1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Host communication command constants for ChromeOS EC
4  *
5  * Copyright (C) 2012 Google, Inc
6  *
7  * NOTE: This file is auto-generated from ChromeOS EC Open Source code from
8  * https://chromium.googlesource.com/chromiumos/platform/ec/+/master/include/ec_commands.h
9  */
10 
11 /* Host communication command constants for Chrome EC */
12 
13 #ifndef __CROS_EC_COMMANDS_H
14 #define __CROS_EC_COMMANDS_H
15 
16 
17 
18 
19 #define BUILD_ASSERT(_cond)
20 
21 /*
22  * Current version of this protocol
23  *
24  * TODO(crosbug.com/p/11223): This is effectively useless; protocol is
25  * determined in other ways.  Remove this once the kernel code no longer
26  * depends on it.
27  */
28 #define EC_PROTO_VERSION          0x00000002
29 
30 /* Command version mask */
31 #define EC_VER_MASK(version) BIT(version)
32 
33 /* I/O addresses for ACPI commands */
34 #define EC_LPC_ADDR_ACPI_DATA  0x62
35 #define EC_LPC_ADDR_ACPI_CMD   0x66
36 
37 /* I/O addresses for host command */
38 #define EC_LPC_ADDR_HOST_DATA  0x200
39 #define EC_LPC_ADDR_HOST_CMD   0x204
40 
41 /* I/O addresses for host command args and params */
42 /* Protocol version 2 */
43 #define EC_LPC_ADDR_HOST_ARGS    0x800  /* And 0x801, 0x802, 0x803 */
44 #define EC_LPC_ADDR_HOST_PARAM   0x804  /* For version 2 params; size is
45 					 * EC_PROTO2_MAX_PARAM_SIZE
46 					 */
47 /* Protocol version 3 */
48 #define EC_LPC_ADDR_HOST_PACKET  0x800  /* Offset of version 3 packet */
49 #define EC_LPC_HOST_PACKET_SIZE  0x100  /* Max size of version 3 packet */
50 
51 /*
52  * The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
53  * and they tell the kernel that so we have to think of it as two parts.
54  *
55  * Other BIOSes report only the I/O port region spanned by the Microchip
56  * MEC series EC; an attempt to address a larger region may fail.
57  */
58 #define EC_HOST_CMD_REGION0       0x800
59 #define EC_HOST_CMD_REGION1       0x880
60 #define EC_HOST_CMD_REGION_SIZE    0x80
61 #define EC_HOST_CMD_MEC_REGION_SIZE 0x8
62 
63 /* EC command register bit functions */
64 #define EC_LPC_CMDR_DATA	BIT(0)  /* Data ready for host to read */
65 #define EC_LPC_CMDR_PENDING	BIT(1)  /* Write pending to EC */
66 #define EC_LPC_CMDR_BUSY	BIT(2)  /* EC is busy processing a command */
67 #define EC_LPC_CMDR_CMD		BIT(3)  /* Last host write was a command */
68 #define EC_LPC_CMDR_ACPI_BRST	BIT(4)  /* Burst mode (not used) */
69 #define EC_LPC_CMDR_SCI		BIT(5)  /* SCI event is pending */
70 #define EC_LPC_CMDR_SMI		BIT(6)  /* SMI event is pending */
71 
72 #define EC_LPC_ADDR_MEMMAP       0x900
73 #define EC_MEMMAP_SIZE         255 /* ACPI IO buffer max is 255 bytes */
74 #define EC_MEMMAP_TEXT_MAX     8   /* Size of a string in the memory map */
75 
76 /* The offset address of each type of data in mapped memory. */
77 #define EC_MEMMAP_TEMP_SENSOR      0x00 /* Temp sensors 0x00 - 0x0f */
78 #define EC_MEMMAP_FAN              0x10 /* Fan speeds 0x10 - 0x17 */
79 #define EC_MEMMAP_TEMP_SENSOR_B    0x18 /* More temp sensors 0x18 - 0x1f */
80 #define EC_MEMMAP_ID               0x20 /* 0x20 == 'E', 0x21 == 'C' */
81 #define EC_MEMMAP_ID_VERSION       0x22 /* Version of data in 0x20 - 0x2f */
82 #define EC_MEMMAP_THERMAL_VERSION  0x23 /* Version of data in 0x00 - 0x1f */
83 #define EC_MEMMAP_BATTERY_VERSION  0x24 /* Version of data in 0x40 - 0x7f */
84 #define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
85 #define EC_MEMMAP_EVENTS_VERSION   0x26 /* Version of data in 0x34 - 0x3f */
86 #define EC_MEMMAP_HOST_CMD_FLAGS   0x27 /* Host cmd interface flags (8 bits) */
87 /* Unused 0x28 - 0x2f */
88 #define EC_MEMMAP_SWITCHES         0x30	/* 8 bits */
89 /* Unused 0x31 - 0x33 */
90 #define EC_MEMMAP_HOST_EVENTS      0x34 /* 64 bits */
91 /* Battery values are all 32 bits, unless otherwise noted. */
92 #define EC_MEMMAP_BATT_VOLT        0x40 /* Battery Present Voltage */
93 #define EC_MEMMAP_BATT_RATE        0x44 /* Battery Present Rate */
94 #define EC_MEMMAP_BATT_CAP         0x48 /* Battery Remaining Capacity */
95 #define EC_MEMMAP_BATT_FLAG        0x4c /* Battery State, see below (8-bit) */
96 #define EC_MEMMAP_BATT_COUNT       0x4d /* Battery Count (8-bit) */
97 #define EC_MEMMAP_BATT_INDEX       0x4e /* Current Battery Data Index (8-bit) */
98 /* Unused 0x4f */
99 #define EC_MEMMAP_BATT_DCAP        0x50 /* Battery Design Capacity */
100 #define EC_MEMMAP_BATT_DVLT        0x54 /* Battery Design Voltage */
101 #define EC_MEMMAP_BATT_LFCC        0x58 /* Battery Last Full Charge Capacity */
102 #define EC_MEMMAP_BATT_CCNT        0x5c /* Battery Cycle Count */
103 /* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
104 #define EC_MEMMAP_BATT_MFGR        0x60 /* Battery Manufacturer String */
105 #define EC_MEMMAP_BATT_MODEL       0x68 /* Battery Model Number String */
106 #define EC_MEMMAP_BATT_SERIAL      0x70 /* Battery Serial Number String */
107 #define EC_MEMMAP_BATT_TYPE        0x78 /* Battery Type String */
108 #define EC_MEMMAP_ALS              0x80 /* ALS readings in lux (2 X 16 bits) */
109 /* Unused 0x84 - 0x8f */
110 #define EC_MEMMAP_ACC_STATUS       0x90 /* Accelerometer status (8 bits )*/
111 /* Unused 0x91 */
112 #define EC_MEMMAP_ACC_DATA         0x92 /* Accelerometers data 0x92 - 0x9f */
113 /* 0x92: Lid Angle if available, LID_ANGLE_UNRELIABLE otherwise */
114 /* 0x94 - 0x99: 1st Accelerometer */
115 /* 0x9a - 0x9f: 2nd Accelerometer */
116 #define EC_MEMMAP_GYRO_DATA        0xa0 /* Gyroscope data 0xa0 - 0xa5 */
117 /* Unused 0xa6 - 0xdf */
118 
119 /*
120  * ACPI is unable to access memory mapped data at or above this offset due to
121  * limitations of the ACPI protocol. Do not place data in the range 0xe0 - 0xfe
122  * which might be needed by ACPI.
123  */
124 #define EC_MEMMAP_NO_ACPI 0xe0
125 
126 /* Define the format of the accelerometer mapped memory status byte. */
127 #define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK  0x0f
128 #define EC_MEMMAP_ACC_STATUS_BUSY_BIT        BIT(4)
129 #define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT    BIT(7)
130 
131 /* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
132 #define EC_TEMP_SENSOR_ENTRIES     16
133 /*
134  * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
135  *
136  * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
137  */
138 #define EC_TEMP_SENSOR_B_ENTRIES      8
139 
140 /* Special values for mapped temperature sensors */
141 #define EC_TEMP_SENSOR_NOT_PRESENT    0xff
142 #define EC_TEMP_SENSOR_ERROR          0xfe
143 #define EC_TEMP_SENSOR_NOT_POWERED    0xfd
144 #define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
145 /*
146  * The offset of temperature value stored in mapped memory.  This allows
147  * reporting a temperature range of 200K to 454K = -73C to 181C.
148  */
149 #define EC_TEMP_SENSOR_OFFSET      200
150 
151 /*
152  * Number of ALS readings at EC_MEMMAP_ALS
153  */
154 #define EC_ALS_ENTRIES             2
155 
156 /*
157  * The default value a temperature sensor will return when it is present but
158  * has not been read this boot.  This is a reasonable number to avoid
159  * triggering alarms on the host.
160  */
161 #define EC_TEMP_SENSOR_DEFAULT     (296 - EC_TEMP_SENSOR_OFFSET)
162 
163 #define EC_FAN_SPEED_ENTRIES       4       /* Number of fans at EC_MEMMAP_FAN */
164 #define EC_FAN_SPEED_NOT_PRESENT   0xffff  /* Entry not present */
165 #define EC_FAN_SPEED_STALLED       0xfffe  /* Fan stalled */
166 
167 /* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
168 #define EC_BATT_FLAG_AC_PRESENT   0x01
169 #define EC_BATT_FLAG_BATT_PRESENT 0x02
170 #define EC_BATT_FLAG_DISCHARGING  0x04
171 #define EC_BATT_FLAG_CHARGING     0x08
172 #define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
173 /* Set if some of the static/dynamic data is invalid (or outdated). */
174 #define EC_BATT_FLAG_INVALID_DATA 0x20
175 
176 /* Switch flags at EC_MEMMAP_SWITCHES */
177 #define EC_SWITCH_LID_OPEN               0x01
178 #define EC_SWITCH_POWER_BUTTON_PRESSED   0x02
179 #define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
180 /* Was recovery requested via keyboard; now unused. */
181 #define EC_SWITCH_IGNORE1		 0x08
182 /* Recovery requested via dedicated signal (from servo board) */
183 #define EC_SWITCH_DEDICATED_RECOVERY     0x10
184 /* Was fake developer mode switch; now unused.  Remove in next refactor. */
185 #define EC_SWITCH_IGNORE0                0x20
186 
187 /* Host command interface flags */
188 /* Host command interface supports LPC args (LPC interface only) */
189 #define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED  0x01
190 /* Host command interface supports version 3 protocol */
191 #define EC_HOST_CMD_FLAG_VERSION_3   0x02
192 
193 /* Wireless switch flags */
194 #define EC_WIRELESS_SWITCH_ALL       ~0x00  /* All flags */
195 #define EC_WIRELESS_SWITCH_WLAN       0x01  /* WLAN radio */
196 #define EC_WIRELESS_SWITCH_BLUETOOTH  0x02  /* Bluetooth radio */
197 #define EC_WIRELESS_SWITCH_WWAN       0x04  /* WWAN power */
198 #define EC_WIRELESS_SWITCH_WLAN_POWER 0x08  /* WLAN power */
199 
200 /*****************************************************************************/
201 /*
202  * ACPI commands
203  *
204  * These are valid ONLY on the ACPI command/data port.
205  */
206 
207 /*
208  * ACPI Read Embedded Controller
209  *
210  * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
211  *
212  * Use the following sequence:
213  *
214  *    - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
215  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
216  *    - Write address to EC_LPC_ADDR_ACPI_DATA
217  *    - Wait for EC_LPC_CMDR_DATA bit to set
218  *    - Read value from EC_LPC_ADDR_ACPI_DATA
219  */
220 #define EC_CMD_ACPI_READ 0x0080
221 
222 /*
223  * ACPI Write Embedded Controller
224  *
225  * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
226  *
227  * Use the following sequence:
228  *
229  *    - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
230  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
231  *    - Write address to EC_LPC_ADDR_ACPI_DATA
232  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
233  *    - Write value to EC_LPC_ADDR_ACPI_DATA
234  */
235 #define EC_CMD_ACPI_WRITE 0x0081
236 
237 /*
238  * ACPI Burst Enable Embedded Controller
239  *
240  * This enables burst mode on the EC to allow the host to issue several
241  * commands back-to-back. While in this mode, writes to mapped multi-byte
242  * data are locked out to ensure data consistency.
243  */
244 #define EC_CMD_ACPI_BURST_ENABLE 0x0082
245 
246 /*
247  * ACPI Burst Disable Embedded Controller
248  *
249  * This disables burst mode on the EC and stops preventing EC writes to mapped
250  * multi-byte data.
251  */
252 #define EC_CMD_ACPI_BURST_DISABLE 0x0083
253 
254 /*
255  * ACPI Query Embedded Controller
256  *
257  * This clears the lowest-order bit in the currently pending host events, and
258  * sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
259  * event 0x80000000 = 32), or 0 if no event was pending.
260  */
261 #define EC_CMD_ACPI_QUERY_EVENT 0x0084
262 
263 /* Valid addresses in ACPI memory space, for read/write commands */
264 
265 /* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
266 #define EC_ACPI_MEM_VERSION            0x00
267 /*
268  * Test location; writing value here updates test compliment byte to (0xff -
269  * value).
270  */
271 #define EC_ACPI_MEM_TEST               0x01
272 /* Test compliment; writes here are ignored. */
273 #define EC_ACPI_MEM_TEST_COMPLIMENT    0x02
274 
275 /* Keyboard backlight brightness percent (0 - 100) */
276 #define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
277 /* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
278 #define EC_ACPI_MEM_FAN_DUTY           0x04
279 
280 /*
281  * DPTF temp thresholds. Any of the EC's temp sensors can have up to two
282  * independent thresholds attached to them. The current value of the ID
283  * register determines which sensor is affected by the THRESHOLD and COMMIT
284  * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
285  * as the memory-mapped sensors. The COMMIT register applies those settings.
286  *
287  * The spec does not mandate any way to read back the threshold settings
288  * themselves, but when a threshold is crossed the AP needs a way to determine
289  * which sensor(s) are responsible. Each reading of the ID register clears and
290  * returns one sensor ID that has crossed one of its threshold (in either
291  * direction) since the last read. A value of 0xFF means "no new thresholds
292  * have tripped". Setting or enabling the thresholds for a sensor will clear
293  * the unread event count for that sensor.
294  */
295 #define EC_ACPI_MEM_TEMP_ID            0x05
296 #define EC_ACPI_MEM_TEMP_THRESHOLD     0x06
297 #define EC_ACPI_MEM_TEMP_COMMIT        0x07
298 /*
299  * Here are the bits for the COMMIT register:
300  *   bit 0 selects the threshold index for the chosen sensor (0/1)
301  *   bit 1 enables/disables the selected threshold (0 = off, 1 = on)
302  * Each write to the commit register affects one threshold.
303  */
304 #define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK BIT(0)
305 #define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK BIT(1)
306 /*
307  * Example:
308  *
309  * Set the thresholds for sensor 2 to 50 C and 60 C:
310  *   write 2 to [0x05]      --  select temp sensor 2
311  *   write 0x7b to [0x06]   --  C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
312  *   write 0x2 to [0x07]    --  enable threshold 0 with this value
313  *   write 0x85 to [0x06]   --  C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
314  *   write 0x3 to [0x07]    --  enable threshold 1 with this value
315  *
316  * Disable the 60 C threshold, leaving the 50 C threshold unchanged:
317  *   write 2 to [0x05]      --  select temp sensor 2
318  *   write 0x1 to [0x07]    --  disable threshold 1
319  */
320 
321 /* DPTF battery charging current limit */
322 #define EC_ACPI_MEM_CHARGING_LIMIT     0x08
323 
324 /* Charging limit is specified in 64 mA steps */
325 #define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA   64
326 /* Value to disable DPTF battery charging limit */
327 #define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED  0xff
328 
329 /*
330  * Report device orientation
331  *  Bits       Definition
332  *  3:1        Device DPTF Profile Number (DDPN)
333  *               0   = Reserved for backward compatibility (indicates no valid
334  *                     profile number. Host should fall back to using TBMD).
335  *              1..7 = DPTF Profile number to indicate to host which table needs
336  *                     to be loaded.
337  *   0         Tablet Mode Device Indicator (TBMD)
338  */
339 #define EC_ACPI_MEM_DEVICE_ORIENTATION 0x09
340 #define EC_ACPI_MEM_TBMD_SHIFT         0
341 #define EC_ACPI_MEM_TBMD_MASK          0x1
342 #define EC_ACPI_MEM_DDPN_SHIFT         1
343 #define EC_ACPI_MEM_DDPN_MASK          0x7
344 
345 /*
346  * Report device features. Uses the same format as the host command, except:
347  *
348  * bit 0 (EC_FEATURE_LIMITED) changes meaning from "EC code has a limited set
349  * of features", which is of limited interest when the system is already
350  * interpreting ACPI bytecode, to "EC_FEATURES[0-7] is not supported". Since
351  * these are supported, it defaults to 0.
352  * This allows detecting the presence of this field since older versions of
353  * the EC codebase would simply return 0xff to that unknown address. Check
354  * FEATURES0 != 0xff (or FEATURES0[0] == 0) to make sure that the other bits
355  * are valid.
356  */
357 #define EC_ACPI_MEM_DEVICE_FEATURES0 0x0a
358 #define EC_ACPI_MEM_DEVICE_FEATURES1 0x0b
359 #define EC_ACPI_MEM_DEVICE_FEATURES2 0x0c
360 #define EC_ACPI_MEM_DEVICE_FEATURES3 0x0d
361 #define EC_ACPI_MEM_DEVICE_FEATURES4 0x0e
362 #define EC_ACPI_MEM_DEVICE_FEATURES5 0x0f
363 #define EC_ACPI_MEM_DEVICE_FEATURES6 0x10
364 #define EC_ACPI_MEM_DEVICE_FEATURES7 0x11
365 
366 #define EC_ACPI_MEM_BATTERY_INDEX    0x12
367 
368 /*
369  * USB Port Power. Each bit indicates whether the corresponding USB ports' power
370  * is enabled (1) or disabled (0).
371  *   bit 0 USB port ID 0
372  *   ...
373  *   bit 7 USB port ID 7
374  */
375 #define EC_ACPI_MEM_USB_PORT_POWER 0x13
376 
377 /*
378  * ACPI addresses 0x20 - 0xff map to EC_MEMMAP offset 0x00 - 0xdf.  This data
379  * is read-only from the AP.  Added in EC_ACPI_MEM_VERSION 2.
380  */
381 #define EC_ACPI_MEM_MAPPED_BEGIN   0x20
382 #define EC_ACPI_MEM_MAPPED_SIZE    0xe0
383 
384 /* Current version of ACPI memory address space */
385 #define EC_ACPI_MEM_VERSION_CURRENT 2
386 
387 
388 /*
389  * This header file is used in coreboot both in C and ACPI code.  The ACPI code
390  * is pre-processed to handle constants but the ASL compiler is unable to
391  * handle actual C code so keep it separate.
392  */
393 
394 
395 /*
396  * Attributes for EC request and response packets.  Just defining __packed
397  * results in inefficient assembly code on ARM, if the structure is actually
398  * 32-bit aligned, as it should be for all buffers.
399  *
400  * Be very careful when adding these to existing structures.  They will round
401  * up the structure size to the specified boundary.
402  *
403  * Also be very careful to make that if a structure is included in some other
404  * parent structure that the alignment will still be true given the packing of
405  * the parent structure.  This is particularly important if the sub-structure
406  * will be passed as a pointer to another function, since that function will
407  * not know about the misaligment caused by the parent structure's packing.
408  *
409  * Also be very careful using __packed - particularly when nesting non-packed
410  * structures inside packed ones.  In fact, DO NOT use __packed directly;
411  * always use one of these attributes.
412  *
413  * Once everything is annotated properly, the following search strings should
414  * not return ANY matches in this file other than right here:
415  *
416  * "__packed" - generates inefficient code; all sub-structs must also be packed
417  *
418  * "struct [^_]" - all structs should be annotated, except for structs that are
419  * members of other structs/unions (and their original declarations should be
420  * annotated).
421  */
422 
423 /*
424  * Packed structures make no assumption about alignment, so they do inefficient
425  * byte-wise reads.
426  */
427 #define __ec_align1 __packed
428 #define __ec_align2 __packed
429 #define __ec_align4 __packed
430 #define __ec_align_size1 __packed
431 #define __ec_align_offset1 __packed
432 #define __ec_align_offset2 __packed
433 #define __ec_todo_packed __packed
434 #define __ec_todo_unpacked
435 
436 
437 /* LPC command status byte masks */
438 /* EC has written a byte in the data register and host hasn't read it yet */
439 #define EC_LPC_STATUS_TO_HOST     0x01
440 /* Host has written a command/data byte and the EC hasn't read it yet */
441 #define EC_LPC_STATUS_FROM_HOST   0x02
442 /* EC is processing a command */
443 #define EC_LPC_STATUS_PROCESSING  0x04
444 /* Last write to EC was a command, not data */
445 #define EC_LPC_STATUS_LAST_CMD    0x08
446 /* EC is in burst mode */
447 #define EC_LPC_STATUS_BURST_MODE  0x10
448 /* SCI event is pending (requesting SCI query) */
449 #define EC_LPC_STATUS_SCI_PENDING 0x20
450 /* SMI event is pending (requesting SMI query) */
451 #define EC_LPC_STATUS_SMI_PENDING 0x40
452 /* (reserved) */
453 #define EC_LPC_STATUS_RESERVED    0x80
454 
455 /*
456  * EC is busy.  This covers both the EC processing a command, and the host has
457  * written a new command but the EC hasn't picked it up yet.
458  */
459 #define EC_LPC_STATUS_BUSY_MASK \
460 	(EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
461 
462 /*
463  * Host command response codes (16-bit).  Note that response codes should be
464  * stored in a uint16_t rather than directly in a value of this type.
465  */
466 enum ec_status {
467 	EC_RES_SUCCESS = 0,
468 	EC_RES_INVALID_COMMAND = 1,
469 	EC_RES_ERROR = 2,
470 	EC_RES_INVALID_PARAM = 3,
471 	EC_RES_ACCESS_DENIED = 4,
472 	EC_RES_INVALID_RESPONSE = 5,
473 	EC_RES_INVALID_VERSION = 6,
474 	EC_RES_INVALID_CHECKSUM = 7,
475 	EC_RES_IN_PROGRESS = 8,		/* Accepted, command in progress */
476 	EC_RES_UNAVAILABLE = 9,		/* No response available */
477 	EC_RES_TIMEOUT = 10,		/* We got a timeout */
478 	EC_RES_OVERFLOW = 11,		/* Table / data overflow */
479 	EC_RES_INVALID_HEADER = 12,     /* Header contains invalid data */
480 	EC_RES_REQUEST_TRUNCATED = 13,  /* Didn't get the entire request */
481 	EC_RES_RESPONSE_TOO_BIG = 14,   /* Response was too big to handle */
482 	EC_RES_BUS_ERROR = 15,		/* Communications bus error */
483 	EC_RES_BUSY = 16,		/* Up but too busy.  Should retry */
484 	EC_RES_INVALID_HEADER_VERSION = 17,  /* Header version invalid */
485 	EC_RES_INVALID_HEADER_CRC = 18,      /* Header CRC invalid */
486 	EC_RES_INVALID_DATA_CRC = 19,        /* Data CRC invalid */
487 	EC_RES_DUP_UNAVAILABLE = 20,         /* Can't resend response */
488 };
489 
490 /*
491  * Host event codes.  Note these are 1-based, not 0-based, because ACPI query
492  * EC command uses code 0 to mean "no event pending".  We explicitly specify
493  * each value in the enum listing so they won't change if we delete/insert an
494  * item or rearrange the list (it needs to be stable across platforms, not
495  * just within a single compiled instance).
496  */
497 enum host_event_code {
498 	EC_HOST_EVENT_LID_CLOSED = 1,
499 	EC_HOST_EVENT_LID_OPEN = 2,
500 	EC_HOST_EVENT_POWER_BUTTON = 3,
501 	EC_HOST_EVENT_AC_CONNECTED = 4,
502 	EC_HOST_EVENT_AC_DISCONNECTED = 5,
503 	EC_HOST_EVENT_BATTERY_LOW = 6,
504 	EC_HOST_EVENT_BATTERY_CRITICAL = 7,
505 	EC_HOST_EVENT_BATTERY = 8,
506 	EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
507 	/* Event generated by a device attached to the EC */
508 	EC_HOST_EVENT_DEVICE = 10,
509 	EC_HOST_EVENT_THERMAL = 11,
510 	EC_HOST_EVENT_USB_CHARGER = 12,
511 	EC_HOST_EVENT_KEY_PRESSED = 13,
512 	/*
513 	 * EC has finished initializing the host interface.  The host can check
514 	 * for this event following sending a EC_CMD_REBOOT_EC command to
515 	 * determine when the EC is ready to accept subsequent commands.
516 	 */
517 	EC_HOST_EVENT_INTERFACE_READY = 14,
518 	/* Keyboard recovery combo has been pressed */
519 	EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
520 
521 	/* Shutdown due to thermal overload */
522 	EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
523 	/* Shutdown due to battery level too low */
524 	EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
525 
526 	/* Suggest that the AP throttle itself */
527 	EC_HOST_EVENT_THROTTLE_START = 18,
528 	/* Suggest that the AP resume normal speed */
529 	EC_HOST_EVENT_THROTTLE_STOP = 19,
530 
531 	/* Hang detect logic detected a hang and host event timeout expired */
532 	EC_HOST_EVENT_HANG_DETECT = 20,
533 	/* Hang detect logic detected a hang and warm rebooted the AP */
534 	EC_HOST_EVENT_HANG_REBOOT = 21,
535 
536 	/* PD MCU triggering host event */
537 	EC_HOST_EVENT_PD_MCU = 22,
538 
539 	/* Battery Status flags have changed */
540 	EC_HOST_EVENT_BATTERY_STATUS = 23,
541 
542 	/* EC encountered a panic, triggering a reset */
543 	EC_HOST_EVENT_PANIC = 24,
544 
545 	/* Keyboard fastboot combo has been pressed */
546 	EC_HOST_EVENT_KEYBOARD_FASTBOOT = 25,
547 
548 	/* EC RTC event occurred */
549 	EC_HOST_EVENT_RTC = 26,
550 
551 	/* Emulate MKBP event */
552 	EC_HOST_EVENT_MKBP = 27,
553 
554 	/* EC desires to change state of host-controlled USB mux */
555 	EC_HOST_EVENT_USB_MUX = 28,
556 
557 	/* TABLET/LAPTOP mode or detachable base attach/detach event */
558 	EC_HOST_EVENT_MODE_CHANGE = 29,
559 
560 	/* Keyboard recovery combo with hardware reinitialization */
561 	EC_HOST_EVENT_KEYBOARD_RECOVERY_HW_REINIT = 30,
562 
563 	/* WoV */
564 	EC_HOST_EVENT_WOV = 31,
565 
566 	/*
567 	 * The high bit of the event mask is not used as a host event code.  If
568 	 * it reads back as set, then the entire event mask should be
569 	 * considered invalid by the host.  This can happen when reading the
570 	 * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
571 	 * not initialized on the EC, or improperly configured on the host.
572 	 */
573 	EC_HOST_EVENT_INVALID = 32
574 };
575 /* Host event mask */
576 #define EC_HOST_EVENT_MASK(event_code) BIT_ULL((event_code) - 1)
577 
578 /**
579  * struct ec_lpc_host_args - Arguments at EC_LPC_ADDR_HOST_ARGS
580  * @flags: The host argument flags.
581  * @command_version: Command version.
582  * @data_size: The length of data.
583  * @checksum: Checksum; sum of command + flags + command_version + data_size +
584  *            all params/response data bytes.
585  */
586 struct ec_lpc_host_args {
587 	uint8_t flags;
588 	uint8_t command_version;
589 	uint8_t data_size;
590 	uint8_t checksum;
591 } __ec_align4;
592 
593 /* Flags for ec_lpc_host_args.flags */
594 /*
595  * Args are from host.  Data area at EC_LPC_ADDR_HOST_PARAM contains command
596  * params.
597  *
598  * If EC gets a command and this flag is not set, this is an old-style command.
599  * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
600  * unknown length.  EC must respond with an old-style response (that is,
601  * without setting EC_HOST_ARGS_FLAG_TO_HOST).
602  */
603 #define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
604 /*
605  * Args are from EC.  Data area at EC_LPC_ADDR_HOST_PARAM contains response.
606  *
607  * If EC responds to a command and this flag is not set, this is an old-style
608  * response.  Command version is 0 and response data from EC is at
609  * EC_LPC_ADDR_OLD_PARAM with unknown length.
610  */
611 #define EC_HOST_ARGS_FLAG_TO_HOST   0x02
612 
613 /*****************************************************************************/
614 /*
615  * Byte codes returned by EC over SPI interface.
616  *
617  * These can be used by the AP to debug the EC interface, and to determine
618  * when the EC is not in a state where it will ever get around to responding
619  * to the AP.
620  *
621  * Example of sequence of bytes read from EC for a current good transfer:
622  *   1. -                  - AP asserts chip select (CS#)
623  *   2. EC_SPI_OLD_READY   - AP sends first byte(s) of request
624  *   3. -                  - EC starts handling CS# interrupt
625  *   4. EC_SPI_RECEIVING   - AP sends remaining byte(s) of request
626  *   5. EC_SPI_PROCESSING  - EC starts processing request; AP is clocking in
627  *                           bytes looking for EC_SPI_FRAME_START
628  *   6. -                  - EC finishes processing and sets up response
629  *   7. EC_SPI_FRAME_START - AP reads frame byte
630  *   8. (response packet)  - AP reads response packet
631  *   9. EC_SPI_PAST_END    - Any additional bytes read by AP
632  *   10 -                  - AP deasserts chip select
633  *   11 -                  - EC processes CS# interrupt and sets up DMA for
634  *                           next request
635  *
636  * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
637  * the following byte values:
638  *   EC_SPI_OLD_READY
639  *   EC_SPI_RX_READY
640  *   EC_SPI_RECEIVING
641  *   EC_SPI_PROCESSING
642  *
643  * Then the EC found an error in the request, or was not ready for the request
644  * and lost data.  The AP should give up waiting for EC_SPI_FRAME_START,
645  * because the EC is unable to tell when the AP is done sending its request.
646  */
647 
648 /*
649  * Framing byte which precedes a response packet from the EC.  After sending a
650  * request, the AP will clock in bytes until it sees the framing byte, then
651  * clock in the response packet.
652  */
653 #define EC_SPI_FRAME_START    0xec
654 
655 /*
656  * Padding bytes which are clocked out after the end of a response packet.
657  */
658 #define EC_SPI_PAST_END       0xed
659 
660 /*
661  * EC is ready to receive, and has ignored the byte sent by the AP.  EC expects
662  * that the AP will send a valid packet header (starting with
663  * EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
664  */
665 #define EC_SPI_RX_READY       0xf8
666 
667 /*
668  * EC has started receiving the request from the AP, but hasn't started
669  * processing it yet.
670  */
671 #define EC_SPI_RECEIVING      0xf9
672 
673 /* EC has received the entire request from the AP and is processing it. */
674 #define EC_SPI_PROCESSING     0xfa
675 
676 /*
677  * EC received bad data from the AP, such as a packet header with an invalid
678  * length.  EC will ignore all data until chip select deasserts.
679  */
680 #define EC_SPI_RX_BAD_DATA    0xfb
681 
682 /*
683  * EC received data from the AP before it was ready.  That is, the AP asserted
684  * chip select and started clocking data before the EC was ready to receive it.
685  * EC will ignore all data until chip select deasserts.
686  */
687 #define EC_SPI_NOT_READY      0xfc
688 
689 /*
690  * EC was ready to receive a request from the AP.  EC has treated the byte sent
691  * by the AP as part of a request packet, or (for old-style ECs) is processing
692  * a fully received packet but is not ready to respond yet.
