xref: /linux/include/linux/rmap.h (revision d6fd48ef)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_RMAP_H
3 #define _LINUX_RMAP_H
4 /*
5  * Declarations for Reverse Mapping functions in mm/rmap.c
6  */
7 
8 #include <linux/list.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/rwsem.h>
12 #include <linux/memcontrol.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/memremap.h>
16 
17 /*
18  * The anon_vma heads a list of private "related" vmas, to scan if
19  * an anonymous page pointing to this anon_vma needs to be unmapped:
20  * the vmas on the list will be related by forking, or by splitting.
21  *
22  * Since vmas come and go as they are split and merged (particularly
23  * in mprotect), the mapping field of an anonymous page cannot point
24  * directly to a vma: instead it points to an anon_vma, on whose list
25  * the related vmas can be easily linked or unlinked.
26  *
27  * After unlinking the last vma on the list, we must garbage collect
28  * the anon_vma object itself: we're guaranteed no page can be
29  * pointing to this anon_vma once its vma list is empty.
30  */
31 struct anon_vma {
32 	struct anon_vma *root;		/* Root of this anon_vma tree */
33 	struct rw_semaphore rwsem;	/* W: modification, R: walking the list */
34 	/*
35 	 * The refcount is taken on an anon_vma when there is no
36 	 * guarantee that the vma of page tables will exist for
37 	 * the duration of the operation. A caller that takes
38 	 * the reference is responsible for clearing up the
39 	 * anon_vma if they are the last user on release
40 	 */
41 	atomic_t refcount;
42 
43 	/*
44 	 * Count of child anon_vmas. Equals to the count of all anon_vmas that
45 	 * have ->parent pointing to this one, including itself.
46 	 *
47 	 * This counter is used for making decision about reusing anon_vma
48 	 * instead of forking new one. See comments in function anon_vma_clone.
49 	 */
50 	unsigned long num_children;
51 	/* Count of VMAs whose ->anon_vma pointer points to this object. */
52 	unsigned long num_active_vmas;
53 
54 	struct anon_vma *parent;	/* Parent of this anon_vma */
55 
56 	/*
57 	 * NOTE: the LSB of the rb_root.rb_node is set by
58 	 * mm_take_all_locks() _after_ taking the above lock. So the
59 	 * rb_root must only be read/written after taking the above lock
60 	 * to be sure to see a valid next pointer. The LSB bit itself
61 	 * is serialized by a system wide lock only visible to
62 	 * mm_take_all_locks() (mm_all_locks_mutex).
63 	 */
64 
65 	/* Interval tree of private "related" vmas */
66 	struct rb_root_cached rb_root;
67 };
68 
69 /*
70  * The copy-on-write semantics of fork mean that an anon_vma
71  * can become associated with multiple processes. Furthermore,
72  * each child process will have its own anon_vma, where new
73  * pages for that process are instantiated.
74  *
75  * This structure allows us to find the anon_vmas associated
76  * with a VMA, or the VMAs associated with an anon_vma.
77  * The "same_vma" list contains the anon_vma_chains linking
78  * all the anon_vmas associated with this VMA.
79  * The "rb" field indexes on an interval tree the anon_vma_chains
80  * which link all the VMAs associated with this anon_vma.
