xref: /linux/include/linux/skbuff.h (revision 9a6b55ac)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
7  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
41 #include <linux/netfilter/nf_conntrack_common.h>
42 #endif
43 
44 /* The interface for checksum offload between the stack and networking drivers
45  * is as follows...
46  *
47  * A. IP checksum related features
48  *
49  * Drivers advertise checksum offload capabilities in the features of a device.
50  * From the stack's point of view these are capabilities offered by the driver,
51  * a driver typically only advertises features that it is capable of offloading
52  * to its device.
53  *
54  * The checksum related features are:
55  *
56  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
57  *			  IP (one's complement) checksum for any combination
58  *			  of protocols or protocol layering. The checksum is
59  *			  computed and set in a packet per the CHECKSUM_PARTIAL
60  *			  interface (see below).
61  *
62  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
63  *			  TCP or UDP packets over IPv4. These are specifically
64  *			  unencapsulated packets of the form IPv4|TCP or
65  *			  IPv4|UDP where the Protocol field in the IPv4 header
66  *			  is TCP or UDP. The IPv4 header may contain IP options
67  *			  This feature cannot be set in features for a device
68  *			  with NETIF_F_HW_CSUM also set. This feature is being
69  *			  DEPRECATED (see below).
70  *
71  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
72  *			  TCP or UDP packets over IPv6. These are specifically
73  *			  unencapsulated packets of the form IPv6|TCP or
74  *			  IPv4|UDP where the Next Header field in the IPv6
75  *			  header is either TCP or UDP. IPv6 extension headers
76  *			  are not supported with this feature. This feature
77  *			  cannot be set in features for a device with
78  *			  NETIF_F_HW_CSUM also set. This feature is being
79  *			  DEPRECATED (see below).
80  *
81  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
82  *			 This flag is used only used to disable the RX checksum
83  *			 feature for a device. The stack will accept receive
84  *			 checksum indication in packets received on a device
85  *			 regardless of whether NETIF_F_RXCSUM is set.
86  *
87  * B. Checksumming of received packets by device. Indication of checksum
88  *    verification is in set skb->ip_summed. Possible values are:
89  *
90  * CHECKSUM_NONE:
91  *
92  *   Device did not checksum this packet e.g. due to lack of capabilities.
93  *   The packet contains full (though not verified) checksum in packet but
94  *   not in skb->csum. Thus, skb->csum is undefined in this case.
95  *
96  * CHECKSUM_UNNECESSARY:
97  *
98  *   The hardware you're dealing with doesn't calculate the full checksum
99  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
101  *   if their checksums are okay. skb->csum is still undefined in this case
102  *   though. A driver or device must never modify the checksum field in the
103  *   packet even if checksum is verified.
104  *
105  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
106  *     TCP: IPv6 and IPv4.
107  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
108  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
109  *       may perform further validation in this case.
110  *     GRE: only if the checksum is present in the header.
111  *     SCTP: indicates the CRC in SCTP header has been validated.
112  *     FCOE: indicates the CRC in FC frame has been validated.
113  *
114  *   skb->csum_level indicates the number of consecutive checksums found in
115  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
116  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
117  *   and a device is able to verify the checksums for UDP (possibly zero),
118  *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
119  *   two. If the device were only able to verify the UDP checksum and not
120  *   GRE, either because it doesn't support GRE checksum of because GRE
121  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
122  *   not considered in this case).
123  *
124  * CHECKSUM_COMPLETE:
125  *
126  *   This is the most generic way. The device supplied checksum of the _whole_
127  *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
128  *   hardware doesn't need to parse L3/L4 headers to implement this.
129  *
130  *   Notes:
131  *   - Even if device supports only some protocols, but is able to produce
132  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
133  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134  *
135  * CHECKSUM_PARTIAL:
136  *
137  *   A checksum is set up to be offloaded to a device as described in the
138  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140  *   on the same host, or it may be set in the input path in GRO or remote
141  *   checksum offload. For the purposes of checksum verification, the checksum
142  *   referred to by skb->csum_start + skb->csum_offset and any preceding
143  *   checksums in the packet are considered verified. Any checksums in the
144  *   packet that are after the checksum being offloaded are not considered to
145  *   be verified.
146  *
147  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
148  *    in the skb->ip_summed for a packet. Values are:
149  *
150  * CHECKSUM_PARTIAL:
151  *
152  *   The driver is required to checksum the packet as seen by hard_start_xmit()
153  *   from skb->csum_start up to the end, and to record/write the checksum at
154  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
155  *   csum_start and csum_offset values are valid values given the length and
156  *   offset of the packet, however they should not attempt to validate that the
157  *   checksum refers to a legitimate transport layer checksum-- it is the
158  *   purview of the stack to validate that csum_start and csum_offset are set
159  *   correctly.
160  *
161  *   When the stack requests checksum offload for a packet, the driver MUST
162  *   ensure that the checksum is set correctly. A driver can either offload the
163  *   checksum calculation to the device, or call skb_checksum_help (in the case
164  *   that the device does not support offload for a particular checksum).
165  *
166  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
167  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168  *   checksum offload capability.
169  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
170  *   on network device checksumming capabilities: if a packet does not match
171  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
172  *   csum_not_inet, see item D.) is called to resolve the checksum.
173  *
174  * CHECKSUM_NONE:
175  *
176  *   The skb was already checksummed by the protocol, or a checksum is not
177  *   required.
178  *
179  * CHECKSUM_UNNECESSARY:
180  *
181  *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
182  *   output.
183  *
184  * CHECKSUM_COMPLETE:
185  *   Not used in checksum output. If a driver observes a packet with this value
186  *   set in skbuff, if should treat as CHECKSUM_NONE being set.
187  *
188  * D. Non-IP checksum (CRC) offloads
189  *
190  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
191  *     offloading the SCTP CRC in a packet. To perform this offload the stack
192  *     will set set csum_start and csum_offset accordingly, set ip_summed to
193  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
194  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
195  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
196  *     must verify which offload is configured for a packet by testing the
197  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
198  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199  *
200  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
201  *     offloading the FCOE CRC in a packet. To perform this offload the stack
202  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
203  *     accordingly. Note the there is no indication in the skbuff that the
204  *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
205  *     both IP checksum offload and FCOE CRC offload must verify which offload
206  *     is configured for a packet presumably by inspecting packet headers.
207  *
208  * E. Checksumming on output with GSO.
209  *
210  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
211  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
212  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
213  * part of the GSO operation is implied. If a checksum is being offloaded
214  * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
215  * are set to refer to the outermost checksum being offload (two offloaded
216  * checksums are possible with UDP encapsulation).
217  */
218 
219 /* Don't change this without changing skb_csum_unnecessary! */
220 #define CHECKSUM_NONE		0
221 #define CHECKSUM_UNNECESSARY	1
222 #define CHECKSUM_COMPLETE	2
223 #define CHECKSUM_PARTIAL	3
224 
225 /* Maximum value in skb->csum_level */
226 #define SKB_MAX_CSUM_LEVEL	3
227 
228 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229 #define SKB_WITH_OVERHEAD(X)	\
230 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 #define SKB_MAX_ORDER(X, ORDER) \
232 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
233 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
234 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
235 
236 /* return minimum truesize of one skb containing X bytes of data */
237 #define SKB_TRUESIZE(X) ((X) +						\
238 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
239 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
240 
241 struct net_device;
242 struct scatterlist;
243 struct pipe_inode_info;
244 struct iov_iter;
245 struct napi_struct;
246 struct bpf_prog;
247 union bpf_attr;
248 struct skb_ext;
249 
250 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
251 struct nf_bridge_info {
252 	enum {
253 		BRNF_PROTO_UNCHANGED,
254 		BRNF_PROTO_8021Q,
255 		BRNF_PROTO_PPPOE
256 	} orig_proto:8;
257 	u8			pkt_otherhost:1;
258 	u8			in_prerouting:1;
259 	u8			bridged_dnat:1;
260 	__u16			frag_max_size;
261 	struct net_device	*physindev;
262 
263 	/* always valid & non-NULL from FORWARD on, for physdev match */
264 	struct net_device	*physoutdev;
265 	union {
266 		/* prerouting: detect dnat in orig/reply direction */
267 		__be32          ipv4_daddr;
268 		struct in6_addr ipv6_daddr;
269 
270 		/* after prerouting + nat detected: store original source
271 		 * mac since neigh resolution overwrites it, only used while
272 		 * skb is out in neigh layer.
273 		 */
274 		char neigh_header[8];
275 	};
276 };
277 #endif
278 
279 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
280 /* Chain in tc_skb_ext will be used to share the tc chain with
281  * ovs recirc_id. It will be set to the current chain by tc
282  * and read by ovs to recirc_id.
283  */
284 struct tc_skb_ext {
285 	__u32 chain;
286 };
287 #endif
288 
289 struct sk_buff_head {
290 	/* These two members must be first. */
291 	struct sk_buff	*next;
292 	struct sk_buff	*prev;
293 
294 	__u32		qlen;
295 	spinlock_t	lock;
296 };
297 
298 struct sk_buff;
299 
300 /* To allow 64K frame to be packed as single skb without frag_list we
301  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
302  * buffers which do not start on a page boundary.
303  *
304  * Since GRO uses frags we allocate at least 16 regardless of page
305  * size.
306  */
307 #if (65536/PAGE_SIZE + 1) < 16
308 #define MAX_SKB_FRAGS 16UL
309 #else
310 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
311 #endif
312 extern int sysctl_max_skb_frags;
313 
314 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
315  * segment using its current segmentation instead.
316  */
317 #define GSO_BY_FRAGS	0xFFFF
318 
319 typedef struct bio_vec skb_frag_t;
320 
321 /**
322  * skb_frag_size() - Returns the size of a skb fragment
323  * @frag: skb fragment
324  */
325 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
326 {
327 	return frag->bv_len;
328 }
329 
330 /**
331  * skb_frag_size_set() - Sets the size of a skb fragment
332  * @frag: skb fragment
333  * @size: size of fragment
334  */
335 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
336 {
337 	frag->bv_len = size;
338 }
339 
340 /**
341  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
342  * @frag: skb fragment
343  * @delta: value to add
344  */
345 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
346 {
347 	frag->bv_len += delta;
348 }
349 
350 /**
351  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
352  * @frag: skb fragment
353  * @delta: value to subtract
354  */
355 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
356 {
357 	frag->bv_len -= delta;
358 }
359 
360 /**
361  * skb_frag_must_loop - Test if %p is a high memory page
362  * @p: fragment's page
363  */
364 static inline bool skb_frag_must_loop(struct page *p)
365 {
366 #if defined(CONFIG_HIGHMEM)
367 	if (PageHighMem(p))
368 		return true;
369 #endif
370 	return false;
371 }
372 
373 /**
374  *	skb_frag_foreach_page - loop over pages in a fragment
375  *
376  *	@f:		skb frag to operate on
377  *	@f_off:		offset from start of f->bv_page
378  *	@f_len:		length from f_off to loop over
379  *	@p:		(temp var) current page
380  *	@p_off:		(temp var) offset from start of current page,
381  *	                           non-zero only on first page.
382  *	@p_len:		(temp var) length in current page,
383  *				   < PAGE_SIZE only on first and last page.
384  *	@copied:	(temp var) length so far, excluding current p_len.
385  *
386  *	A fragment can hold a compound page, in which case per-page
387  *	operations, notably kmap_atomic, must be called for each
388  *	regular page.
389  */
390 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
391 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
392 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
393 	     p_len = skb_frag_must_loop(p) ?				\
394 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
395 	     copied = 0;						\
396 	     copied < f_len;						\
397 	     copied += p_len, p++, p_off = 0,				\
398 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
399 
400 #define HAVE_HW_TIME_STAMP
401 
402 /**
403  * struct skb_shared_hwtstamps - hardware time stamps
404  * @hwtstamp:	hardware time stamp transformed into duration
405  *		since arbitrary point in time
406  *
407  * Software time stamps generated by ktime_get_real() are stored in
408  * skb->tstamp.
409  *
410  * hwtstamps can only be compared against other hwtstamps from
411  * the same device.
412  *
413  * This structure is attached to packets as part of the
414  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
415  */
416 struct skb_shared_hwtstamps {
417 	ktime_t	hwtstamp;
418 };
419 
420 /* Definitions for tx_flags in struct skb_shared_info */
421 enum {
422 	/* generate hardware time stamp */
423 	SKBTX_HW_TSTAMP = 1 << 0,
424 
425 	/* generate software time stamp when queueing packet to NIC */
426 	SKBTX_SW_TSTAMP = 1 << 1,
427 
428 	/* device driver is going to provide hardware time stamp */
429 	SKBTX_IN_PROGRESS = 1 << 2,
430 
431 	/* device driver supports TX zero-copy buffers */
432 	SKBTX_DEV_ZEROCOPY = 1 << 3,
433 
434 	/* generate wifi status information (where possible) */
435 	SKBTX_WIFI_STATUS = 1 << 4,
436 
437 	/* This indicates at least one fragment might be overwritten
438 	 * (as in vmsplice(), sendfile() ...)