693  */
694 #define EC_SPI_OLD_READY      0xfd
695 
696 /*****************************************************************************/
697 
698 /*
699  * Protocol version 2 for I2C and SPI send a request this way:
700  *
701  *	0	EC_CMD_VERSION0 + (command version)
702  *	1	Command number
703  *	2	Length of params = N
704  *	3..N+2	Params, if any
705  *	N+3	8-bit checksum of bytes 0..N+2
706  *
707  * The corresponding response is:
708  *
709  *	0	Result code (EC_RES_*)
710  *	1	Length of params = M
711  *	2..M+1	Params, if any
712  *	M+2	8-bit checksum of bytes 0..M+1
713  */
714 #define EC_PROTO2_REQUEST_HEADER_BYTES 3
715 #define EC_PROTO2_REQUEST_TRAILER_BYTES 1
716 #define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES +	\
717 				    EC_PROTO2_REQUEST_TRAILER_BYTES)
718 
719 #define EC_PROTO2_RESPONSE_HEADER_BYTES 2
720 #define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
721 #define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES +	\
722 				     EC_PROTO2_RESPONSE_TRAILER_BYTES)
723 
724 /* Parameter length was limited by the LPC interface */
725 #define EC_PROTO2_MAX_PARAM_SIZE 0xfc
726 
727 /* Maximum request and response packet sizes for protocol version 2 */
728 #define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD +	\
729 				    EC_PROTO2_MAX_PARAM_SIZE)
730 #define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD +	\
731 				     EC_PROTO2_MAX_PARAM_SIZE)
732 
733 /*****************************************************************************/
734 
735 /*
736  * Value written to legacy command port / prefix byte to indicate protocol
737  * 3+ structs are being used.  Usage is bus-dependent.
738  */
739 #define EC_COMMAND_PROTOCOL_3 0xda
740 
741 #define EC_HOST_REQUEST_VERSION 3
742 
743 /**
744  * struct ec_host_request - Version 3 request from host.
745  * @struct_version: Should be 3. The EC will return EC_RES_INVALID_HEADER if it
746  *                  receives a header with a version it doesn't know how to
747  *                  parse.
748  * @checksum: Checksum of request and data; sum of all bytes including checksum
749  *            should total to 0.
750  * @command: Command to send (EC_CMD_...)
751  * @command_version: Command version.
752  * @reserved: Unused byte in current protocol version; set to 0.
753  * @data_len: Length of data which follows this header.
754  */
755 struct ec_host_request {
756 	uint8_t struct_version;
757 	uint8_t checksum;
758 	uint16_t command;
759 	uint8_t command_version;
760 	uint8_t reserved;
761 	uint16_t data_len;
762 } __ec_align4;
763 
764 #define EC_HOST_RESPONSE_VERSION 3
765 
766 /**
767  * struct ec_host_response - Version 3 response from EC.
768  * @struct_version: Struct version (=3).
769  * @checksum: Checksum of response and data; sum of all bytes including
770  *            checksum should total to 0.
771  * @result: EC's response to the command (separate from communication failure)
772  * @data_len: Length of data which follows this header.
773  * @reserved: Unused bytes in current protocol version; set to 0.
774  */
775 struct ec_host_response {
776 	uint8_t struct_version;
777 	uint8_t checksum;
778 	uint16_t result;
779 	uint16_t data_len;
780 	uint16_t reserved;
781 } __ec_align4;
782 
783 /*****************************************************************************/
784 
785 /*
786  * Host command protocol V4.
787  *
788  * Packets always start with a request or response header.  They are followed
789  * by data_len bytes of data.  If the data_crc_present flag is set, the data
790  * bytes are followed by a CRC-8 of that data, using using x^8 + x^2 + x + 1
791  * polynomial.
792  *
793  * Host algorithm when sending a request q:
794  *
795  * 101) tries_left=(some value, e.g. 3);
796  * 102) q.seq_num++
797  * 103) q.seq_dup=0
798  * 104) Calculate q.header_crc.
799  * 105) Send request q to EC.
800  * 106) Wait for response r.  Go to 201 if received or 301 if timeout.
801  *
802  * 201) If r.struct_version != 4, go to 301.
803  * 202) If r.header_crc mismatches calculated CRC for r header, go to 301.
804  * 203) If r.data_crc_present and r.data_crc mismatches, go to 301.
805  * 204) If r.seq_num != q.seq_num, go to 301.
806  * 205) If r.seq_dup == q.seq_dup, return success.
807  * 207) If r.seq_dup == 1, go to 301.
808  * 208) Return error.
809  *
810  * 301) If --tries_left <= 0, return error.
811  * 302) If q.seq_dup == 1, go to 105.
812  * 303) q.seq_dup = 1
813  * 304) Go to 104.
814  *
815  * EC algorithm when receiving a request q.
816  * EC has response buffer r, error buffer e.
817  *
818  * 101) If q.struct_version != 4, set e.result = EC_RES_INVALID_HEADER_VERSION
819  *      and go to 301
820  * 102) If q.header_crc mismatches calculated CRC, set e.result =
821  *      EC_RES_INVALID_HEADER_CRC and go to 301
822  * 103) If q.data_crc_present, calculate data CRC.  If that mismatches the CRC
823  *      byte at the end of the packet, set e.result = EC_RES_INVALID_DATA_CRC
824  *      and go to 301.
825  * 104) If q.seq_dup == 0, go to 201.
826  * 105) If q.seq_num != r.seq_num, go to 201.
827  * 106) If q.seq_dup == r.seq_dup, go to 205, else go to 203.
828  *
829  * 201) Process request q into response r.
830  * 202) r.seq_num = q.seq_num
831  * 203) r.seq_dup = q.seq_dup
832  * 204) Calculate r.header_crc
833  * 205) If r.data_len > 0 and data is no longer available, set e.result =
834  *      EC_RES_DUP_UNAVAILABLE and go to 301.
835  * 206) Send response r.
836  *
837  * 301) e.seq_num = q.seq_num
838  * 302) e.seq_dup = q.seq_dup
839  * 303) Calculate e.header_crc.
840  * 304) Send error response e.
841  */
842 
843 /* Version 4 request from host */
844 struct ec_host_request4 {
845 	/*
846 	 * bits 0-3: struct_version: Structure version (=4)
847 	 * bit    4: is_response: Is response (=0)
848 	 * bits 5-6: seq_num: Sequence number
849 	 * bit    7: seq_dup: Sequence duplicate flag
850 	 */
851 	uint8_t fields0;
852 
853 	/*
854 	 * bits 0-4: command_version: Command version
855 	 * bits 5-6: Reserved (set 0, ignore on read)
856 	 * bit    7: data_crc_present: Is data CRC present after data
857 	 */
858 	uint8_t fields1;
859 
860 	/* Command code (EC_CMD_*) */
861 	uint16_t command;
862 
863 	/* Length of data which follows this header (not including data CRC) */
864 	uint16_t data_len;
865 
866 	/* Reserved (set 0, ignore on read) */
867 	uint8_t reserved;
868 
869 	/* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */
870 	uint8_t header_crc;
871 } __ec_align4;
872 
873 /* Version 4 response from EC */
874 struct ec_host_response4 {
875 	/*
876 	 * bits 0-3: struct_version: Structure version (=4)
877 	 * bit    4: is_response: Is response (=1)
878 	 * bits 5-6: seq_num: Sequence number
879 	 * bit    7: seq_dup: Sequence duplicate flag
880 	 */
881 	uint8_t fields0;
882 
883 	/*
884 	 * bits 0-6: Reserved (set 0, ignore on read)
885 	 * bit    7: data_crc_present: Is data CRC present after data
886 	 */
887 	uint8_t fields1;
888 
889 	/* Result code (EC_RES_*) */
890 	uint16_t result;
891 
892 	/* Length of data which follows this header (not including data CRC) */
893 	uint16_t data_len;
894 
895 	/* Reserved (set 0, ignore on read) */
896 	uint8_t reserved;
897 
898 	/* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */
899 	uint8_t header_crc;
900 } __ec_align4;
901 
902 /* Fields in fields0 byte */
903 #define EC_PACKET4_0_STRUCT_VERSION_MASK	0x0f
904 #define EC_PACKET4_0_IS_RESPONSE_MASK		0x10
905 #define EC_PACKET4_0_SEQ_NUM_SHIFT		5
906 #define EC_PACKET4_0_SEQ_NUM_MASK		0x60
907 #define EC_PACKET4_0_SEQ_DUP_MASK		0x80
908 
909 /* Fields in fields1 byte */
910 #define EC_PACKET4_1_COMMAND_VERSION_MASK	0x1f  /* (request only) */
911 #define EC_PACKET4_1_DATA_CRC_PRESENT_MASK	0x80
912 
913 /*****************************************************************************/
914 /*
915  * Notes on commands:
916  *
917  * Each command is an 16-bit command value.  Commands which take params or
918  * return response data specify structures for that data.  If no structure is
919  * specified, the command does not input or output data, respectively.
920  * Parameter/response length is implicit in the structs.  Some underlying
921  * communication protocols (I2C, SPI) may add length or checksum headers, but
922  * those are implementation-dependent and not defined here.
923  *
924  * All commands MUST be #defined to be 4-digit UPPER CASE hex values
925  * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
926  */
927 
928 /*****************************************************************************/
929 /* General / test commands */
930 
931 /*
932  * Get protocol version, used to deal with non-backward compatible protocol
933  * changes.
934  */
935 #define EC_CMD_PROTO_VERSION 0x0000
936 
937 /**
938  * struct ec_response_proto_version - Response to the proto version command.
939  * @version: The protocol version.
940  */
941 struct ec_response_proto_version {
942 	uint32_t version;
943 } __ec_align4;
944 
945 /*
946  * Hello.  This is a simple command to test the EC is responsive to
947  * commands.
948  */
949 #define EC_CMD_HELLO 0x0001
950 
951 /**
952  * struct ec_params_hello - Parameters to the hello command.
953  * @in_data: Pass anything here.
954  */
955 struct ec_params_hello {
956 	uint32_t in_data;
957 } __ec_align4;
958 
959 /**
960  * struct ec_response_hello - Response to the hello command.
961  * @out_data: Output will be in_data + 0x01020304.
962  */
963 struct ec_response_hello {
964 	uint32_t out_data;
965 } __ec_align4;
966 
967 /* Get version number */
968 #define EC_CMD_GET_VERSION 0x0002
969 
970 enum ec_current_image {
971 	EC_IMAGE_UNKNOWN = 0,
972 	EC_IMAGE_RO,
973 	EC_IMAGE_RW
974 };
975 
976 /**
977  * struct ec_response_get_version - Response to the get version command.
978  * @version_string_ro: Null-terminated RO firmware version string.
979  * @version_string_rw: Null-terminated RW firmware version string.
980  * @reserved: Unused bytes; was previously RW-B firmware version string.
981  * @current_image: One of ec_current_image.
982  */
983 struct ec_response_get_version {
984 	char version_string_ro[32];
985 	char version_string_rw[32];
986 	char reserved[32];
987 	uint32_t current_image;
988 } __ec_align4;
989 
990 /* Read test */
991 #define EC_CMD_READ_TEST 0x0003
992 
993 /**
994  * struct ec_params_read_test - Parameters for the read test command.
995  * @offset: Starting value for read buffer.
996  * @size: Size to read in bytes.
997  */
998 struct ec_params_read_test {
999 	uint32_t offset;
1000 	uint32_t size;
1001 } __ec_align4;
1002 
1003 /**
1004  * struct ec_response_read_test - Response to the read test command.
1005  * @data: Data returned by the read test command.
1006  */
1007 struct ec_response_read_test {
1008 	uint32_t data[32];
1009 } __ec_align4;
1010 
1011 /*
1012  * Get build information
1013  *
1014  * Response is null-terminated string.
1015  */
1016 #define EC_CMD_GET_BUILD_INFO 0x0004
1017 
1018 /* Get chip info */
1019 #define EC_CMD_GET_CHIP_INFO 0x0005
1020 
1021 /**
1022  * struct ec_response_get_chip_info - Response to the get chip info command.
1023  * @vendor: Null-terminated string for chip vendor.
1024  * @name: Null-terminated string for chip name.
1025  * @revision: Null-terminated string for chip mask version.
1026  */
1027 struct ec_response_get_chip_info {
1028 	char vendor[32];
1029 	char name[32];
1030 	char revision[32];
1031 } __ec_align4;
1032 
1033 /* Get board HW version */
1034 #define EC_CMD_GET_BOARD_VERSION 0x0006
1035 
1036 /**
1037  * struct ec_response_board_version - Response to the board version command.
1038  * @board_version: A monotonously incrementing number.
1039  */
1040 struct ec_response_board_version {
1041 	uint16_t board_version;
1042 } __ec_align2;
1043 
1044 /*
1045  * Read memory-mapped data.
1046  *
1047  * This is an alternate interface to memory-mapped data for bus protocols
1048  * which don't support direct-mapped memory - I2C, SPI, etc.
1049  *
1050  * Response is params.size bytes of data.
1051  */
1052 #define EC_CMD_READ_MEMMAP 0x0007
1053 
1054 /**
1055  * struct ec_params_read_memmap - Parameters for the read memory map command.
1056  * @offset: Offset in memmap (EC_MEMMAP_*).
1057  * @size: Size to read in bytes.
1058  */
1059 struct ec_params_read_memmap {
1060 	uint8_t offset;
1061 	uint8_t size;
1062 } __ec_align1;
1063 
1064 /* Read versions supported for a command */
1065 #define EC_CMD_GET_CMD_VERSIONS 0x0008
1066 
1067 /**
1068  * struct ec_params_get_cmd_versions - Parameters for the get command versions.
1069  * @cmd: Command to check.
1070  */
1071 struct ec_params_get_cmd_versions {
1072 	uint8_t cmd;
1073 } __ec_align1;
1074 
1075 /**
1076  * struct ec_params_get_cmd_versions_v1 - Parameters for the get command
1077  *         versions (v1)
1078  * @cmd: Command to check.
1079  */
1080 struct ec_params_get_cmd_versions_v1 {
1081 	uint16_t cmd;
1082 } __ec_align2;
1083 
1084 /**
1085  * struct ec_response_get_cmd_version - Response to the get command versions.
1086  * @version_mask: Mask of supported versions; use EC_VER_MASK() to compare with
1087  *                a desired version.
1088  */
1089 struct ec_response_get_cmd_versions {
1090 	uint32_t version_mask;
1091 } __ec_align4;
1092 
1093 /*
1094  * Check EC communications status (busy). This is needed on i2c/spi but not
1095  * on lpc since it has its own out-of-band busy indicator.
1096  *
1097  * lpc must read the status from the command register. Attempting this on
1098  * lpc will overwrite the args/parameter space and corrupt its data.
1099  */
1100 #define EC_CMD_GET_COMMS_STATUS		0x0009
1101 
1102 /* Avoid using ec_status which is for return values */
1103 enum ec_comms_status {
1104 	EC_COMMS_STATUS_PROCESSING	= BIT(0),	/* Processing cmd */
1105 };
1106 
1107 /**
1108  * struct ec_response_get_comms_status - Response to the get comms status
1109  *         command.
1110  * @flags: Mask of enum ec_comms_status.
1111  */
1112 struct ec_response_get_comms_status {
1113 	uint32_t flags;		/* Mask of enum ec_comms_status */
1114 } __ec_align4;
1115 
1116 /* Fake a variety of responses, purely for testing purposes. */
1117 #define EC_CMD_TEST_PROTOCOL		0x000A
1118 
1119 /* Tell the EC what to send back to us. */
1120 struct ec_params_test_protocol {
1121 	uint32_t ec_result;
1122 	uint32_t ret_len;
1123 	uint8_t buf[32];
1124 } __ec_align4;
1125 
1126 /* Here it comes... */
1127 struct ec_response_test_protocol {
1128 	uint8_t buf[32];
1129 } __ec_align4;
1130 
1131 /* Get protocol information */
1132 #define EC_CMD_GET_PROTOCOL_INFO	0x000B
1133 
1134 /* Flags for ec_response_get_protocol_info.flags */
1135 /* EC_RES_IN_PROGRESS may be returned if a command is slow */
1136 #define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED BIT(0)
1137 
1138 /**
1139  * struct ec_response_get_protocol_info - Response to the get protocol info.
1140  * @protocol_versions: Bitmask of protocol versions supported (1 << n means
1141  *                     version n).
1142  * @max_request_packet_size: Maximum request packet size in bytes.
1143  * @max_response_packet_size: Maximum response packet size in bytes.
1144  * @flags: see EC_PROTOCOL_INFO_*
1145  */
1146 struct ec_response_get_protocol_info {
1147 	/* Fields which exist if at least protocol version 3 supported */
1148 	uint32_t protocol_versions;
1149 	uint16_t max_request_packet_size;
1150 	uint16_t max_response_packet_size;
1151 	uint32_t flags;
1152 } __ec_align4;
1153 
1154 
1155 /*****************************************************************************/
1156 /* Get/Set miscellaneous values */
1157 
1158 /* The upper byte of .flags tells what to do (nothing means "get") */
1159 #define EC_GSV_SET        0x80000000
1160 
1161 /*
1162  * The lower three bytes of .flags identifies the parameter, if that has
1163  * meaning for an individual command.
1164  */
1165 #define EC_GSV_PARAM_MASK 0x00ffffff
1166 
1167 struct ec_params_get_set_value {
1168 	uint32_t flags;
1169 	uint32_t value;
1170 } __ec_align4;
1171 
1172 struct ec_response_get_set_value {
1173 	uint32_t flags;
1174 	uint32_t value;
1175 } __ec_align4;
1176 
1177 /* More than one command can use these structs to get/set parameters. */
1178 #define EC_CMD_GSV_PAUSE_IN_S5	0x000C
1179 
1180 /*****************************************************************************/
1181 /* List the features supported by the firmware */
1182 #define EC_CMD_GET_FEATURES  0x000D
1183 
1184 /* Supported features */
1185 enum ec_feature_code {
1186 	/*
1187 	 * This image contains a limited set of features. Another image
1188 	 * in RW partition may support more features.
1189 	 */
1190 	EC_FEATURE_LIMITED = 0,
1191 	/*
1192 	 * Commands for probing/reading/writing/erasing the flash in the
1193 	 * EC are present.
1194 	 */
1195 	EC_FEATURE_FLASH = 1,
1196 	/*
1197 	 * Can control the fan speed directly.
1198 	 */
1199 	EC_FEATURE_PWM_FAN = 2,
1200 	/*
1201 	 * Can control the intensity of the keyboard backlight.
1202 	 */
1203 	EC_FEATURE_PWM_KEYB = 3,
1204 	/*
1205 	 * Support Google lightbar, introduced on Pixel.
1206 	 */
1207 	EC_FEATURE_LIGHTBAR = 4,
1208 	/* Control of LEDs  */
1209 	EC_FEATURE_LED = 5,
1210 	/* Exposes an interface to control gyro and sensors.
1211 	 * The host goes through the EC to access these sensors.
1212 	 * In addition, the EC may provide composite sensors, like lid angle.
1213 	 */
1214 	EC_FEATURE_MOTION_SENSE = 6,
1215 	/* The keyboard is controlled by the EC */
1216 	EC_FEATURE_KEYB = 7,
1217 	/* The AP can use part of the EC flash as persistent storage. */
1218 	EC_FEATURE_PSTORE = 8,
1219 	/* The EC monitors BIOS port 80h, and can return POST codes. */
1220 	EC_FEATURE_PORT80 = 9,
1221 	/*
1222 	 * Thermal management: include TMP specific commands.
1223 	 * Higher level than direct fan control.
1224 	 */
1225 	EC_FEATURE_THERMAL = 10,
1226 	/* Can switch the screen backlight on/off */
1227 	EC_FEATURE_BKLIGHT_SWITCH = 11,
1228 	/* Can switch the wifi module on/off */
1229 	EC_FEATURE_WIFI_SWITCH = 12,
1230 	/* Monitor host events, through for example SMI or SCI */
1231 	EC_FEATURE_HOST_EVENTS = 13,
1232 	/* The EC exposes GPIO commands to control/monitor connected devices. */
1233 	EC_FEATURE_GPIO = 14,
1234 	/* The EC can send i2c messages to downstream devices. */
1235 	EC_FEATURE_I2C = 15,
1236 	/* Command to control charger are included */
1237 	EC_FEATURE_CHARGER = 16,
1238 	/* Simple battery support. */
1239 	EC_FEATURE_BATTERY = 17,
1240 	/*
1241 	 * Support Smart battery protocol
1242 	 * (Common Smart Battery System Interface Specification)
1243 	 */
1244 	EC_FEATURE_SMART_BATTERY = 18,
1245 	/* EC can detect when the host hangs. */
1246 	EC_FEATURE_HANG_DETECT = 19,
1247 	/* Report power information, for pit only */
1248 	EC_FEATURE_PMU = 20,
1249 	/* Another Cros EC device is present downstream of this one */
1250 	EC_FEATURE_SUB_MCU = 21,
1251 	/* Support USB Power delivery (PD) commands */
1252 	EC_FEATURE_USB_PD = 22,
1253 	/* Control USB multiplexer, for audio through USB port for instance. */
1254 	EC_FEATURE_USB_MUX = 23,
1255 	/* Motion Sensor code has an internal software FIFO */
1256 	EC_FEATURE_MOTION_SENSE_FIFO = 24,
1257 	/* Support temporary secure vstore */
1258 	EC_FEATURE_VSTORE = 25,
1259 	/* EC decides on USB-C SS mux state, muxes configured by host */
1260 	EC_FEATURE_USBC_SS_MUX_VIRTUAL = 26,
1261 	/* EC has RTC feature that can be controlled by host commands */
1262 	EC_FEATURE_RTC = 27,
1263 	/* The MCU exposes a Fingerprint sensor */
1264 	EC_FEATURE_FINGERPRINT = 28,
1265 	/* The MCU exposes a Touchpad */
1266 	EC_FEATURE_TOUCHPAD = 29,
1267 	/* The MCU has RWSIG task enabled */
1268 	EC_FEATURE_RWSIG = 30,
1269 	/* EC has device events support */
1270 	EC_FEATURE_DEVICE_EVENT = 31,
1271 	/* EC supports the unified wake masks for LPC/eSPI systems */
1272 	EC_FEATURE_UNIFIED_WAKE_MASKS = 32,
1273 	/* EC supports 64-bit host events */
1274 	EC_FEATURE_HOST_EVENT64 = 33,
1275 	/* EC runs code in RAM (not in place, a.k.a. XIP) */
1276 	EC_FEATURE_EXEC_IN_RAM = 34,
1277 	/* EC supports CEC commands */
1278 	EC_FEATURE_CEC = 35,
1279 	/* EC supports tight sensor timestamping. */
1280 	EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS = 36,
1281 	/*
1282 	 * EC supports tablet mode detection aligned to Chrome and allows
1283 	 * setting of threshold by host command using
1284 	 * MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE.
1285 	 */
1286 	EC_FEATURE_REFINED_TABLET_MODE_HYSTERESIS = 37,
1287 	/* The MCU is a System Companion Processor (SCP). */
1288 	EC_FEATURE_SCP = 39,
1289 	/* The MCU is an Integrated Sensor Hub */
1290 	EC_FEATURE_ISH = 40,
1291 	/* New TCPMv2 TYPEC_ prefaced commands supported */
1292 	EC_FEATURE_TYPEC_CMD = 41,
1293 	/*
1294 	 * The EC will wait for direction from the AP to enter Type-C alternate
1295 	 * modes or USB4.
1296 	 */
1297 	EC_FEATURE_TYPEC_REQUIRE_AP_MODE_ENTRY = 42,
1298 	/*
1299 	 * The EC will wait for an acknowledge from the AP after setting the
1300 	 * mux.
1301 	 */
1302 	EC_FEATURE_TYPEC_MUX_REQUIRE_AP_ACK = 43,
1303 };
1304 
1305 #define EC_FEATURE_MASK_0(event_code) BIT(event_code % 32)
1306 #define EC_FEATURE_MASK_1(event_code) BIT(event_code - 32)
1307 
1308 struct ec_response_get_features {
1309 	uint32_t flags[2];
1310 } __ec_align4;
1311 
1312 /*****************************************************************************/
1313 /* Get the board's SKU ID from EC */
1314 #define EC_CMD_GET_SKU_ID 0x000E
1315 
1316 /* Set SKU ID from AP */
1317 #define EC_CMD_SET_SKU_ID 0x000F
1318 
1319 struct ec_sku_id_info {
1320 	uint32_t sku_id;
1321 } __ec_align4;
1322 
1323 /*****************************************************************************/
1324 /* Flash commands */
1325 
1326 /* Get flash info */
1327 #define EC_CMD_FLASH_INFO 0x0010
1328 #define EC_VER_FLASH_INFO 2
1329 
1330 /**
1331  * struct ec_response_flash_info - Response to the flash info command.
1332  * @flash_size: Usable flash size in bytes.
1333  * @write_block_size: Write block size. Write offset and size must be a
1334  *                    multiple of this.
1335  * @erase_block_size: Erase block size. Erase offset and size must be a
1336  *                    multiple of this.
1337  * @protect_block_size: Protection block size. Protection offset and size
1338  *                      must be a multiple of this.
1339  *
1340  * Version 0 returns these fields.
1341  */
1342 struct ec_response_flash_info {
1343 	uint32_t flash_size;
1344 	uint32_t write_block_size;
1345 	uint32_t erase_block_size;
1346 	uint32_t protect_block_size;
1347 } __ec_align4;
1348 
1349 /*
1350  * Flags for version 1+ flash info command
1351  * EC flash erases bits to 0 instead of 1.
1352  */
1353 #define EC_FLASH_INFO_ERASE_TO_0 BIT(0)
1354 
1355 /*
1356  * Flash must be selected for read/write/erase operations to succeed.  This may
1357  * be necessary on a chip where write/erase can be corrupted by other board
1358  * activity, or where the chip needs to enable some sort of programming voltage,
1359  * or where the read/write/erase operations require cleanly suspending other
1360  * chip functionality.
1361  */
1362 #define EC_FLASH_INFO_SELECT_REQUIRED BIT(1)
1363 
1364 /**
1365  * struct ec_response_flash_info_1 - Response to the flash info v1 command.
1366  * @flash_size: Usable flash size in bytes.
1367  * @write_block_size: Write block size. Write offset and size must be a
1368  *                    multiple of this.
1369  * @erase_block_size: Erase block size. Erase offset and size must be a
1370  *                    multiple of this.
1371  * @protect_block_size: Protection block size. Protection offset and size
1372  *                      must be a multiple of this.
1373  * @write_ideal_size: Ideal write size in bytes.  Writes will be fastest if
1374  *                    size is exactly this and offset is a multiple of this.
1375  *                    For example, an EC may have a write buffer which can do
1376  *                    half-page operations if data is aligned, and a slower
1377  *                    word-at-a-time write mode.
1378  * @flags: Flags; see EC_FLASH_INFO_*
1379  *
1380  * Version 1 returns the same initial fields as version 0, with additional
1381  * fields following.
1382  *
1383  * gcc anonymous structs don't seem to get along with the __packed directive;
1384  * if they did we'd define the version 0 structure as a sub-structure of this
1385  * one.
1386  *
1387  * Version 2 supports flash banks of different sizes:
1388  * The caller specified the number of banks it has preallocated
1389  * (num_banks_desc)
1390  * The EC returns the number of banks describing the flash memory.
1391  * It adds banks descriptions up to num_banks_desc.
1392  */
1393 struct ec_response_flash_info_1 {
1394 	/* Version 0 fields; see above for description */
1395 	uint32_t flash_size;
1396 	uint32_t write_block_size;
1397 	uint32_t erase_block_size;
1398 	uint32_t protect_block_size;
1399 
1400 	/* Version 1 adds these fields: */
1401 	uint32_t write_ideal_size;
1402 	uint32_t flags;
1403 } __ec_align4;
1404 
1405 struct ec_params_flash_info_2 {
1406 	/* Number of banks to describe */
1407 	uint16_t num_banks_desc;
1408 	/* Reserved; set 0; ignore on read */
1409 	uint8_t reserved[2];
1410 } __ec_align4;
1411 
1412 struct ec_flash_bank {
1413 	/* Number of sector is in this bank. */
1414 	uint16_t count;
1415 	/* Size in power of 2 of each sector (8 --> 256 bytes) */
1416 	uint8_t size_exp;
1417 	/* Minimal write size for the sectors in this bank */
1418 	uint8_t write_size_exp;
1419 	/* Erase size for the sectors in this bank */
1420 	uint8_t erase_size_exp;
1421 	/* Size for write protection, usually identical to erase size. */
1422 	uint8_t protect_size_exp;
1423 	/* Reserved; set 0; ignore on read */
1424 	uint8_t reserved[2];
1425 };
1426 
1427 struct ec_response_flash_info_2 {
1428 	/* Total flash in the EC. */
1429 	uint32_t flash_size;
1430 	/* Flags; see EC_FLASH_INFO_* */
1431 	uint32_t flags;
1432 	/* Maximum size to use to send data to write to the EC. */
1433 	uint32_t write_ideal_size;
1434 	/* Number of banks present in the EC. */
1435 	uint16_t num_banks_total;
1436 	/* Number of banks described in banks array. */
1437 	uint16_t num_banks_desc;
1438 	struct ec_flash_bank banks[];
1439 } __ec_align4;
1440 
1441 /*
1442  * Read flash
1443  *
1444  * Response is params.size bytes of data.
1445  */
1446 #define EC_CMD_FLASH_READ 0x0011
1447 
1448 /**
1449  * struct ec_params_flash_read - Parameters for the flash read command.
1450  * @offset: Byte offset to read.
1451  * @size: Size to read in bytes.
1452  */
1453 struct ec_params_flash_read {
1454 	uint32_t offset;
1455 	uint32_t size;
1456 } __ec_align4;
1457 
1458 /* Write flash */
1459 #define EC_CMD_FLASH_WRITE 0x0012
1460 #define EC_VER_FLASH_WRITE 1
1461 
1462 /* Version 0 of the flash command supported only 64 bytes of data */
1463 #define EC_FLASH_WRITE_VER0_SIZE 64
1464 
1465 /**
1466  * struct ec_params_flash_write - Parameters for the flash write command.
1467  * @offset: Byte offset to write.
1468  * @size: Size to write in bytes.
1469  */
1470 struct ec_params_flash_write {
1471 	uint32_t offset;
1472 	uint32_t size;
1473 	/* Followed by data to write */
1474 } __ec_align4;
1475 
1476 /* Erase flash */
1477 #define EC_CMD_FLASH_ERASE 0x0013
1478 
1479 /**
1480  * struct ec_params_flash_erase - Parameters for the flash erase command, v0.
1481  * @offset: Byte offset to erase.
1482  * @size: Size to erase in bytes.
1483  */
1484 struct ec_params_flash_erase {
1485 	uint32_t offset;
1486 	uint32_t size;
1487 } __ec_align4;
1488 
1489 /*
1490  * v1 add async erase:
1491  * subcommands can returns:
1492  * EC_RES_SUCCESS : erased (see ERASE_SECTOR_ASYNC case below).
1493  * EC_RES_INVALID_PARAM : offset/size are not aligned on a erase boundary.
1494  * EC_RES_ERROR : other errors.
1495  * EC_RES_BUSY : an existing erase operation is in progress.
1496  * EC_RES_ACCESS_DENIED: Trying to erase running image.
1497  *
1498  * When ERASE_SECTOR_ASYNC returns EC_RES_SUCCESS, the operation is just
1499  * properly queued. The user must call ERASE_GET_RESULT subcommand to get
1500  * the proper result.
1501  * When ERASE_GET_RESULT returns EC_RES_BUSY, the caller must wait and send
1502  * ERASE_GET_RESULT again to get the result of ERASE_SECTOR_ASYNC.
1503  * ERASE_GET_RESULT command may timeout on EC where flash access is not
1504  * permitted while erasing. (For instance, STM32F4).
1505  */
1506 enum ec_flash_erase_cmd {
1507 	FLASH_ERASE_SECTOR,     /* Erase and wait for result */
1508 	FLASH_ERASE_SECTOR_ASYNC,  /* Erase and return immediately. */
1509 	FLASH_ERASE_GET_RESULT,  /* Ask for last erase result */
1510 };
1511 
1512 /**
1513  * struct ec_params_flash_erase_v1 - Parameters for the flash erase command, v1.
1514  * @cmd: One of ec_flash_erase_cmd.
1515  * @reserved: Pad byte; currently always contains 0.
1516  * @flag: No flags defined yet; set to 0.
1517  * @params: Same as v0 parameters.
1518  */
1519 struct ec_params_flash_erase_v1 {
1520 	uint8_t  cmd;
1521 	uint8_t  reserved;
1522 	uint16_t flag;
1523 	struct ec_params_flash_erase params;
1524 } __ec_align4;
1525 
1526 /*
1527  * Get/set flash protection.
