xref: /linux/include/linux/rcupdate.h (revision 44f57d78)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2001
6  *
7  * Author: Dipankar Sarma <dipankar@in.ibm.com>
8  *
9  * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11  * Papers:
12  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14  *
15  * For detailed explanation of Read-Copy Update mechanism see -
16  *		http://lse.sourceforge.net/locking/rcupdate.html
17  *
18  */
19 
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22 
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <asm/processor.h>
31 #include <linux/cpumask.h>
32 
33 #define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
34 #define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
35 #define ulong2long(a)		(*(long *)(&(a)))
36 
37 /* Exported common interfaces */
38 void call_rcu(struct rcu_head *head, rcu_callback_t func);
39 void rcu_barrier_tasks(void);
40 void synchronize_rcu(void);
41 
42 #ifdef CONFIG_PREEMPT_RCU
43 
44 void __rcu_read_lock(void);
45 void __rcu_read_unlock(void);
46 
47 /*
48  * Defined as a macro as it is a very low level header included from
49  * areas that don't even know about current.  This gives the rcu_read_lock()
50  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
51  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
52  */
53 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
54 
55 #else /* #ifdef CONFIG_PREEMPT_RCU */
56 
57 static inline void __rcu_read_lock(void)
58 {
59 	preempt_disable();
60 }
61 
62 static inline void __rcu_read_unlock(void)
63 {
64 	preempt_enable();
65 }
66 
67 static inline int rcu_preempt_depth(void)
68 {
69 	return 0;
70 }
71 
72 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
73 
74 /* Internal to kernel */
75 void rcu_init(void);
76 extern int rcu_scheduler_active __read_mostly;
77 void rcu_sched_clock_irq(int user);
78 void rcu_report_dead(unsigned int cpu);
79 void rcutree_migrate_callbacks(int cpu);
80 
81 #ifdef CONFIG_RCU_STALL_COMMON
82 void rcu_sysrq_start(void);
83 void rcu_sysrq_end(void);
84 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
85 static inline void rcu_sysrq_start(void) { }
86 static inline void rcu_sysrq_end(void) { }
87 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
88 
89 #ifdef CONFIG_NO_HZ_FULL
90 void rcu_user_enter(void);
91 void rcu_user_exit(void);
92 #else
93 static inline void rcu_user_enter(void) { }
94 static inline void rcu_user_exit(void) { }
95 #endif /* CONFIG_NO_HZ_FULL */
96 
97 #ifdef CONFIG_RCU_NOCB_CPU
98 void rcu_init_nohz(void);
99 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
100 static inline void rcu_init_nohz(void) { }
101 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
102 
103 /**
104  * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
105  * @a: Code that RCU needs to pay attention to.
106  *
107  * RCU read-side critical sections are forbidden in the inner idle loop,
108  * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
109  * will happily ignore any such read-side critical sections.  However,
110  * things like powertop need tracepoints in the inner idle loop.
111  *
112  * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
113  * will tell RCU that it needs to pay attention, invoke its argument
114  * (in this example, calling the do_something_with_RCU() function),
115  * and then tell RCU to go back to ignoring this CPU.  It is permissible
116  * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
117  * on the order of a million or so, even on 32-bit systems).  It is
118  * not legal to block within RCU_NONIDLE(), nor is it permissible to
119  * transfer control either into or out of RCU_NONIDLE()'s statement.
120  */
121 #define RCU_NONIDLE(a) \
122 	do { \
123 		rcu_irq_enter_irqson(); \
124 		do { a; } while (0); \
125 		rcu_irq_exit_irqson(); \
126 	} while (0)
127 
128 /*
129  * Note a quasi-voluntary context switch for RCU-tasks's benefit.
130  * This is a macro rather than an inline function to avoid #include hell.