439 	 * If we need to compute a TX checksum, we'll need to copy
440 	 * all frags to avoid possible bad checksum
441 	 */
442 	SKBTX_SHARED_FRAG = 1 << 5,
443 
444 	/* generate software time stamp when entering packet scheduling */
445 	SKBTX_SCHED_TSTAMP = 1 << 6,
446 };
447 
448 #define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
449 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
450 				 SKBTX_SCHED_TSTAMP)
451 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
452 
453 /*
454  * The callback notifies userspace to release buffers when skb DMA is done in
455  * lower device, the skb last reference should be 0 when calling this.
456  * The zerocopy_success argument is true if zero copy transmit occurred,
457  * false on data copy or out of memory error caused by data copy attempt.
458  * The ctx field is used to track device context.
459  * The desc field is used to track userspace buffer index.
460  */
461 struct ubuf_info {
462 	void (*callback)(struct ubuf_info *, bool zerocopy_success);
463 	union {
464 		struct {
465 			unsigned long desc;
466 			void *ctx;
467 		};
468 		struct {
469 			u32 id;
470 			u16 len;
471 			u16 zerocopy:1;
472 			u32 bytelen;
473 		};
474 	};
475 	refcount_t refcnt;
476 
477 	struct mmpin {
478 		struct user_struct *user;
479 		unsigned int num_pg;
480 	} mmp;
481 };
482 
483 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
484 
485 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
486 void mm_unaccount_pinned_pages(struct mmpin *mmp);
487 
488 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
489 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
490 					struct ubuf_info *uarg);
491 
492 static inline void sock_zerocopy_get(struct ubuf_info *uarg)
493 {
494 	refcount_inc(&uarg->refcnt);
495 }
496 
497 void sock_zerocopy_put(struct ubuf_info *uarg);
498 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
499 
500 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
501 
502 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
503 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
504 			     struct msghdr *msg, int len,
505 			     struct ubuf_info *uarg);
506 
507 /* This data is invariant across clones and lives at
508  * the end of the header data, ie. at skb->end.
509  */
510 struct skb_shared_info {
511 	__u8		__unused;
512 	__u8		meta_len;
513 	__u8		nr_frags;
514 	__u8		tx_flags;
515 	unsigned short	gso_size;
516 	/* Warning: this field is not always filled in (UFO)! */
517 	unsigned short	gso_segs;
518 	struct sk_buff	*frag_list;
519 	struct skb_shared_hwtstamps hwtstamps;
520 	unsigned int	gso_type;
521 	u32		tskey;
522 
523 	/*
524 	 * Warning : all fields before dataref are cleared in __alloc_skb()
525 	 */
526 	atomic_t	dataref;
527 
528 	/* Intermediate layers must ensure that destructor_arg
529 	 * remains valid until skb destructor */
530 	void *		destructor_arg;
531 
532 	/* must be last field, see pskb_expand_head() */
533 	skb_frag_t	frags[MAX_SKB_FRAGS];
534 };
535 
536 /* We divide dataref into two halves.  The higher 16 bits hold references
537  * to the payload part of skb->data.  The lower 16 bits hold references to
538  * the entire skb->data.  A clone of a headerless skb holds the length of
539  * the header in skb->hdr_len.
540  *
541  * All users must obey the rule that the skb->data reference count must be
542  * greater than or equal to the payload reference count.
543  *
544  * Holding a reference to the payload part means that the user does not
545  * care about modifications to the header part of skb->data.
546  */
547 #define SKB_DATAREF_SHIFT 16
548 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
549 
550 
551 enum {
552 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
553 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
554 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
555 };
556 
557 enum {
558 	SKB_GSO_TCPV4 = 1 << 0,
559 
560 	/* This indicates the skb is from an untrusted source. */
561 	SKB_GSO_DODGY = 1 << 1,
562 
563 	/* This indicates the tcp segment has CWR set. */
564 	SKB_GSO_TCP_ECN = 1 << 2,
565 
566 	SKB_GSO_TCP_FIXEDID = 1 << 3,
567 
568 	SKB_GSO_TCPV6 = 1 << 4,
569 
570 	SKB_GSO_FCOE = 1 << 5,
571 
572 	SKB_GSO_GRE = 1 << 6,
573 
574 	SKB_GSO_GRE_CSUM = 1 << 7,
575 
576 	SKB_GSO_IPXIP4 = 1 << 8,
577 
578 	SKB_GSO_IPXIP6 = 1 << 9,
579 
580 	SKB_GSO_UDP_TUNNEL = 1 << 10,
581 
582 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
583 
584 	SKB_GSO_PARTIAL = 1 << 12,
585 
586 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
587 
588 	SKB_GSO_SCTP = 1 << 14,
589 
590 	SKB_GSO_ESP = 1 << 15,
591 
592 	SKB_GSO_UDP = 1 << 16,
593 
594 	SKB_GSO_UDP_L4 = 1 << 17,
595 };
596 
597 #if BITS_PER_LONG > 32
598 #define NET_SKBUFF_DATA_USES_OFFSET 1
599 #endif
600 
601 #ifdef NET_SKBUFF_DATA_USES_OFFSET
602 typedef unsigned int sk_buff_data_t;
603 #else
604 typedef unsigned char *sk_buff_data_t;
605 #endif
606 
607 /**
608  *	struct sk_buff - socket buffer
609  *	@next: Next buffer in list
610  *	@prev: Previous buffer in list
611  *	@tstamp: Time we arrived/left
612  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
613  *	@sk: Socket we are owned by
614  *	@dev: Device we arrived on/are leaving by
615  *	@cb: Control buffer. Free for use by every layer. Put private vars here
616  *	@_skb_refdst: destination entry (with norefcount bit)
617  *	@sp: the security path, used for xfrm
618  *	@len: Length of actual data
619  *	@data_len: Data length
620  *	@mac_len: Length of link layer header
621  *	@hdr_len: writable header length of cloned skb
622  *	@csum: Checksum (must include start/offset pair)
623  *	@csum_start: Offset from skb->head where checksumming should start
624  *	@csum_offset: Offset from csum_start where checksum should be stored
625  *	@priority: Packet queueing priority
626  *	@ignore_df: allow local fragmentation
627  *	@cloned: Head may be cloned (check refcnt to be sure)
628  *	@ip_summed: Driver fed us an IP checksum
629  *	@nohdr: Payload reference only, must not modify header
630  *	@pkt_type: Packet class
631  *	@fclone: skbuff clone status
632  *	@ipvs_property: skbuff is owned by ipvs
633  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
634  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
635  *	@tc_skip_classify: do not classify packet. set by IFB device
636  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
637  *	@tc_redirected: packet was redirected by a tc action
638  *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
639  *	@peeked: this packet has been seen already, so stats have been
640  *		done for it, don't do them again
641  *	@nf_trace: netfilter packet trace flag
642  *	@protocol: Packet protocol from driver
643  *	@destructor: Destruct function
644  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
645  *	@_nfct: Associated connection, if any (with nfctinfo bits)
646  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
647  *	@skb_iif: ifindex of device we arrived on
648  *	@tc_index: Traffic control index
649  *	@hash: the packet hash
650  *	@queue_mapping: Queue mapping for multiqueue devices
651  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
652  *	@active_extensions: active extensions (skb_ext_id types)
653  *	@ndisc_nodetype: router type (from link layer)
654  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
655  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
656  *		ports.
657  *	@sw_hash: indicates hash was computed in software stack
658  *	@wifi_acked_valid: wifi_acked was set
659  *	@wifi_acked: whether frame was acked on wifi or not
660  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
661  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
662  *	@dst_pending_confirm: need to confirm neighbour
663  *	@decrypted: Decrypted SKB
664  *	@napi_id: id of the NAPI struct this skb came from
665  *	@secmark: security marking
666  *	@mark: Generic packet mark
667  *	@vlan_proto: vlan encapsulation protocol
668  *	@vlan_tci: vlan tag control information
669  *	@inner_protocol: Protocol (encapsulation)
670  *	@inner_transport_header: Inner transport layer header (encapsulation)
671  *	@inner_network_header: Network layer header (encapsulation)
672  *	@inner_mac_header: Link layer header (encapsulation)
673  *	@transport_header: Transport layer header
674  *	@network_header: Network layer header
675  *	@mac_header: Link layer header
676  *	@tail: Tail pointer
677  *	@end: End pointer
678  *	@head: Head of buffer
679  *	@data: Data head pointer
680  *	@truesize: Buffer size
681  *	@users: User count - see {datagram,tcp}.c
682  *	@extensions: allocated extensions, valid if active_extensions is nonzero
683  */
684 
685 struct sk_buff {
686 	union {
687 		struct {
688 			/* These two members must be first. */
689 			struct sk_buff		*next;
690 			struct sk_buff		*prev;
691 
692 			union {
693 				struct net_device	*dev;
694 				/* Some protocols might use this space to store information,
695 				 * while device pointer would be NULL.
696 				 * UDP receive path is one user.
697 				 */
698 				unsigned long		dev_scratch;
699 			};
700 		};
701 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
702 		struct list_head	list;
703 	};
704 
705 	union {
706 		struct sock		*sk;
707 		int			ip_defrag_offset;
708 	};
709 
710 	union {
711 		ktime_t		tstamp;
712 		u64		skb_mstamp_ns; /* earliest departure time */
713 	};
714 	/*
715 	 * This is the control buffer. It is free to use for every
716 	 * layer. Please put your private variables there. If you
717 	 * want to keep them across layers you have to do a skb_clone()
718 	 * first. This is owned by whoever has the skb queued ATM.
719 	 */
720 	char			cb[48] __aligned(8);
721 
722 	union {
723 		struct {
724 			unsigned long	_skb_refdst;
725 			void		(*destructor)(struct sk_buff *skb);
726 		};
727 		struct list_head	tcp_tsorted_anchor;
728 	};
729 
730 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
731 	unsigned long		 _nfct;
732 #endif
733 	unsigned int		len,
734 				data_len;
735 	__u16			mac_len,
736 				hdr_len;
737 
738 	/* Following fields are _not_ copied in __copy_skb_header()
739 	 * Note that queue_mapping is here mostly to fill a hole.
740 	 */
741 	__u16			queue_mapping;
742 
743 /* if you move cloned around you also must adapt those constants */
744 #ifdef __BIG_ENDIAN_BITFIELD
745 #define CLONED_MASK	(1 << 7)
746 #else
747 #define CLONED_MASK	1
748 #endif
749 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
750 
751 	__u8			__cloned_offset[0];
752 	__u8			cloned:1,
753 				nohdr:1,
754 				fclone:2,
755 				peeked:1,
756 				head_frag:1,
757 				pfmemalloc:1;
758 #ifdef CONFIG_SKB_EXTENSIONS
759 	__u8			active_extensions;
760 #endif
761 	/* fields enclosed in headers_start/headers_end are copied
762 	 * using a single memcpy() in __copy_skb_header()
763 	 */
764 	/* private: */
765 	__u32			headers_start[0];
766 	/* public: */
767 
768 /* if you move pkt_type around you also must adapt those constants */
769 #ifdef __BIG_ENDIAN_BITFIELD
770 #define PKT_TYPE_MAX	(7 << 5)
771 #else
772 #define PKT_TYPE_MAX	7
773 #endif
774 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
775 
776 	__u8			__pkt_type_offset[0];
777 	__u8			pkt_type:3;
778 	__u8			ignore_df:1;
779 	__u8			nf_trace:1;
780 	__u8			ip_summed:2;
781 	__u8			ooo_okay:1;
782 
783 	__u8			l4_hash:1;
784 	__u8			sw_hash:1;
785 	__u8			wifi_acked_valid:1;
786 	__u8			wifi_acked:1;
787 	__u8			no_fcs:1;
788 	/* Indicates the inner headers are valid in the skbuff. */
789 	__u8			encapsulation:1;
790 	__u8			encap_hdr_csum:1;
791 	__u8			csum_valid:1;
792 
793 #ifdef __BIG_ENDIAN_BITFIELD
794 #define PKT_VLAN_PRESENT_BIT	7
795 #else
796 #define PKT_VLAN_PRESENT_BIT	0
797 #endif
798 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
799 	__u8			__pkt_vlan_present_offset[0];
800 	__u8			vlan_present:1;
801 	__u8			csum_complete_sw:1;
802 	__u8			csum_level:2;
803 	__u8			csum_not_inet:1;
804 	__u8			dst_pending_confirm:1;
805 #ifdef CONFIG_IPV6_NDISC_NODETYPE
806 	__u8			ndisc_nodetype:2;
807 #endif
808 
809 	__u8			ipvs_property:1;
810 	__u8			inner_protocol_type:1;
811 	__u8			remcsum_offload:1;
812 #ifdef CONFIG_NET_SWITCHDEV
813 	__u8			offload_fwd_mark:1;
814 	__u8			offload_l3_fwd_mark:1;
815 #endif
816 #ifdef CONFIG_NET_CLS_ACT
817 	__u8			tc_skip_classify:1;
818 	__u8			tc_at_ingress:1;
819 	__u8			tc_redirected:1;
820 	__u8			tc_from_ingress:1;
821 #endif
822 #ifdef CONFIG_TLS_DEVICE
823 	__u8			decrypted:1;
824 #endif
825 
826 #ifdef CONFIG_NET_SCHED
827 	__u16			tc_index;	/* traffic control index */
828 #endif
829 
830 	union {
831 		__wsum		csum;
832 		struct {
833 			__u16	csum_start;
834 			__u16	csum_offset;
835 		};
836 	};
837 	__u32			priority;
838 	int			skb_iif;
839 	__u32			hash;
840 	__be16			vlan_proto;
841 	__u16			vlan_tci;
842 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
843 	union {
844 		unsigned int	napi_id;
845 		unsigned int	sender_cpu;
846 	};
847 #endif
848 #ifdef CONFIG_NETWORK_SECMARK
849 	__u32		secmark;
850 #endif
851 
852 	union {
853 		__u32		mark;
854 		__u32		reserved_tailroom;
855 	};
856 
857 	union {
858 		__be16		inner_protocol;
859 		__u8		inner_ipproto;
860 	};
861 
862 	__u16			inner_transport_header;
863 	__u16			inner_network_header;
864 	__u16			inner_mac_header;
865 
866 	__be16			protocol;
867 	__u16			transport_header;
868 	__u16			network_header;
869 	__u16			mac_header;
870 
871 	/* private: */
872 	__u32			headers_end[0];
873 	/* public: */
874 
875 	/* These elements must be at the end, see alloc_skb() for details.  */
876 	sk_buff_data_t		tail;
877 	sk_buff_data_t		end;
878 	unsigned char		*head,
879 				*data;
880 	unsigned int		truesize;
881 	refcount_t		users;
882 
883 #ifdef CONFIG_SKB_EXTENSIONS
884 	/* only useable after checking ->active_extensions != 0 */
885 	struct skb_ext		*extensions;
886 #endif
887 };
888 
889 #ifdef __KERNEL__
890 /*
891  *	Handling routines are only of interest to the kernel
892  */
893 
894 #define SKB_ALLOC_FCLONE	0x01
895 #define SKB_ALLOC_RX		0x02
896 #define SKB_ALLOC_NAPI		0x04
897 
898 /**
899  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
900  * @skb: buffer
901  */
902 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
903 {
904 	return unlikely(skb->pfmemalloc);
905 }
906 
907 /*
908  * skb might have a dst pointer attached, refcounted or not.