81  */
82 struct anon_vma_chain {
83 	struct vm_area_struct *vma;
84 	struct anon_vma *anon_vma;
85 	struct list_head same_vma;   /* locked by mmap_lock & page_table_lock */
86 	struct rb_node rb;			/* locked by anon_vma->rwsem */
87 	unsigned long rb_subtree_last;
88 #ifdef CONFIG_DEBUG_VM_RB
89 	unsigned long cached_vma_start, cached_vma_last;
90 #endif
91 };
92 
93 enum ttu_flags {
94 	TTU_SPLIT_HUGE_PMD	= 0x4,	/* split huge PMD if any */
95 	TTU_IGNORE_MLOCK	= 0x8,	/* ignore mlock */
96 	TTU_SYNC		= 0x10,	/* avoid racy checks with PVMW_SYNC */
97 	TTU_HWPOISON		= 0x20,	/* do convert pte to hwpoison entry */
98 	TTU_BATCH_FLUSH		= 0x40,	/* Batch TLB flushes where possible
99 					 * and caller guarantees they will
100 					 * do a final flush if necessary */
101 	TTU_RMAP_LOCKED		= 0x80,	/* do not grab rmap lock:
102 					 * caller holds it */
103 };
104 
105 #ifdef CONFIG_MMU
106 static inline void get_anon_vma(struct anon_vma *anon_vma)
107 {
108 	atomic_inc(&anon_vma->refcount);
109 }
110 
111 void __put_anon_vma(struct anon_vma *anon_vma);
112 
113 static inline void put_anon_vma(struct anon_vma *anon_vma)
114 {
115 	if (atomic_dec_and_test(&anon_vma->refcount))
116 		__put_anon_vma(anon_vma);
117 }
118 
119 static inline void anon_vma_lock_write(struct anon_vma *anon_vma)
120 {
121 	down_write(&anon_vma->root->rwsem);
122 }
123 
124 static inline void anon_vma_unlock_write(struct anon_vma *anon_vma)
125 {
126 	up_write(&anon_vma->root->rwsem);
127 }
128 
129 static inline void anon_vma_lock_read(struct anon_vma *anon_vma)
130 {
131 	down_read(&anon_vma->root->rwsem);
132 }
133 
134 static inline int anon_vma_trylock_read(struct anon_vma *anon_vma)
135 {
136 	return down_read_trylock(&anon_vma->root->rwsem);
137 }
138 
139 static inline void anon_vma_unlock_read(struct anon_vma *anon_vma)
140 {
141 	up_read(&anon_vma->root->rwsem);
142 }
143 
144 
145 /*
146  * anon_vma helper functions.
147  */
148 void anon_vma_init(void);	/* create anon_vma_cachep */
149 int  __anon_vma_prepare(struct vm_area_struct *);
150 void unlink_anon_vmas(struct vm_area_struct *);
151 int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *);
152 int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *);
153 
154 static inline int anon_vma_prepare(struct vm_area_struct *vma)
155 {
156 	if (likely(vma->anon_vma))
157 		return 0;
158 
159 	return __anon_vma_prepare(vma);
160 }
161 
162 static inline void anon_vma_merge(struct vm_area_struct *vma,
163 				  struct vm_area_struct *next)
164 {
165 	VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma);
166 	unlink_anon_vmas(next);
167 }
168 
169 struct anon_vma *folio_get_anon_vma(struct folio *folio);
170 
171 /* RMAP flags, currently only relevant for some anon rmap operations. */
172 typedef int __bitwise rmap_t;
173 
174 /*
175  * No special request: if the page is a subpage of a compound page, it is
176  * mapped via a PTE. The mapped (sub)page is possibly shared between processes.
177  */
178 #define RMAP_NONE		((__force rmap_t)0)
179 
180 /* The (sub)page is exclusive to a single process. */
181 #define RMAP_EXCLUSIVE		((__force rmap_t)BIT(0))
182 
183 /*
184  * The compound page is not mapped via PTEs, but instead via a single PMD and
185  * should be accounted accordingly.