1528  *
1529  * If mask!=0, sets/clear the requested bits of flags.  Depending on the
1530  * firmware write protect GPIO, not all flags will take effect immediately;
1531  * some flags require a subsequent hard reset to take effect.  Check the
1532  * returned flags bits to see what actually happened.
1533  *
1534  * If mask=0, simply returns the current flags state.
1535  */
1536 #define EC_CMD_FLASH_PROTECT 0x0015
1537 #define EC_VER_FLASH_PROTECT 1  /* Command version 1 */
1538 
1539 /* Flags for flash protection */
1540 /* RO flash code protected when the EC boots */
1541 #define EC_FLASH_PROTECT_RO_AT_BOOT         BIT(0)
1542 /*
1543  * RO flash code protected now.  If this bit is set, at-boot status cannot
1544  * be changed.
1545  */
1546 #define EC_FLASH_PROTECT_RO_NOW             BIT(1)
1547 /* Entire flash code protected now, until reboot. */
1548 #define EC_FLASH_PROTECT_ALL_NOW            BIT(2)
1549 /* Flash write protect GPIO is asserted now */
1550 #define EC_FLASH_PROTECT_GPIO_ASSERTED      BIT(3)
1551 /* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
1552 #define EC_FLASH_PROTECT_ERROR_STUCK        BIT(4)
1553 /*
1554  * Error - flash protection is in inconsistent state.  At least one bank of
1555  * flash which should be protected is not protected.  Usually fixed by
1556  * re-requesting the desired flags, or by a hard reset if that fails.
1557  */
1558 #define EC_FLASH_PROTECT_ERROR_INCONSISTENT BIT(5)
1559 /* Entire flash code protected when the EC boots */
1560 #define EC_FLASH_PROTECT_ALL_AT_BOOT        BIT(6)
1561 /* RW flash code protected when the EC boots */
1562 #define EC_FLASH_PROTECT_RW_AT_BOOT         BIT(7)
1563 /* RW flash code protected now. */
1564 #define EC_FLASH_PROTECT_RW_NOW             BIT(8)
1565 /* Rollback information flash region protected when the EC boots */
1566 #define EC_FLASH_PROTECT_ROLLBACK_AT_BOOT   BIT(9)
1567 /* Rollback information flash region protected now */
1568 #define EC_FLASH_PROTECT_ROLLBACK_NOW       BIT(10)
1569 
1570 
1571 /**
1572  * struct ec_params_flash_protect - Parameters for the flash protect command.
1573  * @mask: Bits in flags to apply.
1574  * @flags: New flags to apply.
1575  */
1576 struct ec_params_flash_protect {
1577 	uint32_t mask;
1578 	uint32_t flags;
1579 } __ec_align4;
1580 
1581 /**
1582  * struct ec_response_flash_protect - Response to the flash protect command.
1583  * @flags: Current value of flash protect flags.
1584  * @valid_flags: Flags which are valid on this platform. This allows the
1585  *               caller to distinguish between flags which aren't set vs. flags
1586  *               which can't be set on this platform.
1587  * @writable_flags: Flags which can be changed given the current protection
1588  *                  state.
1589  */
1590 struct ec_response_flash_protect {
1591 	uint32_t flags;
1592 	uint32_t valid_flags;
1593 	uint32_t writable_flags;
1594 } __ec_align4;
1595 
1596 /*
1597  * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
1598  * write protect.  These commands may be reused with version > 0.
1599  */
1600 
1601 /* Get the region offset/size */
1602 #define EC_CMD_FLASH_REGION_INFO 0x0016
1603 #define EC_VER_FLASH_REGION_INFO 1
1604 
1605 enum ec_flash_region {
1606 	/* Region which holds read-only EC image */
1607 	EC_FLASH_REGION_RO = 0,
1608 	/*
1609 	 * Region which holds active RW image. 'Active' is different from
1610 	 * 'running'. Active means 'scheduled-to-run'. Since RO image always
1611 	 * scheduled to run, active/non-active applies only to RW images (for
1612 	 * the same reason 'update' applies only to RW images. It's a state of
1613 	 * an image on a flash. Running image can be RO, RW_A, RW_B but active
1614 	 * image can only be RW_A or RW_B. In recovery mode, an active RW image
1615 	 * doesn't enter 'running' state but it's still active on a flash.
1616 	 */
1617 	EC_FLASH_REGION_ACTIVE,
1618 	/*
1619 	 * Region which should be write-protected in the factory (a superset of
1620 	 * EC_FLASH_REGION_RO)
1621 	 */
1622 	EC_FLASH_REGION_WP_RO,
1623 	/* Region which holds updatable (non-active) RW image */
1624 	EC_FLASH_REGION_UPDATE,
1625 	/* Number of regions */
1626 	EC_FLASH_REGION_COUNT,
1627 };
1628 /*
1629  * 'RW' is vague if there are multiple RW images; we mean the active one,
1630  * so the old constant is deprecated.
1631  */
1632 #define EC_FLASH_REGION_RW EC_FLASH_REGION_ACTIVE
1633 
1634 /**
1635  * struct ec_params_flash_region_info - Parameters for the flash region info
1636  *         command.
1637  * @region: Flash region; see EC_FLASH_REGION_*
1638  */
1639 struct ec_params_flash_region_info {
1640 	uint32_t region;
1641 } __ec_align4;
1642 
1643 struct ec_response_flash_region_info {
1644 	uint32_t offset;
1645 	uint32_t size;
1646 } __ec_align4;
1647 
1648 /* Read/write VbNvContext */
1649 #define EC_CMD_VBNV_CONTEXT 0x0017
1650 #define EC_VER_VBNV_CONTEXT 1
1651 #define EC_VBNV_BLOCK_SIZE 16
1652 
1653 enum ec_vbnvcontext_op {
1654 	EC_VBNV_CONTEXT_OP_READ,
1655 	EC_VBNV_CONTEXT_OP_WRITE,
1656 };
1657 
1658 struct ec_params_vbnvcontext {
1659 	uint32_t op;
1660 	uint8_t block[EC_VBNV_BLOCK_SIZE];
1661 } __ec_align4;
1662 
1663 struct ec_response_vbnvcontext {
1664 	uint8_t block[EC_VBNV_BLOCK_SIZE];
1665 } __ec_align4;
1666 
1667 
1668 /* Get SPI flash information */
1669 #define EC_CMD_FLASH_SPI_INFO 0x0018
1670 
1671 struct ec_response_flash_spi_info {
1672 	/* JEDEC info from command 0x9F (manufacturer, memory type, size) */
1673 	uint8_t jedec[3];
1674 
1675 	/* Pad byte; currently always contains 0 */
1676 	uint8_t reserved0;
1677 
1678 	/* Manufacturer / device ID from command 0x90 */
1679 	uint8_t mfr_dev_id[2];
1680 
1681 	/* Status registers from command 0x05 and 0x35 */
1682 	uint8_t sr1, sr2;
1683 } __ec_align1;
1684 
1685 
1686 /* Select flash during flash operations */
1687 #define EC_CMD_FLASH_SELECT 0x0019
1688 
1689 /**
1690  * struct ec_params_flash_select - Parameters for the flash select command.
1691  * @select: 1 to select flash, 0 to deselect flash
1692  */
1693 struct ec_params_flash_select {
1694 	uint8_t select;
1695 } __ec_align4;
1696 
1697 
1698 /*****************************************************************************/
1699 /* PWM commands */
1700 
1701 /* Get fan target RPM */
1702 #define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x0020
1703 
1704 struct ec_response_pwm_get_fan_rpm {
1705 	uint32_t rpm;
1706 } __ec_align4;
1707 
1708 /* Set target fan RPM */
1709 #define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x0021
1710 
1711 /* Version 0 of input params */
1712 struct ec_params_pwm_set_fan_target_rpm_v0 {
1713 	uint32_t rpm;
1714 } __ec_align4;
1715 
1716 /* Version 1 of input params */
1717 struct ec_params_pwm_set_fan_target_rpm_v1 {
1718 	uint32_t rpm;
1719 	uint8_t fan_idx;
1720 } __ec_align_size1;
1721 
1722 /* Get keyboard backlight */
1723 /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1724 #define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x0022
1725 
1726 struct ec_response_pwm_get_keyboard_backlight {
1727 	uint8_t percent;
1728 	uint8_t enabled;
1729 } __ec_align1;
1730 
1731 /* Set keyboard backlight */
1732 /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1733 #define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x0023
1734 
1735 struct ec_params_pwm_set_keyboard_backlight {
1736 	uint8_t percent;
1737 } __ec_align1;
1738 
1739 /* Set target fan PWM duty cycle */
1740 #define EC_CMD_PWM_SET_FAN_DUTY 0x0024
1741 
1742 /* Version 0 of input params */
1743 struct ec_params_pwm_set_fan_duty_v0 {
1744 	uint32_t percent;
1745 } __ec_align4;
1746 
1747 /* Version 1 of input params */
1748 struct ec_params_pwm_set_fan_duty_v1 {
1749 	uint32_t percent;
1750 	uint8_t fan_idx;
1751 } __ec_align_size1;
1752 
1753 #define EC_CMD_PWM_SET_DUTY 0x0025
1754 /* 16 bit duty cycle, 0xffff = 100% */
1755 #define EC_PWM_MAX_DUTY 0xffff
1756 
1757 enum ec_pwm_type {
1758 	/* All types, indexed by board-specific enum pwm_channel */
1759 	EC_PWM_TYPE_GENERIC = 0,
1760 	/* Keyboard backlight */
1761 	EC_PWM_TYPE_KB_LIGHT,
1762 	/* Display backlight */
1763 	EC_PWM_TYPE_DISPLAY_LIGHT,
1764 	EC_PWM_TYPE_COUNT,
1765 };
1766 
1767 struct ec_params_pwm_set_duty {
1768 	uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1769 	uint8_t pwm_type;  /* ec_pwm_type */
1770 	uint8_t index;     /* Type-specific index, or 0 if unique */
1771 } __ec_align4;
1772 
1773 #define EC_CMD_PWM_GET_DUTY 0x0026
1774 
1775 struct ec_params_pwm_get_duty {
1776 	uint8_t pwm_type;  /* ec_pwm_type */
1777 	uint8_t index;     /* Type-specific index, or 0 if unique */
1778 } __ec_align1;
1779 
1780 struct ec_response_pwm_get_duty {
1781 	uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1782 } __ec_align2;
1783 
1784 /*****************************************************************************/
1785 /*
1786  * Lightbar commands. This looks worse than it is. Since we only use one HOST
1787  * command to say "talk to the lightbar", we put the "and tell it to do X" part
1788  * into a subcommand. We'll make separate structs for subcommands with
1789  * different input args, so that we know how much to expect.
1790  */
1791 #define EC_CMD_LIGHTBAR_CMD 0x0028
1792 
1793 struct rgb_s {
1794 	uint8_t r, g, b;
1795 } __ec_todo_unpacked;
1796 
1797 #define LB_BATTERY_LEVELS 4
1798 
1799 /*
1800  * List of tweakable parameters. NOTE: It's __packed so it can be sent in a
1801  * host command, but the alignment is the same regardless. Keep it that way.
1802  */
1803 struct lightbar_params_v0 {
1804 	/* Timing */
1805 	int32_t google_ramp_up;
1806 	int32_t google_ramp_down;
1807 	int32_t s3s0_ramp_up;
1808 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1809 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1810 	int32_t s0s3_ramp_down;
1811 	int32_t s3_sleep_for;
1812 	int32_t s3_ramp_up;
1813 	int32_t s3_ramp_down;
1814 
1815 	/* Oscillation */
1816 	uint8_t new_s0;
1817 	uint8_t osc_min[2];			/* AC=0/1 */
1818 	uint8_t osc_max[2];			/* AC=0/1 */
1819 	uint8_t w_ofs[2];			/* AC=0/1 */
1820 
1821 	/* Brightness limits based on the backlight and AC. */
1822 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1823 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1824 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1825 
1826 	/* Battery level thresholds */
1827 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1828 
1829 	/* Map [AC][battery_level] to color index */
1830 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1831 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1832 
1833 	/* Color palette */
1834 	struct rgb_s color[8];			/* 0-3 are Google colors */
1835 } __ec_todo_packed;
1836 
1837 struct lightbar_params_v1 {
1838 	/* Timing */
1839 	int32_t google_ramp_up;
1840 	int32_t google_ramp_down;
1841 	int32_t s3s0_ramp_up;
1842 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1843 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1844 	int32_t s0s3_ramp_down;
1845 	int32_t s3_sleep_for;
1846 	int32_t s3_ramp_up;
1847 	int32_t s3_ramp_down;
1848 	int32_t s5_ramp_up;
1849 	int32_t s5_ramp_down;
1850 	int32_t tap_tick_delay;
1851 	int32_t tap_gate_delay;
1852 	int32_t tap_display_time;
1853 
1854 	/* Tap-for-battery params */
1855 	uint8_t tap_pct_red;
1856 	uint8_t tap_pct_green;
1857 	uint8_t tap_seg_min_on;
1858 	uint8_t tap_seg_max_on;
1859 	uint8_t tap_seg_osc;
1860 	uint8_t tap_idx[3];
1861 
1862 	/* Oscillation */
1863 	uint8_t osc_min[2];			/* AC=0/1 */
1864 	uint8_t osc_max[2];			/* AC=0/1 */
1865 	uint8_t w_ofs[2];			/* AC=0/1 */
1866 
1867 	/* Brightness limits based on the backlight and AC. */
1868 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1869 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1870 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1871 
1872 	/* Battery level thresholds */
1873 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1874 
1875 	/* Map [AC][battery_level] to color index */
1876 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1877 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1878 
1879 	/* s5: single color pulse on inhibited power-up */
1880 	uint8_t s5_idx;
1881 
1882 	/* Color palette */
1883 	struct rgb_s color[8];			/* 0-3 are Google colors */
1884 } __ec_todo_packed;
1885 
1886 /* Lightbar command params v2
1887  * crbug.com/467716
1888  *
1889  * lightbar_parms_v1 was too big for i2c, therefore in v2, we split them up by
1890  * logical groups to make it more manageable ( < 120 bytes).
1891  *
1892  * NOTE: Each of these groups must be less than 120 bytes.
1893  */
1894 
1895 struct lightbar_params_v2_timing {
1896 	/* Timing */
1897 	int32_t google_ramp_up;
1898 	int32_t google_ramp_down;
1899 	int32_t s3s0_ramp_up;
1900 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1901 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1902 	int32_t s0s3_ramp_down;
1903 	int32_t s3_sleep_for;
1904 	int32_t s3_ramp_up;
1905 	int32_t s3_ramp_down;
1906 	int32_t s5_ramp_up;
1907 	int32_t s5_ramp_down;
1908 	int32_t tap_tick_delay;
1909 	int32_t tap_gate_delay;
1910 	int32_t tap_display_time;
1911 } __ec_todo_packed;
1912 
1913 struct lightbar_params_v2_tap {
1914 	/* Tap-for-battery params */
1915 	uint8_t tap_pct_red;
1916 	uint8_t tap_pct_green;
1917 	uint8_t tap_seg_min_on;
1918 	uint8_t tap_seg_max_on;
1919 	uint8_t tap_seg_osc;
1920 	uint8_t tap_idx[3];
1921 } __ec_todo_packed;
1922 
1923 struct lightbar_params_v2_oscillation {
1924 	/* Oscillation */
1925 	uint8_t osc_min[2];			/* AC=0/1 */
1926 	uint8_t osc_max[2];			/* AC=0/1 */
1927 	uint8_t w_ofs[2];			/* AC=0/1 */
1928 } __ec_todo_packed;
1929 
1930 struct lightbar_params_v2_brightness {
1931 	/* Brightness limits based on the backlight and AC. */
1932 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1933 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1934 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1935 } __ec_todo_packed;
1936 
1937 struct lightbar_params_v2_thresholds {
1938 	/* Battery level thresholds */
1939 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1940 } __ec_todo_packed;
1941 
1942 struct lightbar_params_v2_colors {
1943 	/* Map [AC][battery_level] to color index */
1944 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1945 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1946 
1947 	/* s5: single color pulse on inhibited power-up */
1948 	uint8_t s5_idx;
1949 
1950 	/* Color palette */
1951 	struct rgb_s color[8];			/* 0-3 are Google colors */
1952 } __ec_todo_packed;
1953 
1954 /* Lightbar program. */
1955 #define EC_LB_PROG_LEN 192
1956 struct lightbar_program {
1957 	uint8_t size;
1958 	uint8_t data[EC_LB_PROG_LEN];
1959 } __ec_todo_unpacked;
1960 
1961 struct ec_params_lightbar {
1962 	uint8_t cmd;		      /* Command (see enum lightbar_command) */
1963 	union {
1964 		/*
1965 		 * The following commands have no args:
1966 		 *
1967 		 * dump, off, on, init, get_seq, get_params_v0, get_params_v1,
1968 		 * version, get_brightness, get_demo, suspend, resume,
1969 		 * get_params_v2_timing, get_params_v2_tap, get_params_v2_osc,
1970 		 * get_params_v2_bright, get_params_v2_thlds,
1971 		 * get_params_v2_colors
1972 		 *
1973 		 * Don't use an empty struct, because C++ hates that.
1974 		 */
1975 
1976 		struct __ec_todo_unpacked {
1977 			uint8_t num;
1978 		} set_brightness, seq, demo;
1979 
1980 		struct __ec_todo_unpacked {
1981 			uint8_t ctrl, reg, value;
1982 		} reg;
1983 
1984 		struct __ec_todo_unpacked {
1985 			uint8_t led, red, green, blue;
1986 		} set_rgb;
1987 
1988 		struct __ec_todo_unpacked {
1989 			uint8_t led;
1990 		} get_rgb;
1991 
1992 		struct __ec_todo_unpacked {
1993 			uint8_t enable;
1994 		} manual_suspend_ctrl;
1995 
1996 		struct lightbar_params_v0 set_params_v0;
1997 		struct lightbar_params_v1 set_params_v1;
1998 
1999 		struct lightbar_params_v2_timing set_v2par_timing;
2000 		struct lightbar_params_v2_tap set_v2par_tap;
2001 		struct lightbar_params_v2_oscillation set_v2par_osc;
2002 		struct lightbar_params_v2_brightness set_v2par_bright;
2003 		struct lightbar_params_v2_thresholds set_v2par_thlds;
2004 		struct lightbar_params_v2_colors set_v2par_colors;
2005 
2006 		struct lightbar_program set_program;
2007 	};
2008 } __ec_todo_packed;
2009 
2010 struct ec_response_lightbar {
2011 	union {
2012 		struct __ec_todo_unpacked {
2013 			struct __ec_todo_unpacked {
2014 				uint8_t reg;
2015 				uint8_t ic0;
2016 				uint8_t ic1;
2017 			} vals[23];
2018 		} dump;
2019 
2020 		struct __ec_todo_unpacked {
2021 			uint8_t num;
2022 		} get_seq, get_brightness, get_demo;
2023 
2024 		struct lightbar_params_v0 get_params_v0;
2025 		struct lightbar_params_v1 get_params_v1;
2026 
2027 
2028 		struct lightbar_params_v2_timing get_params_v2_timing;
2029 		struct lightbar_params_v2_tap get_params_v2_tap;
2030 		struct lightbar_params_v2_oscillation get_params_v2_osc;
2031 		struct lightbar_params_v2_brightness get_params_v2_bright;
2032 		struct lightbar_params_v2_thresholds get_params_v2_thlds;
2033 		struct lightbar_params_v2_colors get_params_v2_colors;
2034 
2035 		struct __ec_todo_unpacked {
2036 			uint32_t num;
2037 			uint32_t flags;
2038 		} version;
2039 
2040 		struct __ec_todo_unpacked {
2041 			uint8_t red, green, blue;
2042 		} get_rgb;
2043 
2044 		/*
2045 		 * The following commands have no response:
2046 		 *
2047 		 * off, on, init, set_brightness, seq, reg, set_rgb, demo,
2048 		 * set_params_v0, set_params_v1, set_program,
2049 		 * manual_suspend_ctrl, suspend, resume, set_v2par_timing,
2050 		 * set_v2par_tap, set_v2par_osc, set_v2par_bright,
2051 		 * set_v2par_thlds, set_v2par_colors
2052 		 */
2053 	};
2054 } __ec_todo_packed;
2055 
2056 /* Lightbar commands */
2057 enum lightbar_command {
2058 	LIGHTBAR_CMD_DUMP = 0,
2059 	LIGHTBAR_CMD_OFF = 1,
2060 	LIGHTBAR_CMD_ON = 2,
2061 	LIGHTBAR_CMD_INIT = 3,
2062 	LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
2063 	LIGHTBAR_CMD_SEQ = 5,
2064 	LIGHTBAR_CMD_REG = 6,
2065 	LIGHTBAR_CMD_SET_RGB = 7,
2066 	LIGHTBAR_CMD_GET_SEQ = 8,
2067 	LIGHTBAR_CMD_DEMO = 9,
2068 	LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
2069 	LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
2070 	LIGHTBAR_CMD_VERSION = 12,
2071 	LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
2072 	LIGHTBAR_CMD_GET_RGB = 14,
2073 	LIGHTBAR_CMD_GET_DEMO = 15,
2074 	LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
2075 	LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
2076 	LIGHTBAR_CMD_SET_PROGRAM = 18,
2077 	LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19,
2078 	LIGHTBAR_CMD_SUSPEND = 20,
2079 	LIGHTBAR_CMD_RESUME = 21,
2080 	LIGHTBAR_CMD_GET_PARAMS_V2_TIMING = 22,
2081 	LIGHTBAR_CMD_SET_PARAMS_V2_TIMING = 23,
2082 	LIGHTBAR_CMD_GET_PARAMS_V2_TAP = 24,
2083 	LIGHTBAR_CMD_SET_PARAMS_V2_TAP = 25,
2084 	LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION = 26,
2085 	LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION = 27,
2086 	LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS = 28,
2087 	LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS = 29,
2088 	LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS = 30,
2089 	LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS = 31,
2090 	LIGHTBAR_CMD_GET_PARAMS_V2_COLORS = 32,
2091 	LIGHTBAR_CMD_SET_PARAMS_V2_COLORS = 33,
2092 	LIGHTBAR_NUM_CMDS
2093 };
2094 
2095 /*****************************************************************************/
2096 /* LED control commands */
2097 
2098 #define EC_CMD_LED_CONTROL 0x0029
2099 
2100 enum ec_led_id {
2101 	/* LED to indicate battery state of charge */
2102 	EC_LED_ID_BATTERY_LED = 0,
2103 	/*
2104 	 * LED to indicate system power state (on or in suspend).
2105 	 * May be on power button or on C-panel.
2106 	 */
2107 	EC_LED_ID_POWER_LED,
2108 	/* LED on power adapter or its plug */
2109 	EC_LED_ID_ADAPTER_LED,
2110 	/* LED to indicate left side */
2111 	EC_LED_ID_LEFT_LED,
2112 	/* LED to indicate right side */
2113 	EC_LED_ID_RIGHT_LED,
2114 	/* LED to indicate recovery mode with HW_REINIT */
2115 	EC_LED_ID_RECOVERY_HW_REINIT_LED,
2116 	/* LED to indicate sysrq debug mode. */
2117 	EC_LED_ID_SYSRQ_DEBUG_LED,
2118 
2119 	EC_LED_ID_COUNT
2120 };
2121 
2122 /* LED control flags */
2123 #define EC_LED_FLAGS_QUERY BIT(0) /* Query LED capability only */
2124 #define EC_LED_FLAGS_AUTO  BIT(1) /* Switch LED back to automatic control */
2125 
2126 enum ec_led_colors {
2127 	EC_LED_COLOR_RED = 0,
2128 	EC_LED_COLOR_GREEN,
2129 	EC_LED_COLOR_BLUE,
2130 	EC_LED_COLOR_YELLOW,
2131 	EC_LED_COLOR_WHITE,
2132 	EC_LED_COLOR_AMBER,
2133 
2134 	EC_LED_COLOR_COUNT
2135 };
2136 
2137 struct ec_params_led_control {
2138 	uint8_t led_id;     /* Which LED to control */
2139 	uint8_t flags;      /* Control flags */
2140 
2141 	uint8_t brightness[EC_LED_COLOR_COUNT];
2142 } __ec_align1;
2143 
2144 struct ec_response_led_control {
2145 	/*
2146 	 * Available brightness value range.
2147 	 *
2148 	 * Range 0 means color channel not present.
2149 	 * Range 1 means on/off control.
2150 	 * Other values means the LED is control by PWM.
2151 	 */
2152 	uint8_t brightness_range[EC_LED_COLOR_COUNT];
2153 } __ec_align1;
2154 
2155 /*****************************************************************************/
2156 /* Verified boot commands */
2157 
2158 /*
2159  * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
2160  * reused for other purposes with version > 0.
2161  */
2162 
2163 /* Verified boot hash command */
2164 #define EC_CMD_VBOOT_HASH 0x002A
2165 
2166 struct ec_params_vboot_hash {
2167 	uint8_t cmd;             /* enum ec_vboot_hash_cmd */
2168 	uint8_t hash_type;       /* enum ec_vboot_hash_type */
2169 	uint8_t nonce_size;      /* Nonce size; may be 0 */
2170 	uint8_t reserved0;       /* Reserved; set 0 */
2171 	uint32_t offset;         /* Offset in flash to hash */
2172 	uint32_t size;           /* Number of bytes to hash */
2173 	uint8_t nonce_data[64];  /* Nonce data; ignored if nonce_size=0 */
2174 } __ec_align4;
2175 
2176 struct ec_response_vboot_hash {
2177 	uint8_t status;          /* enum ec_vboot_hash_status */
2178 	uint8_t hash_type;       /* enum ec_vboot_hash_type */
2179 	uint8_t digest_size;     /* Size of hash digest in bytes */
2180 	uint8_t reserved0;       /* Ignore; will be 0 */
2181 	uint32_t offset;         /* Offset in flash which was hashed */
2182 	uint32_t size;           /* Number of bytes hashed */
2183 	uint8_t hash_digest[64]; /* Hash digest data */
2184 } __ec_align4;
2185 
2186 enum ec_vboot_hash_cmd {
2187 	EC_VBOOT_HASH_GET = 0,       /* Get current hash status */
2188 	EC_VBOOT_HASH_ABORT = 1,     /* Abort calculating current hash */
2189 	EC_VBOOT_HASH_START = 2,     /* Start computing a new hash */
2190 	EC_VBOOT_HASH_RECALC = 3,    /* Synchronously compute a new hash */
2191 };
2192 
2193 enum ec_vboot_hash_type {
2194 	EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
2195 };
2196 
2197 enum ec_vboot_hash_status {
2198 	EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
2199 	EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
2200 	EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
2201 };
2202 
2203 /*
2204  * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
2205  * If one of these is specified, the EC will automatically update offset and
2206  * size to the correct values for the specified image (RO or RW).
2207  */
2208 #define EC_VBOOT_HASH_OFFSET_RO		0xfffffffe
2209 #define EC_VBOOT_HASH_OFFSET_ACTIVE	0xfffffffd
2210 #define EC_VBOOT_HASH_OFFSET_UPDATE	0xfffffffc
2211 
2212 /*
2213  * 'RW' is vague if there are multiple RW images; we mean the active one,
2214  * so the old constant is deprecated.
2215  */
2216 #define EC_VBOOT_HASH_OFFSET_RW EC_VBOOT_HASH_OFFSET_ACTIVE
2217 
2218 /*****************************************************************************/
2219 /*
2220  * Motion sense commands. We'll make separate structs for sub-commands with
2221  * different input args, so that we know how much to expect.
2222  */
2223 #define EC_CMD_MOTION_SENSE_CMD 0x002B
2224 
2225 /* Motion sense commands */
2226 enum motionsense_command {
2227 	/*
2228 	 * Dump command returns all motion sensor data including motion sense
2229 	 * module flags and individual sensor flags.
2230 	 */
2231 	MOTIONSENSE_CMD_DUMP = 0,
2232 
2233 	/*
2234 	 * Info command returns data describing the details of a given sensor,
2235 	 * including enum motionsensor_type, enum motionsensor_location, and
2236 	 * enum motionsensor_chip.
2237 	 */
2238 	MOTIONSENSE_CMD_INFO = 1,
2239 
2240 	/*
2241 	 * EC Rate command is a setter/getter command for the EC sampling rate
2242 	 * in milliseconds.
2243 	 * It is per sensor, the EC run sample task  at the minimum of all
2244 	 * sensors EC_RATE.
2245 	 * For sensors without hardware FIFO, EC_RATE should be equals to 1/ODR
2246 	 * to collect all the sensor samples.
2247 	 * For sensor with hardware FIFO, EC_RATE is used as the maximal delay
2248 	 * to process of all motion sensors in milliseconds.
2249 	 */
2250 	MOTIONSENSE_CMD_EC_RATE = 2,
2251 
2252 	/*
2253 	 * Sensor ODR command is a setter/getter command for the output data
2254 	 * rate of a specific motion sensor in millihertz.
2255 	 */
2256 	MOTIONSENSE_CMD_SENSOR_ODR = 3,
2257 
2258 	/*
2259 	 * Sensor range command is a setter/getter command for the range of
2260 	 * a specified motion sensor in +/-G's or +/- deg/s.
2261 	 */
2262 	MOTIONSENSE_CMD_SENSOR_RANGE = 4,
2263 
2264 	/*
2265 	 * Setter/getter command for the keyboard wake angle. When the lid
2266 	 * angle is greater than this value, keyboard wake is disabled in S3,
2267 	 * and when the lid angle goes less than this value, keyboard wake is
2268 	 * enabled. Note, the lid angle measurement is an approximate,
2269 	 * un-calibrated value, hence the wake angle isn't exact.
2270 	 */
2271 	MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
2272 
2273 	/*
2274 	 * Returns a single sensor data.
2275 	 */
2276 	MOTIONSENSE_CMD_DATA = 6,
2277 
2278 	/*
2279 	 * Return sensor fifo info.
2280 	 */
2281 	MOTIONSENSE_CMD_FIFO_INFO = 7,
2282 
2283 	/*
2284 	 * Insert a flush element in the fifo and return sensor fifo info.
2285 	 * The host can use that element to synchronize its operation.
2286 	 */
2287 	MOTIONSENSE_CMD_FIFO_FLUSH = 8,
2288 
2289 	/*
2290 	 * Return a portion of the fifo.
2291 	 */
2292 	MOTIONSENSE_CMD_FIFO_READ = 9,
2293 
2294 	/*
2295 	 * Perform low level calibration.
2296 	 * On sensors that support it, ask to do offset calibration.
2297 	 */
2298 	MOTIONSENSE_CMD_PERFORM_CALIB = 10,
2299 
2300 	/*
2301 	 * Sensor Offset command is a setter/getter command for the offset
2302 	 * used for calibration.
2303 	 * The offsets can be calculated by the host, or via
2304 	 * PERFORM_CALIB command.
2305 	 */
2306 	MOTIONSENSE_CMD_SENSOR_OFFSET = 11,
2307 
2308 	/*
2309 	 * List available activities for a MOTION sensor.
2310 	 * Indicates if they are enabled or disabled.
2311 	 */
2312 	MOTIONSENSE_CMD_LIST_ACTIVITIES = 12,
2313 
2314 	/*
2315 	 * Activity management
2316 	 * Enable/Disable activity recognition.
2317 	 */
2318 	MOTIONSENSE_CMD_SET_ACTIVITY = 13,
2319 
2320 	/*
2321 	 * Lid Angle
2322 	 */
2323 	MOTIONSENSE_CMD_LID_ANGLE = 14,
2324 
2325 	/*
2326 	 * Allow the FIFO to trigger interrupt via MKBP events.
2327 	 * By default the FIFO does not send interrupt to process the FIFO
2328 	 * until the AP is ready or it is coming from a wakeup sensor.
2329 	 */
2330 	MOTIONSENSE_CMD_FIFO_INT_ENABLE = 15,
2331 
2332 	/*
2333 	 * Spoof the readings of the sensors.  The spoofed readings can be set
2334 	 * to arbitrary values, or will lock to the last read actual values.
2335 	 */
2336 	MOTIONSENSE_CMD_SPOOF = 16,
2337 
2338 	/* Set lid angle for tablet mode detection. */
2339 	MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE = 17,
2340 
2341 	/*
2342 	 * Sensor Scale command is a setter/getter command for the calibration
2343 	 * scale.