909  * _skb_refdst low order bit is set if refcount was _not_ taken
910  */
911 #define SKB_DST_NOREF	1UL
912 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
913 
914 /**
915  * skb_dst - returns skb dst_entry
916  * @skb: buffer
917  *
918  * Returns skb dst_entry, regardless of reference taken or not.
919  */
920 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
921 {
922 	/* If refdst was not refcounted, check we still are in a
923 	 * rcu_read_lock section
924 	 */
925 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
926 		!rcu_read_lock_held() &&
927 		!rcu_read_lock_bh_held());
928 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
929 }
930 
931 /**
932  * skb_dst_set - sets skb dst
933  * @skb: buffer
934  * @dst: dst entry
935  *
936  * Sets skb dst, assuming a reference was taken on dst and should
937  * be released by skb_dst_drop()
938  */
939 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
940 {
941 	skb->_skb_refdst = (unsigned long)dst;
942 }
943 
944 /**
945  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
946  * @skb: buffer
947  * @dst: dst entry
948  *
949  * Sets skb dst, assuming a reference was not taken on dst.
950  * If dst entry is cached, we do not take reference and dst_release
951  * will be avoided by refdst_drop. If dst entry is not cached, we take
952  * reference, so that last dst_release can destroy the dst immediately.
953  */
954 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
955 {
956 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
957 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
958 }
959 
960 /**
961  * skb_dst_is_noref - Test if skb dst isn't refcounted
962  * @skb: buffer
963  */
964 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
965 {
966 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
967 }
968 
969 /**
970  * skb_rtable - Returns the skb &rtable
971  * @skb: buffer
972  */
973 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
974 {
975 	return (struct rtable *)skb_dst(skb);
976 }
977 
978 /* For mangling skb->pkt_type from user space side from applications
979  * such as nft, tc, etc, we only allow a conservative subset of
980  * possible pkt_types to be set.
981 */
982 static inline bool skb_pkt_type_ok(u32 ptype)
983 {
984 	return ptype <= PACKET_OTHERHOST;
985 }
986 
987 /**
988  * skb_napi_id - Returns the skb's NAPI id
989  * @skb: buffer
990  */
991 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
992 {
993 #ifdef CONFIG_NET_RX_BUSY_POLL
994 	return skb->napi_id;
995 #else
996 	return 0;
997 #endif
998 }
999 
1000 /**
1001  * skb_unref - decrement the skb's reference count
1002  * @skb: buffer
1003  *
1004  * Returns true if we can free the skb.
1005  */
1006 static inline bool skb_unref(struct sk_buff *skb)
1007 {
1008 	if (unlikely(!skb))
1009 		return false;
1010 	if (likely(refcount_read(&skb->users) == 1))
1011 		smp_rmb();
1012 	else if (likely(!refcount_dec_and_test(&skb->users)))
1013 		return false;
1014 
1015 	return true;
1016 }
1017 
1018 void skb_release_head_state(struct sk_buff *skb);
1019 void kfree_skb(struct sk_buff *skb);
1020 void kfree_skb_list(struct sk_buff *segs);
1021 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1022 void skb_tx_error(struct sk_buff *skb);
1023 void consume_skb(struct sk_buff *skb);
1024 void __consume_stateless_skb(struct sk_buff *skb);
1025 void  __kfree_skb(struct sk_buff *skb);
1026 extern struct kmem_cache *skbuff_head_cache;
1027 
1028 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1029 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1030 		      bool *fragstolen, int *delta_truesize);
1031 
1032 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1033 			    int node);
1034 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1035 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1036 struct sk_buff *build_skb_around(struct sk_buff *skb,
1037 				 void *data, unsigned int frag_size);
1038 
1039 /**
1040  * alloc_skb - allocate a network buffer
1041  * @size: size to allocate
1042  * @priority: allocation mask
1043  *
1044  * This function is a convenient wrapper around __alloc_skb().
1045  */
1046 static inline struct sk_buff *alloc_skb(unsigned int size,
1047 					gfp_t priority)
1048 {
1049 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1050 }
1051 
1052 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1053 				     unsigned long data_len,
1054 				     int max_page_order,
1055 				     int *errcode,
1056 				     gfp_t gfp_mask);
1057 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1058 
1059 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1060 struct sk_buff_fclones {
1061 	struct sk_buff	skb1;
1062 
1063 	struct sk_buff	skb2;
1064 
1065 	refcount_t	fclone_ref;
1066 };
1067 
1068 /**
1069  *	skb_fclone_busy - check if fclone is busy
1070  *	@sk: socket
1071  *	@skb: buffer
1072  *
1073  * Returns true if skb is a fast clone, and its clone is not freed.
1074  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1075  * so we also check that this didnt happen.
1076  */
1077 static inline bool skb_fclone_busy(const struct sock *sk,
1078 				   const struct sk_buff *skb)
1079 {
1080 	const struct sk_buff_fclones *fclones;
1081 
1082 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1083 
1084 	return skb->fclone == SKB_FCLONE_ORIG &&
1085 	       refcount_read(&fclones->fclone_ref) > 1 &&
1086 	       fclones->skb2.sk == sk;
1087 }
1088 
1089 /**
1090  * alloc_skb_fclone - allocate a network buffer from fclone cache
1091  * @size: size to allocate
1092  * @priority: allocation mask
1093  *
1094  * This function is a convenient wrapper around __alloc_skb().
1095  */
1096 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1097 					       gfp_t priority)
1098 {
1099 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1100 }
1101 
1102 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1103 void skb_headers_offset_update(struct sk_buff *skb, int off);
1104 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1105 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1106 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1107 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1108 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1109 				   gfp_t gfp_mask, bool fclone);
1110 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1111 					  gfp_t gfp_mask)
1112 {
1113 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1114 }
1115 
1116 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1117 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1118 				     unsigned int headroom);
1119 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1120 				int newtailroom, gfp_t priority);
1121 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1122 				     int offset, int len);
1123 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1124 			      int offset, int len);
1125 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1126 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1127 
1128 /**
1129  *	skb_pad			-	zero pad the tail of an skb
1130  *	@skb: buffer to pad
1131  *	@pad: space to pad
1132  *
1133  *	Ensure that a buffer is followed by a padding area that is zero
1134  *	filled. Used by network drivers which may DMA or transfer data
1135  *	beyond the buffer end onto the wire.
1136  *
1137  *	May return error in out of memory cases. The skb is freed on error.
1138  */
1139 static inline int skb_pad(struct sk_buff *skb, int pad)
1140 {
1141 	return __skb_pad(skb, pad, true);
1142 }
1143 #define dev_kfree_skb(a)	consume_skb(a)
1144 
1145 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1146 			 int offset, size_t size);
1147 
1148 struct skb_seq_state {
1149 	__u32		lower_offset;
1150 	__u32		upper_offset;
1151 	__u32		frag_idx;
1152 	__u32		stepped_offset;
1153 	struct sk_buff	*root_skb;
1154 	struct sk_buff	*cur_skb;
1155 	__u8		*frag_data;
1156 };
1157 
1158 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1159 			  unsigned int to, struct skb_seq_state *st);
1160 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1161 			  struct skb_seq_state *st);
1162 void skb_abort_seq_read(struct skb_seq_state *st);
1163 
1164 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1165 			   unsigned int to, struct ts_config *config);
1166 
1167 /*
1168  * Packet hash types specify the type of hash in skb_set_hash.
1169  *
1170  * Hash types refer to the protocol layer addresses which are used to
1171  * construct a packet's hash. The hashes are used to differentiate or identify
1172  * flows of the protocol layer for the hash type. Hash types are either
1173  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1174  *
1175  * Properties of hashes:
1176  *
1177  * 1) Two packets in different flows have different hash values
1178  * 2) Two packets in the same flow should have the same hash value
1179  *
1180  * A hash at a higher layer is considered to be more specific. A driver should
1181  * set the most specific hash possible.
1182  *
1183  * A driver cannot indicate a more specific hash than the layer at which a hash
1184  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1185  *
1186  * A driver may indicate a hash level which is less specific than the
1187  * actual layer the hash was computed on. For instance, a hash computed
1188  * at L4 may be considered an L3 hash. This should only be done if the
1189  * driver can't unambiguously determine that the HW computed the hash at
1190  * the higher layer. Note that the "should" in the second property above
1191  * permits this.
1192  */
1193 enum pkt_hash_types {
1194 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1195 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1196 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1197 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1198 };
1199 
1200 static inline void skb_clear_hash(struct sk_buff *skb)
1201 {
1202 	skb->hash = 0;
1203 	skb->sw_hash = 0;
1204 	skb->l4_hash = 0;
1205 }
1206 
1207 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1208 {
1209 	if (!skb->l4_hash)
1210 		skb_clear_hash(skb);
1211 }
1212 
1213 static inline void
1214 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1215 {
1216 	skb->l4_hash = is_l4;
1217 	skb->sw_hash = is_sw;
1218 	skb->hash = hash;
1219 }
1220 
1221 static inline void
1222 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1223 {
1224 	/* Used by drivers to set hash from HW */
1225 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1226 }
1227 
1228 static inline void
1229 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1230 {
1231 	__skb_set_hash(skb, hash, true, is_l4);
1232 }
1233 
1234 void __skb_get_hash(struct sk_buff *skb);
1235 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1236 u32 skb_get_poff(const struct sk_buff *skb);
1237 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1238 		   const struct flow_keys_basic *keys, int hlen);
1239 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1240 			    void *data, int hlen_proto);
1241 
1242 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1243 					int thoff, u8 ip_proto)
1244 {
1245 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1246 }
1247 
1248 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1249 			     const struct flow_dissector_key *key,
1250 			     unsigned int key_count);
1251 
1252 #ifdef CONFIG_NET
1253 int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1254 				  union bpf_attr __user *uattr);
1255 int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1256 				       struct bpf_prog *prog);
1257 
1258 int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr);
1259 #else
1260 static inline int skb_flow_dissector_prog_query(const union bpf_attr *attr,
1261 						union bpf_attr __user *uattr)
1262 {
1263 	return -EOPNOTSUPP;
1264 }
1265 
1266 static inline int skb_flow_dissector_bpf_prog_attach(const union bpf_attr *attr,
1267 						     struct bpf_prog *prog)
1268 {
1269 	return -EOPNOTSUPP;
1270 }
1271 
1272 static inline int skb_flow_dissector_bpf_prog_detach(const union bpf_attr *attr)
1273 {
1274 	return -EOPNOTSUPP;
1275 }
1276 #endif
1277 
1278 struct bpf_flow_dissector;
1279 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1280 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1281 
1282 bool __skb_flow_dissect(const struct net *net,
1283 			const struct sk_buff *skb,
1284 			struct flow_dissector *flow_dissector,
1285 			void *target_container,
1286 			void *data, __be16 proto, int nhoff, int hlen,
1287 			unsigned int flags);
1288 
1289 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1290 				    struct flow_dissector *flow_dissector,
1291 				    void *target_container, unsigned int flags)
1292 {
1293 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1294 				  target_container, NULL, 0, 0, 0, flags);
1295 }
1296 
1297 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1298 					      struct flow_keys *flow,
1299 					      unsigned int flags)
1300 {
1301 	memset(flow, 0, sizeof(*flow));
1302 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1303 				  flow, NULL, 0, 0, 0, flags);
1304 }
1305 
1306 static inline bool
1307 skb_flow_dissect_flow_keys_basic(const struct net *net,
1308 				 const struct sk_buff *skb,
1309 				 struct flow_keys_basic *flow, void *data,
1310 				 __be16 proto, int nhoff, int hlen,
1311 				 unsigned int flags)
1312 {
1313 	memset(flow, 0, sizeof(*flow));
1314 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1315 				  data, proto, nhoff, hlen, flags);
1316 }
1317 
1318 void skb_flow_dissect_meta(const struct sk_buff *skb,
1319 			   struct flow_dissector *flow_dissector,
1320 			   void *target_container);
1321 
1322 /* Gets a skb connection tracking info, ctinfo map should be a
1323  * a map of mapsize to translate enum ip_conntrack_info states
1324  * to user states.
