting the error before resetting to none.
835  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
836  */
837 void pgd_clear_bad(pgd_t *);
838 
839 #ifndef __PAGETABLE_P4D_FOLDED
840 void p4d_clear_bad(p4d_t *);
841 #else
842 #define p4d_clear_bad(p4d)        do { } while (0)
843 #endif
844 
845 #ifndef __PAGETABLE_PUD_FOLDED
846 void pud_clear_bad(pud_t *);
847 #else
848 #define pud_clear_bad(p4d)        do { } while (0)
849 #endif
850 
851 void pmd_clear_bad(pmd_t *);
852 
853 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
854 {
855 	if (pgd_none(*pgd))
856 		return 1;
857 	if (unlikely(pgd_bad(*pgd))) {
858 		pgd_clear_bad(pgd);
859 		return 1;
860 	}
861 	return 0;
862 }
863 
864 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
865 {
866 	if (p4d_none(*p4d))
867 		return 1;
868 	if (unlikely(p4d_bad(*p4d))) {
869 		p4d_clear_bad(p4d);
870 		return 1;
871 	}
872 	return 0;
873 }
874 
875 static inline int pud_none_or_clear_bad(pud_t *pud)
876 {
877 	if (pud_none(*pud))
878 		return 1;
879 	if (unlikely(pud_bad(*pud))) {
880 		pud_clear_bad(pud);
881 		return 1;
882 	}
883 	return 0;
884 }
885 
886 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
887 {
888 	if (pmd_none(*pmd))
889 		return 1;
890 	if (unlikely(pmd_bad(*pmd))) {
891 		pmd_clear_bad(pmd);
892 		return 1;
893 	}
894 	return 0;
895 }
896 
897 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
898 					     unsigned long addr,
899 					     pte_t *ptep)
900 {
901 	/*
902 	 * Get the current pte state, but zero it out to make it
903 	 * non-present, preventing the hardware from asynchronously
904 	 * updating it.
905 	 */
906 	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
907 }
908 
909 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
910 					     unsigned long addr,
911 					     pte_t *ptep, pte_t pte)
912 {
913 	/*
914 	 * The pte is non-present, so there's no hardware state to
915 	 * preserve.
916 	 */
917 	set_pte_at(vma->vm_mm, addr, ptep, pte);
918 }
919 
920 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
921 /*
922  * Start a pte protection read-modify-write transaction, which
923  * protects against asynchronous hardware modifications to the pte.
924  * The intention is not to prevent the hardware from making pte
925  * updates, but to prevent any updates it may make from being lost.
926  *
927  * This does not protect against other software modifications of the
928  * pte; the appropriate pte lock must be held over the transaction.
929  *
930  * Note that this interface is intended to be batchable, meaning that
931  * ptep_modify_prot_commit may not actually update the pte, but merely
932  * queue the update to be done at some later time.  The update must be
933  * actually committed before the pte lock is released, however.
934  */
935 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
936 					   unsigned long addr,
937 					   pte_t *ptep)
938 {
939 	return __ptep_modify_prot_start(vma, addr, ptep);
940 }
941 
942 /*
943  * Commit an update to a pte, leaving any hardware-controlled bits in
944  * the PTE unmodified.
945  */
946 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
947 					   unsigned long addr,
948 					   pte_t *ptep, pte_t old_pte, pte_t pte)
949 {
950 	__ptep_modify_prot_commit(vma, addr, ptep, pte);
951 }
952 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
953 #endif /* CONFIG_MMU */
954 
955 /*
956  * No-op macros that just return the current protection value. Defined here
957  * because these macros can be used even if CONFIG_MMU is not defined.
