xref: /linux/include/linux/sched/mm.h (revision 0be3ff0c)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_MM_H
3 #define _LINUX_SCHED_MM_H
4 
5 #include <linux/kernel.h>
6 #include <linux/atomic.h>
7 #include <linux/sched.h>
8 #include <linux/mm_types.h>
9 #include <linux/gfp.h>
10 #include <linux/sync_core.h>
11 #include <linux/ioasid.h>
12 
13 /*
14  * Routines for handling mm_structs
15  */
16 extern struct mm_struct *mm_alloc(void);
17 
18 /**
19  * mmgrab() - Pin a &struct mm_struct.
20  * @mm: The &struct mm_struct to pin.
21  *
22  * Make sure that @mm will not get freed even after the owning task
23  * exits. This doesn't guarantee that the associated address space
24  * will still exist later on and mmget_not_zero() has to be used before
25  * accessing it.
26  *
27  * This is a preferred way to pin @mm for a longer/unbounded amount
28  * of time.
29  *
30  * Use mmdrop() to release the reference acquired by mmgrab().
31  *
32  * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
33  * of &mm_struct.mm_count vs &mm_struct.mm_users.
34  */
35 static inline void mmgrab(struct mm_struct *mm)
36 {
37 	atomic_inc(&mm->mm_count);
38 }
39 
40 extern void __mmdrop(struct mm_struct *mm);
41 
42 static inline void mmdrop(struct mm_struct *mm)
43 {
44 	/*
45 	 * The implicit full barrier implied by atomic_dec_and_test() is
46 	 * required by the membarrier system call before returning to
47 	 * user-space, after storing to rq->curr.
48 	 */
49 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
50 		__mmdrop(mm);
51 }
52 
53 #ifdef CONFIG_PREEMPT_RT
54 /*
55  * RCU callback for delayed mm drop. Not strictly RCU, but call_rcu() is
56  * by far the least expensive way to do that.
57  */
58 static inline void __mmdrop_delayed(struct rcu_head *rhp)
59 {
60 	struct mm_struct *mm = container_of(rhp, struct mm_struct, delayed_drop);
61 
62 	__mmdrop(mm);
63 }
64 
65 /*
66  * Invoked from finish_task_switch(). Delegates the heavy lifting on RT
67  * kernels via RCU.
68  */
69 static inline void mmdrop_sched(struct mm_struct *mm)
70 {
71 	/* Provides a full memory barrier. See mmdrop() */
72 	if (atomic_dec_and_test(&mm->mm_count))
73 		call_rcu(&mm->delayed_drop, __mmdrop_delayed);
74 }
75 #else
76 static inline void mmdrop_sched(struct mm_struct *mm)
77 {
78 	mmdrop(mm);
79 }
80 #endif
81 
82 /**
83  * mmget() - Pin the address space associated with a &struct mm_struct.
84  * @mm: The address space to pin.
85  *
86  * Make sure that the address space of the given &struct mm_struct doesn't
87  * go away. This does not protect against parts of the address space being
88  * modified or freed, however.
89  *
90  * Never use this function to pin this address space for an
91  * unbounded/indefinite amount of time.
92  *
93  * Use mmput() to release the reference acquired by mmget().
94  *
95  * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
96  * of &mm_struct.mm_count vs &mm_struct.mm_users.
97  */
98 static inline void mmget(struct mm_struct *mm)
99 {
100 	atomic_inc(&mm->mm_users);
101 }
102 
103 static inline bool mmget_not_zero(struct mm_struct *mm)
104 {
105 	return atomic_inc_not_zero(&mm->mm_users);
106 }
107 
108 /* mmput gets rid of the mappings and all user-space */
109 extern void mmput(struct mm_struct *);
110 #ifdef CONFIG_MMU
111 /* same as above but performs the slow path from the async context. Can
112  * be called from the atomic context as well
113  */
114 void mmput_async(struct mm_struct *);
115 #endif
116 
117 /* Grab a reference to a task's mm, if it is not already going away */
118 extern struct mm_struct *get_task_mm(struct task_struct *task);
119 /*
120  * Grab a reference to a task's mm, if it is not already going away
121  * and ptrace_may_access with the mode parameter passed to it
122  * succeeds.