1325  */
1326 void
1327 skb_flow_dissect_ct(const struct sk_buff *skb,
1328 		    struct flow_dissector *flow_dissector,
1329 		    void *target_container,
1330 		    u16 *ctinfo_map,
1331 		    size_t mapsize);
1332 void
1333 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1334 			     struct flow_dissector *flow_dissector,
1335 			     void *target_container);
1336 
1337 static inline __u32 skb_get_hash(struct sk_buff *skb)
1338 {
1339 	if (!skb->l4_hash && !skb->sw_hash)
1340 		__skb_get_hash(skb);
1341 
1342 	return skb->hash;
1343 }
1344 
1345 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1346 {
1347 	if (!skb->l4_hash && !skb->sw_hash) {
1348 		struct flow_keys keys;
1349 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1350 
1351 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1352 	}
1353 
1354 	return skb->hash;
1355 }
1356 
1357 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1358 			   const siphash_key_t *perturb);
1359 
1360 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1361 {
1362 	return skb->hash;
1363 }
1364 
1365 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1366 {
1367 	to->hash = from->hash;
1368 	to->sw_hash = from->sw_hash;
1369 	to->l4_hash = from->l4_hash;
1370 };
1371 
1372 static inline void skb_copy_decrypted(struct sk_buff *to,
1373 				      const struct sk_buff *from)
1374 {
1375 #ifdef CONFIG_TLS_DEVICE
1376 	to->decrypted = from->decrypted;
1377 #endif
1378 }
1379 
1380 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1381 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1382 {
1383 	return skb->head + skb->end;
1384 }
1385 
1386 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1387 {
1388 	return skb->end;
1389 }
1390 #else
1391 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1392 {
1393 	return skb->end;
1394 }
1395 
1396 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1397 {
1398 	return skb->end - skb->head;
1399 }
1400 #endif
1401 
1402 /* Internal */
1403 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1404 
1405 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1406 {
1407 	return &skb_shinfo(skb)->hwtstamps;
1408 }
1409 
1410 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1411 {
1412 	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1413 
1414 	return is_zcopy ? skb_uarg(skb) : NULL;
1415 }
1416 
1417 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1418 				 bool *have_ref)
1419 {
1420 	if (skb && uarg && !skb_zcopy(skb)) {
1421 		if (unlikely(have_ref && *have_ref))
1422 			*have_ref = false;
1423 		else
1424 			sock_zerocopy_get(uarg);
1425 		skb_shinfo(skb)->destructor_arg = uarg;
1426 		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1427 	}
1428 }
1429 
1430 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1431 {
1432 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1433 	skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1434 }
1435 
1436 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1437 {
1438 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1439 }
1440 
1441 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1442 {
1443 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1444 }
1445 
1446 /* Release a reference on a zerocopy structure */
1447 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1448 {
1449 	struct ubuf_info *uarg = skb_zcopy(skb);
1450 
1451 	if (uarg) {
1452 		if (skb_zcopy_is_nouarg(skb)) {
1453 			/* no notification callback */
1454 		} else if (uarg->callback == sock_zerocopy_callback) {
1455 			uarg->zerocopy = uarg->zerocopy && zerocopy;
1456 			sock_zerocopy_put(uarg);
1457 		} else {
1458 			uarg->callback(uarg, zerocopy);
1459 		}
1460 
1461 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1462 	}
1463 }
1464 
1465 /* Abort a zerocopy operation and revert zckey on error in send syscall */
1466 static inline void skb_zcopy_abort(struct sk_buff *skb)
1467 {
1468 	struct ubuf_info *uarg = skb_zcopy(skb);
1469 
1470 	if (uarg) {
1471 		sock_zerocopy_put_abort(uarg, false);
1472 		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1473 	}
1474 }
1475 
1476 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1477 {
1478 	skb->next = NULL;
1479 }
1480 
1481 static inline void skb_list_del_init(struct sk_buff *skb)
1482 {
1483 	__list_del_entry(&skb->list);
1484 	skb_mark_not_on_list(skb);
1485 }
1486 
1487 /**
1488  *	skb_queue_empty - check if a queue is empty
1489  *	@list: queue head
1490  *
1491  *	Returns true if the queue is empty, false otherwise.
1492  */
1493 static inline int skb_queue_empty(const struct sk_buff_head *list)
1494 {
1495 	return list->next == (const struct sk_buff *) list;
1496 }
1497 
1498 /**
1499  *	skb_queue_empty_lockless - check if a queue is empty
1500  *	@list: queue head
1501  *
1502  *	Returns true if the queue is empty, false otherwise.
1503  *	This variant can be used in lockless contexts.
1504  */
1505 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1506 {
1507 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1508 }
1509 
1510 
1511 /**
1512  *	skb_queue_is_last - check if skb is the last entry in the queue
1513  *	@list: queue head
1514  *	@skb: buffer
1515  *
1516  *	Returns true if @skb is the last buffer on the list.
1517  */
1518 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1519 				     const struct sk_buff *skb)
1520 {
1521 	return skb->next == (const struct sk_buff *) list;
1522 }
1523 
1524 /**
1525  *	skb_queue_is_first - check if skb is the first entry in the queue
1526  *	@list: queue head
1527  *	@skb: buffer
1528  *
1529  *	Returns true if @skb is the first buffer on the list.
1530  */
1531 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1532 				      const struct sk_buff *skb)
1533 {
1534 	return skb->prev == (const struct sk_buff *) list;
1535 }
1536 
1537 /**
1538  *	skb_queue_next - return the next packet in the queue
1539  *	@list: queue head
1540  *	@skb: current buffer
1541  *
1542  *	Return the next packet in @list after @skb.  It is only valid to
1543  *	call this if skb_queue_is_last() evaluates to false.
1544  */
1545 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1546 					     const struct sk_buff *skb)
1547 {
1548 	/* This BUG_ON may seem severe, but if we just return then we
1549 	 * are going to dereference garbage.
1550 	 */
1551 	BUG_ON(skb_queue_is_last(list, skb));
1552 	return skb->next;
1553 }
1554 
1555 /**
1556  *	skb_queue_prev - return the prev packet in the queue
1557  *	@list: queue head
1558  *	@skb: current buffer
1559  *
1560  *	Return the prev packet in @list before @skb.  It is only valid to
1561  *	call this if skb_queue_is_first() evaluates to false.
1562  */
1563 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1564 					     const struct sk_buff *skb)
1565 {
1566 	/* This BUG_ON may seem severe, but if we just return then we
1567 	 * are going to dereference garbage.
1568 	 */
1569 	BUG_ON(skb_queue_is_first(list, skb));
1570 	return skb->prev;
1571 }
1572 
1573 /**
1574  *	skb_get - reference buffer
1575  *	@skb: buffer to reference
1576  *
1577  *	Makes another reference to a socket buffer and returns a pointer
1578  *	to the buffer.
1579  */
1580 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1581 {
1582 	refcount_inc(&skb->users);
1583 	return skb;
1584 }
1585 
1586 /*
1587  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1588  */
1589 
1590 /**
1591  *	skb_cloned - is the buffer a clone
1592  *	@skb: buffer to check
1593  *
1594  *	Returns true if the buffer was generated with skb_clone() and is
1595  *	one of multiple shared copies of the buffer. Cloned buffers are
1596  *	shared data so must not be written to under normal circumstances.
1597  */
1598 static inline int skb_cloned(const struct sk_buff *skb)
1599 {
1600 	return skb->cloned &&
1601 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1602 }
1603 
1604 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1605 {
1606 	might_sleep_if(gfpflags_allow_blocking(pri));
1607 
1608 	if (skb_cloned(skb))
1609 		return pskb_expand_head(skb, 0, 0, pri);
1610 
1611 	return 0;
1612 }
1613 
1614 /**
1615  *	skb_header_cloned - is the header a clone
1616  *	@skb: buffer to check
1617  *
1618  *	Returns true if modifying the header part of the buffer requires
1619  *	the data to be copied.
1620  */
1621 static inline int skb_header_cloned(const struct sk_buff *skb)
1622 {
1623 	int dataref;
1624 
1625 	if (!skb->cloned)
1626 		return 0;
1627 
1628 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1629 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1630 	return dataref != 1;
1631 }
1632 
1633 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1634 {
1635 	might_sleep_if(gfpflags_allow_blocking(pri));
1636 
1637 	if (skb_header_cloned(skb))
1638 		return pskb_expand_head(skb, 0, 0, pri);
1639 
1640 	return 0;
1641 }
1642 
1643 /**
1644  *	__skb_header_release - release reference to header
1645  *	@skb: buffer to operate on
1646  */
1647 static inline void __skb_header_release(struct sk_buff *skb)
1648 {
1649 	skb->nohdr = 1;
1650 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1651 }
1652 
1653 
1654 /**
1655  *	skb_shared - is the buffer shared
1656  *	@skb: buffer to check
1657  *
1658  *	Returns true if more than one person has a reference to this
1659  *	buffer.
1660  */
1661 static inline int skb_shared(const struct sk_buff *skb)
1662 {
1663 	return refcount_read(&skb->users) != 1;
1664 }
1665 
1666 /**
1667  *	skb_share_check - check if buffer is shared and if so clone it
1668  *	@skb: buffer to check
1669  *	@pri: priority for memory allocation
1670  *
1671  *	If the buffer is shared the buffer is cloned and the old copy
1672  *	drops a reference. A new clone with a single reference is returned.
1673  *	If the buffer is not shared the original buffer is returned. When
1674  *	being called from interrupt status or with spinlocks held pri must
1675  *	be GFP_ATOMIC.
1676  *
1677  *	NULL is returned on a memory allocation failure.
1678  */
1679 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1680 {
1681 	might_sleep_if(gfpflags_allow_blocking(pri));
1682 	if (skb_shared(skb)) {
1683 		struct sk_buff *nskb = skb_clone(skb, pri);
1684 
1685 		if (likely(nskb))
1686 			consume_skb(skb);
1687 		else
1688 			kfree_skb(skb);
1689 		skb = nskb;
1690 	}
1691 	return skb;
1692 }
1693 
1694 /*
1695  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1696  *	packets to handle cases where we have a local reader and forward
1697  *	and a couple of other messy ones. The normal one is tcpdumping
1698  *	a packet thats being forwarded.
1699  */
1700 
1701 /**
1702  *	skb_unshare - make a copy of a shared buffer
1703  *	@skb: buffer to check
1704  *	@pri: priority for memory allocation
1705  *
1706  *	If the socket buffer is a clone then this function creates a new
1707  *	copy of the data, drops a reference count on the old copy and returns
1708  *	the new copy with the reference count at 1. If the buffer is not a clone
1709  *	the original buffer is returned. When called with a spinlock held or
1710  *	from interrupt state @pri must be %GFP_ATOMIC
1711  *
1712  *	%NULL is returned on a memory allocation failure.
1713  */
1714 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1715 					  gfp_t pri)
1716 {
1717 	might_sleep_if(gfpflags_allow_blocking(pri));
1718 	if (skb_cloned(skb)) {
1719 		struct sk_buff *nskb = skb_copy(skb, pri);
1720 
1721 		/* Free our shared copy */
1722 		if (likely(nskb))
1723 			consume_skb(skb);
1724 		else
1725 			kfree_skb(skb);
1726 		skb = nskb;
1727 	}
1728 	return skb;
1729 }
1730 
1731 /**
1732  *	skb_peek - peek at the head of an &sk_buff_head
1733  *	@list_: list to peek at
1734  *
1735  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1736  *	be careful with this one. A peek leaves the buffer on the
1737  *	list and someone else may run off with it. You must hold
1738  *	the appropriate locks or have a private queue to do this.
1739  *
1740  *	Returns %NULL for an empty list or a pointer to the head element.
1741  *	The reference count is not incremented and the reference is therefore
1742  *	volatile. Use with caution.
1743  */
1744 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1745 {
1746 	struct sk_buff *skb = list_->next;
1747 
1748 	if (skb == (struct sk_buff *)list_)
1749 		skb = NULL;
1750 	return skb;
1751 }
1752 
1753 /**
1754  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1755  *	@list_: list to peek at
1756  *
1757  *	Like skb_peek(), but the caller knows that the list is not empty.