2344 	 */
2345 	MOTIONSENSE_CMD_SENSOR_SCALE = 18,
2346 
2347 	/* Number of motionsense sub-commands. */
2348 	MOTIONSENSE_NUM_CMDS
2349 };
2350 
2351 /* List of motion sensor types. */
2352 enum motionsensor_type {
2353 	MOTIONSENSE_TYPE_ACCEL = 0,
2354 	MOTIONSENSE_TYPE_GYRO = 1,
2355 	MOTIONSENSE_TYPE_MAG = 2,
2356 	MOTIONSENSE_TYPE_PROX = 3,
2357 	MOTIONSENSE_TYPE_LIGHT = 4,
2358 	MOTIONSENSE_TYPE_ACTIVITY = 5,
2359 	MOTIONSENSE_TYPE_BARO = 6,
2360 	MOTIONSENSE_TYPE_SYNC = 7,
2361 	MOTIONSENSE_TYPE_MAX,
2362 };
2363 
2364 /* List of motion sensor locations. */
2365 enum motionsensor_location {
2366 	MOTIONSENSE_LOC_BASE = 0,
2367 	MOTIONSENSE_LOC_LID = 1,
2368 	MOTIONSENSE_LOC_CAMERA = 2,
2369 	MOTIONSENSE_LOC_MAX,
2370 };
2371 
2372 /* List of motion sensor chips. */
2373 enum motionsensor_chip {
2374 	MOTIONSENSE_CHIP_KXCJ9 = 0,
2375 	MOTIONSENSE_CHIP_LSM6DS0 = 1,
2376 	MOTIONSENSE_CHIP_BMI160 = 2,
2377 	MOTIONSENSE_CHIP_SI1141 = 3,
2378 	MOTIONSENSE_CHIP_SI1142 = 4,
2379 	MOTIONSENSE_CHIP_SI1143 = 5,
2380 	MOTIONSENSE_CHIP_KX022 = 6,
2381 	MOTIONSENSE_CHIP_L3GD20H = 7,
2382 	MOTIONSENSE_CHIP_BMA255 = 8,
2383 	MOTIONSENSE_CHIP_BMP280 = 9,
2384 	MOTIONSENSE_CHIP_OPT3001 = 10,
2385 	MOTIONSENSE_CHIP_BH1730 = 11,
2386 	MOTIONSENSE_CHIP_GPIO = 12,
2387 	MOTIONSENSE_CHIP_LIS2DH = 13,
2388 	MOTIONSENSE_CHIP_LSM6DSM = 14,
2389 	MOTIONSENSE_CHIP_LIS2DE = 15,
2390 	MOTIONSENSE_CHIP_LIS2MDL = 16,
2391 	MOTIONSENSE_CHIP_LSM6DS3 = 17,
2392 	MOTIONSENSE_CHIP_LSM6DSO = 18,
2393 	MOTIONSENSE_CHIP_LNG2DM = 19,
2394 	MOTIONSENSE_CHIP_MAX,
2395 };
2396 
2397 /* List of orientation positions */
2398 enum motionsensor_orientation {
2399 	MOTIONSENSE_ORIENTATION_LANDSCAPE = 0,
2400 	MOTIONSENSE_ORIENTATION_PORTRAIT = 1,
2401 	MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_PORTRAIT = 2,
2402 	MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_LANDSCAPE = 3,
2403 	MOTIONSENSE_ORIENTATION_UNKNOWN = 4,
2404 };
2405 
2406 struct ec_response_motion_sensor_data {
2407 	/* Flags for each sensor. */
2408 	uint8_t flags;
2409 	/* Sensor number the data comes from. */
2410 	uint8_t sensor_num;
2411 	/* Each sensor is up to 3-axis. */
2412 	union {
2413 		int16_t             data[3];
2414 		struct __ec_todo_packed {
2415 			uint16_t    reserved;
2416 			uint32_t    timestamp;
2417 		};
2418 		struct __ec_todo_unpacked {
2419 			uint8_t     activity; /* motionsensor_activity */
2420 			uint8_t     state;
2421 			int16_t     add_info[2];
2422 		};
2423 	};
2424 } __ec_todo_packed;
2425 
2426 /* Note: used in ec_response_get_next_data */
2427 struct ec_response_motion_sense_fifo_info {
2428 	/* Size of the fifo */
2429 	uint16_t size;
2430 	/* Amount of space used in the fifo */
2431 	uint16_t count;
2432 	/* Timestamp recorded in us.
2433 	 * aka accurate timestamp when host event was triggered.
2434 	 */
2435 	uint32_t timestamp;
2436 	/* Total amount of vector lost */
2437 	uint16_t total_lost;
2438 	/* Lost events since the last fifo_info, per sensors */
2439 	uint16_t lost[];
2440 } __ec_todo_packed;
2441 
2442 struct ec_response_motion_sense_fifo_data {
2443 	uint32_t number_data;
2444 	struct ec_response_motion_sensor_data data[];
2445 } __ec_todo_packed;
2446 
2447 /* List supported activity recognition */
2448 enum motionsensor_activity {
2449 	MOTIONSENSE_ACTIVITY_RESERVED = 0,
2450 	MOTIONSENSE_ACTIVITY_SIG_MOTION = 1,
2451 	MOTIONSENSE_ACTIVITY_DOUBLE_TAP = 2,
2452 	MOTIONSENSE_ACTIVITY_ORIENTATION = 3,
2453 };
2454 
2455 struct ec_motion_sense_activity {
2456 	uint8_t sensor_num;
2457 	uint8_t activity; /* one of enum motionsensor_activity */
2458 	uint8_t enable;   /* 1: enable, 0: disable */
2459 	uint8_t reserved;
2460 	uint16_t parameters[3]; /* activity dependent parameters */
2461 } __ec_todo_unpacked;
2462 
2463 /* Module flag masks used for the dump sub-command. */
2464 #define MOTIONSENSE_MODULE_FLAG_ACTIVE BIT(0)
2465 
2466 /* Sensor flag masks used for the dump sub-command. */
2467 #define MOTIONSENSE_SENSOR_FLAG_PRESENT BIT(0)
2468 
2469 /*
2470  * Flush entry for synchronization.
2471  * data contains time stamp
2472  */
2473 #define MOTIONSENSE_SENSOR_FLAG_FLUSH BIT(0)
2474 #define MOTIONSENSE_SENSOR_FLAG_TIMESTAMP BIT(1)
2475 #define MOTIONSENSE_SENSOR_FLAG_WAKEUP BIT(2)
2476 #define MOTIONSENSE_SENSOR_FLAG_TABLET_MODE BIT(3)
2477 #define MOTIONSENSE_SENSOR_FLAG_ODR BIT(4)
2478 
2479 /*
2480  * Send this value for the data element to only perform a read. If you
2481  * send any other value, the EC will interpret it as data to set and will
2482  * return the actual value set.
2483  */
2484 #define EC_MOTION_SENSE_NO_VALUE -1
2485 
2486 #define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000
2487 
2488 /* MOTIONSENSE_CMD_SENSOR_OFFSET subcommand flag */
2489 /* Set Calibration information */
2490 #define MOTION_SENSE_SET_OFFSET BIT(0)
2491 
2492 /* Default Scale value, factor 1. */
2493 #define MOTION_SENSE_DEFAULT_SCALE BIT(15)
2494 
2495 #define LID_ANGLE_UNRELIABLE 500
2496 
2497 enum motionsense_spoof_mode {
2498 	/* Disable spoof mode. */
2499 	MOTIONSENSE_SPOOF_MODE_DISABLE = 0,
2500 
2501 	/* Enable spoof mode, but use provided component values. */
2502 	MOTIONSENSE_SPOOF_MODE_CUSTOM,
2503 
2504 	/* Enable spoof mode, but use the current sensor values. */
2505 	MOTIONSENSE_SPOOF_MODE_LOCK_CURRENT,
2506 
2507 	/* Query the current spoof mode status for the sensor. */
2508 	MOTIONSENSE_SPOOF_MODE_QUERY,
2509 };
2510 
2511 struct ec_params_motion_sense {
2512 	uint8_t cmd;
2513 	union {
2514 		/* Used for MOTIONSENSE_CMD_DUMP. */
2515 		struct __ec_todo_unpacked {
2516 			/*
2517 			 * Maximal number of sensor the host is expecting.
2518 			 * 0 means the host is only interested in the number
2519 			 * of sensors controlled by the EC.
2520 			 */
2521 			uint8_t max_sensor_count;
2522 		} dump;
2523 
2524 		/*
2525 		 * Used for MOTIONSENSE_CMD_KB_WAKE_ANGLE.
2526 		 */
2527 		struct __ec_todo_unpacked {
2528 			/* Data to set or EC_MOTION_SENSE_NO_VALUE to read.
2529 			 * kb_wake_angle: angle to wakup AP.
2530 			 */
2531 			int16_t data;
2532 		} kb_wake_angle;
2533 
2534 		/*
2535 		 * Used for MOTIONSENSE_CMD_INFO, MOTIONSENSE_CMD_DATA
2536 		 * and MOTIONSENSE_CMD_PERFORM_CALIB.
2537 		 */
2538 		struct __ec_todo_unpacked {
2539 			uint8_t sensor_num;
2540 		} info, info_3, data, fifo_flush, perform_calib,
2541 				list_activities;
2542 
2543 		/*
2544 		 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR
2545 		 * and MOTIONSENSE_CMD_SENSOR_RANGE.
2546 		 */
2547 		struct __ec_todo_unpacked {
2548 			uint8_t sensor_num;
2549 
2550 			/* Rounding flag, true for round-up, false for down. */
2551 			uint8_t roundup;
2552 
2553 			uint16_t reserved;
2554 
2555 			/* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
2556 			int32_t data;
2557 		} ec_rate, sensor_odr, sensor_range;
2558 
2559 		/* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
2560 		struct __ec_todo_packed {
2561 			uint8_t sensor_num;
2562 
2563 			/*
2564 			 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2565 			 * the calibration information in the EC.
2566 			 * If unset, just retrieve calibration information.
2567 			 */
2568 			uint16_t flags;
2569 
2570 			/*
2571 			 * Temperature at calibration, in units of 0.01 C
2572 			 * 0x8000: invalid / unknown.
2573 			 * 0x0: 0C
2574 			 * 0x7fff: +327.67C
2575 			 */
2576 			int16_t temp;
2577 
2578 			/*
2579 			 * Offset for calibration.
2580 			 * Unit:
2581 			 * Accelerometer: 1/1024 g
2582 			 * Gyro:          1/1024 deg/s
2583 			 * Compass:       1/16 uT
2584 			 */
2585 			int16_t offset[3];
2586 		} sensor_offset;
2587 
2588 		/* Used for MOTIONSENSE_CMD_SENSOR_SCALE */
2589 		struct __ec_todo_packed {
2590 			uint8_t sensor_num;
2591 
2592 			/*
2593 			 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2594 			 * the calibration information in the EC.
2595 			 * If unset, just retrieve calibration information.
2596 			 */
2597 			uint16_t flags;
2598 
2599 			/*
2600 			 * Temperature at calibration, in units of 0.01 C
2601 			 * 0x8000: invalid / unknown.
2602 			 * 0x0: 0C
2603 			 * 0x7fff: +327.67C
2604 			 */
2605 			int16_t temp;
2606 
2607 			/*
2608 			 * Scale for calibration:
2609 			 * By default scale is 1, it is encoded on 16bits:
2610 			 * 1 = BIT(15)
2611 			 * ~2 = 0xFFFF
2612 			 * ~0 = 0.
2613 			 */
2614 			uint16_t scale[3];
2615 		} sensor_scale;
2616 
2617 
2618 		/* Used for MOTIONSENSE_CMD_FIFO_INFO */
2619 		/* (no params) */
2620 
2621 		/* Used for MOTIONSENSE_CMD_FIFO_READ */
2622 		struct __ec_todo_unpacked {
2623 			/*
2624 			 * Number of expected vector to return.
2625 			 * EC may return less or 0 if none available.
2626 			 */
2627 			uint32_t max_data_vector;
2628 		} fifo_read;
2629 
2630 		struct ec_motion_sense_activity set_activity;
2631 
2632 		/* Used for MOTIONSENSE_CMD_LID_ANGLE */
2633 		/* (no params) */
2634 
2635 		/* Used for MOTIONSENSE_CMD_FIFO_INT_ENABLE */
2636 		struct __ec_todo_unpacked {
2637 			/*
2638 			 * 1: enable, 0 disable fifo,
2639 			 * EC_MOTION_SENSE_NO_VALUE return value.
2640 			 */
2641 			int8_t enable;
2642 		} fifo_int_enable;
2643 
2644 		/* Used for MOTIONSENSE_CMD_SPOOF */
2645 		struct __ec_todo_packed {
2646 			uint8_t sensor_id;
2647 
2648 			/* See enum motionsense_spoof_mode. */
2649 			uint8_t spoof_enable;
2650 
2651 			/* Ignored, used for alignment. */
2652 			uint8_t reserved;
2653 
2654 			/* Individual component values to spoof. */
2655 			int16_t components[3];
2656 		} spoof;
2657 
2658 		/* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */
2659 		struct __ec_todo_unpacked {
2660 			/*
2661 			 * Lid angle threshold for switching between tablet and
2662 			 * clamshell mode.
2663 			 */
2664 			int16_t lid_angle;
2665 
2666 			/*
2667 			 * Hysteresis degree to prevent fluctuations between
2668 			 * clamshell and tablet mode if lid angle keeps
2669 			 * changing around the threshold. Lid motion driver will
2670 			 * use lid_angle + hys_degree to trigger tablet mode and
2671 			 * lid_angle - hys_degree to trigger clamshell mode.
2672 			 */
2673 			int16_t hys_degree;
2674 		} tablet_mode_threshold;
2675 	};
2676 } __ec_todo_packed;
2677 
2678 struct ec_response_motion_sense {
2679 	union {
2680 		/* Used for MOTIONSENSE_CMD_DUMP */
2681 		struct __ec_todo_unpacked {
2682 			/* Flags representing the motion sensor module. */
2683 			uint8_t module_flags;
2684 
2685 			/* Number of sensors managed directly by the EC. */
2686 			uint8_t sensor_count;
2687 
2688 			/*
2689 			 * Sensor data is truncated if response_max is too small
2690 			 * for holding all the data.
2691 			 */
2692 			struct ec_response_motion_sensor_data sensor[0];
2693 		} dump;
2694 
2695 		/* Used for MOTIONSENSE_CMD_INFO. */
2696 		struct __ec_todo_unpacked {
2697 			/* Should be element of enum motionsensor_type. */
2698 			uint8_t type;
2699 
2700 			/* Should be element of enum motionsensor_location. */
2701 			uint8_t location;
2702 
2703 			/* Should be element of enum motionsensor_chip. */
2704 			uint8_t chip;
2705 		} info;
2706 
2707 		/* Used for MOTIONSENSE_CMD_INFO version 3 */
2708 		struct __ec_todo_unpacked {
2709 			/* Should be element of enum motionsensor_type. */
2710 			uint8_t type;
2711 
2712 			/* Should be element of enum motionsensor_location. */
2713 			uint8_t location;
2714 
2715 			/* Should be element of enum motionsensor_chip. */
2716 			uint8_t chip;
2717 
2718 			/* Minimum sensor sampling frequency */
2719 			uint32_t min_frequency;
2720 
2721 			/* Maximum sensor sampling frequency */
2722 			uint32_t max_frequency;
2723 
2724 			/* Max number of sensor events that could be in fifo */
2725 			uint32_t fifo_max_event_count;
2726 		} info_3;
2727 
2728 		/* Used for MOTIONSENSE_CMD_DATA */
2729 		struct ec_response_motion_sensor_data data;
2730 
2731 		/*
2732 		 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
2733 		 * MOTIONSENSE_CMD_SENSOR_RANGE,
2734 		 * MOTIONSENSE_CMD_KB_WAKE_ANGLE,
2735 		 * MOTIONSENSE_CMD_FIFO_INT_ENABLE and
2736 		 * MOTIONSENSE_CMD_SPOOF.
2737 		 */
2738 		struct __ec_todo_unpacked {
2739 			/* Current value of the parameter queried. */
2740 			int32_t ret;
2741 		} ec_rate, sensor_odr, sensor_range, kb_wake_angle,
2742 		  fifo_int_enable, spoof;
2743 
2744 		/*
2745 		 * Used for MOTIONSENSE_CMD_SENSOR_OFFSET,
2746 		 * PERFORM_CALIB.
2747 		 */
2748 		struct __ec_todo_unpacked  {
2749 			int16_t temp;
2750 			int16_t offset[3];
2751 		} sensor_offset, perform_calib;
2752 
2753 		/* Used for MOTIONSENSE_CMD_SENSOR_SCALE */
2754 		struct __ec_todo_unpacked  {
2755 			int16_t temp;
2756 			uint16_t scale[3];
2757 		} sensor_scale;
2758 
2759 		struct ec_response_motion_sense_fifo_info fifo_info, fifo_flush;
2760 
2761 		struct ec_response_motion_sense_fifo_data fifo_read;
2762 
2763 		struct __ec_todo_packed {
2764 			uint16_t reserved;
2765 			uint32_t enabled;
2766 			uint32_t disabled;
2767 		} list_activities;
2768 
2769 		/* No params for set activity */
2770 
2771 		/* Used for MOTIONSENSE_CMD_LID_ANGLE */
2772 		struct __ec_todo_unpacked {
2773 			/*
2774 			 * Angle between 0 and 360 degree if available,
2775 			 * LID_ANGLE_UNRELIABLE otherwise.
2776 			 */
2777 			uint16_t value;
2778 		} lid_angle;
2779 
2780 		/* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */
2781 		struct __ec_todo_unpacked {
2782 			/*
2783 			 * Lid angle threshold for switching between tablet and
2784 			 * clamshell mode.
2785 			 */
2786 			uint16_t lid_angle;
2787 
2788 			/* Hysteresis degree. */
2789 			uint16_t hys_degree;
2790 		} tablet_mode_threshold;
2791 
2792 	};
2793 } __ec_todo_packed;
2794 
2795 /*****************************************************************************/
2796 /* Force lid open command */
2797 
2798 /* Make lid event always open */
2799 #define EC_CMD_FORCE_LID_OPEN 0x002C
2800 
2801 struct ec_params_force_lid_open {
2802 	uint8_t enabled;
2803 } __ec_align1;
2804 
2805 /*****************************************************************************/
2806 /* Configure the behavior of the power button */
2807 #define EC_CMD_CONFIG_POWER_BUTTON 0x002D
2808 
2809 enum ec_config_power_button_flags {
2810 	/* Enable/Disable power button pulses for x86 devices */
2811 	EC_POWER_BUTTON_ENABLE_PULSE = BIT(0),
2812 };
2813 
2814 struct ec_params_config_power_button {
2815 	/* See enum ec_config_power_button_flags */
2816 	uint8_t flags;
2817 } __ec_align1;
2818 
2819 /*****************************************************************************/
2820 /* USB charging control commands */
2821 
2822 /* Set USB port charging mode */
2823 #define EC_CMD_USB_CHARGE_SET_MODE 0x0030
2824 
2825 struct ec_params_usb_charge_set_mode {
2826 	uint8_t usb_port_id;
2827 	uint8_t mode:7;
2828 	uint8_t inhibit_charge:1;
2829 } __ec_align1;
2830 
2831 /*****************************************************************************/
2832 /* Persistent storage for host */
2833 
2834 /* Maximum bytes that can be read/written in a single command */
2835 #define EC_PSTORE_SIZE_MAX 64
2836 
2837 /* Get persistent storage info */
2838 #define EC_CMD_PSTORE_INFO 0x0040
2839 
2840 struct ec_response_pstore_info {
2841 	/* Persistent storage size, in bytes */
2842 	uint32_t pstore_size;
2843 	/* Access size; read/write offset and size must be a multiple of this */
2844 	uint32_t access_size;
2845 } __ec_align4;
2846 
2847 /*
2848  * Read persistent storage
2849  *
2850  * Response is params.size bytes of data.
2851  */
2852 #define EC_CMD_PSTORE_READ 0x0041
2853 
2854 struct ec_params_pstore_read {
2855 	uint32_t offset;   /* Byte offset to read */
2856 	uint32_t size;     /* Size to read in bytes */
2857 } __ec_align4;
2858 
2859 /* Write persistent storage */
2860 #define EC_CMD_PSTORE_WRITE 0x0042
2861 
2862 struct ec_params_pstore_write {
2863 	uint32_t offset;   /* Byte offset to write */
2864 	uint32_t size;     /* Size to write in bytes */
2865 	uint8_t data[EC_PSTORE_SIZE_MAX];
2866 } __ec_align4;
2867 
2868 /*****************************************************************************/
2869 /* Real-time clock */
2870 
2871 /* RTC params and response structures */
2872 struct ec_params_rtc {
2873 	uint32_t time;
2874 } __ec_align4;
2875 
2876 struct ec_response_rtc {
2877 	uint32_t time;
2878 } __ec_align4;
2879 
2880 /* These use ec_response_rtc */
2881 #define EC_CMD_RTC_GET_VALUE 0x0044
2882 #define EC_CMD_RTC_GET_ALARM 0x0045
2883 
2884 /* These all use ec_params_rtc */
2885 #define EC_CMD_RTC_SET_VALUE 0x0046
2886 #define EC_CMD_RTC_SET_ALARM 0x0047
2887 
2888 /* Pass as time param to SET_ALARM to clear the current alarm */
2889 #define EC_RTC_ALARM_CLEAR 0
2890 
2891 /*****************************************************************************/
2892 /* Port80 log access */
2893 
2894 /* Maximum entries that can be read/written in a single command */
2895 #define EC_PORT80_SIZE_MAX 32
2896 
2897 /* Get last port80 code from previous boot */
2898 #define EC_CMD_PORT80_LAST_BOOT 0x0048
2899 #define EC_CMD_PORT80_READ 0x0048
2900 
2901 enum ec_port80_subcmd {
2902 	EC_PORT80_GET_INFO = 0,
2903 	EC_PORT80_READ_BUFFER,
2904 };
2905 
2906 struct ec_params_port80_read {
2907 	uint16_t subcmd;
2908 	union {
2909 		struct __ec_todo_unpacked {
2910 			uint32_t offset;
2911 			uint32_t num_entries;
2912 		} read_buffer;
2913 	};
2914 } __ec_todo_packed;
2915 
2916 struct ec_response_port80_read {
2917 	union {
2918 		struct __ec_todo_unpacked {
2919 			uint32_t writes;
2920 			uint32_t history_size;
2921 			uint32_t last_boot;
2922 		} get_info;
2923 		struct __ec_todo_unpacked {
2924 			uint16_t codes[EC_PORT80_SIZE_MAX];
2925 		} data;
2926 	};
2927 } __ec_todo_packed;
2928 
2929 struct ec_response_port80_last_boot {
2930 	uint16_t code;
2931 } __ec_align2;
2932 
2933 /*****************************************************************************/
2934 /* Temporary secure storage for host verified boot use */
2935 
2936 /* Number of bytes in a vstore slot */
2937 #define EC_VSTORE_SLOT_SIZE 64
2938 
2939 /* Maximum number of vstore slots */
2940 #define EC_VSTORE_SLOT_MAX 32
2941 
2942 /* Get persistent storage info */
2943 #define EC_CMD_VSTORE_INFO 0x0049
2944 struct ec_response_vstore_info {
2945 	/* Indicates which slots are locked */
2946 	uint32_t slot_locked;
2947 	/* Total number of slots available */
2948 	uint8_t slot_count;
2949 } __ec_align_size1;
2950 
2951 /*
2952  * Read temporary secure storage
2953  *
2954  * Response is EC_VSTORE_SLOT_SIZE bytes of data.
2955  */
2956 #define EC_CMD_VSTORE_READ 0x004A
2957 
2958 struct ec_params_vstore_read {
2959 	uint8_t slot; /* Slot to read from */
2960 } __ec_align1;
2961 
2962 struct ec_response_vstore_read {
2963 	uint8_t data[EC_VSTORE_SLOT_SIZE];
2964 } __ec_align1;
2965 
2966 /*
2967  * Write temporary secure storage and lock it.
2968  */
2969 #define EC_CMD_VSTORE_WRITE 0x004B
2970 
2971 struct ec_params_vstore_write {
2972 	uint8_t slot; /* Slot to write to */
2973 	uint8_t data[EC_VSTORE_SLOT_SIZE];
2974 } __ec_align1;
2975 
2976 /*****************************************************************************/
2977 /* Thermal engine commands. Note that there are two implementations. We'll
2978  * reuse the command number, but the data and behavior is incompatible.
2979  * Version 0 is what originally shipped on Link.
2980  * Version 1 separates the CPU thermal limits from the fan control.
2981  */
2982 
2983 #define EC_CMD_THERMAL_SET_THRESHOLD 0x0050
2984 #define EC_CMD_THERMAL_GET_THRESHOLD 0x0051
2985 
2986 /* The version 0 structs are opaque. You have to know what they are for
2987  * the get/set commands to make any sense.
2988  */
2989 
2990 /* Version 0 - set */
2991 struct ec_params_thermal_set_threshold {
2992 	uint8_t sensor_type;
2993 	uint8_t threshold_id;
2994 	uint16_t value;
2995 } __ec_align2;
2996 
2997 /* Version 0 - get */
2998 struct ec_params_thermal_get_threshold {
2999 	uint8_t sensor_type;
3000 	uint8_t threshold_id;
3001 } __ec_align1;
3002 
3003 struct ec_response_thermal_get_threshold {
3004 	uint16_t value;
3005 } __ec_align2;
3006 
3007 
3008 /* The version 1 structs are visible. */
3009 enum ec_temp_thresholds {
3010 	EC_TEMP_THRESH_WARN = 0,
3011 	EC_TEMP_THRESH_HIGH,
3012 	EC_TEMP_THRESH_HALT,
3013 
3014 	EC_TEMP_THRESH_COUNT
3015 };
3016 
3017 /*
3018  * Thermal configuration for one temperature sensor. Temps are in degrees K.
3019  * Zero values will be silently ignored by the thermal task.
3020  *
3021  * Set 'temp_host' value allows thermal task to trigger some event with 1 degree
3022  * hysteresis.
3023  * For example,
3024  *	temp_host[EC_TEMP_THRESH_HIGH] = 300 K
3025  *	temp_host_release[EC_TEMP_THRESH_HIGH] = 0 K
3026  * EC will throttle ap when temperature >= 301 K, and release throttling when
3027  * temperature <= 299 K.
3028  *
3029  * Set 'temp_host_release' value allows thermal task has a custom hysteresis.
3030  * For example,
3031  *	temp_host[EC_TEMP_THRESH_HIGH] = 300 K
3032  *	temp_host_release[EC_TEMP_THRESH_HIGH] = 295 K
3033  * EC will throttle ap when temperature >= 301 K, and release throttling when
3034  * temperature <= 294 K.
3035  *
3036  * Note that this structure is a sub-structure of
3037  * ec_params_thermal_set_threshold_v1, but maintains its alignment there.
3038  */
3039 struct ec_thermal_config {
3040 	uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
3041 	uint32_t temp_host_release[EC_TEMP_THRESH_COUNT]; /* release levels */
3042 	uint32_t temp_fan_off;		/* no active cooling needed */
3043 	uint32_t temp_fan_max;		/* max active cooling needed */
3044 } __ec_align4;
3045 
3046 /* Version 1 - get config for one sensor. */
3047 struct ec_params_thermal_get_threshold_v1 {
3048 	uint32_t sensor_num;
3049 } __ec_align4;
3050 /* This returns a struct ec_thermal_config */
3051 
3052 /*
3053  * Version 1 - set config for one sensor.
3054  * Use read-modify-write for best results!
3055  */
3056 struct ec_params_thermal_set_threshold_v1 {
3057 	uint32_t sensor_num;
3058 	struct ec_thermal_config cfg;
3059 } __ec_align4;
3060 /* This returns no data */
3061 
3062 /****************************************************************************/
3063 
3064 /* Toggle automatic fan control */
3065 #define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x0052
3066 
3067 /* Version 1 of input params */
3068 struct ec_params_auto_fan_ctrl_v1 {
3069 	uint8_t fan_idx;
3070 } __ec_align1;
3071 
3072 /* Get/Set TMP006 calibration data */
3073 #define EC_CMD_TMP006_GET_CALIBRATION 0x0053
3074 #define EC_CMD_TMP006_SET_CALIBRATION 0x0054
3075 
3076 /*
3077  * The original TMP006 calibration only needed four params, but now we need
3078  * more. Since the algorithm is nothing but magic numbers anyway, we'll leave
3079  * the params opaque. The v1 "get" response will include the algorithm number
3080  * and how many params it requires. That way we can change the EC code without
3081  * needing to update this file. We can also use a different algorithm on each
3082  * sensor.
3083  */
3084 
3085 /* This is the same struct for both v0 and v1. */
3086 struct ec_params_tmp006_get_calibration {
3087 	uint8_t index;
3088 } __ec_align1;
3089 
3090 /* Version 0 */
3091 struct ec_response_tmp006_get_calibration_v0 {
3092 	float s0;
3093 	float b0;
3094 	float b1;
3095 	float b2;
3096 } __ec_align4;
3097 
3098 struct ec_params_tmp006_set_calibration_v0 {
3099 	uint8_t index;
3100 	uint8_t reserved[3];
3101 	float s0;
3102 	float b0;
3103 	float b1;
3104 	float b2;
3105 } __ec_align4;
3106 
3107 /* Version 1 */
3108 struct ec_response_tmp006_get_calibration_v1 {
3109 	uint8_t algorithm;
3110 	uint8_t num_params;
3111 	uint8_t reserved[2];
3112 	float val[];
3113 } __ec_align4;
3114 
3115 struct ec_params_tmp006_set_calibration_v1 {
3116 	uint8_t index;
3117 	uint8_t algorithm;
3118 	uint8_t num_params;
3119 	uint8_t reserved;
3120 	float val[];
3121 } __ec_align4;
3122 
3123 
3124 /* Read raw TMP006 data */
3125 #define EC_CMD_TMP006_GET_RAW 0x0055
3126 
3127 struct ec_params_tmp006_get_raw {
3128 	uint8_t index;
3129 } __ec_align1;
3130 
3131 struct ec_response_tmp006_get_raw {
3132 	int32_t t;  /* In 1/100 K */
3133 	int32_t v;  /* In nV */
3134 } __ec_align4;
3135 
3136 /*****************************************************************************/
3137 /* MKBP - Matrix KeyBoard Protocol */
3138 
3139 /*
3140  * Read key state
3141  *
3142  * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
3143  * expected response size.
3144  *
3145  * NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT.  If you wish
3146  * to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type
3147  * EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX.
3148  */
3149 #define EC_CMD_MKBP_STATE 0x0060
3150 
3151 /*
3152  * Provide information about various MKBP things.  See enum ec_mkbp_info_type.
3153  */
3154 #define EC_CMD_MKBP_INFO 0x0061
3155 
3156 struct ec_response_mkbp_info {
3157 	uint32_t rows;
3158 	uint32_t cols;
3159 	/* Formerly "switches", which was 0. */
3160 	uint8_t reserved;
3161 } __ec_align_size1;
3162 
3163 struct ec_params_mkbp_info {
3164 	uint8_t info_type;
3165 	uint8_t event_type;
3166 } __ec_align1;
3167 
3168 enum ec_mkbp_info_type {
3169 	/*
3170 	 * Info about the keyboard matrix: number of rows and columns.
3171 	 *
3172 	 * Returns struct ec_response_mkbp_info.
3173 	 */
3174 	EC_MKBP_INFO_KBD = 0,
3175 
3176 	/*
3177 	 * For buttons and switches, info about which specifically are
3178 	 * supported.  event_type must be set to one of the values in enum
3179 	 * ec_mkbp_event.
3180 	 *
3181 	 * For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte
3182 	 * bitmask indicating which buttons or switches are present.  See the
3183 	 * bit inidices below.
3184 	 */
3185 	EC_MKBP_INFO_SUPPORTED = 1,
3186 
3187 	/*
3188 	 * Instantaneous state of buttons and switches.
3189 	 *
3190 	 * event_type must be set to one of the values in enum ec_mkbp_event.
3191 	 *
3192 	 * For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13]
3193 	 * indicating the current state of the keyboard matrix.
3194 	 *
3195 	 * For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw
3196 	 * event state.
3197 	 *
3198 	 * For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the
3199 	 * state of supported buttons.
3200 	 *
3201 	 * For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the
3202 	 * state of supported switches.