958  */
959 
960 #ifndef pgprot_nx
961 #define pgprot_nx(prot)	(prot)
962 #endif
963 
964 #ifndef pgprot_noncached
965 #define pgprot_noncached(prot)	(prot)
966 #endif
967 
968 #ifndef pgprot_writecombine
969 #define pgprot_writecombine pgprot_noncached
970 #endif
971 
972 #ifndef pgprot_writethrough
973 #define pgprot_writethrough pgprot_noncached
974 #endif
975 
976 #ifndef pgprot_device
977 #define pgprot_device pgprot_noncached
978 #endif
979 
980 #ifndef pgprot_mhp
981 #define pgprot_mhp(prot)	(prot)
982 #endif
983 
984 #ifdef CONFIG_MMU
985 #ifndef pgprot_modify
986 #define pgprot_modify pgprot_modify
987 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
988 {
989 	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
990 		newprot = pgprot_noncached(newprot);
991 	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
992 		newprot = pgprot_writecombine(newprot);
993 	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
994 		newprot = pgprot_device(newprot);
995 	return newprot;
996 }
997 #endif
998 #endif /* CONFIG_MMU */
999 
1000 #ifndef pgprot_encrypted
1001 #define pgprot_encrypted(prot)	(prot)
1002 #endif
1003 
1004 #ifndef pgprot_decrypted
1005 #define pgprot_decrypted(prot)	(prot)
1006 #endif
1007 
1008 /*
1009  * A facility to provide lazy MMU batching.  This allows PTE updates and
1010  * page invalidations to be delayed until a call to leave lazy MMU mode
1011  * is issued.  Some architectures may benefit from doing this, and it is
1012  * beneficial for both shadow and direct mode hypervisors, which may batch
1013  * the PTE updates which happen during this window.  Note that using this
1014  * interface requires that read hazards be removed from the code.  A read
1015  * hazard could result in the direct mode hypervisor case, since the actual
1016  * write to the page tables may not yet have taken place, so reads though
1017  * a raw PTE pointer after it has been modified are not guaranteed to be
1018  * up to date.  This mode can only be entered and left under the protection of
1019  * the page table locks for all page tables which may be modified.  In the UP
1020  * case, this is required so that preemption is disabled, and in the SMP case,
1021  * it must synchronize the delayed page table writes properly on other CPUs.
1022  */
1023 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
1024 #define arch_enter_lazy_mmu_mode()	do {} while (0)
1025 #define arch_leave_lazy_mmu_mode()	do {} while (0)
1026 #define arch_flush_lazy_mmu_mode()	do {} while (0)
1027 #endif
1028 
1029 /*
1030  * A facility to provide batching of the reload of page tables and
1031  * other process state with the actual context switch code for
1032  * paravirtualized guests.  By convention, only one of the batched
1033  * update (lazy) modes (CPU, MMU) should be active at any given time,
1034  * entry should never be nested, and entry and exits should always be
1035  * paired.  This is for sanity of maintaining and reasoning about the
1036  * kernel code.  In this case, the exit (end of the context switch) is
1037  * in architecture-specific code, and so doesn't need a generic
1038  * definition.
1039  */
1040 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1041 #define arch_start_context_switch(prev)	do {} while (0)
1042 #endif
1043 
1044 /*
1045  * When replacing an anonymous page by a real (!non) swap entry, we clear
1046  * PG_anon_exclusive from the page and instead remember whether the flag was
1047  * set in the swp pte. During fork(), we have to mark the entry as !exclusive
1048  * (possibly shared). On swapin, we use that information to restore
1049  * PG_anon_exclusive, which is very helpful in cases where we might have
1050  * additional (e.g., FOLL_GET) references on a page and wouldn't be able to
1051  * detect exclusivity.
1052  *
1053  * These functions don't apply to non-swap entries (e.g., migration, hwpoison,
1054  * ...).