1758  */
1759 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1760 {
1761 	return list_->next;
1762 }
1763 
1764 /**
1765  *	skb_peek_next - peek skb following the given one from a queue
1766  *	@skb: skb to start from
1767  *	@list_: list to peek at
1768  *
1769  *	Returns %NULL when the end of the list is met or a pointer to the
1770  *	next element. The reference count is not incremented and the
1771  *	reference is therefore volatile. Use with caution.
1772  */
1773 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1774 		const struct sk_buff_head *list_)
1775 {
1776 	struct sk_buff *next = skb->next;
1777 
1778 	if (next == (struct sk_buff *)list_)
1779 		next = NULL;
1780 	return next;
1781 }
1782 
1783 /**
1784  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1785  *	@list_: list to peek at
1786  *
1787  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1788  *	be careful with this one. A peek leaves the buffer on the
1789  *	list and someone else may run off with it. You must hold
1790  *	the appropriate locks or have a private queue to do this.
1791  *
1792  *	Returns %NULL for an empty list or a pointer to the tail element.
1793  *	The reference count is not incremented and the reference is therefore
1794  *	volatile. Use with caution.
1795  */
1796 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1797 {
1798 	struct sk_buff *skb = READ_ONCE(list_->prev);
1799 
1800 	if (skb == (struct sk_buff *)list_)
1801 		skb = NULL;
1802 	return skb;
1803 
1804 }
1805 
1806 /**
1807  *	skb_queue_len	- get queue length
1808  *	@list_: list to measure
1809  *
1810  *	Return the length of an &sk_buff queue.
1811  */
1812 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1813 {
1814 	return list_->qlen;
1815 }
1816 
1817 /**
1818  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1819  *	@list: queue to initialize
1820  *
1821  *	This initializes only the list and queue length aspects of
1822  *	an sk_buff_head object.  This allows to initialize the list
1823  *	aspects of an sk_buff_head without reinitializing things like
1824  *	the spinlock.  It can also be used for on-stack sk_buff_head
1825  *	objects where the spinlock is known to not be used.
1826  */
1827 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1828 {
1829 	list->prev = list->next = (struct sk_buff *)list;
1830 	list->qlen = 0;
1831 }
1832 
1833 /*
1834  * This function creates a split out lock class for each invocation;
1835  * this is needed for now since a whole lot of users of the skb-queue
1836  * infrastructure in drivers have different locking usage (in hardirq)
1837  * than the networking core (in softirq only). In the long run either the
1838  * network layer or drivers should need annotation to consolidate the
1839  * main types of usage into 3 classes.
1840  */
1841 static inline void skb_queue_head_init(struct sk_buff_head *list)
1842 {
1843 	spin_lock_init(&list->lock);
1844 	__skb_queue_head_init(list);
1845 }
1846 
1847 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1848 		struct lock_class_key *class)
1849 {
1850 	skb_queue_head_init(list);
1851 	lockdep_set_class(&list->lock, class);
1852 }
1853 
1854 /*
1855  *	Insert an sk_buff on a list.
1856  *
1857  *	The "__skb_xxxx()" functions are the non-atomic ones that
1858  *	can only be called with interrupts disabled.
1859  */
1860 static inline void __skb_insert(struct sk_buff *newsk,
1861 				struct sk_buff *prev, struct sk_buff *next,
1862 				struct sk_buff_head *list)
1863 {
1864 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1865 	 * for the opposite READ_ONCE()
1866 	 */
1867 	WRITE_ONCE(newsk->next, next);
1868 	WRITE_ONCE(newsk->prev, prev);
1869 	WRITE_ONCE(next->prev, newsk);
1870 	WRITE_ONCE(prev->next, newsk);
1871 	list->qlen++;
1872 }
1873 
1874 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1875 				      struct sk_buff *prev,
1876 				      struct sk_buff *next)
1877 {
1878 	struct sk_buff *first = list->next;
1879 	struct sk_buff *last = list->prev;
1880 
1881 	WRITE_ONCE(first->prev, prev);
1882 	WRITE_ONCE(prev->next, first);
1883 
1884 	WRITE_ONCE(last->next, next);
1885 	WRITE_ONCE(next->prev, last);
1886 }
1887 
1888 /**
1889  *	skb_queue_splice - join two skb lists, this is designed for stacks
1890  *	@list: the new list to add
1891  *	@head: the place to add it in the first list
1892  */
1893 static inline void skb_queue_splice(const struct sk_buff_head *list,
1894 				    struct sk_buff_head *head)
1895 {
1896 	if (!skb_queue_empty(list)) {
1897 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1898 		head->qlen += list->qlen;
1899 	}
1900 }
1901 
1902 /**
1903  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1904  *	@list: the new list to add
1905  *	@head: the place to add it in the first list
1906  *
1907  *	The list at @list is reinitialised
1908  */
1909 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1910 					 struct sk_buff_head *head)
1911 {
1912 	if (!skb_queue_empty(list)) {
1913 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1914 		head->qlen += list->qlen;
1915 		__skb_queue_head_init(list);
1916 	}
1917 }
1918 
1919 /**
1920  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1921  *	@list: the new list to add
1922  *	@head: the place to add it in the first list
1923  */
1924 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1925 					 struct sk_buff_head *head)
1926 {
1927 	if (!skb_queue_empty(list)) {
1928 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1929 		head->qlen += list->qlen;
1930 	}
1931 }
1932 
1933 /**
1934  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1935  *	@list: the new list to add
1936  *	@head: the place to add it in the first list
1937  *
1938  *	Each of the lists is a queue.
1939  *	The list at @list is reinitialised
1940  */
1941 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1942 					      struct sk_buff_head *head)
1943 {
1944 	if (!skb_queue_empty(list)) {
1945 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1946 		head->qlen += list->qlen;
1947 		__skb_queue_head_init(list);
1948 	}
1949 }
1950 
1951 /**
1952  *	__skb_queue_after - queue a buffer at the list head
1953  *	@list: list to use
1954  *	@prev: place after this buffer
1955  *	@newsk: buffer to queue
1956  *
1957  *	Queue a buffer int the middle of a list. This function takes no locks
1958  *	and you must therefore hold required locks before calling it.
1959  *
1960  *	A buffer cannot be placed on two lists at the same time.
1961  */
1962 static inline void __skb_queue_after(struct sk_buff_head *list,
1963 				     struct sk_buff *prev,
1964 				     struct sk_buff *newsk)
1965 {
1966 	__skb_insert(newsk, prev, prev->next, list);
1967 }
1968 
1969 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1970 		struct sk_buff_head *list);
1971 
1972 static inline void __skb_queue_before(struct sk_buff_head *list,
1973 				      struct sk_buff *next,
1974 				      struct sk_buff *newsk)
1975 {
1976 	__skb_insert(newsk, next->prev, next, list);
1977 }
1978 
1979 /**
1980  *	__skb_queue_head - queue a buffer at the list head
1981  *	@list: list to use
1982  *	@newsk: buffer to queue
1983  *
1984  *	Queue a buffer at the start of a list. This function takes no locks
1985  *	and you must therefore hold required locks before calling it.
1986  *
1987  *	A buffer cannot be placed on two lists at the same time.
1988  */
1989 static inline void __skb_queue_head(struct sk_buff_head *list,
1990 				    struct sk_buff *newsk)
1991 {
1992 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
1993 }
1994 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1995 
1996 /**
1997  *	__skb_queue_tail - queue a buffer at the list tail
1998  *	@list: list to use
1999  *	@newsk: buffer to queue
2000  *
2001  *	Queue a buffer at the end of a list. This function takes no locks
2002  *	and you must therefore hold required locks before calling it.
2003  *
2004  *	A buffer cannot be placed on two lists at the same time.
2005  */
2006 static inline void __skb_queue_tail(struct sk_buff_head *list,
2007 				   struct sk_buff *newsk)
2008 {
2009 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2010 }
2011 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2012 
2013 /*
2014  * remove sk_buff from list. _Must_ be called atomically, and with
2015  * the list known..
2016  */
2017 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2018 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2019 {
2020 	struct sk_buff *next, *prev;
2021 
2022 	list->qlen--;
2023 	next	   = skb->next;
2024 	prev	   = skb->prev;
2025 	skb->next  = skb->prev = NULL;
2026 	WRITE_ONCE(next->prev, prev);
2027 	WRITE_ONCE(prev->next, next);
2028 }
2029 
2030 /**
2031  *	__skb_dequeue - remove from the head of the queue
2032  *	@list: list to dequeue from
2033  *
2034  *	Remove the head of the list. This function does not take any locks
2035  *	so must be used with appropriate locks held only. The head item is
2036  *	returned or %NULL if the list is empty.
2037  */
2038 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2039 {
2040 	struct sk_buff *skb = skb_peek(list);
2041 	if (skb)
2042 		__skb_unlink(skb, list);
2043 	return skb;
2044 }
2045 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2046 
2047 /**
2048  *	__skb_dequeue_tail - remove from the tail of the queue
2049  *	@list: list to dequeue from
2050  *
2051  *	Remove the tail of the list. This function does not take any locks
2052  *	so must be used with appropriate locks held only. The tail item is
2053  *	returned or %NULL if the list is empty.
2054  */
2055 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2056 {
2057 	struct sk_buff *skb = skb_peek_tail(list);
2058 	if (skb)
2059 		__skb_unlink(skb, list);
2060 	return skb;
2061 }
2062 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2063 
2064 
2065 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2066 {
2067 	return skb->data_len;
2068 }
2069 
2070 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2071 {
2072 	return skb->len - skb->data_len;
2073 }
2074 
2075 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2076 {
2077 	unsigned int i, len = 0;
2078 
2079 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2080 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2081 	return len;
2082 }
2083 
2084 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2085 {
2086 	return skb_headlen(skb) + __skb_pagelen(skb);
2087 }
2088 
2089 /**
2090  * __skb_fill_page_desc - initialise a paged fragment in an skb
2091  * @skb: buffer containing fragment to be initialised
2092  * @i: paged fragment index to initialise
2093  * @page: the page to use for this fragment
2094  * @off: the offset to the data with @page
2095  * @size: the length of the data
2096  *
2097  * Initialises the @i'th fragment of @skb to point to &size bytes at
2098  * offset @off within @page.
2099  *
2100  * Does not take any additional reference on the fragment.
2101  */
2102 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2103 					struct page *page, int off, int size)
2104 {
2105 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2106 
2107 	/*
2108 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2109 	 * that not all callers have unique ownership of the page but rely
2110 	 * on page_is_pfmemalloc doing the right thing(tm).
2111 	 */
2112 	frag->bv_page		  = page;
2113 	frag->bv_offset		  = off;
2114 	skb_frag_size_set(frag, size);
2115 
2116 	page = compound_head(page);
2117 	if (page_is_pfmemalloc(page))
2118 		skb->pfmemalloc	= true;
2119 }
2120 
2121 /**
2122  * skb_fill_page_desc - initialise a paged fragment in an skb
2123  * @skb: buffer containing fragment to be initialised
2124  * @i: paged fragment index to initialise
2125  * @page: the page to use for this fragment
2126  * @off: the offset to the data with @page
2127  * @size: the length of the data
2128  *
2129  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2130  * @skb to point to @size bytes at offset @off within @page. In
2131  * addition updates @skb such that @i is the last fragment.
2132  *
2133  * Does not take any additional reference on the fragment.