3203 	 */
3204 	EC_MKBP_INFO_CURRENT = 2,
3205 };
3206 
3207 /* Simulate key press */
3208 #define EC_CMD_MKBP_SIMULATE_KEY 0x0062
3209 
3210 struct ec_params_mkbp_simulate_key {
3211 	uint8_t col;
3212 	uint8_t row;
3213 	uint8_t pressed;
3214 } __ec_align1;
3215 
3216 #define EC_CMD_GET_KEYBOARD_ID 0x0063
3217 
3218 struct ec_response_keyboard_id {
3219 	uint32_t keyboard_id;
3220 } __ec_align4;
3221 
3222 enum keyboard_id {
3223 	KEYBOARD_ID_UNSUPPORTED = 0,
3224 	KEYBOARD_ID_UNREADABLE = 0xffffffff,
3225 };
3226 
3227 /* Configure keyboard scanning */
3228 #define EC_CMD_MKBP_SET_CONFIG 0x0064
3229 #define EC_CMD_MKBP_GET_CONFIG 0x0065
3230 
3231 /* flags */
3232 enum mkbp_config_flags {
3233 	EC_MKBP_FLAGS_ENABLE = 1,	/* Enable keyboard scanning */
3234 };
3235 
3236 enum mkbp_config_valid {
3237 	EC_MKBP_VALID_SCAN_PERIOD		= BIT(0),
3238 	EC_MKBP_VALID_POLL_TIMEOUT		= BIT(1),
3239 	EC_MKBP_VALID_MIN_POST_SCAN_DELAY	= BIT(3),
3240 	EC_MKBP_VALID_OUTPUT_SETTLE		= BIT(4),
3241 	EC_MKBP_VALID_DEBOUNCE_DOWN		= BIT(5),
3242 	EC_MKBP_VALID_DEBOUNCE_UP		= BIT(6),
3243 	EC_MKBP_VALID_FIFO_MAX_DEPTH		= BIT(7),
3244 };
3245 
3246 /*
3247  * Configuration for our key scanning algorithm.
3248  *
3249  * Note that this is used as a sub-structure of
3250  * ec_{params/response}_mkbp_get_config.
3251  */
3252 struct ec_mkbp_config {
3253 	uint32_t valid_mask;		/* valid fields */
3254 	uint8_t flags;		/* some flags (enum mkbp_config_flags) */
3255 	uint8_t valid_flags;		/* which flags are valid */
3256 	uint16_t scan_period_us;	/* period between start of scans */
3257 	/* revert to interrupt mode after no activity for this long */
3258 	uint32_t poll_timeout_us;
3259 	/*
3260 	 * minimum post-scan relax time. Once we finish a scan we check
3261 	 * the time until we are due to start the next one. If this time is
3262 	 * shorter this field, we use this instead.
3263 	 */
3264 	uint16_t min_post_scan_delay_us;
3265 	/* delay between setting up output and waiting for it to settle */
3266 	uint16_t output_settle_us;
3267 	uint16_t debounce_down_us;	/* time for debounce on key down */
3268 	uint16_t debounce_up_us;	/* time for debounce on key up */
3269 	/* maximum depth to allow for fifo (0 = no keyscan output) */
3270 	uint8_t fifo_max_depth;
3271 } __ec_align_size1;
3272 
3273 struct ec_params_mkbp_set_config {
3274 	struct ec_mkbp_config config;
3275 } __ec_align_size1;
3276 
3277 struct ec_response_mkbp_get_config {
3278 	struct ec_mkbp_config config;
3279 } __ec_align_size1;
3280 
3281 /* Run the key scan emulation */
3282 #define EC_CMD_KEYSCAN_SEQ_CTRL 0x0066
3283 
3284 enum ec_keyscan_seq_cmd {
3285 	EC_KEYSCAN_SEQ_STATUS = 0,	/* Get status information */
3286 	EC_KEYSCAN_SEQ_CLEAR = 1,	/* Clear sequence */
3287 	EC_KEYSCAN_SEQ_ADD = 2,		/* Add item to sequence */
3288 	EC_KEYSCAN_SEQ_START = 3,	/* Start running sequence */
3289 	EC_KEYSCAN_SEQ_COLLECT = 4,	/* Collect sequence summary data */
3290 };
3291 
3292 enum ec_collect_flags {
3293 	/*
3294 	 * Indicates this scan was processed by the EC. Due to timing, some
3295 	 * scans may be skipped.
3296 	 */
3297 	EC_KEYSCAN_SEQ_FLAG_DONE	= BIT(0),
3298 };
3299 
3300 struct ec_collect_item {
3301 	uint8_t flags;		/* some flags (enum ec_collect_flags) */
3302 } __ec_align1;
3303 
3304 struct ec_params_keyscan_seq_ctrl {
3305 	uint8_t cmd;	/* Command to send (enum ec_keyscan_seq_cmd) */
3306 	union {
3307 		struct __ec_align1 {
3308 			uint8_t active;		/* still active */
3309 			uint8_t num_items;	/* number of items */
3310 			/* Current item being presented */
3311 			uint8_t cur_item;
3312 		} status;
3313 		struct __ec_todo_unpacked {
3314 			/*
3315 			 * Absolute time for this scan, measured from the
3316 			 * start of the sequence.
3317 			 */
3318 			uint32_t time_us;
3319 			uint8_t scan[0];	/* keyscan data */
3320 		} add;
3321 		struct __ec_align1 {
3322 			uint8_t start_item;	/* First item to return */
3323 			uint8_t num_items;	/* Number of items to return */
3324 		} collect;
3325 	};
3326 } __ec_todo_packed;
3327 
3328 struct ec_result_keyscan_seq_ctrl {
3329 	union {
3330 		struct __ec_todo_unpacked {
3331 			uint8_t num_items;	/* Number of items */
3332 			/* Data for each item */
3333 			struct ec_collect_item item[0];
3334 		} collect;
3335 	};
3336 } __ec_todo_packed;
3337 
3338 /*
3339  * Get the next pending MKBP event.
3340  *
3341  * Returns EC_RES_UNAVAILABLE if there is no event pending.
3342  */
3343 #define EC_CMD_GET_NEXT_EVENT 0x0067
3344 
3345 #define EC_MKBP_HAS_MORE_EVENTS_SHIFT 7
3346 
3347 /*
3348  * We use the most significant bit of the event type to indicate to the host
3349  * that the EC has more MKBP events available to provide.
3350  */
3351 #define EC_MKBP_HAS_MORE_EVENTS BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT)
3352 
3353 /* The mask to apply to get the raw event type */
3354 #define EC_MKBP_EVENT_TYPE_MASK (BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT) - 1)
3355 
3356 enum ec_mkbp_event {
3357 	/* Keyboard matrix changed. The event data is the new matrix state. */
3358 	EC_MKBP_EVENT_KEY_MATRIX = 0,
3359 
3360 	/* New host event. The event data is 4 bytes of host event flags. */
3361 	EC_MKBP_EVENT_HOST_EVENT = 1,
3362 
3363 	/* New Sensor FIFO data. The event data is fifo_info structure. */
3364 	EC_MKBP_EVENT_SENSOR_FIFO = 2,
3365 
3366 	/* The state of the non-matrixed buttons have changed. */
3367 	EC_MKBP_EVENT_BUTTON = 3,
3368 
3369 	/* The state of the switches have changed. */
3370 	EC_MKBP_EVENT_SWITCH = 4,
3371 
3372 	/* New Fingerprint sensor event, the event data is fp_events bitmap. */
3373 	EC_MKBP_EVENT_FINGERPRINT = 5,
3374 
3375 	/*
3376 	 * Sysrq event: send emulated sysrq. The event data is sysrq,
3377 	 * corresponding to the key to be pressed.
3378 	 */
3379 	EC_MKBP_EVENT_SYSRQ = 6,
3380 
3381 	/*
3382 	 * New 64-bit host event.
3383 	 * The event data is 8 bytes of host event flags.
3384 	 */
3385 	EC_MKBP_EVENT_HOST_EVENT64 = 7,
3386 
3387 	/* Notify the AP that something happened on CEC */
3388 	EC_MKBP_EVENT_CEC_EVENT = 8,
3389 
3390 	/* Send an incoming CEC message to the AP */
3391 	EC_MKBP_EVENT_CEC_MESSAGE = 9,
3392 
3393 	/* Peripheral device charger event */
3394 	EC_MKBP_EVENT_PCHG = 12,
3395 
3396 	/* Number of MKBP events */
3397 	EC_MKBP_EVENT_COUNT,
3398 };
3399 BUILD_ASSERT(EC_MKBP_EVENT_COUNT <= EC_MKBP_EVENT_TYPE_MASK);
3400 
3401 union __ec_align_offset1 ec_response_get_next_data {
3402 	uint8_t key_matrix[13];
3403 
3404 	/* Unaligned */
3405 	uint32_t host_event;
3406 	uint64_t host_event64;
3407 
3408 	struct __ec_todo_unpacked {
3409 		/* For aligning the fifo_info */
3410 		uint8_t reserved[3];
3411 		struct ec_response_motion_sense_fifo_info info;
3412 	} sensor_fifo;
3413 
3414 	uint32_t buttons;
3415 
3416 	uint32_t switches;
3417 
3418 	uint32_t fp_events;
3419 
3420 	uint32_t sysrq;
3421 
3422 	/* CEC events from enum mkbp_cec_event */
3423 	uint32_t cec_events;
3424 };
3425 
3426 union __ec_align_offset1 ec_response_get_next_data_v1 {
3427 	uint8_t key_matrix[16];
3428 
3429 	/* Unaligned */
3430 	uint32_t host_event;
3431 	uint64_t host_event64;
3432 
3433 	struct __ec_todo_unpacked {
3434 		/* For aligning the fifo_info */
3435 		uint8_t reserved[3];
3436 		struct ec_response_motion_sense_fifo_info info;
3437 	} sensor_fifo;
3438 
3439 	uint32_t buttons;
3440 
3441 	uint32_t switches;
3442 
3443 	uint32_t fp_events;
3444 
3445 	uint32_t sysrq;
3446 
3447 	/* CEC events from enum mkbp_cec_event */
3448 	uint32_t cec_events;
3449 
3450 	uint8_t cec_message[16];
3451 };
3452 BUILD_ASSERT(sizeof(union ec_response_get_next_data_v1) == 16);
3453 
3454 struct ec_response_get_next_event {
3455 	uint8_t event_type;
3456 	/* Followed by event data if any */
3457 	union ec_response_get_next_data data;
3458 } __ec_align1;
3459 
3460 struct ec_response_get_next_event_v1 {
3461 	uint8_t event_type;
3462 	/* Followed by event data if any */
3463 	union ec_response_get_next_data_v1 data;
3464 } __ec_align1;
3465 
3466 /* Bit indices for buttons and switches.*/
3467 /* Buttons */
3468 #define EC_MKBP_POWER_BUTTON	0
3469 #define EC_MKBP_VOL_UP		1
3470 #define EC_MKBP_VOL_DOWN	2
3471 #define EC_MKBP_RECOVERY	3
3472 
3473 /* Switches */
3474 #define EC_MKBP_LID_OPEN	0
3475 #define EC_MKBP_TABLET_MODE	1
3476 #define EC_MKBP_BASE_ATTACHED	2
3477 #define EC_MKBP_FRONT_PROXIMITY	3
3478 
3479 /* Run keyboard factory test scanning */
3480 #define EC_CMD_KEYBOARD_FACTORY_TEST 0x0068
3481 
3482 struct ec_response_keyboard_factory_test {
3483 	uint16_t shorted;	/* Keyboard pins are shorted */
3484 } __ec_align2;
3485 
3486 /* Fingerprint events in 'fp_events' for EC_MKBP_EVENT_FINGERPRINT */
3487 #define EC_MKBP_FP_RAW_EVENT(fp_events) ((fp_events) & 0x00FFFFFF)
3488 #define EC_MKBP_FP_ERRCODE(fp_events)   ((fp_events) & 0x0000000F)
3489 #define EC_MKBP_FP_ENROLL_PROGRESS_OFFSET 4
3490 #define EC_MKBP_FP_ENROLL_PROGRESS(fpe) (((fpe) & 0x00000FF0) \
3491 					 >> EC_MKBP_FP_ENROLL_PROGRESS_OFFSET)
3492 #define EC_MKBP_FP_MATCH_IDX_OFFSET 12
3493 #define EC_MKBP_FP_MATCH_IDX_MASK 0x0000F000
3494 #define EC_MKBP_FP_MATCH_IDX(fpe) (((fpe) & EC_MKBP_FP_MATCH_IDX_MASK) \
3495 					 >> EC_MKBP_FP_MATCH_IDX_OFFSET)
3496 #define EC_MKBP_FP_ENROLL               BIT(27)
3497 #define EC_MKBP_FP_MATCH                BIT(28)
3498 #define EC_MKBP_FP_FINGER_DOWN          BIT(29)
3499 #define EC_MKBP_FP_FINGER_UP            BIT(30)
3500 #define EC_MKBP_FP_IMAGE_READY          BIT(31)
3501 /* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_ENROLL is set */
3502 #define EC_MKBP_FP_ERR_ENROLL_OK               0
3503 #define EC_MKBP_FP_ERR_ENROLL_LOW_QUALITY      1
3504 #define EC_MKBP_FP_ERR_ENROLL_IMMOBILE         2
3505 #define EC_MKBP_FP_ERR_ENROLL_LOW_COVERAGE     3
3506 #define EC_MKBP_FP_ERR_ENROLL_INTERNAL         5
3507 /* Can be used to detect if image was usable for enrollment or not. */
3508 #define EC_MKBP_FP_ERR_ENROLL_PROBLEM_MASK     1
3509 /* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_MATCH is set */
3510 #define EC_MKBP_FP_ERR_MATCH_NO                0
3511 #define EC_MKBP_FP_ERR_MATCH_NO_INTERNAL       6
3512 #define EC_MKBP_FP_ERR_MATCH_NO_TEMPLATES      7
3513 #define EC_MKBP_FP_ERR_MATCH_NO_LOW_QUALITY    2
3514 #define EC_MKBP_FP_ERR_MATCH_NO_LOW_COVERAGE   4
3515 #define EC_MKBP_FP_ERR_MATCH_YES               1
3516 #define EC_MKBP_FP_ERR_MATCH_YES_UPDATED       3
3517 #define EC_MKBP_FP_ERR_MATCH_YES_UPDATE_FAILED 5
3518 
3519 
3520 /*****************************************************************************/
3521 /* Temperature sensor commands */
3522 
3523 /* Read temperature sensor info */
3524 #define EC_CMD_TEMP_SENSOR_GET_INFO 0x0070
3525 
3526 struct ec_params_temp_sensor_get_info {
3527 	uint8_t id;
3528 } __ec_align1;
3529 
3530 struct ec_response_temp_sensor_get_info {
3531 	char sensor_name[32];
3532 	uint8_t sensor_type;
3533 } __ec_align1;
3534 
3535 /*****************************************************************************/
3536 
3537 /*
3538  * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
3539  * commands accidentally sent to the wrong interface.  See the ACPI section
3540  * below.
3541  */
3542 
3543 /*****************************************************************************/
3544 /* Host event commands */
3545 
3546 
3547 /* Obsolete. New implementation should use EC_CMD_HOST_EVENT instead */
3548 /*
3549  * Host event mask params and response structures, shared by all of the host
3550  * event commands below.
3551  */
3552 struct ec_params_host_event_mask {
3553 	uint32_t mask;
3554 } __ec_align4;
3555 
3556 struct ec_response_host_event_mask {
3557 	uint32_t mask;
3558 } __ec_align4;
3559 
3560 /* These all use ec_response_host_event_mask */
3561 #define EC_CMD_HOST_EVENT_GET_B         0x0087
3562 #define EC_CMD_HOST_EVENT_GET_SMI_MASK  0x0088
3563 #define EC_CMD_HOST_EVENT_GET_SCI_MASK  0x0089
3564 #define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x008D
3565 
3566 /* These all use ec_params_host_event_mask */
3567 #define EC_CMD_HOST_EVENT_SET_SMI_MASK  0x008A
3568 #define EC_CMD_HOST_EVENT_SET_SCI_MASK  0x008B
3569 #define EC_CMD_HOST_EVENT_CLEAR         0x008C
3570 #define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x008E
3571 #define EC_CMD_HOST_EVENT_CLEAR_B       0x008F
3572 
3573 /*
3574  * Unified host event programming interface - Should be used by newer versions
3575  * of BIOS/OS to program host events and masks
3576  */
3577 
3578 struct ec_params_host_event {
3579 
3580 	/* Action requested by host - one of enum ec_host_event_action. */
3581 	uint8_t action;
3582 
3583 	/*
3584 	 * Mask type that the host requested the action on - one of
3585 	 * enum ec_host_event_mask_type.
3586 	 */
3587 	uint8_t mask_type;
3588 
3589 	/* Set to 0, ignore on read */
3590 	uint16_t reserved;
3591 
3592 	/* Value to be used in case of set operations. */
3593 	uint64_t value;
3594 } __ec_align4;
3595 
3596 /*
3597  * Response structure returned by EC_CMD_HOST_EVENT.
3598  * Update the value on a GET request. Set to 0 on GET/CLEAR
3599  */
3600 
3601 struct ec_response_host_event {
3602 
3603 	/* Mask value in case of get operation */
3604 	uint64_t value;
3605 } __ec_align4;
3606 
3607 enum ec_host_event_action {
3608 	/*
3609 	 * params.value is ignored. Value of mask_type populated
3610 	 * in response.value
3611 	 */
3612 	EC_HOST_EVENT_GET,
3613 
3614 	/* Bits in params.value are set */
3615 	EC_HOST_EVENT_SET,
3616 
3617 	/* Bits in params.value are cleared */
3618 	EC_HOST_EVENT_CLEAR,
3619 };
3620 
3621 enum ec_host_event_mask_type {
3622 
3623 	/* Main host event copy */
3624 	EC_HOST_EVENT_MAIN,
3625 
3626 	/* Copy B of host events */
3627 	EC_HOST_EVENT_B,
3628 
3629 	/* SCI Mask */
3630 	EC_HOST_EVENT_SCI_MASK,
3631 
3632 	/* SMI Mask */
3633 	EC_HOST_EVENT_SMI_MASK,
3634 
3635 	/* Mask of events that should be always reported in hostevents */
3636 	EC_HOST_EVENT_ALWAYS_REPORT_MASK,
3637 
3638 	/* Active wake mask */
3639 	EC_HOST_EVENT_ACTIVE_WAKE_MASK,
3640 
3641 	/* Lazy wake mask for S0ix */
3642 	EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX,
3643 
3644 	/* Lazy wake mask for S3 */
3645 	EC_HOST_EVENT_LAZY_WAKE_MASK_S3,
3646 
3647 	/* Lazy wake mask for S5 */
3648 	EC_HOST_EVENT_LAZY_WAKE_MASK_S5,
3649 };
3650 
3651 #define EC_CMD_HOST_EVENT       0x00A4
3652 
3653 /*****************************************************************************/
3654 /* Switch commands */
3655 
3656 /* Enable/disable LCD backlight */
3657 #define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x0090
3658 
3659 struct ec_params_switch_enable_backlight {
3660 	uint8_t enabled;
3661 } __ec_align1;
3662 
3663 /* Enable/disable WLAN/Bluetooth */
3664 #define EC_CMD_SWITCH_ENABLE_WIRELESS 0x0091
3665 #define EC_VER_SWITCH_ENABLE_WIRELESS 1
3666 
3667 /* Version 0 params; no response */
3668 struct ec_params_switch_enable_wireless_v0 {
3669 	uint8_t enabled;
3670 } __ec_align1;
3671 
3672 /* Version 1 params */
3673 struct ec_params_switch_enable_wireless_v1 {
3674 	/* Flags to enable now */
3675 	uint8_t now_flags;
3676 
3677 	/* Which flags to copy from now_flags */
3678 	uint8_t now_mask;
3679 
3680 	/*
3681 	 * Flags to leave enabled in S3, if they're on at the S0->S3
3682 	 * transition.  (Other flags will be disabled by the S0->S3
3683 	 * transition.)
3684 	 */
3685 	uint8_t suspend_flags;
3686 
3687 	/* Which flags to copy from suspend_flags */
3688 	uint8_t suspend_mask;
3689 } __ec_align1;
3690 
3691 /* Version 1 response */
3692 struct ec_response_switch_enable_wireless_v1 {
3693 	/* Flags to enable now */
3694 	uint8_t now_flags;
3695 
3696 	/* Flags to leave enabled in S3 */
3697 	uint8_t suspend_flags;
3698 } __ec_align1;
3699 
3700 /*****************************************************************************/
3701 /* GPIO commands. Only available on EC if write protect has been disabled. */
3702 
3703 /* Set GPIO output value */
3704 #define EC_CMD_GPIO_SET 0x0092
3705 
3706 struct ec_params_gpio_set {
3707 	char name[32];
3708 	uint8_t val;
3709 } __ec_align1;
3710 
3711 /* Get GPIO value */
3712 #define EC_CMD_GPIO_GET 0x0093
3713 
3714 /* Version 0 of input params and response */
3715 struct ec_params_gpio_get {
3716 	char name[32];
3717 } __ec_align1;
3718 
3719 struct ec_response_gpio_get {
3720 	uint8_t val;
3721 } __ec_align1;
3722 
3723 /* Version 1 of input params and response */
3724 struct ec_params_gpio_get_v1 {
3725 	uint8_t subcmd;
3726 	union {
3727 		struct __ec_align1 {
3728 			char name[32];
3729 		} get_value_by_name;
3730 		struct __ec_align1 {
3731 			uint8_t index;
3732 		} get_info;
3733 	};
3734 } __ec_align1;
3735 
3736 struct ec_response_gpio_get_v1 {
3737 	union {
3738 		struct __ec_align1 {
3739 			uint8_t val;
3740 		} get_value_by_name, get_count;
3741 		struct __ec_todo_unpacked {
3742 			uint8_t val;
3743 			char name[32];
3744 			uint32_t flags;
3745 		} get_info;
3746 	};
3747 } __ec_todo_packed;
3748 
3749 enum gpio_get_subcmd {
3750 	EC_GPIO_GET_BY_NAME = 0,
3751 	EC_GPIO_GET_COUNT = 1,
3752 	EC_GPIO_GET_INFO = 2,
3753 };
3754 
3755 /*****************************************************************************/
3756 /* I2C commands. Only available when flash write protect is unlocked. */
3757 
3758 /*
3759  * CAUTION: These commands are deprecated, and are not supported anymore in EC
3760  * builds >= 8398.0.0 (see crosbug.com/p/23570).
3761  *
3762  * Use EC_CMD_I2C_PASSTHRU instead.
3763  */
3764 
3765 /* Read I2C bus */
3766 #define EC_CMD_I2C_READ 0x0094
3767 
3768 struct ec_params_i2c_read {
3769 	uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3770 	uint8_t read_size; /* Either 8 or 16. */
3771 	uint8_t port;
3772 	uint8_t offset;
3773 } __ec_align_size1;
3774 
3775 struct ec_response_i2c_read {
3776 	uint16_t data;
3777 } __ec_align2;
3778 
3779 /* Write I2C bus */
3780 #define EC_CMD_I2C_WRITE 0x0095
3781 
3782 struct ec_params_i2c_write {
3783 	uint16_t data;
3784 	uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3785 	uint8_t write_size; /* Either 8 or 16. */
3786 	uint8_t port;
3787 	uint8_t offset;
3788 } __ec_align_size1;
3789 
3790 /*****************************************************************************/
3791 /* Charge state commands. Only available when flash write protect unlocked. */
3792 
3793 /* Force charge state machine to stop charging the battery or force it to
3794  * discharge the battery.
3795  */
3796 #define EC_CMD_CHARGE_CONTROL 0x0096
3797 #define EC_VER_CHARGE_CONTROL 1
3798 
3799 enum ec_charge_control_mode {
3800 	CHARGE_CONTROL_NORMAL = 0,
3801 	CHARGE_CONTROL_IDLE,
3802 	CHARGE_CONTROL_DISCHARGE,
3803 };
3804 
3805 struct ec_params_charge_control {
3806 	uint32_t mode;  /* enum charge_control_mode */
3807 } __ec_align4;
3808 
3809 /*****************************************************************************/
3810 
3811 /* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
3812 #define EC_CMD_CONSOLE_SNAPSHOT 0x0097
3813 
3814 /*
3815  * Read data from the saved snapshot. If the subcmd parameter is
3816  * CONSOLE_READ_NEXT, this will return data starting from the beginning of
3817  * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the
3818  * end of the previous snapshot.
3819  *
3820  * The params are only looked at in version >= 1 of this command. Prior
3821  * versions will just default to CONSOLE_READ_NEXT behavior.
3822  *
3823  * Response is null-terminated string.  Empty string, if there is no more
3824  * remaining output.
3825  */
3826 #define EC_CMD_CONSOLE_READ 0x0098
3827 
3828 enum ec_console_read_subcmd {
3829 	CONSOLE_READ_NEXT = 0,
3830 	CONSOLE_READ_RECENT
3831 };
3832 
3833 struct ec_params_console_read_v1 {
3834 	uint8_t subcmd; /* enum ec_console_read_subcmd */
3835 } __ec_align1;
3836 
3837 /*****************************************************************************/
3838 
3839 /*
3840  * Cut off battery power immediately or after the host has shut down.
3841  *
3842  * return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
3843  *	  EC_RES_SUCCESS if the command was successful.
3844  *	  EC_RES_ERROR if the cut off command failed.
3845  */
3846 #define EC_CMD_BATTERY_CUT_OFF 0x0099
3847 
3848 #define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN	BIT(0)
3849 
3850 struct ec_params_battery_cutoff {
3851 	uint8_t flags;
3852 } __ec_align1;
3853 
3854 /*****************************************************************************/
3855 /* USB port mux control. */
3856 
3857 /*
3858  * Switch USB mux or return to automatic switching.
3859  */
3860 #define EC_CMD_USB_MUX 0x009A
3861 
3862 struct ec_params_usb_mux {
3863 	uint8_t mux;
3864 } __ec_align1;
3865 
3866 /*****************************************************************************/
3867 /* LDOs / FETs control. */
3868 
3869 enum ec_ldo_state {
3870 	EC_LDO_STATE_OFF = 0,	/* the LDO / FET is shut down */
3871 	EC_LDO_STATE_ON = 1,	/* the LDO / FET is ON / providing power */
3872 };
3873 
3874 /*
3875  * Switch on/off a LDO.
3876  */
3877 #define EC_CMD_LDO_SET 0x009B
3878 
3879 struct ec_params_ldo_set {
3880 	uint8_t index;
3881 	uint8_t state;
3882 } __ec_align1;
3883 
3884 /*
3885  * Get LDO state.
3886  */
3887 #define EC_CMD_LDO_GET 0x009C
3888 
3889 struct ec_params_ldo_get {
3890 	uint8_t index;
3891 } __ec_align1;
3892 
3893 struct ec_response_ldo_get {
3894 	uint8_t state;
3895 } __ec_align1;
3896 
3897 /*****************************************************************************/
3898 /* Power info. */
3899 
3900 /*
3901  * Get power info.
3902  */
3903 #define EC_CMD_POWER_INFO 0x009D
3904 
3905 struct ec_response_power_info {
3906 	uint32_t usb_dev_type;
3907 	uint16_t voltage_ac;
3908 	uint16_t voltage_system;
3909 	uint16_t current_system;
3910 	uint16_t usb_current_limit;
3911 } __ec_align4;
3912 
3913 /*****************************************************************************/
3914 /* I2C passthru command */
3915 
3916 #define EC_CMD_I2C_PASSTHRU 0x009E
3917 
3918 /* Read data; if not present, message is a write */
3919 #define EC_I2C_FLAG_READ	BIT(15)
3920 
3921 /* Mask for address */
3922 #define EC_I2C_ADDR_MASK	0x3ff
3923 
3924 #define EC_I2C_STATUS_NAK	BIT(0) /* Transfer was not acknowledged */
3925 #define EC_I2C_STATUS_TIMEOUT	BIT(1) /* Timeout during transfer */
3926 
3927 /* Any error */
3928 #define EC_I2C_STATUS_ERROR	(EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
3929 
3930 struct ec_params_i2c_passthru_msg {
3931 	uint16_t addr_flags;	/* I2C slave address (7 or 10 bits) and flags */
3932 	uint16_t len;		/* Number of bytes to read or write */
3933 } __ec_align2;
3934 
3935 struct ec_params_i2c_passthru {
3936 	uint8_t port;		/* I2C port number */
3937 	uint8_t num_msgs;	/* Number of messages */
3938 	struct ec_params_i2c_passthru_msg msg[];
3939 	/* Data to write for all messages is concatenated here */
3940 } __ec_align2;
3941 
3942 struct ec_response_i2c_passthru {
3943 	uint8_t i2c_status;	/* Status flags (EC_I2C_STATUS_...) */
3944 	uint8_t num_msgs;	/* Number of messages processed */
3945 	uint8_t data[];		/* Data read by messages concatenated here */
3946 } __ec_align1;
3947 
3948 /*****************************************************************************/
3949 /* Power button hang detect */
3950 
3951 #define EC_CMD_HANG_DETECT 0x009F
3952 
3953 /* Reasons to start hang detection timer */
3954 /* Power button pressed */
3955 #define EC_HANG_START_ON_POWER_PRESS  BIT(0)
3956 
3957 /* Lid closed */
3958 #define EC_HANG_START_ON_LID_CLOSE    BIT(1)
3959 
3960  /* Lid opened */
3961 #define EC_HANG_START_ON_LID_OPEN     BIT(2)
3962 
3963 /* Start of AP S3->S0 transition (booting or resuming from suspend) */
3964 #define EC_HANG_START_ON_RESUME       BIT(3)
3965 
3966 /* Reasons to cancel hang detection */
3967 
3968 /* Power button released */
3969 #define EC_HANG_STOP_ON_POWER_RELEASE BIT(8)
3970 
3971 /* Any host command from AP received */
3972 #define EC_HANG_STOP_ON_HOST_COMMAND  BIT(9)
3973 
3974 /* Stop on end of AP S0->S3 transition (suspending or shutting down) */
3975 #define EC_HANG_STOP_ON_SUSPEND       BIT(10)
3976 
3977 /*
3978  * If this flag is set, all the other fields are ignored, and the hang detect
3979  * timer is started.  This provides the AP a way to start the hang timer
3980  * without reconfiguring any of the other hang detect settings.  Note that
3981  * you must previously have configured the timeouts.
3982  */
3983 #define EC_HANG_START_NOW             BIT(30)
3984 
3985 /*
3986  * If this flag is set, all the other fields are ignored (including
3987  * EC_HANG_START_NOW).  This provides the AP a way to stop the hang timer
3988  * without reconfiguring any of the other hang detect settings.
3989  */
3990 #define EC_HANG_STOP_NOW              BIT(31)
3991 
3992 struct ec_params_hang_detect {
3993 	/* Flags; see EC_HANG_* */
3994 	uint32_t flags;
3995 
3996 	/* Timeout in msec before generating host event, if enabled */
3997 	uint16_t host_event_timeout_msec;
3998 
3999 	/* Timeout in msec before generating warm reboot, if enabled */
4000 	uint16_t warm_reboot_timeout_msec;
4001 } __ec_align4;
4002 
4003 /*****************************************************************************/
4004 /* Commands for battery charging */
4005 
4006 /*
4007  * This is the single catch-all host command to exchange data regarding the
4008  * charge state machine (v2 and up).
4009  */
4010 #define EC_CMD_CHARGE_STATE 0x00A0
4011 
4012 /* Subcommands for this host command */
4013 enum charge_state_command {
4014 	CHARGE_STATE_CMD_GET_STATE,
4015 	CHARGE_STATE_CMD_GET_PARAM,
4016 	CHARGE_STATE_CMD_SET_PARAM,
4017 	CHARGE_STATE_NUM_CMDS
4018 };
4019 
4020 /*
4021  * Known param numbers are defined here. Ranges are reserved for board-specific
4022  * params, which are handled by the particular implementations.
4023  */
4024 enum charge_state_params {
4025 	CS_PARAM_CHG_VOLTAGE,	      /* charger voltage limit */
4026 	CS_PARAM_CHG_CURRENT,	      /* charger current limit */
4027 	CS_PARAM_CHG_INPUT_CURRENT,   /* charger input current limit */
4028 	CS_PARAM_CHG_STATUS,	      /* charger-specific status */
4029 	CS_PARAM_CHG_OPTION,	      /* charger-specific options */
4030 	CS_PARAM_LIMIT_POWER,	      /*
4031 				       * Check if power is limited due to
4032 				       * low battery and / or a weak external
4033 				       * charger. READ ONLY.