1055  */
1056 #ifndef __HAVE_ARCH_PTE_SWP_EXCLUSIVE
1057 static inline pte_t pte_swp_mkexclusive(pte_t pte)
1058 {
1059 	return pte;
1060 }
1061 
1062 static inline int pte_swp_exclusive(pte_t pte)
1063 {
1064 	return false;
1065 }
1066 
1067 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1068 {
1069 	return pte;
1070 }
1071 #endif
1072 
1073 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1074 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1075 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1076 {
1077 	return pmd;
1078 }
1079 
1080 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1081 {
1082 	return 0;
1083 }
1084 
1085 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1086 {
1087 	return pmd;
1088 }
1089 #endif
1090 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1091 static inline int pte_soft_dirty(pte_t pte)
1092 {
1093 	return 0;
1094 }
1095 
1096 static inline int pmd_soft_dirty(pmd_t pmd)
1097 {
1098 	return 0;
1099 }
1100 
1101 static inline pte_t pte_mksoft_dirty(pte_t pte)
1102 {
1103 	return pte;
1104 }
1105 
1106 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1107 {
1108 	return pmd;
1109 }
1110 
1111 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1112 {
1113 	return pte;
1114 }
1115 
1116 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1117 {
1118 	return pmd;
1119 }
1120 
1121 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1122 {
1123 	return pte;
1124 }
1125 
1126 static inline int pte_swp_soft_dirty(pte_t pte)
1127 {
1128 	return 0;
1129 }
1130 
1131 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1132 {
1133 	return pte;
1134 }
1135 
1136 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1137 {
1138 	return pmd;
1139 }
1140 
1141 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1142 {
1143 	return 0;
1144 }
1145 
1146 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1147 {
1148 	return pmd;
1149 }
1150 #endif
1151 
1152 #ifndef __HAVE_PFNMAP_TRACKING
1153 /*
1154  * Interfaces that can be used by architecture code to keep track of
1155  * memory type of pfn mappings specified by the remap_pfn_range,
1156  * vmf_insert_pfn.
1157  */
1158 
1159 /*
1160  * track_pfn_remap is called when a _new_ pfn mapping is being established
1161  * by remap_pfn_range() for physical range indicated by pfn and size.
1162  */
1163 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1164 				  unsigned long pfn, unsigned long addr,
1165 				  unsigned long size)
1166 {
1167 	return 0;
1168 }
1169 
1170 /*
1171  * track_pfn_insert is called when a _new_ single pfn is established
1172  * by vmf_insert_pfn().
1173  */
1174 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1175 				    pfn_t pfn)
1176 {
1177 }
1178 
1179 /*
1180  * track_pfn_copy is called when vma that is covering the pfnmap gets
1181  * copied through copy_page_range().
1182  */
1183 static inline int track_pfn_copy(struct vm_area_struct *vma)
1184 {
1185 	return 0;
1186 }
1187 
1188 /*
1189  * untrack_pfn is called while unmapping a pfnmap for a region.
1190  * untrack can be called for a specific region indicated by pfn and size or
1191  * can be for the entire vma (in which case pfn, size are zero).