131  */
132 #ifdef CONFIG_TASKS_RCU
133 #define rcu_tasks_qs(t) \
134 	do { \
135 		if (READ_ONCE((t)->rcu_tasks_holdout)) \
136 			WRITE_ONCE((t)->rcu_tasks_holdout, false); \
137 	} while (0)
138 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t)
139 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
140 void synchronize_rcu_tasks(void);
141 void exit_tasks_rcu_start(void);
142 void exit_tasks_rcu_finish(void);
143 #else /* #ifdef CONFIG_TASKS_RCU */
144 #define rcu_tasks_qs(t)	do { } while (0)
145 #define rcu_note_voluntary_context_switch(t) do { } while (0)
146 #define call_rcu_tasks call_rcu
147 #define synchronize_rcu_tasks synchronize_rcu
148 static inline void exit_tasks_rcu_start(void) { }
149 static inline void exit_tasks_rcu_finish(void) { }
150 #endif /* #else #ifdef CONFIG_TASKS_RCU */
151 
152 /**
153  * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
154  *
155  * This macro resembles cond_resched(), except that it is defined to
156  * report potential quiescent states to RCU-tasks even if the cond_resched()
157  * machinery were to be shut off, as some advocate for PREEMPT kernels.
158  */
159 #define cond_resched_tasks_rcu_qs() \
160 do { \
161 	rcu_tasks_qs(current); \
162 	cond_resched(); \
163 } while (0)
164 
165 /*
166  * Infrastructure to implement the synchronize_() primitives in
167  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
168  */
169 
170 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
171 #include <linux/rcutree.h>
172 #elif defined(CONFIG_TINY_RCU)
173 #include <linux/rcutiny.h>
174 #else
175 #error "Unknown RCU implementation specified to kernel configuration"
176 #endif
177 
178 /*
179  * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
180  * are needed for dynamic initialization and destruction of rcu_head
181  * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
182  * dynamic initialization and destruction of statically allocated rcu_head
183  * structures.  However, rcu_head structures allocated dynamically in the
184  * heap don't need any initialization.
185  */
186 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
187 void init_rcu_head(struct rcu_head *head);
188 void destroy_rcu_head(struct rcu_head *head);
189 void init_rcu_head_on_stack(struct rcu_head *head);
190 void destroy_rcu_head_on_stack(struct rcu_head *head);
191 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
192 static inline void init_rcu_head(struct rcu_head *head) { }
193 static inline void destroy_rcu_head(struct rcu_head *head) { }
194 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
195 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
196 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
197 
198 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
199 bool rcu_lockdep_current_cpu_online(void);
200 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
201 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
202 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
203 
204 #ifdef CONFIG_DEBUG_LOCK_ALLOC
205 
206 static inline void rcu_lock_acquire(struct lockdep_map *map)
207 {
208 	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
209 }
210 
211 static inline void rcu_lock_release(struct lockdep_map *map)
212 {
213 	lock_release(map, 1, _THIS_IP_);
214 }
215 
216 extern struct lockdep_map rcu_lock_map;
217 extern struct lockdep_map rcu_bh_lock_map;
218 extern struct lockdep_map rcu_sched_lock_map;
219 extern struct lockdep_map rcu_callback_map;
220 int debug_lockdep_rcu_enabled(void);
221 int rcu_read_lock_held(void);
222 int rcu_read_lock_bh_held(void);
223 int rcu_read_lock_sched_held(void);
224 
225 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
226 
227 # define rcu_lock_acquire(a)		do { } while (0)
228 # define rcu_lock_release(a)		do { } while (0)
229 
230 static inline int rcu_read_lock_held(void)
231 {
232 	return 1;
233 }
234 
235 static inline int rcu_read_lock_bh_held(void)
236 {
237 	return 1;
238 }
239 
240 static inline int rcu_read_lock_sched_held(void)
241 {
242 	return !preemptible();
243 }
244 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
245 
246 #ifdef CONFIG_PROVE_RCU
247 
248 /**