4034 				       */
4035 	/* How many so far? */
4036 	CS_NUM_BASE_PARAMS,
4037 
4038 	/* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
4039 	CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
4040 	CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
4041 
4042 	/* Range for CONFIG_CHARGE_STATE_DEBUG params */
4043 	CS_PARAM_DEBUG_MIN = 0x20000,
4044 	CS_PARAM_DEBUG_CTL_MODE = 0x20000,
4045 	CS_PARAM_DEBUG_MANUAL_MODE,
4046 	CS_PARAM_DEBUG_SEEMS_DEAD,
4047 	CS_PARAM_DEBUG_SEEMS_DISCONNECTED,
4048 	CS_PARAM_DEBUG_BATT_REMOVED,
4049 	CS_PARAM_DEBUG_MANUAL_CURRENT,
4050 	CS_PARAM_DEBUG_MANUAL_VOLTAGE,
4051 	CS_PARAM_DEBUG_MAX = 0x2ffff,
4052 
4053 	/* Other custom param ranges go here... */
4054 };
4055 
4056 struct ec_params_charge_state {
4057 	uint8_t cmd;				/* enum charge_state_command */
4058 	union {
4059 		/* get_state has no args */
4060 
4061 		struct __ec_todo_unpacked {
4062 			uint32_t param;		/* enum charge_state_param */
4063 		} get_param;
4064 
4065 		struct __ec_todo_unpacked {
4066 			uint32_t param;		/* param to set */
4067 			uint32_t value;		/* value to set */
4068 		} set_param;
4069 	};
4070 } __ec_todo_packed;
4071 
4072 struct ec_response_charge_state {
4073 	union {
4074 		struct __ec_align4 {
4075 			int ac;
4076 			int chg_voltage;
4077 			int chg_current;
4078 			int chg_input_current;
4079 			int batt_state_of_charge;
4080 		} get_state;
4081 
4082 		struct __ec_align4 {
4083 			uint32_t value;
4084 		} get_param;
4085 
4086 		/* set_param returns no args */
4087 	};
4088 } __ec_align4;
4089 
4090 
4091 /*
4092  * Set maximum battery charging current.
4093  */
4094 #define EC_CMD_CHARGE_CURRENT_LIMIT 0x00A1
4095 
4096 struct ec_params_current_limit {
4097 	uint32_t limit; /* in mA */
4098 } __ec_align4;
4099 
4100 /*
4101  * Set maximum external voltage / current.
4102  */
4103 #define EC_CMD_EXTERNAL_POWER_LIMIT 0x00A2
4104 
4105 /* Command v0 is used only on Spring and is obsolete + unsupported */
4106 struct ec_params_external_power_limit_v1 {
4107 	uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */
4108 	uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */
4109 } __ec_align2;
4110 
4111 #define EC_POWER_LIMIT_NONE 0xffff
4112 
4113 /*
4114  * Set maximum voltage & current of a dedicated charge port
4115  */
4116 #define EC_CMD_OVERRIDE_DEDICATED_CHARGER_LIMIT 0x00A3
4117 
4118 struct ec_params_dedicated_charger_limit {
4119 	uint16_t current_lim; /* in mA */
4120 	uint16_t voltage_lim; /* in mV */
4121 } __ec_align2;
4122 
4123 /*****************************************************************************/
4124 /* Hibernate/Deep Sleep Commands */
4125 
4126 /* Set the delay before going into hibernation. */
4127 #define EC_CMD_HIBERNATION_DELAY 0x00A8
4128 
4129 struct ec_params_hibernation_delay {
4130 	/*
4131 	 * Seconds to wait in G3 before hibernate.  Pass in 0 to read the
4132 	 * current settings without changing them.
4133 	 */
4134 	uint32_t seconds;
4135 } __ec_align4;
4136 
4137 struct ec_response_hibernation_delay {
4138 	/*
4139 	 * The current time in seconds in which the system has been in the G3
4140 	 * state.  This value is reset if the EC transitions out of G3.
4141 	 */
4142 	uint32_t time_g3;
4143 
4144 	/*
4145 	 * The current time remaining in seconds until the EC should hibernate.
4146 	 * This value is also reset if the EC transitions out of G3.
4147 	 */
4148 	uint32_t time_remaining;
4149 
4150 	/*
4151 	 * The current time in seconds that the EC should wait in G3 before
4152 	 * hibernating.
4153 	 */
4154 	uint32_t hibernate_delay;
4155 } __ec_align4;
4156 
4157 /* Inform the EC when entering a sleep state */
4158 #define EC_CMD_HOST_SLEEP_EVENT 0x00A9
4159 
4160 enum host_sleep_event {
4161 	HOST_SLEEP_EVENT_S3_SUSPEND   = 1,
4162 	HOST_SLEEP_EVENT_S3_RESUME    = 2,
4163 	HOST_SLEEP_EVENT_S0IX_SUSPEND = 3,
4164 	HOST_SLEEP_EVENT_S0IX_RESUME  = 4,
4165 	/* S3 suspend with additional enabled wake sources */
4166 	HOST_SLEEP_EVENT_S3_WAKEABLE_SUSPEND = 5,
4167 };
4168 
4169 struct ec_params_host_sleep_event {
4170 	uint8_t sleep_event;
4171 } __ec_align1;
4172 
4173 /*
4174  * Use a default timeout value (CONFIG_SLEEP_TIMEOUT_MS) for detecting sleep
4175  * transition failures
4176  */
4177 #define EC_HOST_SLEEP_TIMEOUT_DEFAULT 0
4178 
4179 /* Disable timeout detection for this sleep transition */
4180 #define EC_HOST_SLEEP_TIMEOUT_INFINITE 0xFFFF
4181 
4182 struct ec_params_host_sleep_event_v1 {
4183 	/* The type of sleep being entered or exited. */
4184 	uint8_t sleep_event;
4185 
4186 	/* Padding */
4187 	uint8_t reserved;
4188 	union {
4189 		/* Parameters that apply for suspend messages. */
4190 		struct {
4191 			/*
4192 			 * The timeout in milliseconds between when this message
4193 			 * is received and when the EC will declare sleep
4194 			 * transition failure if the sleep signal is not
4195 			 * asserted.
4196 			 */
4197 			uint16_t sleep_timeout_ms;
4198 		} suspend_params;
4199 
4200 		/* No parameters for non-suspend messages. */
4201 	};
4202 } __ec_align2;
4203 
4204 /* A timeout occurred when this bit is set */
4205 #define EC_HOST_RESUME_SLEEP_TIMEOUT 0x80000000
4206 
4207 /*
4208  * The mask defining which bits correspond to the number of sleep transitions,
4209  * as well as the maximum number of suspend line transitions that will be
4210  * reported back to the host.
4211  */
4212 #define EC_HOST_RESUME_SLEEP_TRANSITIONS_MASK 0x7FFFFFFF
4213 
4214 struct ec_response_host_sleep_event_v1 {
4215 	union {
4216 		/* Response fields that apply for resume messages. */
4217 		struct {
4218 			/*
4219 			 * The number of sleep power signal transitions that
4220 			 * occurred since the suspend message. The high bit
4221 			 * indicates a timeout occurred.
4222 			 */
4223 			uint32_t sleep_transitions;
4224 		} resume_response;
4225 
4226 		/* No response fields for non-resume messages. */
4227 	};
4228 } __ec_align4;
4229 
4230 /*****************************************************************************/
4231 /* Device events */
4232 #define EC_CMD_DEVICE_EVENT 0x00AA
4233 
4234 enum ec_device_event {
4235 	EC_DEVICE_EVENT_TRACKPAD,
4236 	EC_DEVICE_EVENT_DSP,
4237 	EC_DEVICE_EVENT_WIFI,
4238 	EC_DEVICE_EVENT_WLC,
4239 };
4240 
4241 enum ec_device_event_param {
4242 	/* Get and clear pending device events */
4243 	EC_DEVICE_EVENT_PARAM_GET_CURRENT_EVENTS,
4244 	/* Get device event mask */
4245 	EC_DEVICE_EVENT_PARAM_GET_ENABLED_EVENTS,
4246 	/* Set device event mask */
4247 	EC_DEVICE_EVENT_PARAM_SET_ENABLED_EVENTS,
4248 };
4249 
4250 #define EC_DEVICE_EVENT_MASK(event_code) BIT(event_code % 32)
4251 
4252 struct ec_params_device_event {
4253 	uint32_t event_mask;
4254 	uint8_t param;
4255 } __ec_align_size1;
4256 
4257 struct ec_response_device_event {
4258 	uint32_t event_mask;
4259 } __ec_align4;
4260 
4261 /*****************************************************************************/
4262 /* Smart battery pass-through */
4263 
4264 /* Get / Set 16-bit smart battery registers */
4265 #define EC_CMD_SB_READ_WORD   0x00B0
4266 #define EC_CMD_SB_WRITE_WORD  0x00B1
4267 
4268 /* Get / Set string smart battery parameters
4269  * formatted as SMBUS "block".
4270  */
4271 #define EC_CMD_SB_READ_BLOCK  0x00B2
4272 #define EC_CMD_SB_WRITE_BLOCK 0x00B3
4273 
4274 struct ec_params_sb_rd {
4275 	uint8_t reg;
4276 } __ec_align1;
4277 
4278 struct ec_response_sb_rd_word {
4279 	uint16_t value;
4280 } __ec_align2;
4281 
4282 struct ec_params_sb_wr_word {
4283 	uint8_t reg;
4284 	uint16_t value;
4285 } __ec_align1;
4286 
4287 struct ec_response_sb_rd_block {
4288 	uint8_t data[32];
4289 } __ec_align1;
4290 
4291 struct ec_params_sb_wr_block {
4292 	uint8_t reg;
4293 	uint16_t data[32];
4294 } __ec_align1;
4295 
4296 /*****************************************************************************/
4297 /* Battery vendor parameters
4298  *
4299  * Get or set vendor-specific parameters in the battery. Implementations may
4300  * differ between boards or batteries. On a set operation, the response
4301  * contains the actual value set, which may be rounded or clipped from the
4302  * requested value.
4303  */
4304 
4305 #define EC_CMD_BATTERY_VENDOR_PARAM 0x00B4
4306 
4307 enum ec_battery_vendor_param_mode {
4308 	BATTERY_VENDOR_PARAM_MODE_GET = 0,
4309 	BATTERY_VENDOR_PARAM_MODE_SET,
4310 };
4311 
4312 struct ec_params_battery_vendor_param {
4313 	uint32_t param;
4314 	uint32_t value;
4315 	uint8_t mode;
4316 } __ec_align_size1;
4317 
4318 struct ec_response_battery_vendor_param {
4319 	uint32_t value;
4320 } __ec_align4;
4321 
4322 /*****************************************************************************/
4323 /*
4324  * Smart Battery Firmware Update Commands
4325  */
4326 #define EC_CMD_SB_FW_UPDATE 0x00B5
4327 
4328 enum ec_sb_fw_update_subcmd {
4329 	EC_SB_FW_UPDATE_PREPARE  = 0x0,
4330 	EC_SB_FW_UPDATE_INFO     = 0x1, /*query sb info */
4331 	EC_SB_FW_UPDATE_BEGIN    = 0x2, /*check if protected */
4332 	EC_SB_FW_UPDATE_WRITE    = 0x3, /*check if protected */
4333 	EC_SB_FW_UPDATE_END      = 0x4,
4334 	EC_SB_FW_UPDATE_STATUS   = 0x5,
4335 	EC_SB_FW_UPDATE_PROTECT  = 0x6,
4336 	EC_SB_FW_UPDATE_MAX      = 0x7,
4337 };
4338 
4339 #define SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE 32
4340 #define SB_FW_UPDATE_CMD_STATUS_SIZE 2
4341 #define SB_FW_UPDATE_CMD_INFO_SIZE 8
4342 
4343 struct ec_sb_fw_update_header {
4344 	uint16_t subcmd;  /* enum ec_sb_fw_update_subcmd */
4345 	uint16_t fw_id;   /* firmware id */
4346 } __ec_align4;
4347 
4348 struct ec_params_sb_fw_update {
4349 	struct ec_sb_fw_update_header hdr;
4350 	union {
4351 		/* EC_SB_FW_UPDATE_PREPARE  = 0x0 */
4352 		/* EC_SB_FW_UPDATE_INFO     = 0x1 */
4353 		/* EC_SB_FW_UPDATE_BEGIN    = 0x2 */
4354 		/* EC_SB_FW_UPDATE_END      = 0x4 */
4355 		/* EC_SB_FW_UPDATE_STATUS   = 0x5 */
4356 		/* EC_SB_FW_UPDATE_PROTECT  = 0x6 */
4357 		/* Those have no args */
4358 
4359 		/* EC_SB_FW_UPDATE_WRITE    = 0x3 */
4360 		struct __ec_align4 {
4361 			uint8_t  data[SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE];
4362 		} write;
4363 	};
4364 } __ec_align4;
4365 
4366 struct ec_response_sb_fw_update {
4367 	union {
4368 		/* EC_SB_FW_UPDATE_INFO     = 0x1 */
4369 		struct __ec_align1 {
4370 			uint8_t data[SB_FW_UPDATE_CMD_INFO_SIZE];
4371 		} info;
4372 
4373 		/* EC_SB_FW_UPDATE_STATUS   = 0x5 */
4374 		struct __ec_align1 {
4375 			uint8_t data[SB_FW_UPDATE_CMD_STATUS_SIZE];
4376 		} status;
4377 	};
4378 } __ec_align1;
4379 
4380 /*
4381  * Entering Verified Boot Mode Command
4382  * Default mode is VBOOT_MODE_NORMAL if EC did not receive this command.
4383  * Valid Modes are: normal, developer, and recovery.
4384  */
4385 #define EC_CMD_ENTERING_MODE 0x00B6
4386 
4387 struct ec_params_entering_mode {
4388 	int vboot_mode;
4389 } __ec_align4;
4390 
4391 #define VBOOT_MODE_NORMAL    0
4392 #define VBOOT_MODE_DEVELOPER 1
4393 #define VBOOT_MODE_RECOVERY  2
4394 
4395 /*****************************************************************************/
4396 /*
4397  * I2C passthru protection command: Protects I2C tunnels against access on
4398  * certain addresses (board-specific).
4399  */
4400 #define EC_CMD_I2C_PASSTHRU_PROTECT 0x00B7
4401 
4402 enum ec_i2c_passthru_protect_subcmd {
4403 	EC_CMD_I2C_PASSTHRU_PROTECT_STATUS = 0x0,
4404 	EC_CMD_I2C_PASSTHRU_PROTECT_ENABLE = 0x1,
4405 };
4406 
4407 struct ec_params_i2c_passthru_protect {
4408 	uint8_t subcmd;
4409 	uint8_t port;		/* I2C port number */
4410 } __ec_align1;
4411 
4412 struct ec_response_i2c_passthru_protect {
4413 	uint8_t status;		/* Status flags (0: unlocked, 1: locked) */
4414 } __ec_align1;
4415 
4416 
4417 /*****************************************************************************/
4418 /*
4419  * HDMI CEC commands
4420  *
4421  * These commands are for sending and receiving message via HDMI CEC
4422  */
4423 
4424 #define MAX_CEC_MSG_LEN 16
4425 
4426 /* CEC message from the AP to be written on the CEC bus */
4427 #define EC_CMD_CEC_WRITE_MSG 0x00B8
4428 
4429 /**
4430  * struct ec_params_cec_write - Message to write to the CEC bus
4431  * @msg: message content to write to the CEC bus
4432  */
4433 struct ec_params_cec_write {
4434 	uint8_t msg[MAX_CEC_MSG_LEN];
4435 } __ec_align1;
4436 
4437 /* Set various CEC parameters */
4438 #define EC_CMD_CEC_SET 0x00BA
4439 
4440 /**
4441  * struct ec_params_cec_set - CEC parameters set
4442  * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
4443  * @val: in case cmd is CEC_CMD_ENABLE, this field can be 0 to disable CEC
4444  *	or 1 to enable CEC functionality, in case cmd is
4445  *	CEC_CMD_LOGICAL_ADDRESS, this field encodes the requested logical
4446  *	address between 0 and 15 or 0xff to unregister
4447  */
4448 struct ec_params_cec_set {
4449 	uint8_t cmd; /* enum cec_command */
4450 	uint8_t val;
4451 } __ec_align1;
4452 
4453 /* Read various CEC parameters */
4454 #define EC_CMD_CEC_GET 0x00BB
4455 
4456 /**
4457  * struct ec_params_cec_get - CEC parameters get
4458  * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
4459  */
4460 struct ec_params_cec_get {
4461 	uint8_t cmd; /* enum cec_command */
4462 } __ec_align1;
4463 
4464 /**
4465  * struct ec_response_cec_get - CEC parameters get response
4466  * @val: in case cmd was CEC_CMD_ENABLE, this field will 0 if CEC is
4467  *	disabled or 1 if CEC functionality is enabled,
4468  *	in case cmd was CEC_CMD_LOGICAL_ADDRESS, this will encode the
4469  *	configured logical address between 0 and 15 or 0xff if unregistered
4470  */
4471 struct ec_response_cec_get {
4472 	uint8_t val;
4473 } __ec_align1;
4474 
4475 /* CEC parameters command */
4476 enum cec_command {
4477 	/* CEC reading, writing and events enable */
4478 	CEC_CMD_ENABLE,
4479 	/* CEC logical address  */
4480 	CEC_CMD_LOGICAL_ADDRESS,
4481 };
4482 
4483 /* Events from CEC to AP */
4484 enum mkbp_cec_event {
4485 	/* Outgoing message was acknowledged by a follower */
4486 	EC_MKBP_CEC_SEND_OK			= BIT(0),
4487 	/* Outgoing message was not acknowledged */
4488 	EC_MKBP_CEC_SEND_FAILED			= BIT(1),
4489 };
4490 
4491 /*****************************************************************************/
4492 
4493 /* Commands for audio codec. */
4494 #define EC_CMD_EC_CODEC 0x00BC
4495 
4496 enum ec_codec_subcmd {
4497 	EC_CODEC_GET_CAPABILITIES = 0x0,
4498 	EC_CODEC_GET_SHM_ADDR = 0x1,
4499 	EC_CODEC_SET_SHM_ADDR = 0x2,
4500 	EC_CODEC_SUBCMD_COUNT,
4501 };
4502 
4503 enum ec_codec_cap {
4504 	EC_CODEC_CAP_WOV_AUDIO_SHM = 0,
4505 	EC_CODEC_CAP_WOV_LANG_SHM = 1,
4506 	EC_CODEC_CAP_LAST = 32,
4507 };
4508 
4509 enum ec_codec_shm_id {
4510 	EC_CODEC_SHM_ID_WOV_AUDIO = 0x0,
4511 	EC_CODEC_SHM_ID_WOV_LANG = 0x1,
4512 	EC_CODEC_SHM_ID_LAST,
4513 };
4514 
4515 enum ec_codec_shm_type {
4516 	EC_CODEC_SHM_TYPE_EC_RAM = 0x0,
4517 	EC_CODEC_SHM_TYPE_SYSTEM_RAM = 0x1,
4518 };
4519 
4520 struct __ec_align1 ec_param_ec_codec_get_shm_addr {
4521 	uint8_t shm_id;
4522 	uint8_t reserved[3];
4523 };
4524 
4525 struct __ec_align4 ec_param_ec_codec_set_shm_addr {
4526 	uint64_t phys_addr;
4527 	uint32_t len;
4528 	uint8_t shm_id;
4529 	uint8_t reserved[3];
4530 };
4531 
4532 struct __ec_align4 ec_param_ec_codec {
4533 	uint8_t cmd; /* enum ec_codec_subcmd */
4534 	uint8_t reserved[3];
4535 
4536 	union {
4537 		struct ec_param_ec_codec_get_shm_addr
4538 				get_shm_addr_param;
4539 		struct ec_param_ec_codec_set_shm_addr
4540 				set_shm_addr_param;
4541 	};
4542 };
4543 
4544 struct __ec_align4 ec_response_ec_codec_get_capabilities {
4545 	uint32_t capabilities;
4546 };
4547 
4548 struct __ec_align4 ec_response_ec_codec_get_shm_addr {
4549 	uint64_t phys_addr;
4550 	uint32_t len;
4551 	uint8_t type;
4552 	uint8_t reserved[3];
4553 };
4554 
4555 /*****************************************************************************/
4556 
4557 /* Commands for DMIC on audio codec. */
4558 #define EC_CMD_EC_CODEC_DMIC 0x00BD
4559 
4560 enum ec_codec_dmic_subcmd {
4561 	EC_CODEC_DMIC_GET_MAX_GAIN = 0x0,
4562 	EC_CODEC_DMIC_SET_GAIN_IDX = 0x1,
4563 	EC_CODEC_DMIC_GET_GAIN_IDX = 0x2,
4564 	EC_CODEC_DMIC_SUBCMD_COUNT,
4565 };
4566 
4567 enum ec_codec_dmic_channel {
4568 	EC_CODEC_DMIC_CHANNEL_0 = 0x0,
4569 	EC_CODEC_DMIC_CHANNEL_1 = 0x1,
4570 	EC_CODEC_DMIC_CHANNEL_2 = 0x2,
4571 	EC_CODEC_DMIC_CHANNEL_3 = 0x3,
4572 	EC_CODEC_DMIC_CHANNEL_4 = 0x4,
4573 	EC_CODEC_DMIC_CHANNEL_5 = 0x5,
4574 	EC_CODEC_DMIC_CHANNEL_6 = 0x6,
4575 	EC_CODEC_DMIC_CHANNEL_7 = 0x7,
4576 	EC_CODEC_DMIC_CHANNEL_COUNT,
4577 };
4578 
4579 struct __ec_align1 ec_param_ec_codec_dmic_set_gain_idx {
4580 	uint8_t channel; /* enum ec_codec_dmic_channel */
4581 	uint8_t gain;
4582 	uint8_t reserved[2];
4583 };
4584 
4585 struct __ec_align1 ec_param_ec_codec_dmic_get_gain_idx {
4586 	uint8_t channel; /* enum ec_codec_dmic_channel */
4587 	uint8_t reserved[3];
4588 };
4589 
4590 struct __ec_align4 ec_param_ec_codec_dmic {
4591 	uint8_t cmd; /* enum ec_codec_dmic_subcmd */
4592 	uint8_t reserved[3];
4593 
4594 	union {
4595 		struct ec_param_ec_codec_dmic_set_gain_idx
4596 				set_gain_idx_param;
4597 		struct ec_param_ec_codec_dmic_get_gain_idx
4598 				get_gain_idx_param;
4599 	};
4600 };
4601 
4602 struct __ec_align1 ec_response_ec_codec_dmic_get_max_gain {
4603 	uint8_t max_gain;
4604 };
4605 
4606 struct __ec_align1 ec_response_ec_codec_dmic_get_gain_idx {
4607 	uint8_t gain;
4608 };
4609 
4610 /*****************************************************************************/
4611 
4612 /* Commands for I2S RX on audio codec. */
4613 
4614 #define EC_CMD_EC_CODEC_I2S_RX 0x00BE
4615 
4616 enum ec_codec_i2s_rx_subcmd {
4617 	EC_CODEC_I2S_RX_ENABLE = 0x0,
4618 	EC_CODEC_I2S_RX_DISABLE = 0x1,
4619 	EC_CODEC_I2S_RX_SET_SAMPLE_DEPTH = 0x2,
4620 	EC_CODEC_I2S_RX_SET_DAIFMT = 0x3,
4621 	EC_CODEC_I2S_RX_SET_BCLK = 0x4,
4622 	EC_CODEC_I2S_RX_RESET = 0x5,
4623 	EC_CODEC_I2S_RX_SUBCMD_COUNT,
4624 };
4625 
4626 enum ec_codec_i2s_rx_sample_depth {
4627 	EC_CODEC_I2S_RX_SAMPLE_DEPTH_16 = 0x0,
4628 	EC_CODEC_I2S_RX_SAMPLE_DEPTH_24 = 0x1,
4629 	EC_CODEC_I2S_RX_SAMPLE_DEPTH_COUNT,
4630 };
4631 
4632 enum ec_codec_i2s_rx_daifmt {
4633 	EC_CODEC_I2S_RX_DAIFMT_I2S = 0x0,
4634 	EC_CODEC_I2S_RX_DAIFMT_RIGHT_J = 0x1,
4635 	EC_CODEC_I2S_RX_DAIFMT_LEFT_J = 0x2,
4636 	EC_CODEC_I2S_RX_DAIFMT_COUNT,
4637 };
4638 
4639 struct __ec_align1 ec_param_ec_codec_i2s_rx_set_sample_depth {
4640 	uint8_t depth;
4641 	uint8_t reserved[3];
4642 };
4643 
4644 struct __ec_align1 ec_param_ec_codec_i2s_rx_set_gain {
4645 	uint8_t left;
4646 	uint8_t right;
4647 	uint8_t reserved[2];
4648 };
4649 
4650 struct __ec_align1 ec_param_ec_codec_i2s_rx_set_daifmt {
4651 	uint8_t daifmt;
4652 	uint8_t reserved[3];
4653 };
4654 
4655 struct __ec_align4 ec_param_ec_codec_i2s_rx_set_bclk {
4656 	uint32_t bclk;
4657 };
4658 
4659 struct __ec_align4 ec_param_ec_codec_i2s_rx {
4660 	uint8_t cmd; /* enum ec_codec_i2s_rx_subcmd */
4661 	uint8_t reserved[3];
4662 
4663 	union {
4664 		struct ec_param_ec_codec_i2s_rx_set_sample_depth
4665 				set_sample_depth_param;
4666 		struct ec_param_ec_codec_i2s_rx_set_daifmt
4667 				set_daifmt_param;
4668 		struct ec_param_ec_codec_i2s_rx_set_bclk
4669 				set_bclk_param;
4670 	};
4671 };
4672 
4673 /*****************************************************************************/
4674 /* Commands for WoV on audio codec. */
4675 
4676 #define EC_CMD_EC_CODEC_WOV 0x00BF
4677 
4678 enum ec_codec_wov_subcmd {
4679 	EC_CODEC_WOV_SET_LANG = 0x0,
4680 	EC_CODEC_WOV_SET_LANG_SHM = 0x1,
4681 	EC_CODEC_WOV_GET_LANG = 0x2,
4682 	EC_CODEC_WOV_ENABLE = 0x3,
4683 	EC_CODEC_WOV_DISABLE = 0x4,
4684 	EC_CODEC_WOV_READ_AUDIO = 0x5,
4685 	EC_CODEC_WOV_READ_AUDIO_SHM = 0x6,
4686 	EC_CODEC_WOV_SUBCMD_COUNT,
4687 };
4688 
4689 /*
4690  * @hash is SHA256 of the whole language model.
4691  * @total_len indicates the length of whole language model.
4692  * @offset is the cursor from the beginning of the model.
4693  * @buf is the packet buffer.
4694  * @len denotes how many bytes in the buf.
4695  */
4696 struct __ec_align4 ec_param_ec_codec_wov_set_lang {
4697 	uint8_t hash[32];
4698 	uint32_t total_len;
4699 	uint32_t offset;
4700 	uint8_t buf[128];
4701 	uint32_t len;
4702 };
4703 
4704 struct __ec_align4 ec_param_ec_codec_wov_set_lang_shm {
4705 	uint8_t hash[32];
4706 	uint32_t total_len;
4707 };
4708 
4709 struct __ec_align4 ec_param_ec_codec_wov {
4710 	uint8_t cmd; /* enum ec_codec_wov_subcmd */
4711 	uint8_t reserved[3];
4712 
4713 	union {
4714 		struct ec_param_ec_codec_wov_set_lang
4715 				set_lang_param;
4716 		struct ec_param_ec_codec_wov_set_lang_shm
4717 				set_lang_shm_param;
4718 	};
4719 };
4720 
4721 struct __ec_align4 ec_response_ec_codec_wov_get_lang {
4722 	uint8_t hash[32];
4723 };
4724 
4725 struct __ec_align4 ec_response_ec_codec_wov_read_audio {
4726 	uint8_t buf[128];
4727 	uint32_t len;
4728 };
4729 
4730 struct __ec_align4 ec_response_ec_codec_wov_read_audio_shm {
4731 	uint32_t offset;
4732 	uint32_t len;
4733 };
4734 
4735 /*****************************************************************************/
4736 /* System commands */
4737 
4738 /*
4739  * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
4740  * necessarily reboot the EC.  Rename to "image" or something similar?
4741  */
4742 #define EC_CMD_REBOOT_EC 0x00D2
4743 
4744 /* Command */
4745 enum ec_reboot_cmd {
4746 	EC_REBOOT_CANCEL = 0,        /* Cancel a pending reboot */
4747 	EC_REBOOT_JUMP_RO = 1,       /* Jump to RO without rebooting */
4748 	EC_REBOOT_JUMP_RW = 2,       /* Jump to active RW without rebooting */
4749 	/* (command 3 was jump to RW-B) */
4750 	EC_REBOOT_COLD = 4,          /* Cold-reboot */
4751 	EC_REBOOT_DISABLE_JUMP = 5,  /* Disable jump until next reboot */
4752 	EC_REBOOT_HIBERNATE = 6,     /* Hibernate EC */
4753 	EC_REBOOT_HIBERNATE_CLEAR_AP_OFF = 7, /* and clears AP_OFF flag */
4754 	EC_REBOOT_COLD_AP_OFF = 8,   /* Cold-reboot and don't boot AP */
4755 };
4756 
4757 /* Flags for ec_params_reboot_ec.reboot_flags */
4758 #define EC_REBOOT_FLAG_RESERVED0      BIT(0)  /* Was recovery request */
4759 #define EC_REBOOT_FLAG_ON_AP_SHUTDOWN BIT(1)  /* Reboot after AP shutdown */
4760 #define EC_REBOOT_FLAG_SWITCH_RW_SLOT BIT(2)  /* Switch RW slot */
4761 
4762 struct ec_params_reboot_ec {
4763 	uint8_t cmd;           /* enum ec_reboot_cmd */
4764 	uint8_t flags;         /* See EC_REBOOT_FLAG_* */
4765 } __ec_align1;
4766 
4767 /*
4768  * Get information on last EC panic.
4769  *
4770  * Returns variable-length platform-dependent panic information.  See panic.h
4771  * for details.
4772  */
4773 #define EC_CMD_GET_PANIC_INFO 0x00D3
4774 
4775 /*****************************************************************************/
4776 /*
4777  * Special commands
4778  *
4779  * These do not follow the normal rules for commands.  See each command for
4780  * details.
4781  */
4782 
4783 /*
4784  * Reboot NOW
4785  *
4786  * This command will work even when the EC LPC interface is busy, because the
4787  * reboot command is processed at interrupt level.  Note that when the EC
4788  * reboots, the host will reboot too, so there is no response to this command.
4789  *
4790  * Use EC_CMD_REBOOT_EC to reboot the EC more politely.
4791  */
4792 #define EC_CMD_REBOOT 0x00D1  /* Think "die" */
4793 
4794 /*
4795  * Resend last response (not supported on LPC).
4796  *
4797  * Returns EC_RES_UNAVAILABLE if there is no response available - for example,
4798  * there was no previous command, or the previous command's response was too
4799  * big to save.
4800  */
4801 #define EC_CMD_RESEND_RESPONSE 0x00DB
4802 
4803 /*
4804  * This header byte on a command indicate version 0. Any header byte less
4805  * than this means that we are talking to an old EC which doesn't support
4806  * versioning. In that case, we assume version 0.
4807  *
4808  * Header bytes greater than this indicate a later version. For example,
4809  * EC_CMD_VERSION0 + 1 means we are using version 1.
4810  *
4811  * The old EC interface must not use commands 0xdc or higher.
4812  */
4813 #define EC_CMD_VERSION0 0x00DC
4814 
4815 /*****************************************************************************/
4816 /*
4817  * PD commands
4818  *
4819  * These commands are for PD MCU communication.