123  */
124 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
125 /* Remove the current tasks stale references to the old mm_struct on exit() */
126 extern void exit_mm_release(struct task_struct *, struct mm_struct *);
127 /* Remove the current tasks stale references to the old mm_struct on exec() */
128 extern void exec_mm_release(struct task_struct *, struct mm_struct *);
129 
130 #ifdef CONFIG_MEMCG
131 extern void mm_update_next_owner(struct mm_struct *mm);
132 #else
133 static inline void mm_update_next_owner(struct mm_struct *mm)
134 {
135 }
136 #endif /* CONFIG_MEMCG */
137 
138 #ifdef CONFIG_MMU
139 #ifndef arch_get_mmap_end
140 #define arch_get_mmap_end(addr)	(TASK_SIZE)
141 #endif
142 
143 #ifndef arch_get_mmap_base
144 #define arch_get_mmap_base(addr, base) (base)
145 #endif
146 
147 extern void arch_pick_mmap_layout(struct mm_struct *mm,
148 				  struct rlimit *rlim_stack);
149 extern unsigned long
150 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
151 		       unsigned long, unsigned long);
152 extern unsigned long
153 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
154 			  unsigned long len, unsigned long pgoff,
155 			  unsigned long flags);
156 #else
157 static inline void arch_pick_mmap_layout(struct mm_struct *mm,
158 					 struct rlimit *rlim_stack) {}
159 #endif
160 
161 static inline bool in_vfork(struct task_struct *tsk)
162 {
163 	bool ret;
164 
165 	/*
166 	 * need RCU to access ->real_parent if CLONE_VM was used along with
167 	 * CLONE_PARENT.
168 	 *
169 	 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
170 	 * imply CLONE_VM
171 	 *
172 	 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
173 	 * ->real_parent is not necessarily the task doing vfork(), so in
174 	 * theory we can't rely on task_lock() if we want to dereference it.
175 	 *
176 	 * And in this case we can't trust the real_parent->mm == tsk->mm
177 	 * check, it can be false negative. But we do not care, if init or
178 	 * another oom-unkillable task does this it should blame itself.
179 	 */
180 	rcu_read_lock();
181 	ret = tsk->vfork_done &&
182 			rcu_dereference(tsk->real_parent)->mm == tsk->mm;
183 	rcu_read_unlock();
184 
185 	return ret;
186 }
187 
188 /*
189  * Applies per-task gfp context to the given allocation flags.
190  * PF_MEMALLOC_NOIO implies GFP_NOIO
191  * PF_MEMALLOC_NOFS implies GFP_NOFS
192  * PF_MEMALLOC_PIN  implies !GFP_MOVABLE
193  */
194 static inline gfp_t current_gfp_context(gfp_t flags)
195 {
196 	unsigned int pflags = READ_ONCE(current->flags);
197 
198 	if (unlikely(pflags & (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_PIN))) {
199 		/*
200 		 * NOIO implies both NOIO and NOFS and it is a weaker context
201 		 * so always make sure it makes precedence
202 		 */
203 		if (pflags & PF_MEMALLOC_NOIO)
204 			flags &= ~(__GFP_IO | __GFP_FS);
205 		else if (pflags & PF_MEMALLOC_NOFS)
206 			flags &= ~__GFP_FS;
207 
208 		if (pflags & PF_MEMALLOC_PIN)
209 			flags &= ~__GFP_MOVABLE;
210 	}
211 	return flags;
212 }
213 
214 #ifdef CONFIG_LOCKDEP
215 extern void __fs_reclaim_acquire(unsigned long ip);
216 extern void __fs_reclaim_release(unsigned long ip);
217 extern void fs_reclaim_acquire(gfp_t gfp_mask);
218 extern void fs_reclaim_release(gfp_t gfp_mask);
219 #else
220 static inline void __fs_reclaim_acquire(unsigned long ip) { }
221 static inline void __fs_reclaim_release(unsigned long ip) { }
222 static inline void fs_reclaim_acquire(gfp_t gfp_mask) { }
223 static inline void fs_reclaim_release(gfp_t gfp_mask) { }
224 #endif
225 
226 /* Any memory-allocation retry loop should use
227  * memalloc_retry_wait(), and pass the flags for the most
228  * constrained allocation attempt that might have failed.