249  * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
250  * @c: condition to check
251  * @s: informative message
252  */
253 #define RCU_LOCKDEP_WARN(c, s)						\
254 	do {								\
255 		static bool __section(.data.unlikely) __warned;		\
256 		if (debug_lockdep_rcu_enabled() && !__warned && (c)) {	\
257 			__warned = true;				\
258 			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
259 		}							\
260 	} while (0)
261 
262 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
263 static inline void rcu_preempt_sleep_check(void)
264 {
265 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
266 			 "Illegal context switch in RCU read-side critical section");
267 }
268 #else /* #ifdef CONFIG_PROVE_RCU */
269 static inline void rcu_preempt_sleep_check(void) { }
270 #endif /* #else #ifdef CONFIG_PROVE_RCU */
271 
272 #define rcu_sleep_check()						\
273 	do {								\
274 		rcu_preempt_sleep_check();				\
275 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
276 				 "Illegal context switch in RCU-bh read-side critical section"); \
277 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
278 				 "Illegal context switch in RCU-sched read-side critical section"); \
279 	} while (0)
280 
281 #else /* #ifdef CONFIG_PROVE_RCU */
282 
283 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
284 #define rcu_sleep_check() do { } while (0)
285 
286 #endif /* #else #ifdef CONFIG_PROVE_RCU */
287 
288 /*
289  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
290  * and rcu_assign_pointer().  Some of these could be folded into their
291  * callers, but they are left separate in order to ease introduction of
292  * multiple pointers markings to match different RCU implementations
293  * (e.g., __srcu), should this make sense in the future.
294  */
295 
296 #ifdef __CHECKER__
297 #define rcu_check_sparse(p, space) \
298 	((void)(((typeof(*p) space *)p) == p))
299 #else /* #ifdef __CHECKER__ */
300 #define rcu_check_sparse(p, space)
301 #endif /* #else #ifdef __CHECKER__ */
302 
303 #define __rcu_access_pointer(p, space) \
304 ({ \
305 	typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
306 	rcu_check_sparse(p, space); \
307 	((typeof(*p) __force __kernel *)(_________p1)); \
308 })
309 #define __rcu_dereference_check(p, c, space) \
310 ({ \
311 	/* Dependency order vs. p above. */ \
312 	typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
313 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
314 	rcu_check_sparse(p, space); \
315 	((typeof(*p) __force __kernel *)(________p1)); \
316 })
317 #define __rcu_dereference_protected(p, c, space) \
318 ({ \
319 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
320 	rcu_check_sparse(p, space); \
321 	((typeof(*p) __force __kernel *)(p)); \
322 })
323 #define rcu_dereference_raw(p) \
324 ({ \
325 	/* Dependency order vs. p above. */ \
326 	typeof(p) ________p1 = READ_ONCE(p); \
327 	((typeof(*p) __force __kernel *)(________p1)); \
328 })
329 
330 /**
331  * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
332  * @v: The value to statically initialize with.
333  */
334 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
335 
336 /**
337  * rcu_assign_pointer() - assign to RCU-protected pointer
338  * @p: pointer to assign to
339  * @v: value to assign (publish)
340  *
341  * Assigns the specified value to the specified RCU-protected
342  * pointer, ensuring that any concurrent RCU readers will see
343  * any prior initialization.
344  *
345  * Inserts memory barriers on architectures that require them
346  * (which is most of them), and also prevents the compiler from
347  * reordering the code that initializes the structure after the pointer
348  * assignment.  More importantly, this call documents which pointers
349  * will be dereferenced by RCU read-side code.
350  *
351  * In some special cases, you may use RCU_INIT_POINTER() instead
352  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
353  * to the fact that it does not constrain either the CPU or the compiler.
354  * That said, using RCU_INIT_POINTER() when you should have used
355  * rcu_assign_pointer() is a very bad thing that results in
356  * impossible-to-diagnose memory corruption.  So please be careful.