4820  */
4821 
4822 /* EC to PD MCU exchange status command */
4823 #define EC_CMD_PD_EXCHANGE_STATUS 0x0100
4824 #define EC_VER_PD_EXCHANGE_STATUS 2
4825 
4826 enum pd_charge_state {
4827 	PD_CHARGE_NO_CHANGE = 0, /* Don't change charge state */
4828 	PD_CHARGE_NONE,          /* No charging allowed */
4829 	PD_CHARGE_5V,            /* 5V charging only */
4830 	PD_CHARGE_MAX            /* Charge at max voltage */
4831 };
4832 
4833 /* Status of EC being sent to PD */
4834 #define EC_STATUS_HIBERNATING	BIT(0)
4835 
4836 struct ec_params_pd_status {
4837 	uint8_t status;       /* EC status */
4838 	int8_t batt_soc;      /* battery state of charge */
4839 	uint8_t charge_state; /* charging state (from enum pd_charge_state) */
4840 } __ec_align1;
4841 
4842 /* Status of PD being sent back to EC */
4843 #define PD_STATUS_HOST_EVENT      BIT(0) /* Forward host event to AP */
4844 #define PD_STATUS_IN_RW           BIT(1) /* Running RW image */
4845 #define PD_STATUS_JUMPED_TO_IMAGE BIT(2) /* Current image was jumped to */
4846 #define PD_STATUS_TCPC_ALERT_0    BIT(3) /* Alert active in port 0 TCPC */
4847 #define PD_STATUS_TCPC_ALERT_1    BIT(4) /* Alert active in port 1 TCPC */
4848 #define PD_STATUS_TCPC_ALERT_2    BIT(5) /* Alert active in port 2 TCPC */
4849 #define PD_STATUS_TCPC_ALERT_3    BIT(6) /* Alert active in port 3 TCPC */
4850 #define PD_STATUS_EC_INT_ACTIVE  (PD_STATUS_TCPC_ALERT_0 | \
4851 				      PD_STATUS_TCPC_ALERT_1 | \
4852 				      PD_STATUS_HOST_EVENT)
4853 struct ec_response_pd_status {
4854 	uint32_t curr_lim_ma;       /* input current limit */
4855 	uint16_t status;            /* PD MCU status */
4856 	int8_t active_charge_port;  /* active charging port */
4857 } __ec_align_size1;
4858 
4859 /* AP to PD MCU host event status command, cleared on read */
4860 #define EC_CMD_PD_HOST_EVENT_STATUS 0x0104
4861 
4862 /* PD MCU host event status bits */
4863 #define PD_EVENT_UPDATE_DEVICE     BIT(0)
4864 #define PD_EVENT_POWER_CHANGE      BIT(1)
4865 #define PD_EVENT_IDENTITY_RECEIVED BIT(2)
4866 #define PD_EVENT_DATA_SWAP         BIT(3)
4867 struct ec_response_host_event_status {
4868 	uint32_t status;      /* PD MCU host event status */
4869 } __ec_align4;
4870 
4871 /* Set USB type-C port role and muxes */
4872 #define EC_CMD_USB_PD_CONTROL 0x0101
4873 
4874 enum usb_pd_control_role {
4875 	USB_PD_CTRL_ROLE_NO_CHANGE = 0,
4876 	USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
4877 	USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
4878 	USB_PD_CTRL_ROLE_FORCE_SINK = 3,
4879 	USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
4880 	USB_PD_CTRL_ROLE_FREEZE = 5,
4881 	USB_PD_CTRL_ROLE_COUNT
4882 };
4883 
4884 enum usb_pd_control_mux {
4885 	USB_PD_CTRL_MUX_NO_CHANGE = 0,
4886 	USB_PD_CTRL_MUX_NONE = 1,
4887 	USB_PD_CTRL_MUX_USB = 2,
4888 	USB_PD_CTRL_MUX_DP = 3,
4889 	USB_PD_CTRL_MUX_DOCK = 4,
4890 	USB_PD_CTRL_MUX_AUTO = 5,
4891 	USB_PD_CTRL_MUX_COUNT
4892 };
4893 
4894 enum usb_pd_control_swap {
4895 	USB_PD_CTRL_SWAP_NONE = 0,
4896 	USB_PD_CTRL_SWAP_DATA = 1,
4897 	USB_PD_CTRL_SWAP_POWER = 2,
4898 	USB_PD_CTRL_SWAP_VCONN = 3,
4899 	USB_PD_CTRL_SWAP_COUNT
4900 };
4901 
4902 struct ec_params_usb_pd_control {
4903 	uint8_t port;
4904 	uint8_t role;
4905 	uint8_t mux;
4906 	uint8_t swap;
4907 } __ec_align1;
4908 
4909 #define PD_CTRL_RESP_ENABLED_COMMS      BIT(0) /* Communication enabled */
4910 #define PD_CTRL_RESP_ENABLED_CONNECTED  BIT(1) /* Device connected */
4911 #define PD_CTRL_RESP_ENABLED_PD_CAPABLE BIT(2) /* Partner is PD capable */
4912 
4913 #define PD_CTRL_RESP_ROLE_POWER         BIT(0) /* 0=SNK/1=SRC */
4914 #define PD_CTRL_RESP_ROLE_DATA          BIT(1) /* 0=UFP/1=DFP */
4915 #define PD_CTRL_RESP_ROLE_VCONN         BIT(2) /* Vconn status */
4916 #define PD_CTRL_RESP_ROLE_DR_POWER      BIT(3) /* Partner is dualrole power */
4917 #define PD_CTRL_RESP_ROLE_DR_DATA       BIT(4) /* Partner is dualrole data */
4918 #define PD_CTRL_RESP_ROLE_USB_COMM      BIT(5) /* Partner USB comm capable */
4919 #define PD_CTRL_RESP_ROLE_EXT_POWERED   BIT(6) /* Partner externally powerd */
4920 
4921 struct ec_response_usb_pd_control {
4922 	uint8_t enabled;
4923 	uint8_t role;
4924 	uint8_t polarity;
4925 	uint8_t state;
4926 } __ec_align1;
4927 
4928 struct ec_response_usb_pd_control_v1 {
4929 	uint8_t enabled;
4930 	uint8_t role;
4931 	uint8_t polarity;
4932 	char state[32];
4933 } __ec_align1;
4934 
4935 /* Values representing usbc PD CC state */
4936 #define USBC_PD_CC_NONE		0 /* No accessory connected */
4937 #define USBC_PD_CC_NO_UFP	1 /* No UFP accessory connected */
4938 #define USBC_PD_CC_AUDIO_ACC	2 /* Audio accessory connected */
4939 #define USBC_PD_CC_DEBUG_ACC	3 /* Debug accessory connected */
4940 #define USBC_PD_CC_UFP_ATTACHED	4 /* UFP attached to usbc */
4941 #define USBC_PD_CC_DFP_ATTACHED	5 /* DPF attached to usbc */
4942 
4943 /* Active/Passive Cable */
4944 #define USB_PD_CTRL_ACTIVE_CABLE        BIT(0)
4945 /* Optical/Non-optical cable */
4946 #define USB_PD_CTRL_OPTICAL_CABLE       BIT(1)
4947 /* 3rd Gen TBT device (or AMA)/2nd gen tbt Adapter */
4948 #define USB_PD_CTRL_TBT_LEGACY_ADAPTER  BIT(2)
4949 /* Active Link Uni-Direction */
4950 #define USB_PD_CTRL_ACTIVE_LINK_UNIDIR  BIT(3)
4951 
4952 struct ec_response_usb_pd_control_v2 {
4953 	uint8_t enabled;
4954 	uint8_t role;
4955 	uint8_t polarity;
4956 	char state[32];
4957 	uint8_t cc_state;	/* enum pd_cc_states representing cc state */
4958 	uint8_t dp_mode;	/* Current DP pin mode (MODE_DP_PIN_[A-E]) */
4959 	uint8_t reserved;	/* Reserved for future use */
4960 	uint8_t control_flags;	/* USB_PD_CTRL_*flags */
4961 	uint8_t cable_speed;	/* TBT_SS_* cable speed */
4962 	uint8_t cable_gen;	/* TBT_GEN3_* cable rounded support */
4963 } __ec_align1;
4964 
4965 #define EC_CMD_USB_PD_PORTS 0x0102
4966 
4967 /* Maximum number of PD ports on a device, num_ports will be <= this */
4968 #define EC_USB_PD_MAX_PORTS 8
4969 
4970 struct ec_response_usb_pd_ports {
4971 	uint8_t num_ports;
4972 } __ec_align1;
4973 
4974 #define EC_CMD_USB_PD_POWER_INFO 0x0103
4975 
4976 #define PD_POWER_CHARGING_PORT 0xff
4977 struct ec_params_usb_pd_power_info {
4978 	uint8_t port;
4979 } __ec_align1;
4980 
4981 enum usb_chg_type {
4982 	USB_CHG_TYPE_NONE,
4983 	USB_CHG_TYPE_PD,
4984 	USB_CHG_TYPE_C,
4985 	USB_CHG_TYPE_PROPRIETARY,
4986 	USB_CHG_TYPE_BC12_DCP,
4987 	USB_CHG_TYPE_BC12_CDP,
4988 	USB_CHG_TYPE_BC12_SDP,
4989 	USB_CHG_TYPE_OTHER,
4990 	USB_CHG_TYPE_VBUS,
4991 	USB_CHG_TYPE_UNKNOWN,
4992 	USB_CHG_TYPE_DEDICATED,
4993 };
4994 enum usb_power_roles {
4995 	USB_PD_PORT_POWER_DISCONNECTED,
4996 	USB_PD_PORT_POWER_SOURCE,
4997 	USB_PD_PORT_POWER_SINK,
4998 	USB_PD_PORT_POWER_SINK_NOT_CHARGING,
4999 };
5000 
5001 struct usb_chg_measures {
5002 	uint16_t voltage_max;
5003 	uint16_t voltage_now;
5004 	uint16_t current_max;
5005 	uint16_t current_lim;
5006 } __ec_align2;
5007 
5008 struct ec_response_usb_pd_power_info {
5009 	uint8_t role;
5010 	uint8_t type;
5011 	uint8_t dualrole;
5012 	uint8_t reserved1;
5013 	struct usb_chg_measures meas;
5014 	uint32_t max_power;
5015 } __ec_align4;
5016 
5017 
5018 /*
5019  * This command will return the number of USB PD charge port + the number
5020  * of dedicated port present.
5021  * EC_CMD_USB_PD_PORTS does NOT include the dedicated ports
5022  */
5023 #define EC_CMD_CHARGE_PORT_COUNT 0x0105
5024 struct ec_response_charge_port_count {
5025 	uint8_t port_count;
5026 } __ec_align1;
5027 
5028 /* Write USB-PD device FW */
5029 #define EC_CMD_USB_PD_FW_UPDATE 0x0110
5030 
5031 enum usb_pd_fw_update_cmds {
5032 	USB_PD_FW_REBOOT,
5033 	USB_PD_FW_FLASH_ERASE,
5034 	USB_PD_FW_FLASH_WRITE,
5035 	USB_PD_FW_ERASE_SIG,
5036 };
5037 
5038 struct ec_params_usb_pd_fw_update {
5039 	uint16_t dev_id;
5040 	uint8_t cmd;
5041 	uint8_t port;
5042 	uint32_t size;     /* Size to write in bytes */
5043 	/* Followed by data to write */
5044 } __ec_align4;
5045 
5046 /* Write USB-PD Accessory RW_HASH table entry */
5047 #define EC_CMD_USB_PD_RW_HASH_ENTRY 0x0111
5048 /* RW hash is first 20 bytes of SHA-256 of RW section */
5049 #define PD_RW_HASH_SIZE 20
5050 struct ec_params_usb_pd_rw_hash_entry {
5051 	uint16_t dev_id;
5052 	uint8_t dev_rw_hash[PD_RW_HASH_SIZE];
5053 	uint8_t reserved;        /*
5054 				  * For alignment of current_image
5055 				  * TODO(rspangler) but it's not aligned!
5056 				  * Should have been reserved[2].
5057 				  */
5058 	uint32_t current_image;  /* One of ec_current_image */
5059 } __ec_align1;
5060 
5061 /* Read USB-PD Accessory info */
5062 #define EC_CMD_USB_PD_DEV_INFO 0x0112
5063 
5064 struct ec_params_usb_pd_info_request {
5065 	uint8_t port;
5066 } __ec_align1;
5067 
5068 /* Read USB-PD Device discovery info */
5069 #define EC_CMD_USB_PD_DISCOVERY 0x0113
5070 struct ec_params_usb_pd_discovery_entry {
5071 	uint16_t vid;  /* USB-IF VID */
5072 	uint16_t pid;  /* USB-IF PID */
5073 	uint8_t ptype; /* product type (hub,periph,cable,ama) */
5074 } __ec_align_size1;
5075 
5076 /* Override default charge behavior */
5077 #define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x0114
5078 
5079 /* Negative port parameters have special meaning */
5080 enum usb_pd_override_ports {
5081 	OVERRIDE_DONT_CHARGE = -2,
5082 	OVERRIDE_OFF = -1,
5083 	/* [0, CONFIG_USB_PD_PORT_COUNT): Port# */
5084 };
5085 
5086 struct ec_params_charge_port_override {
5087 	int16_t override_port; /* Override port# */
5088 } __ec_align2;
5089 
5090 /*
5091  * Read (and delete) one entry of PD event log.
5092  * TODO(crbug.com/751742): Make this host command more generic to accommodate
5093  * future non-PD logs that use the same internal EC event_log.
5094  */
5095 #define EC_CMD_PD_GET_LOG_ENTRY 0x0115
5096 
5097 struct ec_response_pd_log {
5098 	uint32_t timestamp; /* relative timestamp in milliseconds */
5099 	uint8_t type;       /* event type : see PD_EVENT_xx below */
5100 	uint8_t size_port;  /* [7:5] port number [4:0] payload size in bytes */
5101 	uint16_t data;      /* type-defined data payload */
5102 	uint8_t payload[];  /* optional additional data payload: 0..16 bytes */
5103 } __ec_align4;
5104 
5105 /* The timestamp is the microsecond counter shifted to get about a ms. */
5106 #define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */
5107 
5108 #define PD_LOG_SIZE_MASK  0x1f
5109 #define PD_LOG_PORT_MASK  0xe0
5110 #define PD_LOG_PORT_SHIFT    5
5111 #define PD_LOG_PORT_SIZE(port, size) (((port) << PD_LOG_PORT_SHIFT) | \
5112 				      ((size) & PD_LOG_SIZE_MASK))
5113 #define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT)
5114 #define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK)
5115 
5116 /* PD event log : entry types */
5117 /* PD MCU events */
5118 #define PD_EVENT_MCU_BASE       0x00
5119 #define PD_EVENT_MCU_CHARGE             (PD_EVENT_MCU_BASE+0)
5120 #define PD_EVENT_MCU_CONNECT            (PD_EVENT_MCU_BASE+1)
5121 /* Reserved for custom board event */
5122 #define PD_EVENT_MCU_BOARD_CUSTOM       (PD_EVENT_MCU_BASE+2)
5123 /* PD generic accessory events */
5124 #define PD_EVENT_ACC_BASE       0x20
5125 #define PD_EVENT_ACC_RW_FAIL   (PD_EVENT_ACC_BASE+0)
5126 #define PD_EVENT_ACC_RW_ERASE  (PD_EVENT_ACC_BASE+1)
5127 /* PD power supply events */
5128 #define PD_EVENT_PS_BASE        0x40
5129 #define PD_EVENT_PS_FAULT      (PD_EVENT_PS_BASE+0)
5130 /* PD video dongles events */
5131 #define PD_EVENT_VIDEO_BASE     0x60
5132 #define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE+0)
5133 #define PD_EVENT_VIDEO_CODEC   (PD_EVENT_VIDEO_BASE+1)
5134 /* Returned in the "type" field, when there is no entry available */
5135 #define PD_EVENT_NO_ENTRY       0xff
5136 
5137 /*
5138  * PD_EVENT_MCU_CHARGE event definition :
5139  * the payload is "struct usb_chg_measures"
5140  * the data field contains the port state flags as defined below :
5141  */
5142 /* Port partner is a dual role device */
5143 #define CHARGE_FLAGS_DUAL_ROLE         BIT(15)
5144 /* Port is the pending override port */
5145 #define CHARGE_FLAGS_DELAYED_OVERRIDE  BIT(14)
5146 /* Port is the override port */
5147 #define CHARGE_FLAGS_OVERRIDE          BIT(13)
5148 /* Charger type */
5149 #define CHARGE_FLAGS_TYPE_SHIFT               3
5150 #define CHARGE_FLAGS_TYPE_MASK       (0xf << CHARGE_FLAGS_TYPE_SHIFT)
5151 /* Power delivery role */
5152 #define CHARGE_FLAGS_ROLE_MASK         (7 <<  0)
5153 
5154 /*
5155  * PD_EVENT_PS_FAULT data field flags definition :
5156  */
5157 #define PS_FAULT_OCP                          1
5158 #define PS_FAULT_FAST_OCP                     2
5159 #define PS_FAULT_OVP                          3
5160 #define PS_FAULT_DISCH                        4
5161 
5162 /*
5163  * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info".
5164  */
5165 struct mcdp_version {
5166 	uint8_t major;
5167 	uint8_t minor;
5168 	uint16_t build;
5169 } __ec_align4;
5170 
5171 struct mcdp_info {
5172 	uint8_t family[2];
5173 	uint8_t chipid[2];
5174 	struct mcdp_version irom;
5175 	struct mcdp_version fw;
5176 } __ec_align4;
5177 
5178 /* struct mcdp_info field decoding */
5179 #define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1])
5180 #define MCDP_FAMILY(family) ((family[0] << 8) | family[1])
5181 
5182 /* Get/Set USB-PD Alternate mode info */
5183 #define EC_CMD_USB_PD_GET_AMODE 0x0116
5184 struct ec_params_usb_pd_get_mode_request {
5185 	uint16_t svid_idx; /* SVID index to get */
5186 	uint8_t port;      /* port */
5187 } __ec_align_size1;
5188 
5189 struct ec_params_usb_pd_get_mode_response {
5190 	uint16_t svid;   /* SVID */
5191 	uint16_t opos;    /* Object Position */
5192 	uint32_t vdo[6]; /* Mode VDOs */
5193 } __ec_align4;
5194 
5195 #define EC_CMD_USB_PD_SET_AMODE 0x0117
5196 
5197 enum pd_mode_cmd {
5198 	PD_EXIT_MODE = 0,
5199 	PD_ENTER_MODE = 1,
5200 	/* Not a command.  Do NOT remove. */
5201 	PD_MODE_CMD_COUNT,
5202 };
5203 
5204 struct ec_params_usb_pd_set_mode_request {
5205 	uint32_t cmd;  /* enum pd_mode_cmd */
5206 	uint16_t svid; /* SVID to set */
5207 	uint8_t opos;  /* Object Position */
5208 	uint8_t port;  /* port */
5209 } __ec_align4;
5210 
5211 /* Ask the PD MCU to record a log of a requested type */
5212 #define EC_CMD_PD_WRITE_LOG_ENTRY 0x0118
5213 
5214 struct ec_params_pd_write_log_entry {
5215 	uint8_t type; /* event type : see PD_EVENT_xx above */
5216 	uint8_t port; /* port#, or 0 for events unrelated to a given port */
5217 } __ec_align1;
5218 
5219 
5220 /* Control USB-PD chip */
5221 #define EC_CMD_PD_CONTROL 0x0119
5222 
5223 enum ec_pd_control_cmd {
5224 	PD_SUSPEND = 0,      /* Suspend the PD chip (EC: stop talking to PD) */
5225 	PD_RESUME,           /* Resume the PD chip (EC: start talking to PD) */
5226 	PD_RESET,            /* Force reset the PD chip */
5227 	PD_CONTROL_DISABLE,  /* Disable further calls to this command */
5228 	PD_CHIP_ON,          /* Power on the PD chip */
5229 };
5230 
5231 struct ec_params_pd_control {
5232 	uint8_t chip;         /* chip id */
5233 	uint8_t subcmd;
5234 } __ec_align1;
5235 
5236 /* Get info about USB-C SS muxes */
5237 #define EC_CMD_USB_PD_MUX_INFO 0x011A
5238 
5239 struct ec_params_usb_pd_mux_info {
5240 	uint8_t port; /* USB-C port number */
5241 } __ec_align1;
5242 
5243 /* Flags representing mux state */
5244 #define USB_PD_MUX_NONE               0      /* Open switch */
5245 #define USB_PD_MUX_USB_ENABLED        BIT(0) /* USB connected */
5246 #define USB_PD_MUX_DP_ENABLED         BIT(1) /* DP connected */
5247 #define USB_PD_MUX_POLARITY_INVERTED  BIT(2) /* CC line Polarity inverted */
5248 #define USB_PD_MUX_HPD_IRQ            BIT(3) /* HPD IRQ is asserted */
5249 #define USB_PD_MUX_HPD_LVL            BIT(4) /* HPD level is asserted */
5250 #define USB_PD_MUX_SAFE_MODE          BIT(5) /* DP is in safe mode */
5251 #define USB_PD_MUX_TBT_COMPAT_ENABLED BIT(6) /* TBT compat enabled */
5252 #define USB_PD_MUX_USB4_ENABLED       BIT(7) /* USB4 enabled */
5253 
5254 struct ec_response_usb_pd_mux_info {
5255 	uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */
5256 } __ec_align1;
5257 
5258 #define EC_CMD_PD_CHIP_INFO		0x011B
5259 
5260 struct ec_params_pd_chip_info {
5261 	uint8_t port;	/* USB-C port number */
5262 	uint8_t renew;	/* Force renewal */
5263 } __ec_align1;
5264 
5265 struct ec_response_pd_chip_info {
5266 	uint16_t vendor_id;
5267 	uint16_t product_id;
5268 	uint16_t device_id;
5269 	union {
5270 		uint8_t fw_version_string[8];
5271 		uint64_t fw_version_number;
5272 	};
5273 } __ec_align2;
5274 
5275 struct ec_response_pd_chip_info_v1 {
5276 	uint16_t vendor_id;
5277 	uint16_t product_id;
5278 	uint16_t device_id;
5279 	union {
5280 		uint8_t fw_version_string[8];
5281 		uint64_t fw_version_number;
5282 	};
5283 	union {
5284 		uint8_t min_req_fw_version_string[8];
5285 		uint64_t min_req_fw_version_number;
5286 	};
5287 } __ec_align2;
5288 
5289 /* Run RW signature verification and get status */
5290 #define EC_CMD_RWSIG_CHECK_STATUS	0x011C
5291 
5292 struct ec_response_rwsig_check_status {
5293 	uint32_t status;
5294 } __ec_align4;
5295 
5296 /* For controlling RWSIG task */
5297 #define EC_CMD_RWSIG_ACTION	0x011D
5298 
5299 enum rwsig_action {
5300 	RWSIG_ACTION_ABORT = 0,		/* Abort RWSIG and prevent jumping */
5301 	RWSIG_ACTION_CONTINUE = 1,	/* Jump to RW immediately */
5302 };
5303 
5304 struct ec_params_rwsig_action {
5305 	uint32_t action;
5306 } __ec_align4;
5307 
5308 /* Run verification on a slot */
5309 #define EC_CMD_EFS_VERIFY	0x011E
5310 
5311 struct ec_params_efs_verify {
5312 	uint8_t region;		/* enum ec_flash_region */
5313 } __ec_align1;
5314 
5315 /*
5316  * Retrieve info from Cros Board Info store. Response is based on the data
5317  * type. Integers return a uint32. Strings return a string, using the response
5318  * size to determine how big it is.
5319  */
5320 #define EC_CMD_GET_CROS_BOARD_INFO	0x011F
5321 /*
5322  * Write info into Cros Board Info on EEPROM. Write fails if the board has
5323  * hardware write-protect enabled.
5324  */
5325 #define EC_CMD_SET_CROS_BOARD_INFO	0x0120
5326 
5327 enum cbi_data_tag {
5328 	CBI_TAG_BOARD_VERSION = 0, /* uint32_t or smaller */
5329 	CBI_TAG_OEM_ID = 1,        /* uint32_t or smaller */
5330 	CBI_TAG_SKU_ID = 2,        /* uint32_t or smaller */
5331 	CBI_TAG_DRAM_PART_NUM = 3, /* variable length ascii, nul terminated. */
5332 	CBI_TAG_OEM_NAME = 4,      /* variable length ascii, nul terminated. */
5333 	CBI_TAG_MODEL_ID = 5,      /* uint32_t or smaller */
5334 	CBI_TAG_COUNT,
5335 };
5336 
5337 /*
5338  * Flags to control read operation
5339  *
5340  * RELOAD:  Invalidate cache and read data from EEPROM. Useful to verify
5341  *          write was successful without reboot.
5342  */
5343 #define CBI_GET_RELOAD		BIT(0)
5344 
5345 struct ec_params_get_cbi {
5346 	uint32_t tag;		/* enum cbi_data_tag */
5347 	uint32_t flag;		/* CBI_GET_* */
5348 } __ec_align4;
5349 
5350 /*
5351  * Flags to control write behavior.
5352  *
5353  * NO_SYNC: Makes EC update data in RAM but skip writing to EEPROM. It's
5354  *          useful when writing multiple fields in a row.
5355  * INIT:    Need to be set when creating a new CBI from scratch. All fields
5356  *          will be initialized to zero first.
5357  */
5358 #define CBI_SET_NO_SYNC		BIT(0)
5359 #define CBI_SET_INIT		BIT(1)
5360 
5361 struct ec_params_set_cbi {
5362 	uint32_t tag;		/* enum cbi_data_tag */
5363 	uint32_t flag;		/* CBI_SET_* */
5364 	uint32_t size;		/* Data size */
5365 	uint8_t data[];		/* For string and raw data */
5366 } __ec_align1;
5367 
5368 /*
5369  * Information about resets of the AP by the EC and the EC's own uptime.
5370  */
5371 #define EC_CMD_GET_UPTIME_INFO 0x0121
5372 
5373 struct ec_response_uptime_info {
5374 	/*
5375 	 * Number of milliseconds since the last EC boot. Sysjump resets
5376 	 * typically do not restart the EC's time_since_boot epoch.
5377 	 *
5378 	 * WARNING: The EC's sense of time is much less accurate than the AP's
5379 	 * sense of time, in both phase and frequency.  This timebase is similar
5380 	 * to CLOCK_MONOTONIC_RAW, but with 1% or more frequency error.
5381 	 */
5382 	uint32_t time_since_ec_boot_ms;
5383 
5384 	/*
5385 	 * Number of times the AP was reset by the EC since the last EC boot.
5386 	 * Note that the AP may be held in reset by the EC during the initial
5387 	 * boot sequence, such that the very first AP boot may count as more
5388 	 * than one here.
5389 	 */
5390 	uint32_t ap_resets_since_ec_boot;
5391 
5392 	/*
5393 	 * The set of flags which describe the EC's most recent reset.  See
5394 	 * include/system.h RESET_FLAG_* for details.
5395 	 */
5396 	uint32_t ec_reset_flags;
5397 
5398 	/* Empty log entries have both the cause and timestamp set to zero. */
5399 	struct ap_reset_log_entry {
5400 		/*
5401 		 * See include/chipset.h: enum chipset_{reset,shutdown}_reason
5402 		 * for details.
5403 		 */
5404 		uint16_t reset_cause;
5405 
5406 		/* Reserved for protocol growth. */
5407 		uint16_t reserved;
5408 
5409 		/*
5410 		 * The time of the reset's assertion, in milliseconds since the
5411 		 * last EC boot, in the same epoch as time_since_ec_boot_ms.
5412 		 * Set to zero if the log entry is empty.
5413 		 */
5414 		uint32_t reset_time_ms;
5415 	} recent_ap_reset[4];
5416 } __ec_align4;
5417 
5418 /*
5419  * Add entropy to the device secret (stored in the rollback region).
5420  *
5421  * Depending on the chip, the operation may take a long time (e.g. to erase
5422  * flash), so the commands are asynchronous.
5423  */
5424 #define EC_CMD_ADD_ENTROPY	0x0122
5425 
5426 enum add_entropy_action {
5427 	/* Add entropy to the current secret. */
5428 	ADD_ENTROPY_ASYNC = 0,
5429 	/*
5430 	 * Add entropy, and also make sure that the previous secret is erased.
5431 	 * (this can be implemented by adding entropy multiple times until
5432 	 * all rolback blocks have been overwritten).
5433 	 */
5434 	ADD_ENTROPY_RESET_ASYNC = 1,
5435 	/* Read back result from the previous operation. */
5436 	ADD_ENTROPY_GET_RESULT = 2,
5437 };
5438 
5439 struct ec_params_rollback_add_entropy {
5440 	uint8_t action;
5441 } __ec_align1;
5442 
5443 /*
5444  * Perform a single read of a given ADC channel.
5445  */
5446 #define EC_CMD_ADC_READ		0x0123
5447 
5448 struct ec_params_adc_read {
5449 	uint8_t adc_channel;
5450 } __ec_align1;
5451 
5452 struct ec_response_adc_read {
5453 	int32_t adc_value;
5454 } __ec_align4;
5455 
5456 /*
5457  * Read back rollback info
5458  */
5459 #define EC_CMD_ROLLBACK_INFO		0x0124
5460 
5461 struct ec_response_rollback_info {
5462 	int32_t id; /* Incrementing number to indicate which region to use. */
5463 	int32_t rollback_min_version;
5464 	int32_t rw_rollback_version;
5465 } __ec_align4;
5466 
5467 
5468 /* Issue AP reset */
5469 #define EC_CMD_AP_RESET 0x0125
5470 
5471 /**
5472  * Get the number of peripheral charge ports
5473  */
5474 #define EC_CMD_PCHG_COUNT 0x0134
5475 
5476 #define EC_PCHG_MAX_PORTS 8
5477 
5478 struct ec_response_pchg_count {
5479 	uint8_t port_count;
5480 } __ec_align1;
5481 
5482 /**
5483  * Get the status of a peripheral charge port
5484  */
5485 #define EC_CMD_PCHG 0x0135
5486 
5487 struct ec_params_pchg {
5488 	uint8_t port;
5489 } __ec_align1;
5490 
5491 struct ec_response_pchg {
5492 	uint32_t error;			/* enum pchg_error */
5493 	uint8_t state;			/* enum pchg_state state */
5494 	uint8_t battery_percentage;
5495 	uint8_t unused0;
5496 	uint8_t unused1;
5497 	/* Fields added in version 1 */
5498 	uint32_t fw_version;
5499 	uint32_t dropped_event_count;
5500 } __ec_align2;
5501 
5502 enum pchg_state {
5503 	/* Charger is reset and not initialized. */
5504 	PCHG_STATE_RESET = 0,
5505 	/* Charger is initialized or disabled. */
5506 	PCHG_STATE_INITIALIZED,
5507 	/* Charger is enabled and ready to detect a device. */
5508 	PCHG_STATE_ENABLED,
5509 	/* Device is in proximity. */
5510 	PCHG_STATE_DETECTED,
5511 	/* Device is being charged. */
5512 	PCHG_STATE_CHARGING,
5513 	/* Device is fully charged. It implies DETECTED (& not charging). */
5514 	PCHG_STATE_FULL,
5515 	/* In download (a.k.a. firmware update) mode */
5516 	PCHG_STATE_DOWNLOAD,
5517 	/* In download mode. Ready for receiving data. */
5518 	PCHG_STATE_DOWNLOADING,
5519 	/* Device is ready for data communication. */
5520 	PCHG_STATE_CONNECTED,
5521 	/* Put no more entry below */
5522 	PCHG_STATE_COUNT,
5523 };
5524 
5525 #define EC_PCHG_STATE_TEXT { \
5526 	[PCHG_STATE_RESET] = "RESET", \
5527 	[PCHG_STATE_INITIALIZED] = "INITIALIZED", \
5528 	[PCHG_STATE_ENABLED] = "ENABLED", \
5529 	[PCHG_STATE_DETECTED] = "DETECTED", \
5530 	[PCHG_STATE_CHARGING] = "CHARGING", \
5531 	[PCHG_STATE_FULL] = "FULL", \
5532 	[PCHG_STATE_DOWNLOAD] = "DOWNLOAD", \
5533 	[PCHG_STATE_DOWNLOADING] = "DOWNLOADING", \
5534 	[PCHG_STATE_CONNECTED] = "CONNECTED", \
5535 	}
5536 
5537 /*
5538  * Update firmware of peripheral chip
5539  */
5540 #define EC_CMD_PCHG_UPDATE 0x0136
5541 
5542 /* Port number is encoded in bit[28:31]. */
5543 #define EC_MKBP_PCHG_PORT_SHIFT		28
5544 /* Utility macro for converting MKBP event to port number. */
5545 #define EC_MKBP_PCHG_EVENT_TO_PORT(e)	(((e) >> EC_MKBP_PCHG_PORT_SHIFT) & 0xf)
5546 /* Utility macro for extracting event bits. */
5547 #define EC_MKBP_PCHG_EVENT_MASK(e)	((e) \
5548 					& GENMASK(EC_MKBP_PCHG_PORT_SHIFT-1, 0))
5549 
5550 #define EC_MKBP_PCHG_UPDATE_OPENED	BIT(0)
5551 #define EC_MKBP_PCHG_WRITE_COMPLETE	BIT(1)
5552 #define EC_MKBP_PCHG_UPDATE_CLOSED	BIT(2)
5553 #define EC_MKBP_PCHG_UPDATE_ERROR	BIT(3)
5554 #define EC_MKBP_PCHG_DEVICE_EVENT	BIT(4)
5555 
5556 enum ec_pchg_update_cmd {
5557 	/* Reset chip to normal mode. */
5558 	EC_PCHG_UPDATE_CMD_RESET_TO_NORMAL = 0,
5559 	/* Reset and put a chip in update (a.k.a. download) mode. */
5560 	EC_PCHG_UPDATE_CMD_OPEN,
5561 	/* Write a block of data containing FW image. */
5562 	EC_PCHG_UPDATE_CMD_WRITE,
5563 	/* Close update session. */
5564 	EC_PCHG_UPDATE_CMD_CLOSE,
5565 	/* End of commands */
5566 	EC_PCHG_UPDATE_CMD_COUNT,
5567 };
5568 
5569 struct ec_params_pchg_update {
5570 	/* PCHG port number */
5571 	uint8_t port;
5572 	/* enum ec_pchg_update_cmd */
5573 	uint8_t cmd;
5574 	/* Padding */
5575 	uint8_t reserved0;
5576 	uint8_t reserved1;
5577 	/* Version of new firmware */
5578 	uint32_t version;
5579 	/* CRC32 of new firmware */
5580 	uint32_t crc32;
5581 	/* Address in chip memory where <data> is written to */
5582 	uint32_t addr;
5583 	/* Size of <data> */
5584 	uint32_t size;
5585 	/* Partial data of new firmware */
5586 	uint8_t data[];
5587 } __ec_align4;
5588 
5589 BUILD_ASSERT(EC_PCHG_UPDATE_CMD_COUNT
5590 	     < BIT(sizeof(((struct ec_params_pchg_update *)0)->cmd)*8));
5591 
5592 struct ec_response_pchg_update {
5593 	/* Block size */
5594 	uint32_t block_size;
5595 } __ec_align4;
5596 
5597 
5598 /*****************************************************************************/
5599 /* Voltage regulator controls */
5600 
5601 /*
5602  * Get basic info of voltage regulator for given index.