229  * This provides useful documentation of where loops are,
230  * and a central place to fine tune the waiting as the MM
231  * implementation changes.
232  */
233 static inline void memalloc_retry_wait(gfp_t gfp_flags)
234 {
235 	/* We use io_schedule_timeout because waiting for memory
236 	 * typically included waiting for dirty pages to be
237 	 * written out, which requires IO.
238 	 */
239 	__set_current_state(TASK_UNINTERRUPTIBLE);
240 	gfp_flags = current_gfp_context(gfp_flags);
241 	if (gfpflags_allow_blocking(gfp_flags) &&
242 	    !(gfp_flags & __GFP_NORETRY))
243 		/* Probably waited already, no need for much more */
244 		io_schedule_timeout(1);
245 	else
246 		/* Probably didn't wait, and has now released a lock,
247 		 * so now is a good time to wait
248 		 */
249 		io_schedule_timeout(HZ/50);
250 }
251 
252 /**
253  * might_alloc - Mark possible allocation sites
254  * @gfp_mask: gfp_t flags that would be used to allocate
255  *
256  * Similar to might_sleep() and other annotations, this can be used in functions
257  * that might allocate, but often don't. Compiles to nothing without
258  * CONFIG_LOCKDEP. Includes a conditional might_sleep() if @gfp allows blocking.
259  */
260 static inline void might_alloc(gfp_t gfp_mask)
261 {
262 	fs_reclaim_acquire(gfp_mask);
263 	fs_reclaim_release(gfp_mask);
264 
265 	might_sleep_if(gfpflags_allow_blocking(gfp_mask));
266 }
267 
268 /**
269  * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope.
270  *
271  * This functions marks the beginning of the GFP_NOIO allocation scope.
272  * All further allocations will implicitly drop __GFP_IO flag and so
273  * they are safe for the IO critical section from the allocation recursion
274  * point of view. Use memalloc_noio_restore to end the scope with flags
275  * returned by this function.
276  *
277  * This function is safe to be used from any context.
278  */
279 static inline unsigned int memalloc_noio_save(void)
280 {
281 	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
282 	current->flags |= PF_MEMALLOC_NOIO;
283 	return flags;
284 }
285 
286 /**
287  * memalloc_noio_restore - Ends the implicit GFP_NOIO scope.
288  * @flags: Flags to restore.
289  *
290  * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function.
291  * Always make sure that the given flags is the return value from the
292  * pairing memalloc_noio_save call.
293  */
294 static inline void memalloc_noio_restore(unsigned int flags)
295 {
296 	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
297 }
298 
299 /**
300  * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope.
301  *
302  * This functions marks the beginning of the GFP_NOFS allocation scope.
303  * All further allocations will implicitly drop __GFP_FS flag and so
304  * they are safe for the FS critical section from the allocation recursion
305  * point of view. Use memalloc_nofs_restore to end the scope with flags
306  * returned by this function.
307  *
308  * This function is safe to be used from any context.
309  */
310 static inline unsigned int memalloc_nofs_save(void)
311 {
312 	unsigned int flags = current->flags & PF_MEMALLOC_NOFS;
313 	current->flags |= PF_MEMALLOC_NOFS;
314 	return flags;
315 }
316 
317 /**
318  * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope.
319  * @flags: Flags to restore.
320  *
321  * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function.
322  * Always make sure that the given flags is the return value from the
323  * pairing memalloc_nofs_save call.
324  */
325 static inline void memalloc_nofs_restore(unsigned int flags)
326 {
327 	current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags;
328 }
329 
330 static inline unsigned int memalloc_noreclaim_save(void)
331 {
332 	unsigned int flags = current->flags & PF_MEMALLOC;
333 	current->flags |= PF_MEMALLOC;
334 	return flags;
335 }
336 
337 static inline void memalloc_noreclaim_restore(unsigned int flags)
338 {
339 	current->flags = (current->flags & ~PF_MEMALLOC) | flags;
340 }
341 
342 static inline unsigned int memalloc_pin_save(void)
343 {
344 	unsigned int flags = current->flags & PF_MEMALLOC_PIN;
345 
346 	current->flags |= PF_MEMALLOC_PIN;
347 	return flags;
348 }
349 
350 static inline void memalloc_pin_restore(unsigned int flags)
351 {
352 	current->flags = (current->flags & ~PF_MEMALLOC_PIN) | flags;
353 }
354 
355 #ifdef CONFIG_MEMCG
356 DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg);
357 /**
358  * set_active_memcg - Starts the remote memcg charging scope.