357  * See the RCU_INIT_POINTER() comment header for details.
358  *
359  * Note that rcu_assign_pointer() evaluates each of its arguments only
360  * once, appearances notwithstanding.  One of the "extra" evaluations
361  * is in typeof() and the other visible only to sparse (__CHECKER__),
362  * neither of which actually execute the argument.  As with most cpp
363  * macros, this execute-arguments-only-once property is important, so
364  * please be careful when making changes to rcu_assign_pointer() and the
365  * other macros that it invokes.
366  */
367 #define rcu_assign_pointer(p, v)					      \
368 ({									      \
369 	uintptr_t _r_a_p__v = (uintptr_t)(v);				      \
370 	rcu_check_sparse(p, __rcu);				      \
371 									      \
372 	if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)	      \
373 		WRITE_ONCE((p), (typeof(p))(_r_a_p__v));		      \
374 	else								      \
375 		smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
376 	_r_a_p__v;							      \
377 })
378 
379 /**
380  * rcu_swap_protected() - swap an RCU and a regular pointer
381  * @rcu_ptr: RCU pointer
382  * @ptr: regular pointer
383  * @c: the conditions under which the dereference will take place
384  *
385  * Perform swap(@rcu_ptr, @ptr) where @rcu_ptr is an RCU-annotated pointer and
386  * @c is the argument that is passed to the rcu_dereference_protected() call
387  * used to read that pointer.
388  */
389 #define rcu_swap_protected(rcu_ptr, ptr, c) do {			\
390 	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
391 	rcu_assign_pointer((rcu_ptr), (ptr));				\
392 	(ptr) = __tmp;							\
393 } while (0)
394 
395 /**
396  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
397  * @p: The pointer to read
398  *
399  * Return the value of the specified RCU-protected pointer, but omit the
400  * lockdep checks for being in an RCU read-side critical section.  This is
401  * useful when the value of this pointer is accessed, but the pointer is
402  * not dereferenced, for example, when testing an RCU-protected pointer
403  * against NULL.  Although rcu_access_pointer() may also be used in cases
404  * where update-side locks prevent the value of the pointer from changing,
405  * you should instead use rcu_dereference_protected() for this use case.
406  *
407  * It is also permissible to use rcu_access_pointer() when read-side
408  * access to the pointer was removed at least one grace period ago, as
409  * is the case in the context of the RCU callback that is freeing up
410  * the data, or after a synchronize_rcu() returns.  This can be useful
411  * when tearing down multi-linked structures after a grace period
412  * has elapsed.
413  */
414 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
415 
416 /**
417  * rcu_dereference_check() - rcu_dereference with debug checking
418  * @p: The pointer to read, prior to dereferencing
419  * @c: The conditions under which the dereference will take place
420  *
421  * Do an rcu_dereference(), but check that the conditions under which the
422  * dereference will take place are correct.  Typically the conditions
423  * indicate the various locking conditions that should be held at that
424  * point.  The check should return true if the conditions are satisfied.
425  * An implicit check for being in an RCU read-side critical section
426  * (rcu_read_lock()) is included.
427  *
428  * For example:
429  *
430  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
431  *
432  * could be used to indicate to lockdep that foo->bar may only be dereferenced
433  * if either rcu_read_lock() is held, or that the lock required to replace
434  * the bar struct at foo->bar is held.
435  *
436  * Note that the list of conditions may also include indications of when a lock
437  * need not be held, for example during initialisation or destruction of the
438  * target struct:
439  *
440  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
441  *					      atomic_read(&foo->usage) == 0);
442  *
443  * Inserts memory barriers on architectures that require them
444  * (currently only the Alpha), prevents the compiler from refetching
445  * (and from merging fetches), and, more importantly, documents exactly
446  * which pointers are protected by RCU and checks that the pointer is
447  * annotated as __rcu.