1192  */
1193 static inline void untrack_pfn(struct vm_area_struct *vma,
1194 			       unsigned long pfn, unsigned long size)
1195 {
1196 }
1197 
1198 /*
1199  * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1200  */
1201 static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1202 {
1203 }
1204 #else
1205 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1206 			   unsigned long pfn, unsigned long addr,
1207 			   unsigned long size);
1208 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1209 			     pfn_t pfn);
1210 extern int track_pfn_copy(struct vm_area_struct *vma);
1211 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1212 			unsigned long size);
1213 extern void untrack_pfn_moved(struct vm_area_struct *vma);
1214 #endif
1215 
1216 #ifdef CONFIG_MMU
1217 #ifdef __HAVE_COLOR_ZERO_PAGE
1218 static inline int is_zero_pfn(unsigned long pfn)
1219 {
1220 	extern unsigned long zero_pfn;
1221 	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1222 	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1223 }
1224 
1225 #define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
1226 
1227 #else
1228 static inline int is_zero_pfn(unsigned long pfn)
1229 {
1230 	extern unsigned long zero_pfn;
1231 	return pfn == zero_pfn;
1232 }
1233 
1234 static inline unsigned long my_zero_pfn(unsigned long addr)
1235 {
1236 	extern unsigned long zero_pfn;
1237 	return zero_pfn;
1238 }
1239 #endif
1240 #else
1241 static inline int is_zero_pfn(unsigned long pfn)
1242 {
1243 	return 0;
1244 }
1245 
1246 static inline unsigned long my_zero_pfn(unsigned long addr)
1247 {
1248 	return 0;
1249 }
1250 #endif /* CONFIG_MMU */
1251 
1252 #ifdef CONFIG_MMU
1253 
1254 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
1255 static inline int pmd_trans_huge(pmd_t pmd)
1256 {
1257 	return 0;
1258 }
1259 #ifndef pmd_write
1260 static inline int pmd_write(pmd_t pmd)
1261 {
1262 	BUG();
1263 	return 0;
1264 }
1265 #endif /* pmd_write */
1266 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1267 
1268 #ifndef pud_write
1269 static inline int pud_write(pud_t pud)
1270 {
1271 	BUG();
1272 	return 0;
1273 }
1274 #endif /* pud_write */
1275 
1276 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1277 static inline int pmd_devmap(pmd_t pmd)
1278 {
1279 	return 0;
1280 }
1281 static inline int pud_devmap(pud_t pud)
1282 {
1283 	return 0;
1284 }
1285 static inline int pgd_devmap(pgd_t pgd)
1286 {
1287 	return 0;
1288 }
1289 #endif
1290 
1291 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1292 	!defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1293 static inline int pud_trans_huge(pud_t pud)
1294 {
1295 	return 0;
1296 }
1297 #endif
1298 
1299 /* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
1300 static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1301 {
1302 	pud_t pudval = READ_ONCE(*pud);
1303 
1304 	if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1305 		return 1;
1306 	if (unlikely(pud_bad(pudval))) {
1307 		pud_clear_bad(pud);
1308 		return 1;
1309 	}
1310 	return 0;
1311 }
1312 
1313 /* See pmd_trans_unstable for discussion. */
1314 static inline int pud_trans_unstable(pud_t *pud)
1315 {
1316 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
1317 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1318 	return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1319 #else
1320 	return 0;
1321 #endif
1322 }
1323 
1324 #ifndef pmd_read_atomic
1325 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1326 {
1327 	/*
1328 	 * Depend on compiler for an atomic pmd read. NOTE: this is
1329 	 * only going to work, if the pmdval_t isn't larger than
1330 	 * an unsigned long.
1331 	 */
1332 	return *pmdp;
1333 }
1334 #endif
1335 
1336 #ifndef arch_needs_pgtable_deposit
1337 #define arch_needs_pgtable_deposit() (false)
1338 #endif
1339 /*
1340  * This function is meant to be used by sites walking pagetables with
1341  * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1342  * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1343  * into a null pmd and the transhuge page fault can convert a null pmd
1344  * into an hugepmd or into a regular pmd (if the hugepage allocation
1345  * fails). While holding the mmap_lock in read mode the pmd becomes
1346  * stable and stops changing under us only if it's not null and not a
1347  * transhuge pmd. When those races occurs and this function makes a
1348  * difference vs the standard pmd_none_or_clear_bad, the result is
1349  * undefined so behaving like if the pmd was none is safe (because it
1350  * can return none anyway). The compiler level barrier() is critically
1351  * important to compute the two checks atomically on the same pmdval.
1352  *
1353  * For 32bit kernels with a 64bit large pmd_t this automatically takes
1354  * care of reading the pmd atomically to avoid SMP race conditions
1355  * against pmd_populate() when the mmap_lock is hold for reading by the
1356  * caller (a special atomic read not done by "gcc" as in the generic
1357  * version above, is also needed when THP is disabled because the page
1358  * fault can populate the pmd from under us).
