xref: /linux/include/linux/sched/mm.h (revision 9a6b55ac)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_MM_H
3 #define _LINUX_SCHED_MM_H
4 
5 #include <linux/kernel.h>
6 #include <linux/atomic.h>
7 #include <linux/sched.h>
8 #include <linux/mm_types.h>
9 #include <linux/gfp.h>
10 #include <linux/sync_core.h>
11 
12 /*
13  * Routines for handling mm_structs
14  */
15 extern struct mm_struct *mm_alloc(void);
16 
17 /**
18  * mmgrab() - Pin a &struct mm_struct.
19  * @mm: The &struct mm_struct to pin.
20  *
21  * Make sure that @mm will not get freed even after the owning task
22  * exits. This doesn't guarantee that the associated address space
23  * will still exist later on and mmget_not_zero() has to be used before
24  * accessing it.
25  *
26  * This is a preferred way to to pin @mm for a longer/unbounded amount
27  * of time.
28  *
29  * Use mmdrop() to release the reference acquired by mmgrab().
30  *
31  * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
32  * of &mm_struct.mm_count vs &mm_struct.mm_users.
33  */
34 static inline void mmgrab(struct mm_struct *mm)
35 {
36 	atomic_inc(&mm->mm_count);
37 }
38 
39 extern void __mmdrop(struct mm_struct *mm);
40 
41 static inline void mmdrop(struct mm_struct *mm)
42 {
43 	/*
44 	 * The implicit full barrier implied by atomic_dec_and_test() is
45 	 * required by the membarrier system call before returning to
46 	 * user-space, after storing to rq->curr.
47 	 */
48 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
49 		__mmdrop(mm);
50 }
51 
52 /*
53  * This has to be called after a get_task_mm()/mmget_not_zero()
54  * followed by taking the mmap_sem for writing before modifying the
55  * vmas or anything the coredump pretends not to change from under it.
56  *
57  * It also has to be called when mmgrab() is used in the context of
58  * the process, but then the mm_count refcount is transferred outside
59  * the context of the process to run down_write() on that pinned mm.
60  *
61  * NOTE: find_extend_vma() called from GUP context is the only place
62  * that can modify the "mm" (notably the vm_start/end) under mmap_sem
63  * for reading and outside the context of the process, so it is also
64  * the only case that holds the mmap_sem for reading that must call
65  * this function. Generally if the mmap_sem is hold for reading
66  * there's no need of this check after get_task_mm()/mmget_not_zero().
67  *
68  * This function can be obsoleted and the check can be removed, after
69  * the coredump code will hold the mmap_sem for writing before
70  * invoking the ->core_dump methods.
71  */
72 static inline bool mmget_still_valid(struct mm_struct *mm)
73 {
74 	return likely(!mm->core_state);
75 }
76 
77 /**
78  * mmget() - Pin the address space associated with a &struct mm_struct.
79  * @mm: The address space to pin.
80  *
81  * Make sure that the address space of the given &struct mm_struct doesn't
82  * go away. This does not protect against parts of the address space being
83  * modified or freed, however.
84  *
85  * Never use this function to pin this address space for an
86  * unbounded/indefinite amount of time.
87  *
88  * Use mmput() to release the reference acquired by mmget().
89  *
90  * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
91  * of &mm_struct.mm_count vs &mm_struct.mm_users.
92  */
93 static inline void mmget(struct mm_struct *mm)
94 {
95 	atomic_inc(&mm->mm_users);
96 }
97 
98 static inline bool mmget_not_zero(struct mm_struct *mm)
99 {
100 	return atomic_inc_not_zero(&mm->mm_users);
101 }
102 
103 /* mmput gets rid of the mappings and all user-space */
104 extern void mmput(struct mm_struct *);
105 #ifdef CONFIG_MMU
106 /* same as above but performs the slow path from the async context. Can
107  * be called from the atomic context as well
108  */
109 void mmput_async(struct mm_struct *);
110 #endif
111 
112 /* Grab a reference to a task's mm, if it is not already going away */
113 extern struct mm_struct *get_task_mm(struct task_struct *task);
114 /*
115  * Grab a reference to a task's mm, if it is not already going away
116  * and ptrace_may_access with the mode parameter passed to it
117  * succeeds.