448  */
449 #define rcu_dereference_check(p, c) \
450 	__rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
451 
452 /**
453  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
454  * @p: The pointer to read, prior to dereferencing
455  * @c: The conditions under which the dereference will take place
456  *
457  * This is the RCU-bh counterpart to rcu_dereference_check().
458  */
459 #define rcu_dereference_bh_check(p, c) \
460 	__rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
461 
462 /**
463  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
464  * @p: The pointer to read, prior to dereferencing
465  * @c: The conditions under which the dereference will take place
466  *
467  * This is the RCU-sched counterpart to rcu_dereference_check().
468  */
469 #define rcu_dereference_sched_check(p, c) \
470 	__rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
471 				__rcu)
472 
473 /*
474  * The tracing infrastructure traces RCU (we want that), but unfortunately
475  * some of the RCU checks causes tracing to lock up the system.
476  *
477  * The no-tracing version of rcu_dereference_raw() must not call
478  * rcu_read_lock_held().
479  */
480 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
481 
482 /**
483  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
484  * @p: The pointer to read, prior to dereferencing
485  * @c: The conditions under which the dereference will take place
486  *
487  * Return the value of the specified RCU-protected pointer, but omit
488  * the READ_ONCE().  This is useful in cases where update-side locks
489  * prevent the value of the pointer from changing.  Please note that this
490  * primitive does *not* prevent the compiler from repeating this reference
491  * or combining it with other references, so it should not be used without
492  * protection of appropriate locks.
493  *
494  * This function is only for update-side use.  Using this function
495  * when protected only by rcu_read_lock() will result in infrequent
496  * but very ugly failures.
497  */
498 #define rcu_dereference_protected(p, c) \
499 	__rcu_dereference_protected((p), (c), __rcu)
500 
501 
502 /**
503  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
504  * @p: The pointer to read, prior to dereferencing
505  *
506  * This is a simple wrapper around rcu_dereference_check().
507  */
508 #define rcu_dereference(p) rcu_dereference_check(p, 0)
509 
510 /**
511  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
512  * @p: The pointer to read, prior to dereferencing
513  *
514  * Makes rcu_dereference_check() do the dirty work.
515  */
516 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
517 
518 /**
519  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
520  * @p: The pointer to read, prior to dereferencing
521  *
522  * Makes rcu_dereference_check() do the dirty work.
523  */
524 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
525 
526 /**
527  * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
528  * @p: The pointer to hand off
529  *
530  * This is simply an identity function, but it documents where a pointer
531  * is handed off from RCU to some other synchronization mechanism, for
532  * example, reference counting or locking.  In C11, it would map to
533  * kill_dependency().  It could be used as follows::
534  *
535  *	rcu_read_lock();
536  *	p = rcu_dereference(gp);
537  *	long_lived = is_long_lived(p);
538  *	if (long_lived) {
539  *		if (!atomic_inc_not_zero(p->refcnt))
540  *			long_lived = false;
541  *		else
542  *			p = rcu_pointer_handoff(p);
543  *	}
544  *	rcu_read_unlock();
545  */
546 #define rcu_pointer_handoff(p) (p)
547 
548 /**
549  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
550  *
551  * When synchronize_rcu() is invoked on one CPU while other CPUs
552  * are within RCU read-side critical sections, then the
553  * synchronize_rcu() is guaranteed to block until after all the other
554  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
555  * on one CPU while other CPUs are within RCU read-side critical
556  * sections, invocation of the corresponding RCU callback is deferred
557  * until after the all the other CPUs exit their critical sections.
558  *
559  * Note, however, that RCU callbacks are permitted to run concurrently
560  * with new RCU read-side critical sections.  One way that this can happen
561  * is via the following sequence of events: (1) CPU 0 enters an RCU
562  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
563  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
564  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
565  * callback is invoked.  This is legal, because the RCU read-side critical
566  * section that was running concurrently with the call_rcu() (and which
567  * therefore might be referencing something that the corresponding RCU
568  * callback would free up) has completed before the corresponding
569  * RCU callback is invoked.