186  */
187 #define RMAP_COMPOUND		((__force rmap_t)BIT(1))
188 
189 /*
190  * rmap interfaces called when adding or removing pte of page
191  */
192 void page_move_anon_rmap(struct page *, struct vm_area_struct *);
193 void page_add_anon_rmap(struct page *, struct vm_area_struct *,
194 		unsigned long address, rmap_t flags);
195 void page_add_new_anon_rmap(struct page *, struct vm_area_struct *,
196 		unsigned long address);
197 void folio_add_new_anon_rmap(struct folio *, struct vm_area_struct *,
198 		unsigned long address);
199 void page_add_file_rmap(struct page *, struct vm_area_struct *,
200 		bool compound);
201 void page_remove_rmap(struct page *, struct vm_area_struct *,
202 		bool compound);
203 
204 void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *,
205 		unsigned long address, rmap_t flags);
206 void hugepage_add_new_anon_rmap(struct folio *, struct vm_area_struct *,
207 		unsigned long address);
208 
209 static inline void __page_dup_rmap(struct page *page, bool compound)
210 {
211 	if (compound) {
212 		struct folio *folio = (struct folio *)page;
213 
214 		VM_BUG_ON_PAGE(compound && !PageHead(page), page);
215 		atomic_inc(&folio->_entire_mapcount);
216 	} else {
217 		atomic_inc(&page->_mapcount);
218 	}
219 }
220 
221 static inline void page_dup_file_rmap(struct page *page, bool compound)
222 {
223 	__page_dup_rmap(page, compound);
224 }
225 
226 /**
227  * page_try_dup_anon_rmap - try duplicating a mapping of an already mapped
228  *			    anonymous page
229  * @page: the page to duplicate the mapping for
230  * @compound: the page is mapped as compound or as a small page
231  * @vma: the source vma
232  *
233  * The caller needs to hold the PT lock and the vma->vma_mm->write_protect_seq.
234  *
235  * Duplicating the mapping can only fail if the page may be pinned; device
236  * private pages cannot get pinned and consequently this function cannot fail.
237  *
238  * If duplicating the mapping succeeds, the page has to be mapped R/O into
239  * the parent and the child. It must *not* get mapped writable after this call.
240  *
241  * Returns 0 if duplicating the mapping succeeded. Returns -EBUSY otherwise.
242  */
243 static inline int page_try_dup_anon_rmap(struct page *page, bool compound,
244 					 struct vm_area_struct *vma)
245 {
246 	VM_BUG_ON_PAGE(!PageAnon(page), page);
247 
248 	/*
249 	 * No need to check+clear for already shared pages, including KSM
250 	 * pages.
251 	 */
252 	if (!PageAnonExclusive(page))
253 		goto dup;
254 
255 	/*
256 	 * If this page may have been pinned by the parent process,
257 	 * don't allow to duplicate the mapping but instead require to e.g.,
258 	 * copy the page immediately for the child so that we'll always
259 	 * guarantee the pinned page won't be randomly replaced in the
260 	 * future on write faults.
261 	 */
262 	if (likely(!is_device_private_page(page) &&
263 	    unlikely(page_needs_cow_for_dma(vma, page))))
264 		return -EBUSY;
265 
266 	ClearPageAnonExclusive(page);
267 	/*
268 	 * It's okay to share the anon page between both processes, mapping
269 	 * the page R/O into both processes.
270 	 */
271 dup:
272 	__page_dup_rmap(page, compound);
273 	return 0;
274 }
275 
276 /**
277  * page_try_share_anon_rmap - try marking an exclusive anonymous page possibly
278  *			      shared to prepare for KSM or temporary unmapping
279  * @page: the exclusive anonymous page to try marking possibly shared
280  *
281  * The caller needs to hold the PT lock and has to have the page table entry
282  * cleared/invalidated.
283  *
284  * This is similar to page_try_dup_anon_rmap(), however, not used during fork()
285  * to duplicate a mapping, but instead to prepare for KSM or temporarily
286  * unmapping a page (swap, migration) via page_remove_rmap().
287  *
288  * Marking the page shared can only fail if the page may be pinned; device
289  * private pages cannot get pinned and consequently this function cannot fail.
290  *
291  * Returns 0 if marking the page possibly shared succeeded. Returns -EBUSY
292  * otherwise.