1359  */
1360 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1361 {
1362 	pmd_t pmdval = pmd_read_atomic(pmd);
1363 	/*
1364 	 * The barrier will stabilize the pmdval in a register or on
1365 	 * the stack so that it will stop changing under the code.
1366 	 *
1367 	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1368 	 * pmd_read_atomic is allowed to return a not atomic pmdval
1369 	 * (for example pointing to an hugepage that has never been
1370 	 * mapped in the pmd). The below checks will only care about
1371 	 * the low part of the pmd with 32bit PAE x86 anyway, with the
1372 	 * exception of pmd_none(). So the important thing is that if
1373 	 * the low part of the pmd is found null, the high part will
1374 	 * be also null or the pmd_none() check below would be
1375 	 * confused.
1376 	 */
1377 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1378 	barrier();
1379 #endif
1380 	/*
1381 	 * !pmd_present() checks for pmd migration entries
1382 	 *
1383 	 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1384 	 * But using that requires moving current function and pmd_trans_unstable()
1385 	 * to linux/swapops.h to resolve dependency, which is too much code move.
1386 	 *
1387 	 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1388 	 * because !pmd_present() pages can only be under migration not swapped
1389 	 * out.
1390 	 *
1391 	 * pmd_none() is preserved for future condition checks on pmd migration
1392 	 * entries and not confusing with this function name, although it is
1393 	 * redundant with !pmd_present().
1394 	 */
1395 	if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1396 		(IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1397 		return 1;
1398 	if (unlikely(pmd_bad(pmdval))) {
1399 		pmd_clear_bad(pmd);
1400 		return 1;
1401 	}
1402 	return 0;
1403 }
1404 
1405 /*
1406  * This is a noop if Transparent Hugepage Support is not built into
1407  * the kernel. Otherwise it is equivalent to
1408  * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1409  * places that already verified the pmd is not none and they want to
1410  * walk ptes while holding the mmap sem in read mode (write mode don't
1411  * need this). If THP is not enabled, the pmd can't go away under the
1412  * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1413  * run a pmd_trans_unstable before walking the ptes after
1414  * split_huge_pmd returns (because it may have run when the pmd become
1415  * null, but then a page fault can map in a THP and not a regular page).
1416  */
1417 static inline int pmd_trans_unstable(pmd_t *pmd)
1418 {
1419 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1420 	return pmd_none_or_trans_huge_or_clear_bad(pmd);
1421 #else
1422 	return 0;
1423 #endif
1424 }
1425 
1426 /*
1427  * the ordering of these checks is important for pmds with _page_devmap set.
1428  * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
1429  * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
1430  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
1431  */
1432 static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
1433 {
1434 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
1435 }
1436 
1437 #ifndef CONFIG_NUMA_BALANCING
1438 /*
1439  * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1440  * the only case the kernel cares is for NUMA balancing and is only ever set
1441  * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1442  * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1443  * is the responsibility of the caller to distinguish between PROT_NONE
1444  * protections and NUMA hinting fault protections.