2134  */
2135 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2136 				      struct page *page, int off, int size)
2137 {
2138 	__skb_fill_page_desc(skb, i, page, off, size);
2139 	skb_shinfo(skb)->nr_frags = i + 1;
2140 }
2141 
2142 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2143 		     int size, unsigned int truesize);
2144 
2145 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2146 			  unsigned int truesize);
2147 
2148 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2149 
2150 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2151 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2152 {
2153 	return skb->head + skb->tail;
2154 }
2155 
2156 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2157 {
2158 	skb->tail = skb->data - skb->head;
2159 }
2160 
2161 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2162 {
2163 	skb_reset_tail_pointer(skb);
2164 	skb->tail += offset;
2165 }
2166 
2167 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2168 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2169 {
2170 	return skb->tail;
2171 }
2172 
2173 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2174 {
2175 	skb->tail = skb->data;
2176 }
2177 
2178 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2179 {
2180 	skb->tail = skb->data + offset;
2181 }
2182 
2183 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2184 
2185 /*
2186  *	Add data to an sk_buff
2187  */
2188 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2189 void *skb_put(struct sk_buff *skb, unsigned int len);
2190 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2191 {
2192 	void *tmp = skb_tail_pointer(skb);
2193 	SKB_LINEAR_ASSERT(skb);
2194 	skb->tail += len;
2195 	skb->len  += len;
2196 	return tmp;
2197 }
2198 
2199 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2200 {
2201 	void *tmp = __skb_put(skb, len);
2202 
2203 	memset(tmp, 0, len);
2204 	return tmp;
2205 }
2206 
2207 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2208 				   unsigned int len)
2209 {
2210 	void *tmp = __skb_put(skb, len);
2211 
2212 	memcpy(tmp, data, len);
2213 	return tmp;
2214 }
2215 
2216 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2217 {
2218 	*(u8 *)__skb_put(skb, 1) = val;
2219 }
2220 
2221 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2222 {
2223 	void *tmp = skb_put(skb, len);
2224 
2225 	memset(tmp, 0, len);
2226 
2227 	return tmp;
2228 }
2229 
2230 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2231 				 unsigned int len)
2232 {
2233 	void *tmp = skb_put(skb, len);
2234 
2235 	memcpy(tmp, data, len);
2236 
2237 	return tmp;
2238 }
2239 
2240 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2241 {
2242 	*(u8 *)skb_put(skb, 1) = val;
2243 }
2244 
2245 void *skb_push(struct sk_buff *skb, unsigned int len);
2246 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2247 {
2248 	skb->data -= len;
2249 	skb->len  += len;
2250 	return skb->data;
2251 }
2252 
2253 void *skb_pull(struct sk_buff *skb, unsigned int len);
2254 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2255 {
2256 	skb->len -= len;
2257 	BUG_ON(skb->len < skb->data_len);
2258 	return skb->data += len;
2259 }
2260 
2261 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2262 {
2263 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2264 }
2265 
2266 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2267 
2268 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2269 {
2270 	if (len > skb_headlen(skb) &&
2271 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2272 		return NULL;
2273 	skb->len -= len;
2274 	return skb->data += len;
2275 }
2276 
2277 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2278 {
2279 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2280 }
2281 
2282 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2283 {
2284 	if (likely(len <= skb_headlen(skb)))
2285 		return true;
2286 	if (unlikely(len > skb->len))
2287 		return false;
2288 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2289 }
2290 
2291 void skb_condense(struct sk_buff *skb);
2292 
2293 /**
2294  *	skb_headroom - bytes at buffer head
2295  *	@skb: buffer to check
2296  *
2297  *	Return the number of bytes of free space at the head of an &sk_buff.
2298  */
2299 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2300 {
2301 	return skb->data - skb->head;
2302 }
2303 
2304 /**
2305  *	skb_tailroom - bytes at buffer end
2306  *	@skb: buffer to check
2307  *
2308  *	Return the number of bytes of free space at the tail of an sk_buff
2309  */
2310 static inline int skb_tailroom(const struct sk_buff *skb)
2311 {
2312 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2313 }
2314 
2315 /**
2316  *	skb_availroom - bytes at buffer end
2317  *	@skb: buffer to check
2318  *
2319  *	Return the number of bytes of free space at the tail of an sk_buff
2320  *	allocated by sk_stream_alloc()
2321  */
2322 static inline int skb_availroom(const struct sk_buff *skb)
2323 {
2324 	if (skb_is_nonlinear(skb))
2325 		return 0;
2326 
2327 	return skb->end - skb->tail - skb->reserved_tailroom;
2328 }
2329 
2330 /**
2331  *	skb_reserve - adjust headroom
2332  *	@skb: buffer to alter
2333  *	@len: bytes to move
2334  *
2335  *	Increase the headroom of an empty &sk_buff by reducing the tail
2336  *	room. This is only allowed for an empty buffer.
2337  */
2338 static inline void skb_reserve(struct sk_buff *skb, int len)
2339 {
2340 	skb->data += len;
2341 	skb->tail += len;
2342 }
2343 
2344 /**
2345  *	skb_tailroom_reserve - adjust reserved_tailroom
2346  *	@skb: buffer to alter
2347  *	@mtu: maximum amount of headlen permitted
2348  *	@needed_tailroom: minimum amount of reserved_tailroom
2349  *
2350  *	Set reserved_tailroom so that headlen can be as large as possible but
2351  *	not larger than mtu and tailroom cannot be smaller than
2352  *	needed_tailroom.
2353  *	The required headroom should already have been reserved before using
2354  *	this function.
2355  */
2356 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2357 					unsigned int needed_tailroom)
2358 {
2359 	SKB_LINEAR_ASSERT(skb);
2360 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2361 		/* use at most mtu */
2362 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2363 	else
2364 		/* use up to all available space */
2365 		skb->reserved_tailroom = needed_tailroom;
2366 }
2367 
2368 #define ENCAP_TYPE_ETHER	0
2369 #define ENCAP_TYPE_IPPROTO	1
2370 
2371 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2372 					  __be16 protocol)
2373 {
2374 	skb->inner_protocol = protocol;
2375 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2376 }
2377 
2378 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2379 					 __u8 ipproto)
2380 {
2381 	skb->inner_ipproto = ipproto;
2382 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2383 }
2384 
2385 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2386 {
2387 	skb->inner_mac_header = skb->mac_header;
2388 	skb->inner_network_header = skb->network_header;
2389 	skb->inner_transport_header = skb->transport_header;
2390 }
2391 
2392 static inline void skb_reset_mac_len(struct sk_buff *skb)
2393 {
2394 	skb->mac_len = skb->network_header - skb->mac_header;
2395 }
2396 
2397 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2398 							*skb)
2399 {
2400 	return skb->head + skb->inner_transport_header;
2401 }
2402 
2403 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2404 {
2405 	return skb_inner_transport_header(skb) - skb->data;
2406 }
2407 
2408 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2409 {
2410 	skb->inner_transport_header = skb->data - skb->head;
2411 }
2412 
2413 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2414 						   const int offset)
2415 {
2416 	skb_reset_inner_transport_header(skb);
2417 	skb->inner_transport_header += offset;
2418 }
2419 
2420 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2421 {
2422 	return skb->head + skb->inner_network_header;
2423 }
2424 
2425 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2426 {
2427 	skb->inner_network_header = skb->data - skb->head;
2428 }
2429 
2430 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2431 						const int offset)
2432 {
2433 	skb_reset_inner_network_header(skb);
2434 	skb->inner_network_header += offset;
2435 }
2436 
2437 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2438 {
2439 	return skb->head + skb->inner_mac_header;
2440 }
2441 
2442 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2443 {
2444 	skb->inner_mac_header = skb->data - skb->head;
2445 }
2446 
2447 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2448 					    const int offset)
2449 {
2450 	skb_reset_inner_mac_header(skb);
2451 	skb->inner_mac_header += offset;
2452 }
2453 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2454 {
2455 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2456 }
2457 
2458 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2459 {
2460 	return skb->head + skb->transport_header;
2461 }
2462 
2463 static inline void skb_reset_transport_header(struct sk_buff *skb)
2464 {
2465 	skb->transport_header = skb->data - skb->head;
2466 }
2467 
2468 static inline void skb_set_transport_header(struct sk_buff *skb,
2469 					    const int offset)
2470 {
2471 	skb_reset_transport_header(skb);
2472 	skb->transport_header += offset;
2473 }
2474 
2475 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2476 {
2477 	return skb->head + skb->network_header;
2478 }
2479 
2480 static inline void skb_reset_network_header(struct sk_buff *skb)
2481 {
2482 	skb->network_header = skb->data - skb->head;
2483 }
2484 
2485 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2486 {
2487 	skb_reset_network_header(skb);
2488 	skb->network_header += offset;
2489 }
2490 
2491 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2492 {
2493 	return skb->head + skb->mac_header;
2494 }
2495 
2496 static inline int skb_mac_offset(const struct sk_buff *skb)
2497 {
2498 	return skb_mac_header(skb) - skb->data;
2499 }
2500 
2501 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2502 {
2503 	return skb->network_header - skb->mac_header;
2504 }
2505 
2506 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2507 {
2508 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2509 }
2510 
2511 static inline void skb_reset_mac_header(struct sk_buff *skb)
2512 {
2513 	skb->mac_header = skb->data - skb->head;
2514 }
2515 
2516 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2517 {
2518 	skb_reset_mac_header(skb);
2519 	skb->mac_header += offset;
2520 }
2521 
2522 static inline void skb_pop_mac_header(struct sk_buff *skb)
2523 {
2524 	skb->mac_header = skb->network_header;
2525 }
2526 
2527 static inline void skb_probe_transport_header(struct sk_buff *skb)
2528 {
2529 	struct flow_keys_basic keys;
2530 
2531 	if (skb_transport_header_was_set(skb))
2532 		return;
2533 
2534 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2535 					     NULL, 0, 0, 0, 0))
2536 		skb_set_transport_header(skb, keys.control.thoff);
2537 }
2538 
2539 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2540 {
2541 	if (skb_mac_header_was_set(skb)) {
2542 		const unsigned char *old_mac = skb_mac_header(skb);
2543 
2544 		skb_set_mac_header(skb, -skb->mac_len);
2545 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2546 	}
2547 }
2548 
2549 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2550 {
2551 	return skb->csum_start - skb_headroom(skb);
2552 }
2553 
2554 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2555 {
2556 	return skb->head + skb->csum_start;
2557 }
2558 
2559 static inline int skb_transport_offset(const struct sk_buff *skb)
2560 {
2561 	return skb_transport_header(skb) - skb->data;
2562 }
2563 
2564 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2565 {
2566 	return skb->transport_header - skb->network_header;
2567 }
2568 
2569 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2570 {
2571 	return skb->inner_transport_header - skb->inner_network_header;
2572 }
2573 
2574 static inline int skb_network_offset(const struct sk_buff *skb)
2575 {
2576 	return skb_network_header(skb) - skb->data;
2577 }
2578 
2579 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2580 {
2581 	return skb_inner_network_header(skb) - skb->data;
2582 }
2583 
2584 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2585 {
2586 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2587 }
2588 
2589 /*
2590  * CPUs often take a performance hit when accessing unaligned memory
2591  * locations. The actual performance hit varies, it can be small if the
2592  * hardware handles it or large if we have to take an exception and fix it
2593  * in software.
2594  *
2595  * Since an ethernet header is 14 bytes network drivers often end up with
2596  * the IP header at an unaligned offset. The IP header can be aligned by
2597  * shifting the start of the packet by 2 bytes. Drivers should do this
2598  * with:
2599  *
2600  * skb_reserve(skb, NET_IP_ALIGN);
2601  *
2602  * The downside to this alignment of the IP header is that the DMA is now
2603  * unaligned. On some architectures the cost of an unaligned DMA is high
2604  * and this cost outweighs the gains made by aligning the IP header.
2605  *
2606  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2607  * to be overridden.
2608  */
2609 #ifndef NET_IP_ALIGN
2610 #define NET_IP_ALIGN	2
2611 #endif
2612 
2613 /*
2614  * The networking layer reserves some headroom in skb data (via
2615  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2616  * the header has to grow. In the default case, if the header has to grow
2617  * 32 bytes or less we avoid the reallocation.
2618  *
2619  * Unfortunately this headroom changes the DMA alignment of the resulting
2620  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2621  * on some architectures. An architecture can override this value,
2622  * perhaps setting it to a cacheline in size (since that will maintain
2623  * cacheline alignment of the DMA). It must be a power of 2.
2624  *
2625  * Various parts of the networking layer expect at least 32 bytes of
2626  * headroom, you should not reduce this.
2627  *
2628  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2629  * to reduce average number of cache lines per packet.
2630  * get_rps_cpus() for example only access one 64 bytes aligned block :
2631  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2632  */
2633 #ifndef NET_SKB_PAD
2634 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2635 #endif
2636 
2637 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2638 
2639 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2640 {
2641 	if (WARN_ON(skb_is_nonlinear(skb)))
2642 		return;
2643 	skb->len = len;
2644 	skb_set_tail_pointer(skb, len);
2645 }
2646 
2647 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2648 {
2649 	__skb_set_length(skb, len);
2650 }
2651 
2652 void skb_trim(struct sk_buff *skb, unsigned int len);
2653 
2654 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2655 {
2656 	if (skb->data_len)
2657 		return ___pskb_trim(skb, len);
2658 	__skb_trim(skb, len);
2659 	return 0;
2660 }
2661 
2662 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2663 {
2664 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2665 }
2666 
2667 /**
2668  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2669  *	@skb: buffer to alter
2670  *	@len: new length
2671  *
2672  *	This is identical to pskb_trim except that the caller knows that
2673  *	the skb is not cloned so we should never get an error due to out-
2674  *	of-memory.
2675  */
2676 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2677 {
2678 	int err = pskb_trim(skb, len);
2679 	BUG_ON(err);
2680 }
2681 
2682 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2683 {
2684 	unsigned int diff = len - skb->len;
2685 
2686 	if (skb_tailroom(skb) < diff) {
2687 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2688 					   GFP_ATOMIC);
2689 		if (ret)
2690 			return ret;
2691 	}
2692 	__skb_set_length(skb, len);
2693 	return 0;
2694 }
2695 
2696 /**
2697  *	skb_orphan - orphan a buffer
2698  *	@skb: buffer to orphan
2699  *
2700  *	If a buffer currently has an owner then we call the owner's
2701  *	destructor function and make the @skb unowned. The buffer continues
2702  *	to exist but is no longer charged to its former owner.