293  */
294 static inline int page_try_share_anon_rmap(struct page *page)
295 {
296 	VM_BUG_ON_PAGE(!PageAnon(page) || !PageAnonExclusive(page), page);
297 
298 	/* device private pages cannot get pinned via GUP. */
299 	if (unlikely(is_device_private_page(page))) {
300 		ClearPageAnonExclusive(page);
301 		return 0;
302 	}
303 
304 	/*
305 	 * We have to make sure that when we clear PageAnonExclusive, that
306 	 * the page is not pinned and that concurrent GUP-fast won't succeed in
307 	 * concurrently pinning the page.
308 	 *
309 	 * Conceptually, PageAnonExclusive clearing consists of:
310 	 * (A1) Clear PTE
311 	 * (A2) Check if the page is pinned; back off if so.
312 	 * (A3) Clear PageAnonExclusive
313 	 * (A4) Restore PTE (optional, but certainly not writable)
314 	 *
315 	 * When clearing PageAnonExclusive, we cannot possibly map the page
316 	 * writable again, because anon pages that may be shared must never
317 	 * be writable. So in any case, if the PTE was writable it cannot
318 	 * be writable anymore afterwards and there would be a PTE change. Only
319 	 * if the PTE wasn't writable, there might not be a PTE change.
320 	 *
321 	 * Conceptually, GUP-fast pinning of an anon page consists of:
322 	 * (B1) Read the PTE
323 	 * (B2) FOLL_WRITE: check if the PTE is not writable; back off if so.
324 	 * (B3) Pin the mapped page
325 	 * (B4) Check if the PTE changed by re-reading it; back off if so.
326 	 * (B5) If the original PTE is not writable, check if
327 	 *	PageAnonExclusive is not set; back off if so.
328 	 *
329 	 * If the PTE was writable, we only have to make sure that GUP-fast
330 	 * observes a PTE change and properly backs off.
331 	 *
332 	 * If the PTE was not writable, we have to make sure that GUP-fast either
333 	 * detects a (temporary) PTE change or that PageAnonExclusive is cleared
334 	 * and properly backs off.
335 	 *
336 	 * Consequently, when clearing PageAnonExclusive(), we have to make
337 	 * sure that (A1), (A2)/(A3) and (A4) happen in the right memory
338 	 * order. In GUP-fast pinning code, we have to make sure that (B3),(B4)
339 	 * and (B5) happen in the right memory order.
340 	 *
341 	 * We assume that there might not be a memory barrier after
342 	 * clearing/invalidating the PTE (A1) and before restoring the PTE (A4),
343 	 * so we use explicit ones here.
344 	 */
345 
346 	/* Paired with the memory barrier in try_grab_folio(). */
347 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
348 		smp_mb();
349 
350 	if (unlikely(page_maybe_dma_pinned(page)))
351 		return -EBUSY;
352 	ClearPageAnonExclusive(page);
353 
354 	/*
355 	 * This is conceptually a smp_wmb() paired with the smp_rmb() in
356 	 * gup_must_unshare().
357 	 */
358 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
359 		smp_mb__after_atomic();
360 	return 0;
361 }
362 
363 /*
364  * Called from mm/vmscan.c to handle paging out
365  */
366 int folio_referenced(struct folio *, int is_locked,
367 			struct mem_cgroup *memcg, unsigned long *vm_flags);
368 
369 void try_to_migrate(struct folio *folio, enum ttu_flags flags);
370 void try_to_unmap(struct folio *, enum ttu_flags flags);
371 
372 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
373 				unsigned long end, struct page **pages,
374 				void *arg);
375 
376 /* Avoid racy checks */
377 #define PVMW_SYNC		(1 << 0)
378 /* Look for migration entries rather than present PTEs */
379 #define PVMW_MIGRATION		(1 << 1)
380 
381 struct page_vma_mapped_walk {
382 	unsigned long pfn;
383 	unsigned long nr_pages;
384 	pgoff_t pgoff;
385 	struct vm_area_struct *vma;
386 	unsigned long address;
387 	pmd_t *pmd;
388 	pte_t *pte;
389 	spinlock_t *ptl;
390 	unsigned int flags;
391 };