1445  */
1446 static inline int pte_protnone(pte_t pte)
1447 {
1448 	return 0;
1449 }
1450 
1451 static inline int pmd_protnone(pmd_t pmd)
1452 {
1453 	return 0;
1454 }
1455 #endif /* CONFIG_NUMA_BALANCING */
1456 
1457 #endif /* CONFIG_MMU */
1458 
1459 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1460 
1461 #ifndef __PAGETABLE_P4D_FOLDED
1462 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1463 void p4d_clear_huge(p4d_t *p4d);
1464 #else
1465 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1466 {
1467 	return 0;
1468 }
1469 static inline void p4d_clear_huge(p4d_t *p4d) { }
1470 #endif /* !__PAGETABLE_P4D_FOLDED */
1471 
1472 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1473 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1474 int pud_clear_huge(pud_t *pud);
1475 int pmd_clear_huge(pmd_t *pmd);
1476 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1477 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1478 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1479 #else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1480 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1481 {
1482 	return 0;
1483 }
1484 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1485 {
1486 	return 0;
1487 }
1488 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1489 {
1490 	return 0;
1491 }
1492 static inline void p4d_clear_huge(p4d_t *p4d) { }
1493 static inline int pud_clear_huge(pud_t *pud)
1494 {
1495 	return 0;
1496 }
1497 static inline int pmd_clear_huge(pmd_t *pmd)
1498 {
1499 	return 0;
1500 }
1501 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1502 {
1503 	return 0;
1504 }
1505 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1506 {
1507 	return 0;
1508 }
1509 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1510 {
1511 	return 0;
1512 }
1513 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
1514 
1515 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1517 /*
1518  * ARCHes with special requirements for evicting THP backing TLB entries can
1519  * implement this. Otherwise also, it can help optimize normal TLB flush in
1520  * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1521  * entire TLB if flush span is greater than a threshold, which will
1522  * likely be true for a single huge page. Thus a single THP flush will
1523  * invalidate the entire TLB which is not desirable.
1524  * e.g. see arch/arc: flush_pmd_tlb_range
1525  */
1526 #define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1527 #define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1528 #else
1529 #define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
1530 #define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
1531 #endif
1532 #endif
1533 
1534 struct file;
1535 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1536 			unsigned long size, pgprot_t *vma_prot);
1537 
1538 #ifndef CONFIG_X86_ESPFIX64
1539 static inline void init_espfix_bsp(void) { }
1540 #endif
1541 
1542 extern void __init pgtable_cache_init(void);
1543 
1544 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1545 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1546 {
1547 	return true;
1548 }
1549 
1550 static inline bool arch_has_pfn_modify_check(void)
1551 {
1552 	return false;
1553 }
1554 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1555 
1556 /*
1557  * Architecture PAGE_KERNEL_* fallbacks
1558  *
1559  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1560  * because they really don't support them, or the port needs to be updated to
1561  * reflect the required functionality. Below are a set of relatively safe
1562  * fallbacks, as best effort, which we can count on in lieu of the architectures
1563  * not defining them on their own yet.
1564  */
1565 
1566 #ifndef PAGE_KERNEL_RO
1567 # define PAGE_KERNEL_RO PAGE_KERNEL
1568 #endif
1569 
1570 #ifndef PAGE_KERNEL_EXEC
1571 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1572 #endif
1573 
1574 /*
1575  * Page Table Modification bits for pgtbl_mod_mask.
1576  *
1577  * These are used by the p?d_alloc_track*() set of functions an in the generic
1578  * vmalloc/ioremap code to track at which page-table levels entries have been
1579  * modified. Based on that the code can better decide when vmalloc and ioremap
1580  * mapping changes need to be synchronized to other page-tables in the system.
1581  */
1582 #define		__PGTBL_PGD_MODIFIED	0
1583 #define		__PGTBL_P4D_MODIFIED	1
1584 #define		__PGTBL_PUD_MODIFIED	2
1585 #define		__PGTBL_PMD_MODIFIED	3
1586 #define		__PGTBL_PTE_MODIFIED	4
1587 
1588 #define		PGTBL_PGD_MODIFIED	BIT(__PGTBL_PGD_MODIFIED)
1589 #define		PGTBL_P4D_MODIFIED	BIT(__PGTBL_P4D_MODIFIED)
1590 #define		PGTBL_PUD_MODIFIED	BIT(__PGTBL_PUD_MODIFIED)
1591 #define		PGTBL_PMD_MODIFIED	BIT(__PGTBL_PMD_MODIFIED)
1592 #define		PGTBL_PTE_MODIFIED	BIT(__PGTBL_PTE_MODIFIED)
1593 
1594 /* Page-Table Modification Mask */
1595 typedef unsigned int pgtbl_mod_mask;
1596 
1597 #endif /* !__ASSEMBLY__ */
1598 
1599 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1600 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1601 /*
1602  * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1603  * with physical address space extension, but falls back to
1604  * BITS_PER_LONG otherwise.