359  * @memcg: memcg to charge.
360  *
361  * This function marks the beginning of the remote memcg charging scope. All the
362  * __GFP_ACCOUNT allocations till the end of the scope will be charged to the
363  * given memcg.
364  *
365  * NOTE: This function can nest. Users must save the return value and
366  * reset the previous value after their own charging scope is over.
367  */
368 static inline struct mem_cgroup *
369 set_active_memcg(struct mem_cgroup *memcg)
370 {
371 	struct mem_cgroup *old;
372 
373 	if (!in_task()) {
374 		old = this_cpu_read(int_active_memcg);
375 		this_cpu_write(int_active_memcg, memcg);
376 	} else {
377 		old = current->active_memcg;
378 		current->active_memcg = memcg;
379 	}
380 
381 	return old;
382 }
383 #else
384 static inline struct mem_cgroup *
385 set_active_memcg(struct mem_cgroup *memcg)
386 {
387 	return NULL;
388 }
389 #endif
390 
391 #ifdef CONFIG_MEMBARRIER
392 enum {
393 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY		= (1U << 0),
394 	MEMBARRIER_STATE_PRIVATE_EXPEDITED			= (1U << 1),
395 	MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY			= (1U << 2),
396 	MEMBARRIER_STATE_GLOBAL_EXPEDITED			= (1U << 3),
397 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY	= (1U << 4),
398 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE		= (1U << 5),
399 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY		= (1U << 6),
400 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ			= (1U << 7),
401 };
402 
403 enum {
404 	MEMBARRIER_FLAG_SYNC_CORE	= (1U << 0),
405 	MEMBARRIER_FLAG_RSEQ		= (1U << 1),
406 };
407 
408 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
409 #include <asm/membarrier.h>
410 #endif
411 
412 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
413 {
414 	if (current->mm != mm)
415 		return;
416 	if (likely(!(atomic_read(&mm->membarrier_state) &
417 		     MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE)))
418 		return;
419 	sync_core_before_usermode();
420 }
421 
422 extern void membarrier_exec_mmap(struct mm_struct *mm);
423 
424 extern void membarrier_update_current_mm(struct mm_struct *next_mm);
425 
426 #else
427 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
428 static inline void membarrier_arch_switch_mm(struct mm_struct *prev,
429 					     struct mm_struct *next,
430 					     struct task_struct *tsk)
431 {
432 }
433 #endif
434 static inline void membarrier_exec_mmap(struct mm_struct *mm)
435 {
436 }
437 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
438 {
439 }
440 static inline void membarrier_update_current_mm(struct mm_struct *next_mm)
441 {
442 }
443 #endif
444 
445 #ifdef CONFIG_IOMMU_SVA
446 static inline void mm_pasid_init(struct mm_struct *mm)
447 {
448 	mm->pasid = INVALID_IOASID;
449 }
450 
451 /* Associate a PASID with an mm_struct: */
452 static inline void mm_pasid_set(struct mm_struct *mm, u32 pasid)
453 {
454 	mm->pasid = pasid;
455 }
456 
457 static inline void mm_pasid_drop(struct mm_struct *mm)
458 {
459 	if (pasid_valid(mm->pasid)) {
460 		ioasid_free(mm->pasid);
461 		mm->pasid = INVALID_IOASID;
462 	}
463 }
464 #else
465 static inline void mm_pasid_init(struct mm_struct *mm) {}
466 static inline void mm_pasid_set(struct mm_struct *mm, u32 pasid) {}
467 static inline void mm_pasid_drop(struct mm_struct *mm) {}
468 #endif
469 
470 #endif /* _LINUX_SCHED_MM_H */
471