392 
393 #define DEFINE_PAGE_VMA_WALK(name, _page, _vma, _address, _flags)	\
394 	struct page_vma_mapped_walk name = {				\
395 		.pfn = page_to_pfn(_page),				\
396 		.nr_pages = compound_nr(_page),				\
397 		.pgoff = page_to_pgoff(_page),				\
398 		.vma = _vma,						\
399 		.address = _address,					\
400 		.flags = _flags,					\
401 	}
402 
403 #define DEFINE_FOLIO_VMA_WALK(name, _folio, _vma, _address, _flags)	\
404 	struct page_vma_mapped_walk name = {				\
405 		.pfn = folio_pfn(_folio),				\
406 		.nr_pages = folio_nr_pages(_folio),			\
407 		.pgoff = folio_pgoff(_folio),				\
408 		.vma = _vma,						\
409 		.address = _address,					\
410 		.flags = _flags,					\
411 	}
412 
413 static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw)
414 {
415 	/* HugeTLB pte is set to the relevant page table entry without pte_mapped. */
416 	if (pvmw->pte && !is_vm_hugetlb_page(pvmw->vma))
417 		pte_unmap(pvmw->pte);
418 	if (pvmw->ptl)
419 		spin_unlock(pvmw->ptl);
420 }
421 
422 bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw);
423 
424 /*
425  * Used by swapoff to help locate where page is expected in vma.
426  */
427 unsigned long page_address_in_vma(struct page *, struct vm_area_struct *);
428 
429 /*
430  * Cleans the PTEs of shared mappings.
431  * (and since clean PTEs should also be readonly, write protects them too)
432  *
433  * returns the number of cleaned PTEs.
434  */
435 int folio_mkclean(struct folio *);
436 
437 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
438 		      struct vm_area_struct *vma);
439 
440 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked);
441 
442 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
443 
444 /*
445  * rmap_walk_control: To control rmap traversing for specific needs
446  *
447  * arg: passed to rmap_one() and invalid_vma()
448  * try_lock: bail out if the rmap lock is contended
449  * contended: indicate the rmap traversal bailed out due to lock contention
450  * rmap_one: executed on each vma where page is mapped
451  * done: for checking traversing termination condition
452  * anon_lock: for getting anon_lock by optimized way rather than default
453  * invalid_vma: for skipping uninterested vma
454  */
455 struct rmap_walk_control {
456 	void *arg;
457 	bool try_lock;
458 	bool contended;
459 	/*
460 	 * Return false if page table scanning in rmap_walk should be stopped.
461 	 * Otherwise, return true.
462 	 */
463 	bool (*rmap_one)(struct folio *folio, struct vm_area_struct *vma,
464 					unsigned long addr, void *arg);
465 	int (*done)(struct folio *folio);
466 	struct anon_vma *(*anon_lock)(struct folio *folio,
467 				      struct rmap_walk_control *rwc);
468 	bool (*invalid_vma)(struct vm_area_struct *vma, void *arg);
469 };
470 
471 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc);
472 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc);
473 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
474 					  struct rmap_walk_control *rwc);
475 
476 #else	/* !CONFIG_MMU */
477 
478 #define anon_vma_init()		do {} while (0)
479 #define anon_vma_prepare(vma)	(0)
480 #define anon_vma_link(vma)	do {} while (0)
481 
482 static inline int folio_referenced(struct folio *folio, int is_locked,
483 				  struct mem_cgroup *memcg,
484 				  unsigned long *vm_flags)
485 {
486 	*vm_flags = 0;
487 	return 0;
488 }
489 
490 static inline void try_to_unmap(struct folio *folio, enum ttu_flags flags)
491 {
492 }
493 
494 static inline int folio_mkclean(struct folio *folio)
495 {
496 	return 0;
497 }
498 #endif	/* CONFIG_MMU */
499 
500 static inline int page_mkclean(struct page *page)
501 {
502 	return folio_mkclean(page_folio(page));
503 }
504 #endif	/* _LINUX_RMAP_H */
505