5603  *
5604  * Returns the regulator name and supported voltage list in mV.
5605  */
5606 #define EC_CMD_REGULATOR_GET_INFO 0x012C
5607 
5608 /* Maximum length of regulator name */
5609 #define EC_REGULATOR_NAME_MAX_LEN 16
5610 
5611 /* Maximum length of the supported voltage list. */
5612 #define EC_REGULATOR_VOLTAGE_MAX_COUNT 16
5613 
5614 struct ec_params_regulator_get_info {
5615 	uint32_t index;
5616 } __ec_align4;
5617 
5618 struct ec_response_regulator_get_info {
5619 	char name[EC_REGULATOR_NAME_MAX_LEN];
5620 	uint16_t num_voltages;
5621 	uint16_t voltages_mv[EC_REGULATOR_VOLTAGE_MAX_COUNT];
5622 } __ec_align2;
5623 
5624 /*
5625  * Configure the regulator as enabled / disabled.
5626  */
5627 #define EC_CMD_REGULATOR_ENABLE 0x012D
5628 
5629 struct ec_params_regulator_enable {
5630 	uint32_t index;
5631 	uint8_t enable;
5632 } __ec_align4;
5633 
5634 /*
5635  * Query if the regulator is enabled.
5636  *
5637  * Returns 1 if the regulator is enabled, 0 if not.
5638  */
5639 #define EC_CMD_REGULATOR_IS_ENABLED 0x012E
5640 
5641 struct ec_params_regulator_is_enabled {
5642 	uint32_t index;
5643 } __ec_align4;
5644 
5645 struct ec_response_regulator_is_enabled {
5646 	uint8_t enabled;
5647 } __ec_align1;
5648 
5649 /*
5650  * Set voltage for the voltage regulator within the range specified.
5651  *
5652  * The driver should select the voltage in range closest to min_mv.
5653  *
5654  * Also note that this might be called before the regulator is enabled, and the
5655  * setting should be in effect after the regulator is enabled.
5656  */
5657 #define EC_CMD_REGULATOR_SET_VOLTAGE 0x012F
5658 
5659 struct ec_params_regulator_set_voltage {
5660 	uint32_t index;
5661 	uint32_t min_mv;
5662 	uint32_t max_mv;
5663 } __ec_align4;
5664 
5665 /*
5666  * Get the currently configured voltage for the voltage regulator.
5667  *
5668  * Note that this might be called before the regulator is enabled, and this
5669  * should return the configured output voltage if the regulator is enabled.
5670  */
5671 #define EC_CMD_REGULATOR_GET_VOLTAGE 0x0130
5672 
5673 struct ec_params_regulator_get_voltage {
5674 	uint32_t index;
5675 } __ec_align4;
5676 
5677 struct ec_response_regulator_get_voltage {
5678 	uint32_t voltage_mv;
5679 } __ec_align4;
5680 
5681 /*
5682  * Gather all discovery information for the given port and partner type.
5683  *
5684  * Note that if discovery has not yet completed, only the currently completed
5685  * responses will be filled in.   If the discovery data structures are changed
5686  * in the process of the command running, BUSY will be returned.
5687  *
5688  * VDO field sizes are set to the maximum possible number of VDOs a VDM may
5689  * contain, while the number of SVIDs here is selected to fit within the PROTO2
5690  * maximum parameter size.
5691  */
5692 #define EC_CMD_TYPEC_DISCOVERY 0x0131
5693 
5694 enum typec_partner_type {
5695 	TYPEC_PARTNER_SOP = 0,
5696 	TYPEC_PARTNER_SOP_PRIME = 1,
5697 };
5698 
5699 struct ec_params_typec_discovery {
5700 	uint8_t port;
5701 	uint8_t partner_type; /* enum typec_partner_type */
5702 } __ec_align1;
5703 
5704 struct svid_mode_info {
5705 	uint16_t svid;
5706 	uint16_t mode_count;  /* Number of modes partner sent */
5707 	uint32_t mode_vdo[6]; /* Max VDOs allowed after VDM header is 6 */
5708 };
5709 
5710 struct ec_response_typec_discovery {
5711 	uint8_t identity_count;    /* Number of identity VDOs partner sent */
5712 	uint8_t svid_count;	   /* Number of SVIDs partner sent */
5713 	uint16_t reserved;
5714 	uint32_t discovery_vdo[6]; /* Max VDOs allowed after VDM header is 6 */
5715 	struct svid_mode_info svids[];
5716 } __ec_align1;
5717 
5718 /* USB Type-C commands for AP-controlled device policy. */
5719 #define EC_CMD_TYPEC_CONTROL 0x0132
5720 
5721 enum typec_control_command {
5722 	TYPEC_CONTROL_COMMAND_EXIT_MODES,
5723 	TYPEC_CONTROL_COMMAND_CLEAR_EVENTS,
5724 	TYPEC_CONTROL_COMMAND_ENTER_MODE,
5725 };
5726 
5727 struct ec_params_typec_control {
5728 	uint8_t port;
5729 	uint8_t command;	/* enum typec_control_command */
5730 	uint16_t reserved;
5731 
5732 	/*
5733 	 * This section will be interpreted based on |command|. Define a
5734 	 * placeholder structure to avoid having to increase the size and bump
5735 	 * the command version when adding new sub-commands.
5736 	 */
5737 	union {
5738 		uint32_t clear_events_mask;
5739 		uint8_t mode_to_enter;      /* enum typec_mode */
5740 		uint8_t placeholder[128];
5741 	};
5742 } __ec_align1;
5743 
5744 /*
5745  * Gather all status information for a port.
5746  *
5747  * Note: this covers many of the return fields from the deprecated
5748  * EC_CMD_USB_PD_CONTROL command, except those that are redundant with the
5749  * discovery data.  The "enum pd_cc_states" is defined with the deprecated
5750  * EC_CMD_USB_PD_CONTROL command.
5751  *
5752  * This also combines in the EC_CMD_USB_PD_MUX_INFO flags.
5753  */
5754 #define EC_CMD_TYPEC_STATUS 0x0133
5755 
5756 /*
5757  * Power role.
5758  *
5759  * Note this is also used for PD header creation, and values align to those in
5760  * the Power Delivery Specification Revision 3.0 (See
5761  * 6.2.1.1.4 Port Power Role).
5762  */
5763 enum pd_power_role {
5764 	PD_ROLE_SINK = 0,
5765 	PD_ROLE_SOURCE = 1
5766 };
5767 
5768 /*
5769  * Data role.
5770  *
5771  * Note this is also used for PD header creation, and the first two values
5772  * align to those in the Power Delivery Specification Revision 3.0 (See
5773  * 6.2.1.1.6 Port Data Role).
5774  */
5775 enum pd_data_role {
5776 	PD_ROLE_UFP = 0,
5777 	PD_ROLE_DFP = 1,
5778 	PD_ROLE_DISCONNECTED = 2,
5779 };
5780 
5781 enum pd_vconn_role {
5782 	PD_ROLE_VCONN_OFF = 0,
5783 	PD_ROLE_VCONN_SRC = 1,
5784 };
5785 
5786 /*
5787  * Note: BIT(0) may be used to determine whether the polarity is CC1 or CC2,
5788  * regardless of whether a debug accessory is connected.
5789  */
5790 enum tcpc_cc_polarity {
5791 	/*
5792 	 * _CCx: is used to indicate the polarity while not connected to
5793 	 * a Debug Accessory.  Only one CC line will assert a resistor and
5794 	 * the other will be open.
5795 	 */
5796 	POLARITY_CC1 = 0,
5797 	POLARITY_CC2 = 1,
5798 
5799 	/*
5800 	 * _CCx_DTS is used to indicate the polarity while connected to a
5801 	 * SRC Debug Accessory.  Assert resistors on both lines.
5802 	 */
5803 	POLARITY_CC1_DTS = 2,
5804 	POLARITY_CC2_DTS = 3,
5805 
5806 	/*
5807 	 * The current TCPC code relies on these specific POLARITY values.
5808 	 * Adding in a check to verify if the list grows for any reason
5809 	 * that this will give a hint that other places need to be
5810 	 * adjusted.
5811 	 */
5812 	POLARITY_COUNT
5813 };
5814 
5815 #define PD_STATUS_EVENT_SOP_DISC_DONE		BIT(0)
5816 #define PD_STATUS_EVENT_SOP_PRIME_DISC_DONE	BIT(1)
5817 #define PD_STATUS_EVENT_HARD_RESET		BIT(2)
5818 
5819 struct ec_params_typec_status {
5820 	uint8_t port;
5821 } __ec_align1;
5822 
5823 struct ec_response_typec_status {
5824 	uint8_t pd_enabled;		/* PD communication enabled - bool */
5825 	uint8_t dev_connected;		/* Device connected - bool */
5826 	uint8_t sop_connected;		/* Device is SOP PD capable - bool */
5827 	uint8_t source_cap_count;	/* Number of Source Cap PDOs */
5828 
5829 	uint8_t power_role;		/* enum pd_power_role */
5830 	uint8_t data_role;		/* enum pd_data_role */
5831 	uint8_t vconn_role;		/* enum pd_vconn_role */
5832 	uint8_t sink_cap_count;		/* Number of Sink Cap PDOs */
5833 
5834 	uint8_t polarity;		/* enum tcpc_cc_polarity */
5835 	uint8_t cc_state;		/* enum pd_cc_states */
5836 	uint8_t dp_pin;			/* DP pin mode (MODE_DP_IN_[A-E]) */
5837 	uint8_t mux_state;		/* USB_PD_MUX* - encoded mux state */
5838 
5839 	char tc_state[32];		/* TC state name */
5840 
5841 	uint32_t events;		/* PD_STATUS_EVENT bitmask */
5842 
5843 	/*
5844 	 * BCD PD revisions for partners
5845 	 *
5846 	 * The format has the PD major reversion in the upper nibble, and PD
5847 	 * minor version in the next nibble.  Following two nibbles are
5848 	 * currently 0.
5849 	 * ex. PD 3.2 would map to 0x3200
5850 	 *
5851 	 * PD major/minor will be 0 if no PD device is connected.
5852 	 */
5853 	uint16_t sop_revision;
5854 	uint16_t sop_prime_revision;
5855 
5856 	uint32_t source_cap_pdos[7];	/* Max 7 PDOs can be present */
5857 
5858 	uint32_t sink_cap_pdos[7];	/* Max 7 PDOs can be present */
5859 } __ec_align1;
5860 
5861 /*****************************************************************************/
5862 /* The command range 0x200-0x2FF is reserved for Rotor. */
5863 
5864 /*****************************************************************************/
5865 /*
5866  * Reserve a range of host commands for the CR51 firmware.
5867  */
5868 #define EC_CMD_CR51_BASE 0x0300
5869 #define EC_CMD_CR51_LAST 0x03FF
5870 
5871 /*****************************************************************************/
5872 /* Fingerprint MCU commands: range 0x0400-0x040x */
5873 
5874 /* Fingerprint SPI sensor passthru command: prototyping ONLY */
5875 #define EC_CMD_FP_PASSTHRU 0x0400
5876 
5877 #define EC_FP_FLAG_NOT_COMPLETE 0x1
5878 
5879 struct ec_params_fp_passthru {
5880 	uint16_t len;		/* Number of bytes to write then read */
5881 	uint16_t flags;		/* EC_FP_FLAG_xxx */
5882 	uint8_t data[];		/* Data to send */
5883 } __ec_align2;
5884 
5885 /* Configure the Fingerprint MCU behavior */
5886 #define EC_CMD_FP_MODE 0x0402
5887 
5888 /* Put the sensor in its lowest power mode */
5889 #define FP_MODE_DEEPSLEEP      BIT(0)
5890 /* Wait to see a finger on the sensor */
5891 #define FP_MODE_FINGER_DOWN    BIT(1)
5892 /* Poll until the finger has left the sensor */
5893 #define FP_MODE_FINGER_UP      BIT(2)
5894 /* Capture the current finger image */
5895 #define FP_MODE_CAPTURE        BIT(3)
5896 /* Finger enrollment session on-going */
5897 #define FP_MODE_ENROLL_SESSION BIT(4)
5898 /* Enroll the current finger image */
5899 #define FP_MODE_ENROLL_IMAGE   BIT(5)
5900 /* Try to match the current finger image */
5901 #define FP_MODE_MATCH          BIT(6)
5902 /* Reset and re-initialize the sensor. */
5903 #define FP_MODE_RESET_SENSOR   BIT(7)
5904 /* special value: don't change anything just read back current mode */
5905 #define FP_MODE_DONT_CHANGE    BIT(31)
5906 
5907 #define FP_VALID_MODES (FP_MODE_DEEPSLEEP      | \
5908 			FP_MODE_FINGER_DOWN    | \
5909 			FP_MODE_FINGER_UP      | \
5910 			FP_MODE_CAPTURE        | \
5911 			FP_MODE_ENROLL_SESSION | \
5912 			FP_MODE_ENROLL_IMAGE   | \
5913 			FP_MODE_MATCH          | \
5914 			FP_MODE_RESET_SENSOR   | \
5915 			FP_MODE_DONT_CHANGE)
5916 
5917 /* Capture types defined in bits [30..28] */
5918 #define FP_MODE_CAPTURE_TYPE_SHIFT 28
5919 #define FP_MODE_CAPTURE_TYPE_MASK  (0x7 << FP_MODE_CAPTURE_TYPE_SHIFT)
5920 /*
5921  * This enum must remain ordered, if you add new values you must ensure that
5922  * FP_CAPTURE_TYPE_MAX is still the last one.
5923  */
5924 enum fp_capture_type {
5925 	/* Full blown vendor-defined capture (produces 'frame_size' bytes) */
5926 	FP_CAPTURE_VENDOR_FORMAT = 0,
5927 	/* Simple raw image capture (produces width x height x bpp bits) */
5928 	FP_CAPTURE_SIMPLE_IMAGE = 1,
5929 	/* Self test pattern (e.g. checkerboard) */
5930 	FP_CAPTURE_PATTERN0 = 2,
5931 	/* Self test pattern (e.g. inverted checkerboard) */
5932 	FP_CAPTURE_PATTERN1 = 3,
5933 	/* Capture for Quality test with fixed contrast */
5934 	FP_CAPTURE_QUALITY_TEST = 4,
5935 	/* Capture for pixel reset value test */
5936 	FP_CAPTURE_RESET_TEST = 5,
5937 	FP_CAPTURE_TYPE_MAX,
5938 };
5939 /* Extracts the capture type from the sensor 'mode' word */
5940 #define FP_CAPTURE_TYPE(mode) (((mode) & FP_MODE_CAPTURE_TYPE_MASK) \
5941 				       >> FP_MODE_CAPTURE_TYPE_SHIFT)
5942 
5943 struct ec_params_fp_mode {
5944 	uint32_t mode; /* as defined by FP_MODE_ constants */
5945 } __ec_align4;
5946 
5947 struct ec_response_fp_mode {
5948 	uint32_t mode; /* as defined by FP_MODE_ constants */
5949 } __ec_align4;
5950 
5951 /* Retrieve Fingerprint sensor information */
5952 #define EC_CMD_FP_INFO 0x0403
5953 
5954 /* Number of dead pixels detected on the last maintenance */
5955 #define FP_ERROR_DEAD_PIXELS(errors) ((errors) & 0x3FF)
5956 /* Unknown number of dead pixels detected on the last maintenance */
5957 #define FP_ERROR_DEAD_PIXELS_UNKNOWN (0x3FF)
5958 /* No interrupt from the sensor */
5959 #define FP_ERROR_NO_IRQ    BIT(12)
5960 /* SPI communication error */
5961 #define FP_ERROR_SPI_COMM  BIT(13)
5962 /* Invalid sensor Hardware ID */
5963 #define FP_ERROR_BAD_HWID  BIT(14)
5964 /* Sensor initialization failed */
5965 #define FP_ERROR_INIT_FAIL BIT(15)
5966 
5967 struct ec_response_fp_info_v0 {
5968 	/* Sensor identification */
5969 	uint32_t vendor_id;
5970 	uint32_t product_id;
5971 	uint32_t model_id;
5972 	uint32_t version;
5973 	/* Image frame characteristics */
5974 	uint32_t frame_size;
5975 	uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
5976 	uint16_t width;
5977 	uint16_t height;
5978 	uint16_t bpp;
5979 	uint16_t errors; /* see FP_ERROR_ flags above */
5980 } __ec_align4;
5981 
5982 struct ec_response_fp_info {
5983 	/* Sensor identification */
5984 	uint32_t vendor_id;
5985 	uint32_t product_id;
5986 	uint32_t model_id;
5987 	uint32_t version;
5988 	/* Image frame characteristics */
5989 	uint32_t frame_size;
5990 	uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
5991 	uint16_t width;
5992 	uint16_t height;
5993 	uint16_t bpp;
5994 	uint16_t errors; /* see FP_ERROR_ flags above */
5995 	/* Template/finger current information */
5996 	uint32_t template_size;  /* max template size in bytes */
5997 	uint16_t template_max;   /* maximum number of fingers/templates */
5998 	uint16_t template_valid; /* number of valid fingers/templates */
5999 	uint32_t template_dirty; /* bitmap of templates with MCU side changes */
6000 	uint32_t template_version; /* version of the template format */
6001 } __ec_align4;
6002 
6003 /* Get the last captured finger frame or a template content */
6004 #define EC_CMD_FP_FRAME 0x0404
6005 
6006 /* constants defining the 'offset' field which also contains the frame index */
6007 #define FP_FRAME_INDEX_SHIFT       28
6008 /* Frame buffer where the captured image is stored */
6009 #define FP_FRAME_INDEX_RAW_IMAGE    0
6010 /* First frame buffer holding a template */
6011 #define FP_FRAME_INDEX_TEMPLATE     1
6012 #define FP_FRAME_GET_BUFFER_INDEX(offset) ((offset) >> FP_FRAME_INDEX_SHIFT)
6013 #define FP_FRAME_OFFSET_MASK       0x0FFFFFFF
6014 
6015 /* Version of the format of the encrypted templates. */
6016 #define FP_TEMPLATE_FORMAT_VERSION 3
6017 
6018 /* Constants for encryption parameters */
6019 #define FP_CONTEXT_NONCE_BYTES 12
6020 #define FP_CONTEXT_USERID_WORDS (32 / sizeof(uint32_t))
6021 #define FP_CONTEXT_TAG_BYTES 16
6022 #define FP_CONTEXT_SALT_BYTES 16
6023 #define FP_CONTEXT_TPM_BYTES 32
6024 
6025 struct ec_fp_template_encryption_metadata {
6026 	/*
6027 	 * Version of the structure format (N=3).
6028 	 */
6029 	uint16_t struct_version;
6030 	/* Reserved bytes, set to 0. */
6031 	uint16_t reserved;
6032 	/*
6033 	 * The salt is *only* ever used for key derivation. The nonce is unique,
6034 	 * a different one is used for every message.
6035 	 */
6036 	uint8_t nonce[FP_CONTEXT_NONCE_BYTES];
6037 	uint8_t salt[FP_CONTEXT_SALT_BYTES];
6038 	uint8_t tag[FP_CONTEXT_TAG_BYTES];
6039 };
6040 
6041 struct ec_params_fp_frame {
6042 	/*
6043 	 * The offset contains the template index or FP_FRAME_INDEX_RAW_IMAGE
6044 	 * in the high nibble, and the real offset within the frame in
6045 	 * FP_FRAME_OFFSET_MASK.
6046 	 */
6047 	uint32_t offset;
6048 	uint32_t size;
6049 } __ec_align4;
6050 
6051 /* Load a template into the MCU */
6052 #define EC_CMD_FP_TEMPLATE 0x0405
6053 
6054 /* Flag in the 'size' field indicating that the full template has been sent */
6055 #define FP_TEMPLATE_COMMIT 0x80000000
6056 
6057 struct ec_params_fp_template {
6058 	uint32_t offset;
6059 	uint32_t size;
6060 	uint8_t data[];
6061 } __ec_align4;
6062 
6063 /* Clear the current fingerprint user context and set a new one */
6064 #define EC_CMD_FP_CONTEXT 0x0406
6065 
6066 struct ec_params_fp_context {
6067 	uint32_t userid[FP_CONTEXT_USERID_WORDS];
6068 } __ec_align4;
6069 
6070 #define EC_CMD_FP_STATS 0x0407
6071 
6072 #define FPSTATS_CAPTURE_INV  BIT(0)
6073 #define FPSTATS_MATCHING_INV BIT(1)
6074 
6075 struct ec_response_fp_stats {
6076 	uint32_t capture_time_us;
6077 	uint32_t matching_time_us;
6078 	uint32_t overall_time_us;
6079 	struct {
6080 		uint32_t lo;
6081 		uint32_t hi;
6082 	} overall_t0;
6083 	uint8_t timestamps_invalid;
6084 	int8_t template_matched;
6085 } __ec_align2;
6086 
6087 #define EC_CMD_FP_SEED 0x0408
6088 struct ec_params_fp_seed {
6089 	/*
6090 	 * Version of the structure format (N=3).
6091 	 */
6092 	uint16_t struct_version;
6093 	/* Reserved bytes, set to 0. */
6094 	uint16_t reserved;
6095 	/* Seed from the TPM. */
6096 	uint8_t seed[FP_CONTEXT_TPM_BYTES];
6097 } __ec_align4;
6098 
6099 #define EC_CMD_FP_ENC_STATUS 0x0409
6100 
6101 /* FP TPM seed has been set or not */
6102 #define FP_ENC_STATUS_SEED_SET BIT(0)
6103 
6104 struct ec_response_fp_encryption_status {
6105 	/* Used bits in encryption engine status */
6106 	uint32_t valid_flags;
6107 	/* Encryption engine status */
6108 	uint32_t status;
6109 } __ec_align4;
6110 
6111 /*****************************************************************************/
6112 /* Touchpad MCU commands: range 0x0500-0x05FF */
6113 
6114 /* Perform touchpad self test */
6115 #define EC_CMD_TP_SELF_TEST 0x0500
6116 
6117 /* Get number of frame types, and the size of each type */
6118 #define EC_CMD_TP_FRAME_INFO 0x0501
6119 
6120 struct ec_response_tp_frame_info {
6121 	uint32_t n_frames;
6122 	uint32_t frame_sizes[];
6123 } __ec_align4;
6124 
6125 /* Create a snapshot of current frame readings */
6126 #define EC_CMD_TP_FRAME_SNAPSHOT 0x0502
6127 
6128 /* Read the frame */
6129 #define EC_CMD_TP_FRAME_GET 0x0503
6130 
6131 struct ec_params_tp_frame_get {
6132 	uint32_t frame_index;
6133 	uint32_t offset;
6134 	uint32_t size;
6135 } __ec_align4;
6136 
6137 /*****************************************************************************/
6138 /* EC-EC communication commands: range 0x0600-0x06FF */
6139 
6140 #define EC_COMM_TEXT_MAX 8
6141 
6142 /*
6143  * Get battery static information, i.e. information that never changes, or
6144  * very infrequently.
6145  */
6146 #define EC_CMD_BATTERY_GET_STATIC 0x0600
6147 
6148 /**
6149  * struct ec_params_battery_static_info - Battery static info parameters
6150  * @index: Battery index.
6151  */
6152 struct ec_params_battery_static_info {
6153 	uint8_t index;
6154 } __ec_align_size1;
6155 
6156 /**
6157  * struct ec_response_battery_static_info - Battery static info response
6158  * @design_capacity: Battery Design Capacity (mAh)
6159  * @design_voltage: Battery Design Voltage (mV)
6160  * @manufacturer: Battery Manufacturer String
6161  * @model: Battery Model Number String
6162  * @serial: Battery Serial Number String
6163  * @type: Battery Type String
6164  * @cycle_count: Battery Cycle Count
6165  */
6166 struct ec_response_battery_static_info {
6167 	uint16_t design_capacity;
6168 	uint16_t design_voltage;
6169 	char manufacturer[EC_COMM_TEXT_MAX];
6170 	char model[EC_COMM_TEXT_MAX];
6171 	char serial[EC_COMM_TEXT_MAX];
6172 	char type[EC_COMM_TEXT_MAX];
6173 	/* TODO(crbug.com/795991): Consider moving to dynamic structure. */
6174 	uint32_t cycle_count;
6175 } __ec_align4;
6176 
6177 /*
6178  * Get battery dynamic information, i.e. information that is likely to change
6179  * every time it is read.
6180  */
6181 #define EC_CMD_BATTERY_GET_DYNAMIC 0x0601
6182 
6183 /**
6184  * struct ec_params_battery_dynamic_info - Battery dynamic info parameters
6185  * @index: Battery index.
6186  */
6187 struct ec_params_battery_dynamic_info {
6188 	uint8_t index;
6189 } __ec_align_size1;
6190 
6191 /**
6192  * struct ec_response_battery_dynamic_info - Battery dynamic info response
6193  * @actual_voltage: Battery voltage (mV)
6194  * @actual_current: Battery current (mA); negative=discharging
6195  * @remaining_capacity: Remaining capacity (mAh)
6196  * @full_capacity: Capacity (mAh, might change occasionally)
6197  * @flags: Flags, see EC_BATT_FLAG_*
6198  * @desired_voltage: Charging voltage desired by battery (mV)
6199  * @desired_current: Charging current desired by battery (mA)
6200  */
6201 struct ec_response_battery_dynamic_info {
6202 	int16_t actual_voltage;
6203 	int16_t actual_current;
6204 	int16_t remaining_capacity;
6205 	int16_t full_capacity;
6206 	int16_t flags;
6207 	int16_t desired_voltage;
6208 	int16_t desired_current;
6209 } __ec_align2;
6210 
6211 /*
6212  * Control charger chip. Used to control charger chip on the slave.
6213  */
6214 #define EC_CMD_CHARGER_CONTROL 0x0602
6215 
6216 /**
6217  * struct ec_params_charger_control - Charger control parameters
6218  * @max_current: Charger current (mA). Positive to allow base to draw up to
6219  *     max_current and (possibly) charge battery, negative to request current
6220  *     from base (OTG).
6221  * @otg_voltage: Voltage (mV) to use in OTG mode, ignored if max_current is
6222  *     >= 0.
6223  * @allow_charging: Allow base battery charging (only makes sense if
6224  *     max_current > 0).
6225  */
6226 struct ec_params_charger_control {
6227 	int16_t max_current;
6228 	uint16_t otg_voltage;
6229 	uint8_t allow_charging;
6230 } __ec_align_size1;
6231 
6232 /* Get ACK from the USB-C SS muxes */
6233 #define EC_CMD_USB_PD_MUX_ACK 0x0603
6234 
6235 struct ec_params_usb_pd_mux_ack {
6236 	uint8_t port; /* USB-C port number */
6237 } __ec_align1;
6238 
6239 /*****************************************************************************/
6240 /*
6241  * Reserve a range of host commands for board-specific, experimental, or
6242  * special purpose features. These can be (re)used without updating this file.
6243  *
6244  * CAUTION: Don't go nuts with this. Shipping products should document ALL
6245  * their EC commands for easier development, testing, debugging, and support.
6246  *
6247  * All commands MUST be #defined to be 4-digit UPPER CASE hex values
6248  * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
6249  *
6250  * In your experimental code, you may want to do something like this:
6251  *
6252  *   #define EC_CMD_MAGIC_FOO 0x0000
6253  *   #define EC_CMD_MAGIC_BAR 0x0001
6254  *   #define EC_CMD_MAGIC_HEY 0x0002
6255  *
6256  *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_FOO, magic_foo_handler,
6257  *      EC_VER_MASK(0);
6258  *
6259  *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_BAR, magic_bar_handler,
6260  *      EC_VER_MASK(0);
6261  *
6262  *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_HEY, magic_hey_handler,
6263  *      EC_VER_MASK(0);
6264  */
6265 #define EC_CMD_BOARD_SPECIFIC_BASE 0x3E00
6266 #define EC_CMD_BOARD_SPECIFIC_LAST 0x3FFF
6267 
6268 /*
6269  * Given the private host command offset, calculate the true private host
6270  * command value.
6271  */
6272 #define EC_PRIVATE_HOST_COMMAND_VALUE(command) \
6273 	(EC_CMD_BOARD_SPECIFIC_BASE + (command))
6274 
6275 /*****************************************************************************/
6276 /*
6277  * Passthru commands
6278  *
6279  * Some platforms have sub-processors chained to each other.  For example.
6280  *
6281  *     AP <--> EC <--> PD MCU
6282  *
6283  * The top 2 bits of the command number are used to indicate which device the
6284  * command is intended for.  Device 0 is always the device receiving the
6285  * command; other device mapping is board-specific.
6286  *
6287  * When a device receives a command to be passed to a sub-processor, it passes
6288  * it on with the device number set back to 0.  This allows the sub-processor
6289  * to remain blissfully unaware of whether the command originated on the next
6290  * device up the chain, or was passed through from the AP.
6291  *
6292  * In the above example, if the AP wants to send command 0x0002 to the PD MCU,
6293  *     AP sends command 0x4002 to the EC
6294  *     EC sends command 0x0002 to the PD MCU
6295  *     EC forwards PD MCU response back to the AP
6296  */
6297 
6298 /* Offset and max command number for sub-device n */
6299 #define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
6300 #define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
6301 
6302 /*****************************************************************************/
6303 /*
6304  * Deprecated constants. These constants have been renamed for clarity. The
6305  * meaning and size has not changed. Programs that use the old names should
6306  * switch to the new names soon, as the old names may not be carried forward
6307  * forever.
6308  */
6309 #define EC_HOST_PARAM_SIZE      EC_PROTO2_MAX_PARAM_SIZE
6310 #define EC_LPC_ADDR_OLD_PARAM   EC_HOST_CMD_REGION1
6311 #define EC_OLD_PARAM_SIZE       EC_HOST_CMD_REGION_SIZE
6312 
6313 
6314 
6315 #endif  /* __CROS_EC_COMMANDS_H */
6316