118  */
119 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
120 /* Remove the current tasks stale references to the old mm_struct on exit() */
121 extern void exit_mm_release(struct task_struct *, struct mm_struct *);
122 /* Remove the current tasks stale references to the old mm_struct on exec() */
123 extern void exec_mm_release(struct task_struct *, struct mm_struct *);
124 
125 #ifdef CONFIG_MEMCG
126 extern void mm_update_next_owner(struct mm_struct *mm);
127 #else
128 static inline void mm_update_next_owner(struct mm_struct *mm)
129 {
130 }
131 #endif /* CONFIG_MEMCG */
132 
133 #ifdef CONFIG_MMU
134 extern void arch_pick_mmap_layout(struct mm_struct *mm,
135 				  struct rlimit *rlim_stack);
136 extern unsigned long
137 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
138 		       unsigned long, unsigned long);
139 extern unsigned long
140 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
141 			  unsigned long len, unsigned long pgoff,
142 			  unsigned long flags);
143 #else
144 static inline void arch_pick_mmap_layout(struct mm_struct *mm,
145 					 struct rlimit *rlim_stack) {}
146 #endif
147 
148 static inline bool in_vfork(struct task_struct *tsk)
149 {
150 	bool ret;
151 
152 	/*
153 	 * need RCU to access ->real_parent if CLONE_VM was used along with
154 	 * CLONE_PARENT.
155 	 *
156 	 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
157 	 * imply CLONE_VM
158 	 *
159 	 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
160 	 * ->real_parent is not necessarily the task doing vfork(), so in
161 	 * theory we can't rely on task_lock() if we want to dereference it.
162 	 *
163 	 * And in this case we can't trust the real_parent->mm == tsk->mm
164 	 * check, it can be false negative. But we do not care, if init or
165 	 * another oom-unkillable task does this it should blame itself.
166 	 */
167 	rcu_read_lock();
168 	ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
169 	rcu_read_unlock();
170 
171 	return ret;
172 }
173 
174 /*
175  * Applies per-task gfp context to the given allocation flags.
176  * PF_MEMALLOC_NOIO implies GFP_NOIO
177  * PF_MEMALLOC_NOFS implies GFP_NOFS
178  * PF_MEMALLOC_NOCMA implies no allocation from CMA region.
179  */
180 static inline gfp_t current_gfp_context(gfp_t flags)
181 {
182 	if (unlikely(current->flags &
183 		     (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_NOCMA))) {
184 		/*
185 		 * NOIO implies both NOIO and NOFS and it is a weaker context
186 		 * so always make sure it makes precedence
187 		 */
188 		if (current->flags & PF_MEMALLOC_NOIO)
189 			flags &= ~(__GFP_IO | __GFP_FS);
190 		else if (current->flags & PF_MEMALLOC_NOFS)
191 			flags &= ~__GFP_FS;
192 #ifdef CONFIG_CMA
193 		if (current->flags & PF_MEMALLOC_NOCMA)
194 			flags &= ~__GFP_MOVABLE;
195 #endif
196 	}
197 	return flags;
198 }
199 
200 #ifdef CONFIG_LOCKDEP
201 extern void __fs_reclaim_acquire(void);
202 extern void __fs_reclaim_release(void);
203 extern void fs_reclaim_acquire(gfp_t gfp_mask);
204 extern void fs_reclaim_release(gfp_t gfp_mask);
205 #else
206 static inline void __fs_reclaim_acquire(void) { }
207 static inline void __fs_reclaim_release(void) { }
208 static inline void fs_reclaim_acquire(gfp_t gfp_mask) { }
209 static inline void fs_reclaim_release(gfp_t gfp_mask) { }
210 #endif
211 
212 /**
213  * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope.
214  *
215  * This functions marks the beginning of the GFP_NOIO allocation scope.
216  * All further allocations will implicitly drop __GFP_IO flag and so
217  * they are safe for the IO critical section from the allocation recursion
218  * point of view. Use memalloc_noio_restore to end the scope with flags
219  * returned by this function.
220  *
221  * This function is safe to be used from any context.
222  */
223 static inline unsigned int memalloc_noio_save(void)
224 {
225 	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
226 	current->flags |= PF_MEMALLOC_NOIO;
227 	return flags;
228 }
229 
230 /**
231  * memalloc_noio_restore - Ends the implicit GFP_NOIO scope.
232  * @flags: Flags to restore.
233  *
234  * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function.
235  * Always make sure that that the given flags is the return value from the
236  * pairing memalloc_noio_save call.
237  */
238 static inline void memalloc_noio_restore(unsigned int flags)
239 {
240 	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
241 }
242 
243 /**
244  * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope.
245  *
246  * This functions marks the beginning of the GFP_NOFS allocation scope.