570  *
571  * RCU read-side critical sections may be nested.  Any deferred actions
572  * will be deferred until the outermost RCU read-side critical section
573  * completes.
574  *
575  * You can avoid reading and understanding the next paragraph by
576  * following this rule: don't put anything in an rcu_read_lock() RCU
577  * read-side critical section that would block in a !PREEMPT kernel.
578  * But if you want the full story, read on!
579  *
580  * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
581  * it is illegal to block while in an RCU read-side critical section.
582  * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
583  * kernel builds, RCU read-side critical sections may be preempted,
584  * but explicit blocking is illegal.  Finally, in preemptible RCU
585  * implementations in real-time (with -rt patchset) kernel builds, RCU
586  * read-side critical sections may be preempted and they may also block, but
587  * only when acquiring spinlocks that are subject to priority inheritance.
588  */
589 static inline void rcu_read_lock(void)
590 {
591 	__rcu_read_lock();
592 	__acquire(RCU);
593 	rcu_lock_acquire(&rcu_lock_map);
594 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
595 			 "rcu_read_lock() used illegally while idle");
596 }
597 
598 /*
599  * So where is rcu_write_lock()?  It does not exist, as there is no
600  * way for writers to lock out RCU readers.  This is a feature, not
601  * a bug -- this property is what provides RCU's performance benefits.
602  * Of course, writers must coordinate with each other.  The normal
603  * spinlock primitives work well for this, but any other technique may be
604  * used as well.  RCU does not care how the writers keep out of each
605  * others' way, as long as they do so.
606  */
607 
608 /**
609  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
610  *
611  * In most situations, rcu_read_unlock() is immune from deadlock.
612  * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
613  * is responsible for deboosting, which it does via rt_mutex_unlock().
614  * Unfortunately, this function acquires the scheduler's runqueue and
615  * priority-inheritance spinlocks.  This means that deadlock could result
616  * if the caller of rcu_read_unlock() already holds one of these locks or
617  * any lock that is ever acquired while holding them.
618  *
619  * That said, RCU readers are never priority boosted unless they were
620  * preempted.  Therefore, one way to avoid deadlock is to make sure
621  * that preemption never happens within any RCU read-side critical
622  * section whose outermost rcu_read_unlock() is called with one of
623  * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
624  * a number of ways, for example, by invoking preempt_disable() before
625  * critical section's outermost rcu_read_lock().
626  *
627  * Given that the set of locks acquired by rt_mutex_unlock() might change
628  * at any time, a somewhat more future-proofed approach is to make sure
629  * that that preemption never happens within any RCU read-side critical
630  * section whose outermost rcu_read_unlock() is called with irqs disabled.
631  * This approach relies on the fact that rt_mutex_unlock() currently only
632  * acquires irq-disabled locks.
633  *
634  * The second of these two approaches is best in most situations,
635  * however, the first approach can also be useful, at least to those
636  * developers willing to keep abreast of the set of locks acquired by
637  * rt_mutex_unlock().
638  *
639  * See rcu_read_lock() for more information.
640  */
641 static inline void rcu_read_unlock(void)
642 {
643 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
644 			 "rcu_read_unlock() used illegally while idle");
645 	__release(RCU);
646 	__rcu_read_unlock();
647 	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
648 }
649 
650 /**
651  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
652  *
653  * This is equivalent of rcu_read_lock(), but also disables softirqs.
654  * Note that anything else that disables softirqs can also serve as
655  * an RCU read-side critical section.
656  *
657  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
658  * must occur in the same context, for example, it is illegal to invoke
659  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
660  * was invoked from some other task.
661  */
662 static inline void rcu_read_lock_bh(void)
663 {
664 	local_bh_disable();
665 	__acquire(RCU_BH);
666 	rcu_lock_acquire(&rcu_bh_lock_map);
667 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
668 			 "rcu_read_lock_bh() used illegally while idle");
669 }
670 
671 /*
672  * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
673  *
674  * See rcu_read_lock_bh() for more information.