1605  */
1606 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1607 #else
1608 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1609 #endif
1610 #endif
1611 
1612 #ifndef has_transparent_hugepage
1613 #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1614 #endif
1615 
1616 /*
1617  * On some architectures it depends on the mm if the p4d/pud or pmd
1618  * layer of the page table hierarchy is folded or not.
1619  */
1620 #ifndef mm_p4d_folded
1621 #define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
1622 #endif
1623 
1624 #ifndef mm_pud_folded
1625 #define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
1626 #endif
1627 
1628 #ifndef mm_pmd_folded
1629 #define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
1630 #endif
1631 
1632 #ifndef p4d_offset_lockless
1633 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1634 #endif
1635 #ifndef pud_offset_lockless
1636 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1637 #endif
1638 #ifndef pmd_offset_lockless
1639 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1640 #endif
1641 
1642 /*
1643  * p?d_leaf() - true if this entry is a final mapping to a physical address.
1644  * This differs from p?d_huge() by the fact that they are always available (if
1645  * the architecture supports large pages at the appropriate level) even
1646  * if CONFIG_HUGETLB_PAGE is not defined.
1647  * Only meaningful when called on a valid entry.
1648  */
1649 #ifndef pgd_leaf
1650 #define pgd_leaf(x)	0
1651 #endif
1652 #ifndef p4d_leaf
1653 #define p4d_leaf(x)	0
1654 #endif
1655 #ifndef pud_leaf
1656 #define pud_leaf(x)	0
1657 #endif
1658 #ifndef pmd_leaf
1659 #define pmd_leaf(x)	0
1660 #endif
1661 
1662 #ifndef pgd_leaf_size
1663 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1664 #endif
1665 #ifndef p4d_leaf_size
1666 #define p4d_leaf_size(x) P4D_SIZE
1667 #endif
1668 #ifndef pud_leaf_size
1669 #define pud_leaf_size(x) PUD_SIZE
1670 #endif
1671 #ifndef pmd_leaf_size
1672 #define pmd_leaf_size(x) PMD_SIZE
1673 #endif
1674 #ifndef pte_leaf_size
1675 #define pte_leaf_size(x) PAGE_SIZE
1676 #endif
1677 
1678 /*
1679  * Some architectures have MMUs that are configurable or selectable at boot
1680  * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1681  * helps to have a static maximum value.
1682  */
1683 
1684 #ifndef MAX_PTRS_PER_PTE
1685 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1686 #endif
1687 
1688 #ifndef MAX_PTRS_PER_PMD
1689 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1690 #endif
1691 
1692 #ifndef MAX_PTRS_PER_PUD
1693 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1694 #endif
1695 
1696 #ifndef MAX_PTRS_PER_P4D
1697 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1698 #endif
1699 
1700 /* description of effects of mapping type and prot in current implementation.
1701  * this is due to the limited x86 page protection hardware.  The expected
1702  * behavior is in parens:
1703  *
1704  * map_type	prot
1705  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
1706  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1707  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
1708  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1709  *
1710  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
1711  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
1712  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
1713  *
1714  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1715  * MAP_PRIVATE (with Enhanced PAN supported):
1716  *								r: (no) no
1717  *								w: (no) no
1718  *								x: (yes) yes
1719  */
1720 #define DECLARE_VM_GET_PAGE_PROT					\
1721 pgprot_t vm_get_page_prot(unsigned long vm_flags)			\
1722 {									\
1723 		return protection_map[vm_flags &			\
1724 			(VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)];	\
1725 }									\
1726 EXPORT_SYMBOL(vm_get_page_prot);
1727 
1728 #endif /* _LINUX_PGTABLE_H */
1729