247  * All further allocations will implicitly drop __GFP_FS flag and so
248  * they are safe for the FS critical section from the allocation recursion
249  * point of view. Use memalloc_nofs_restore to end the scope with flags
250  * returned by this function.
251  *
252  * This function is safe to be used from any context.
253  */
254 static inline unsigned int memalloc_nofs_save(void)
255 {
256 	unsigned int flags = current->flags & PF_MEMALLOC_NOFS;
257 	current->flags |= PF_MEMALLOC_NOFS;
258 	return flags;
259 }
260 
261 /**
262  * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope.
263  * @flags: Flags to restore.
264  *
265  * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function.
266  * Always make sure that that the given flags is the return value from the
267  * pairing memalloc_nofs_save call.
268  */
269 static inline void memalloc_nofs_restore(unsigned int flags)
270 {
271 	current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags;
272 }
273 
274 static inline unsigned int memalloc_noreclaim_save(void)
275 {
276 	unsigned int flags = current->flags & PF_MEMALLOC;
277 	current->flags |= PF_MEMALLOC;
278 	return flags;
279 }
280 
281 static inline void memalloc_noreclaim_restore(unsigned int flags)
282 {
283 	current->flags = (current->flags & ~PF_MEMALLOC) | flags;
284 }
285 
286 #ifdef CONFIG_CMA
287 static inline unsigned int memalloc_nocma_save(void)
288 {
289 	unsigned int flags = current->flags & PF_MEMALLOC_NOCMA;
290 
291 	current->flags |= PF_MEMALLOC_NOCMA;
292 	return flags;
293 }
294 
295 static inline void memalloc_nocma_restore(unsigned int flags)
296 {
297 	current->flags = (current->flags & ~PF_MEMALLOC_NOCMA) | flags;
298 }
299 #else
300 static inline unsigned int memalloc_nocma_save(void)
301 {
302 	return 0;
303 }
304 
305 static inline void memalloc_nocma_restore(unsigned int flags)
306 {
307 }
308 #endif
309 
310 #ifdef CONFIG_MEMCG
311 /**
312  * memalloc_use_memcg - Starts the remote memcg charging scope.
313  * @memcg: memcg to charge.
314  *
315  * This function marks the beginning of the remote memcg charging scope. All the
316  * __GFP_ACCOUNT allocations till the end of the scope will be charged to the
317  * given memcg.
318  *
319  * NOTE: This function is not nesting safe.
320  */
321 static inline void memalloc_use_memcg(struct mem_cgroup *memcg)
322 {
323 	WARN_ON_ONCE(current->active_memcg);
324 	current->active_memcg = memcg;
325 }
326 
327 /**
328  * memalloc_unuse_memcg - Ends the remote memcg charging scope.
329  *
330  * This function marks the end of the remote memcg charging scope started by
331  * memalloc_use_memcg().
332  */
333 static inline void memalloc_unuse_memcg(void)
334 {
335 	current->active_memcg = NULL;
336 }
337 #else
338 static inline void memalloc_use_memcg(struct mem_cgroup *memcg)
339 {
340 }
341 
342 static inline void memalloc_unuse_memcg(void)
343 {
344 }
345 #endif
346 
347 #ifdef CONFIG_MEMBARRIER
348 enum {
349 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY		= (1U << 0),
350 	MEMBARRIER_STATE_PRIVATE_EXPEDITED			= (1U << 1),
351 	MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY			= (1U << 2),
352 	MEMBARRIER_STATE_GLOBAL_EXPEDITED			= (1U << 3),
353 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY	= (1U << 4),
354 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE		= (1U << 5),
355 };
356 
357 enum {
358 	MEMBARRIER_FLAG_SYNC_CORE	= (1U << 0),
359 };
360 
361 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
362 #include <asm/membarrier.h>
363 #endif
364 
365 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
366 {
367 	if (current->mm != mm)
368 		return;
369 	if (likely(!(atomic_read(&mm->membarrier_state) &
370 		     MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE)))
371 		return;
372 	sync_core_before_usermode();
373 }
374 
375 extern void membarrier_exec_mmap(struct mm_struct *mm);
376 
377 #else
378 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
379 static inline void membarrier_arch_switch_mm(struct mm_struct *prev,
380 					     struct mm_struct *next,
381 					     struct task_struct *tsk)
382 {
383 }
384 #endif
385 static inline void membarrier_exec_mmap(struct mm_struct *mm)
386 {
387 }
388 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
389 {
390 }
391 #endif
392 
393 #endif /* _LINUX_SCHED_MM_H */
394