675  */
676 static inline void rcu_read_unlock_bh(void)
677 {
678 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
679 			 "rcu_read_unlock_bh() used illegally while idle");
680 	rcu_lock_release(&rcu_bh_lock_map);
681 	__release(RCU_BH);
682 	local_bh_enable();
683 }
684 
685 /**
686  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
687  *
688  * This is equivalent of rcu_read_lock(), but disables preemption.
689  * Read-side critical sections can also be introduced by anything else
690  * that disables preemption, including local_irq_disable() and friends.
691  *
692  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
693  * must occur in the same context, for example, it is illegal to invoke
694  * rcu_read_unlock_sched() from process context if the matching
695  * rcu_read_lock_sched() was invoked from an NMI handler.
696  */
697 static inline void rcu_read_lock_sched(void)
698 {
699 	preempt_disable();
700 	__acquire(RCU_SCHED);
701 	rcu_lock_acquire(&rcu_sched_lock_map);
702 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
703 			 "rcu_read_lock_sched() used illegally while idle");
704 }
705 
706 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
707 static inline notrace void rcu_read_lock_sched_notrace(void)
708 {
709 	preempt_disable_notrace();
710 	__acquire(RCU_SCHED);
711 }
712 
713 /*
714  * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
715  *
716  * See rcu_read_lock_sched for more information.
717  */
718 static inline void rcu_read_unlock_sched(void)
719 {
720 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
721 			 "rcu_read_unlock_sched() used illegally while idle");
722 	rcu_lock_release(&rcu_sched_lock_map);
723 	__release(RCU_SCHED);
724 	preempt_enable();
725 }
726 
727 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
728 static inline notrace void rcu_read_unlock_sched_notrace(void)
729 {
730 	__release(RCU_SCHED);
731 	preempt_enable_notrace();
732 }
733 
734 /**
735  * RCU_INIT_POINTER() - initialize an RCU protected pointer
736  * @p: The pointer to be initialized.
737  * @v: The value to initialized the pointer to.
738  *
739  * Initialize an RCU-protected pointer in special cases where readers
740  * do not need ordering constraints on the CPU or the compiler.  These
741  * special cases are:
742  *
743  * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
744  * 2.	The caller has taken whatever steps are required to prevent
745  *	RCU readers from concurrently accessing this pointer *or*
746  * 3.	The referenced data structure has already been exposed to
747  *	readers either at compile time or via rcu_assign_pointer() *and*
748  *
749  *	a.	You have not made *any* reader-visible changes to
750  *		this structure since then *or*
751  *	b.	It is OK for readers accessing this structure from its
752  *		new location to see the old state of the structure.  (For
753  *		example, the changes were to statistical counters or to
754  *		other state where exact synchronization is not required.)
755  *
756  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
757  * result in impossible-to-diagnose memory corruption.  As in the structures
758  * will look OK in crash dumps, but any concurrent RCU readers might
759  * see pre-initialized values of the referenced data structure.  So
760  * please be very careful how you use RCU_INIT_POINTER()!!!
761  *
762  * If you are creating an RCU-protected linked structure that is accessed
763  * by a single external-to-structure RCU-protected pointer, then you may
764  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
765  * pointers, but you must use rcu_assign_pointer() to initialize the
766  * external-to-structure pointer *after* you have completely initialized
767  * the reader-accessible portions of the linked structure.
768  *
769  * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
770  * ordering guarantees for either the CPU or the compiler.
771  */
772 #define RCU_INIT_POINTER(p, v) \
773 	do { \
774 		rcu_check_sparse(p, __rcu); \
775 		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
776 	} while (0)
777 
778 /**
779  * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
780  * @p: The pointer to be initialized.
781  * @v: The value to initialized the pointer to.