2703  */
2704 static inline void skb_orphan(struct sk_buff *skb)
2705 {
2706 	if (skb->destructor) {
2707 		skb->destructor(skb);
2708 		skb->destructor = NULL;
2709 		skb->sk		= NULL;
2710 	} else {
2711 		BUG_ON(skb->sk);
2712 	}
2713 }
2714 
2715 /**
2716  *	skb_orphan_frags - orphan the frags contained in a buffer
2717  *	@skb: buffer to orphan frags from
2718  *	@gfp_mask: allocation mask for replacement pages
2719  *
2720  *	For each frag in the SKB which needs a destructor (i.e. has an
2721  *	owner) create a copy of that frag and release the original
2722  *	page by calling the destructor.
2723  */
2724 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2725 {
2726 	if (likely(!skb_zcopy(skb)))
2727 		return 0;
2728 	if (!skb_zcopy_is_nouarg(skb) &&
2729 	    skb_uarg(skb)->callback == sock_zerocopy_callback)
2730 		return 0;
2731 	return skb_copy_ubufs(skb, gfp_mask);
2732 }
2733 
2734 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2735 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2736 {
2737 	if (likely(!skb_zcopy(skb)))
2738 		return 0;
2739 	return skb_copy_ubufs(skb, gfp_mask);
2740 }
2741 
2742 /**
2743  *	__skb_queue_purge - empty a list
2744  *	@list: list to empty
2745  *
2746  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2747  *	the list and one reference dropped. This function does not take the
2748  *	list lock and the caller must hold the relevant locks to use it.
2749  */
2750 static inline void __skb_queue_purge(struct sk_buff_head *list)
2751 {
2752 	struct sk_buff *skb;
2753 	while ((skb = __skb_dequeue(list)) != NULL)
2754 		kfree_skb(skb);
2755 }
2756 void skb_queue_purge(struct sk_buff_head *list);
2757 
2758 unsigned int skb_rbtree_purge(struct rb_root *root);
2759 
2760 void *netdev_alloc_frag(unsigned int fragsz);
2761 
2762 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2763 				   gfp_t gfp_mask);
2764 
2765 /**
2766  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2767  *	@dev: network device to receive on
2768  *	@length: length to allocate
2769  *
2770  *	Allocate a new &sk_buff and assign it a usage count of one. The
2771  *	buffer has unspecified headroom built in. Users should allocate
2772  *	the headroom they think they need without accounting for the
2773  *	built in space. The built in space is used for optimisations.
2774  *
2775  *	%NULL is returned if there is no free memory. Although this function
2776  *	allocates memory it can be called from an interrupt.
2777  */
2778 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2779 					       unsigned int length)
2780 {
2781 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2782 }
2783 
2784 /* legacy helper around __netdev_alloc_skb() */
2785 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2786 					      gfp_t gfp_mask)
2787 {
2788 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2789 }
2790 
2791 /* legacy helper around netdev_alloc_skb() */
2792 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2793 {
2794 	return netdev_alloc_skb(NULL, length);
2795 }
2796 
2797 
2798 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2799 		unsigned int length, gfp_t gfp)
2800 {
2801 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2802 
2803 	if (NET_IP_ALIGN && skb)
2804 		skb_reserve(skb, NET_IP_ALIGN);
2805 	return skb;
2806 }
2807 
2808 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2809 		unsigned int length)
2810 {
2811 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2812 }
2813 
2814 static inline void skb_free_frag(void *addr)
2815 {
2816 	page_frag_free(addr);
2817 }
2818 
2819 void *napi_alloc_frag(unsigned int fragsz);
2820 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2821 				 unsigned int length, gfp_t gfp_mask);
2822 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2823 					     unsigned int length)
2824 {
2825 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2826 }
2827 void napi_consume_skb(struct sk_buff *skb, int budget);
2828 
2829 void __kfree_skb_flush(void);
2830 void __kfree_skb_defer(struct sk_buff *skb);
2831 
2832 /**
2833  * __dev_alloc_pages - allocate page for network Rx
2834  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2835  * @order: size of the allocation
2836  *
2837  * Allocate a new page.
2838  *
2839  * %NULL is returned if there is no free memory.
2840 */
2841 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2842 					     unsigned int order)
2843 {
2844 	/* This piece of code contains several assumptions.
2845 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2846 	 * 2.  The expectation is the user wants a compound page.
2847 	 * 3.  If requesting a order 0 page it will not be compound
2848 	 *     due to the check to see if order has a value in prep_new_page
2849 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2850 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2851 	 */
2852 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2853 
2854 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2855 }
2856 
2857 static inline struct page *dev_alloc_pages(unsigned int order)
2858 {
2859 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2860 }
2861 
2862 /**
2863  * __dev_alloc_page - allocate a page for network Rx
2864  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2865  *
2866  * Allocate a new page.
2867  *
2868  * %NULL is returned if there is no free memory.
2869  */
2870 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2871 {
2872 	return __dev_alloc_pages(gfp_mask, 0);
2873 }
2874 
2875 static inline struct page *dev_alloc_page(void)
2876 {
2877 	return dev_alloc_pages(0);
2878 }
2879 
2880 /**
2881  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2882  *	@page: The page that was allocated from skb_alloc_page
2883  *	@skb: The skb that may need pfmemalloc set
2884  */
2885 static inline void skb_propagate_pfmemalloc(struct page *page,
2886 					     struct sk_buff *skb)
2887 {
2888 	if (page_is_pfmemalloc(page))
2889 		skb->pfmemalloc = true;
2890 }
2891 
2892 /**
2893  * skb_frag_off() - Returns the offset of a skb fragment
2894  * @frag: the paged fragment
2895  */
2896 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
2897 {
2898 	return frag->bv_offset;
2899 }
2900 
2901 /**
2902  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
2903  * @frag: skb fragment
2904  * @delta: value to add
2905  */
2906 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
2907 {
2908 	frag->bv_offset += delta;
2909 }
2910 
2911 /**
2912  * skb_frag_off_set() - Sets the offset of a skb fragment
2913  * @frag: skb fragment
2914  * @offset: offset of fragment
2915  */
2916 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
2917 {
2918 	frag->bv_offset = offset;
2919 }
2920 
2921 /**
2922  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
2923  * @fragto: skb fragment where offset is set
2924  * @fragfrom: skb fragment offset is copied from
2925  */
2926 static inline void skb_frag_off_copy(skb_frag_t *fragto,
2927 				     const skb_frag_t *fragfrom)
2928 {
2929 	fragto->bv_offset = fragfrom->bv_offset;
2930 }
2931 
2932 /**
2933  * skb_frag_page - retrieve the page referred to by a paged fragment
2934  * @frag: the paged fragment
2935  *
2936  * Returns the &struct page associated with @frag.
2937  */
2938 static inline struct page *skb_frag_page(const skb_frag_t *frag)
2939 {
2940 	return frag->bv_page;
2941 }
2942 
2943 /**
2944  * __skb_frag_ref - take an addition reference on a paged fragment.
2945  * @frag: the paged fragment
2946  *
2947  * Takes an additional reference on the paged fragment @frag.
2948  */
2949 static inline void __skb_frag_ref(skb_frag_t *frag)
2950 {
2951 	get_page(skb_frag_page(frag));
2952 }
2953 
2954 /**
2955  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2956  * @skb: the buffer
2957  * @f: the fragment offset.
2958  *
2959  * Takes an additional reference on the @f'th paged fragment of @skb.
2960  */
2961 static inline void skb_frag_ref(struct sk_buff *skb, int f)
2962 {
2963 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2964 }
2965 
2966 /**
2967  * __skb_frag_unref - release a reference on a paged fragment.
2968  * @frag: the paged fragment
2969  *
2970  * Releases a reference on the paged fragment @frag.
2971  */
2972 static inline void __skb_frag_unref(skb_frag_t *frag)
2973 {
2974 	put_page(skb_frag_page(frag));
2975 }
2976 
2977 /**
2978  * skb_frag_unref - release a reference on a paged fragment of an skb.
2979  * @skb: the buffer
2980  * @f: the fragment offset
2981  *
2982  * Releases a reference on the @f'th paged fragment of @skb.
2983  */
2984 static inline void skb_frag_unref(struct sk_buff *skb, int f)
2985 {
2986 	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2987 }
2988 
2989 /**
2990  * skb_frag_address - gets the address of the data contained in a paged fragment
2991  * @frag: the paged fragment buffer
2992  *
2993  * Returns the address of the data within @frag. The page must already
2994  * be mapped.
2995  */
2996 static inline void *skb_frag_address(const skb_frag_t *frag)
2997 {
2998 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
2999 }
3000 
3001 /**
3002  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3003  * @frag: the paged fragment buffer
3004  *
3005  * Returns the address of the data within @frag. Checks that the page
3006  * is mapped and returns %NULL otherwise.
3007  */
3008 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3009 {
3010 	void *ptr = page_address(skb_frag_page(frag));
3011 	if (unlikely(!ptr))
3012 		return NULL;
3013 
3014 	return ptr + skb_frag_off(frag);
3015 }
3016 
3017 /**
3018  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3019  * @fragto: skb fragment where page is set
3020  * @fragfrom: skb fragment page is copied from
3021  */
3022 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3023 				      const skb_frag_t *fragfrom)
3024 {
3025 	fragto->bv_page = fragfrom->bv_page;
3026 }
3027 
3028 /**
3029  * __skb_frag_set_page - sets the page contained in a paged fragment
3030  * @frag: the paged fragment
3031  * @page: the page to set
3032  *
3033  * Sets the fragment @frag to contain @page.
3034  */
3035 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3036 {
3037 	frag->bv_page = page;
3038 }
3039 
3040 /**
3041  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3042  * @skb: the buffer
3043  * @f: the fragment offset
3044  * @page: the page to set
3045  *
3046  * Sets the @f'th fragment of @skb to contain @page.
3047  */
3048 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3049 				     struct page *page)
3050 {
3051 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3052 }
3053 
3054 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3055 
3056 /**
3057  * skb_frag_dma_map - maps a paged fragment via the DMA API
3058  * @dev: the device to map the fragment to
3059  * @frag: the paged fragment to map
3060  * @offset: the offset within the fragment (starting at the
3061  *          fragment's own offset)
3062  * @size: the number of bytes to map
3063  * @dir: the direction of the mapping (``PCI_DMA_*``)
3064  *
3065  * Maps the page associated with @frag to @device.
3066  */
3067 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3068 					  const skb_frag_t *frag,
3069 					  size_t offset, size_t size,
3070 					  enum dma_data_direction dir)
3071 {
3072 	return dma_map_page(dev, skb_frag_page(frag),
3073 			    skb_frag_off(frag) + offset, size, dir);
3074 }
3075 
3076 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3077 					gfp_t gfp_mask)
3078 {
3079 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3080 }
3081 
3082 
3083 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3084 						  gfp_t gfp_mask)
3085 {
3086 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3087 }
3088 
3089 
3090 /**
3091  *	skb_clone_writable - is the header of a clone writable
3092  *	@skb: buffer to check
3093  *	@len: length up to which to write
3094  *
3095  *	Returns true if modifying the header part of the cloned buffer
3096  *	does not requires the data to be copied.
3097  */
3098 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3099 {
3100 	return !skb_header_cloned(skb) &&
3101 	       skb_headroom(skb) + len <= skb->hdr_len;
3102 }
3103 
3104 static inline int skb_try_make_writable(struct sk_buff *skb,
3105 					unsigned int write_len)
3106 {
3107 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3108 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3109 }
3110 
3111 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3112 			    int cloned)
3113 {
3114 	int delta = 0;
3115 
3116 	if (headroom > skb_headroom(skb))
3117 		delta = headroom - skb_headroom(skb);
3118 
3119 	if (delta || cloned)
3120 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3121 					GFP_ATOMIC);
3122 	return 0;
3123 }
3124 
3125 /**
3126  *	skb_cow - copy header of skb when it is required
3127  *	@skb: buffer to cow
3128  *	@headroom: needed headroom
3129  *
3130  *	If the skb passed lacks sufficient headroom or its data part
3131  *	is shared, data is reallocated. If reallocation fails, an error
3132  *	is returned and original skb is not changed.
3133  *
3134  *	The result is skb with writable area skb->head...skb->tail
3135  *	and at least @headroom of space at head.
3136  */
3137 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3138 {
3139 	return __skb_cow(skb, headroom, skb_cloned(skb));
3140 }
3141 
3142 /**
3143  *	skb_cow_head - skb_cow but only making the head writable
3144  *	@skb: buffer to cow
3145  *	@headroom: needed headroom
3146  *
3147  *	This function is identical to skb_cow except that we replace the
3148  *	skb_cloned check by skb_header_cloned.  It should be used when
3149  *	you only need to push on some header and do not need to modify
3150  *	the data.
3151  */
3152 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3153 {
3154 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3155 }
3156 
3157 /**
3158  *	skb_padto	- pad an skbuff up to a minimal size
3159  *	@skb: buffer to pad
3160  *	@len: minimal length
3161  *
3162  *	Pads up a buffer to ensure the trailing bytes exist and are
3163  *	blanked. If the buffer already contains sufficient data it
3164  *	is untouched. Otherwise it is extended. Returns zero on
3165  *	success. The skb is freed on error.