782  *
783  * GCC-style initialization for an RCU-protected pointer in a structure field.
784  */
785 #define RCU_POINTER_INITIALIZER(p, v) \
786 		.p = RCU_INITIALIZER(v)
787 
788 /*
789  * Does the specified offset indicate that the corresponding rcu_head
790  * structure can be handled by kfree_rcu()?
791  */
792 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
793 
794 /*
795  * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
796  */
797 #define __kfree_rcu(head, offset) \
798 	do { \
799 		BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
800 		kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
801 	} while (0)
802 
803 /**
804  * kfree_rcu() - kfree an object after a grace period.
805  * @ptr:	pointer to kfree
806  * @rcu_head:	the name of the struct rcu_head within the type of @ptr.
807  *
808  * Many rcu callbacks functions just call kfree() on the base structure.
809  * These functions are trivial, but their size adds up, and furthermore
810  * when they are used in a kernel module, that module must invoke the
811  * high-latency rcu_barrier() function at module-unload time.
812  *
813  * The kfree_rcu() function handles this issue.  Rather than encoding a
814  * function address in the embedded rcu_head structure, kfree_rcu() instead
815  * encodes the offset of the rcu_head structure within the base structure.
816  * Because the functions are not allowed in the low-order 4096 bytes of
817  * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
818  * If the offset is larger than 4095 bytes, a compile-time error will
819  * be generated in __kfree_rcu().  If this error is triggered, you can
820  * either fall back to use of call_rcu() or rearrange the structure to
821  * position the rcu_head structure into the first 4096 bytes.
822  *
823  * Note that the allowable offset might decrease in the future, for example,
824  * to allow something like kmem_cache_free_rcu().
825  *
826  * The BUILD_BUG_ON check must not involve any function calls, hence the
827  * checks are done in macros here.
828  */
829 #define kfree_rcu(ptr, rcu_head)					\
830 	__kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
831 
832 
833 /*
834  * Place this after a lock-acquisition primitive to guarantee that
835  * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
836  * if the UNLOCK and LOCK are executed by the same CPU or if the
837  * UNLOCK and LOCK operate on the same lock variable.
838  */
839 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
840 #define smp_mb__after_unlock_lock()	smp_mb()  /* Full ordering for lock. */
841 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
842 #define smp_mb__after_unlock_lock()	do { } while (0)
843 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
844 
845 
846 /* Has the specified rcu_head structure been handed to call_rcu()? */
847 
848 /**
849  * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
850  * @rhp: The rcu_head structure to initialize.
851  *
852  * If you intend to invoke rcu_head_after_call_rcu() to test whether a
853  * given rcu_head structure has already been passed to call_rcu(), then
854  * you must also invoke this rcu_head_init() function on it just after
855  * allocating that structure.  Calls to this function must not race with
856  * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
857  */
858 static inline void rcu_head_init(struct rcu_head *rhp)
859 {
860 	rhp->func = (rcu_callback_t)~0L;
861 }
862 
863 /**
864  * rcu_head_after_call_rcu - Has this rcu_head been passed to call_rcu()?
865  * @rhp: The rcu_head structure to test.
866  * @f: The function passed to call_rcu() along with @rhp.
867  *
868  * Returns @true if the @rhp has been passed to call_rcu() with @func,
869  * and @false otherwise.  Emits a warning in any other case, including
870  * the case where @rhp has already been invoked after a grace period.
871  * Calls to this function must not race with callback invocation.  One way
872  * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
873  * in an RCU read-side critical section that includes a read-side fetch
874  * of the pointer to the structure containing @rhp.
875  */
876 static inline bool
877 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
878 {
879 	rcu_callback_t func = READ_ONCE(rhp->func);
880 
881 	if (func == f)
882 		return true;
883 	WARN_ON_ONCE(func != (rcu_callback_t)~0L);
884 	return false;
885 }
886 
887 #endif /* __LINUX_RCUPDATE_H */
888