3166  */
3167 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3168 {
3169 	unsigned int size = skb->len;
3170 	if (likely(size >= len))
3171 		return 0;
3172 	return skb_pad(skb, len - size);
3173 }
3174 
3175 /**
3176  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3177  *	@skb: buffer to pad
3178  *	@len: minimal length
3179  *	@free_on_error: free buffer on error
3180  *
3181  *	Pads up a buffer to ensure the trailing bytes exist and are
3182  *	blanked. If the buffer already contains sufficient data it
3183  *	is untouched. Otherwise it is extended. Returns zero on
3184  *	success. The skb is freed on error if @free_on_error is true.
3185  */
3186 static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
3187 				  bool free_on_error)
3188 {
3189 	unsigned int size = skb->len;
3190 
3191 	if (unlikely(size < len)) {
3192 		len -= size;
3193 		if (__skb_pad(skb, len, free_on_error))
3194 			return -ENOMEM;
3195 		__skb_put(skb, len);
3196 	}
3197 	return 0;
3198 }
3199 
3200 /**
3201  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3202  *	@skb: buffer to pad
3203  *	@len: minimal length
3204  *
3205  *	Pads up a buffer to ensure the trailing bytes exist and are
3206  *	blanked. If the buffer already contains sufficient data it
3207  *	is untouched. Otherwise it is extended. Returns zero on
3208  *	success. The skb is freed on error.
3209  */
3210 static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
3211 {
3212 	return __skb_put_padto(skb, len, true);
3213 }
3214 
3215 static inline int skb_add_data(struct sk_buff *skb,
3216 			       struct iov_iter *from, int copy)
3217 {
3218 	const int off = skb->len;
3219 
3220 	if (skb->ip_summed == CHECKSUM_NONE) {
3221 		__wsum csum = 0;
3222 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3223 					         &csum, from)) {
3224 			skb->csum = csum_block_add(skb->csum, csum, off);
3225 			return 0;
3226 		}
3227 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3228 		return 0;
3229 
3230 	__skb_trim(skb, off);
3231 	return -EFAULT;
3232 }
3233 
3234 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3235 				    const struct page *page, int off)
3236 {
3237 	if (skb_zcopy(skb))
3238 		return false;
3239 	if (i) {
3240 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3241 
3242 		return page == skb_frag_page(frag) &&
3243 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3244 	}
3245 	return false;
3246 }
3247 
3248 static inline int __skb_linearize(struct sk_buff *skb)
3249 {
3250 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3251 }
3252 
3253 /**
3254  *	skb_linearize - convert paged skb to linear one
3255  *	@skb: buffer to linarize
3256  *
3257  *	If there is no free memory -ENOMEM is returned, otherwise zero
3258  *	is returned and the old skb data released.
3259  */
3260 static inline int skb_linearize(struct sk_buff *skb)
3261 {
3262 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3263 }
3264 
3265 /**
3266  * skb_has_shared_frag - can any frag be overwritten
3267  * @skb: buffer to test
3268  *
3269  * Return true if the skb has at least one frag that might be modified
3270  * by an external entity (as in vmsplice()/sendfile())
3271  */
3272 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3273 {
3274 	return skb_is_nonlinear(skb) &&
3275 	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3276 }
3277 
3278 /**
3279  *	skb_linearize_cow - make sure skb is linear and writable
3280  *	@skb: buffer to process
3281  *
3282  *	If there is no free memory -ENOMEM is returned, otherwise zero
3283  *	is returned and the old skb data released.
3284  */
3285 static inline int skb_linearize_cow(struct sk_buff *skb)
3286 {
3287 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3288 	       __skb_linearize(skb) : 0;
3289 }
3290 
3291 static __always_inline void
3292 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3293 		     unsigned int off)
3294 {
3295 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3296 		skb->csum = csum_block_sub(skb->csum,
3297 					   csum_partial(start, len, 0), off);
3298 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3299 		 skb_checksum_start_offset(skb) < 0)
3300 		skb->ip_summed = CHECKSUM_NONE;
3301 }
3302 
3303 /**
3304  *	skb_postpull_rcsum - update checksum for received skb after pull
3305  *	@skb: buffer to update
3306  *	@start: start of data before pull
3307  *	@len: length of data pulled
3308  *
3309  *	After doing a pull on a received packet, you need to call this to
3310  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3311  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3312  */
3313 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3314 				      const void *start, unsigned int len)
3315 {
3316 	__skb_postpull_rcsum(skb, start, len, 0);
3317 }
3318 
3319 static __always_inline void
3320 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3321 		     unsigned int off)
3322 {
3323 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3324 		skb->csum = csum_block_add(skb->csum,
3325 					   csum_partial(start, len, 0), off);
3326 }
3327 
3328 /**
3329  *	skb_postpush_rcsum - update checksum for received skb after push
3330  *	@skb: buffer to update
3331  *	@start: start of data after push
3332  *	@len: length of data pushed
3333  *
3334  *	After doing a push on a received packet, you need to call this to
3335  *	update the CHECKSUM_COMPLETE checksum.
3336  */
3337 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3338 				      const void *start, unsigned int len)
3339 {
3340 	__skb_postpush_rcsum(skb, start, len, 0);
3341 }
3342 
3343 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3344 
3345 /**
3346  *	skb_push_rcsum - push skb and update receive checksum
3347  *	@skb: buffer to update
3348  *	@len: length of data pulled
3349  *
3350  *	This function performs an skb_push on the packet and updates
3351  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3352  *	receive path processing instead of skb_push unless you know
3353  *	that the checksum difference is zero (e.g., a valid IP header)
3354  *	or you are setting ip_summed to CHECKSUM_NONE.
3355  */
3356 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3357 {
3358 	skb_push(skb, len);
3359 	skb_postpush_rcsum(skb, skb->data, len);
3360 	return skb->data;
3361 }
3362 
3363 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3364 /**
3365  *	pskb_trim_rcsum - trim received skb and update checksum
3366  *	@skb: buffer to trim
3367  *	@len: new length
3368  *
3369  *	This is exactly the same as pskb_trim except that it ensures the
3370  *	checksum of received packets are still valid after the operation.
3371  *	It can change skb pointers.
3372  */
3373 
3374 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3375 {
3376 	if (likely(len >= skb->len))
3377 		return 0;
3378 	return pskb_trim_rcsum_slow(skb, len);
3379 }
3380 
3381 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3382 {
3383 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3384 		skb->ip_summed = CHECKSUM_NONE;
3385 	__skb_trim(skb, len);
3386 	return 0;
3387 }
3388 
3389 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3390 {
3391 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3392 		skb->ip_summed = CHECKSUM_NONE;
3393 	return __skb_grow(skb, len);
3394 }
3395 
3396 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3397 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3398 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3399 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3400 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3401 
3402 #define skb_queue_walk(queue, skb) \
3403 		for (skb = (queue)->next;					\
3404 		     skb != (struct sk_buff *)(queue);				\
3405 		     skb = skb->next)
3406 
3407 #define skb_queue_walk_safe(queue, skb, tmp)					\
3408 		for (skb = (queue)->next, tmp = skb->next;			\
3409 		     skb != (struct sk_buff *)(queue);				\
3410 		     skb = tmp, tmp = skb->next)
3411 
3412 #define skb_queue_walk_from(queue, skb)						\
3413 		for (; skb != (struct sk_buff *)(queue);			\
3414 		     skb = skb->next)
3415 
3416 #define skb_rbtree_walk(skb, root)						\
3417 		for (skb = skb_rb_first(root); skb != NULL;			\
3418 		     skb = skb_rb_next(skb))
3419 
3420 #define skb_rbtree_walk_from(skb)						\
3421 		for (; skb != NULL;						\
3422 		     skb = skb_rb_next(skb))
3423 
3424 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3425 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3426 		     skb = tmp)
3427 
3428 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3429 		for (tmp = skb->next;						\
3430 		     skb != (struct sk_buff *)(queue);				\
3431 		     skb = tmp, tmp = skb->next)
3432 
3433 #define skb_queue_reverse_walk(queue, skb) \
3434 		for (skb = (queue)->prev;					\
3435 		     skb != (struct sk_buff *)(queue);				\
3436 		     skb = skb->prev)
3437 
3438 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3439 		for (skb = (queue)->prev, tmp = skb->prev;			\
3440 		     skb != (struct sk_buff *)(queue);				\
3441 		     skb = tmp, tmp = skb->prev)
3442 
3443 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3444 		for (tmp = skb->prev;						\
3445 		     skb != (struct sk_buff *)(queue);				\
3446 		     skb = tmp, tmp = skb->prev)
3447 
3448 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3449 {
3450 	return skb_shinfo(skb)->frag_list != NULL;
3451 }
3452 
3453 static inline void skb_frag_list_init(struct sk_buff *skb)
3454 {
3455 	skb_shinfo(skb)->frag_list = NULL;
3456 }
3457 
3458 #define skb_walk_frags(skb, iter)	\
3459 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3460 
3461 
3462 int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3463 				const struct sk_buff *skb);
3464 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3465 					  struct sk_buff_head *queue,
3466 					  unsigned int flags,
3467 					  void (*destructor)(struct sock *sk,
3468 							   struct sk_buff *skb),
3469 					  int *off, int *err,
3470 					  struct sk_buff **last);
3471 struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3472 					void (*destructor)(struct sock *sk,
3473 							   struct sk_buff *skb),
3474 					int *off, int *err,
3475 					struct sk_buff **last);
3476 struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3477 				    void (*destructor)(struct sock *sk,
3478 						       struct sk_buff *skb),
3479 				    int *off, int *err);
3480 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3481 				  int *err);
3482 __poll_t datagram_poll(struct file *file, struct socket *sock,
3483 			   struct poll_table_struct *wait);
3484 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3485 			   struct iov_iter *to, int size);
3486 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3487 					struct msghdr *msg, int size)
3488 {
3489 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3490 }
3491 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3492 				   struct msghdr *msg);
3493 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3494 			   struct iov_iter *to, int len,
3495 			   struct ahash_request *hash);
3496 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3497 				 struct iov_iter *from, int len);
3498 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3499 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3500 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3501 static inline void skb_free_datagram_locked(struct sock *sk,
3502 					    struct sk_buff *skb)
3503 {
3504 	__skb_free_datagram_locked(sk, skb, 0);
3505 }
3506 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3507 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3508 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3509 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3510 			      int len, __wsum csum);
3511 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3512 		    struct pipe_inode_info *pipe, unsigned int len,
3513 		    unsigned int flags);
3514 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3515 			 int len);
3516 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3517 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3518 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3519 		 int len, int hlen);
3520 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3521 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3522 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3523 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3524 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3525 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3526 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3527 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3528 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3529 int skb_vlan_pop(struct sk_buff *skb);
3530 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3531 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3532 		  int mac_len, bool ethernet);
3533 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3534 		 bool ethernet);
3535 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3536 int skb_mpls_dec_ttl(struct sk_buff *skb);
3537 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3538 			     gfp_t gfp);
3539 
3540 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3541 {
3542 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3543 }
3544 
3545 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3546 {
3547 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3548 }
3549 
3550 struct skb_checksum_ops {
3551 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3552 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3553 };
3554 
3555 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3556 
3557 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3558 		      __wsum csum, const struct skb_checksum_ops *ops);
3559 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3560 		    __wsum csum);
3561 
3562 static inline void * __must_check
3563 __skb_header_pointer(const struct sk_buff *skb, int offset,
3564 		     int len, void *data, int hlen, void *buffer)
3565 {
3566 	if (hlen - offset >= len)
3567 		return data + offset;
3568 
3569 	if (!skb ||
3570 	    skb_copy_bits(skb, offset, buffer, len) < 0)
3571 		return NULL;
3572 
3573 	return buffer;
3574 }
3575 
3576 static inline void * __must_check
3577 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3578 {
3579 	return __skb_header_pointer(skb, offset, len, skb->data,
3580 				    skb_headlen(skb), buffer);
3581 }
3582 
3583 /**
3584  *	skb_needs_linearize - check if we need to linearize a given skb
3585  *			      depending on the given device features.
3586  *	@skb: socket buffer to check
3587  *	@features: net device features
3588  *
3589  *	Returns true if either:
3590  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3591  *	2. skb is fragmented and the device does not support SG.
3592  */
3593 static inline bool skb_needs_linearize(struct sk_buff *skb,
3594 				       netdev_features_t features)
3595 {
3596 	return skb_is_nonlinear(skb) &&
3597 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3598 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3599 }
3600 
3601 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3602 					     void *to,
3603 					     const unsigned int len)
3604 {
3605 	memcpy(to, skb->data, len);
3606 }
3607 
3608 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3609 						    const int offset, void *to,
3610 						    const unsigned int len)
3611 {
3612 	memcpy(to, skb->data + offset, len);
3613 }
3614 
3615 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3616 					   const void *from,
3617 					   const unsigned int len)
3618 {
3619 	memcpy(skb->data, from, len);
3620 }
3621 
3622 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3623 						  const int offset,
3624 						  const void *from,
3625 						  const unsigned int len)
3626 {
3627 	memcpy(skb->data + offset, from, len);
3628 }
3629 
3630 void skb_init(void);
3631 
3632 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3633 {
3634 	return skb->tstamp;
3635 }
3636 
3637 /**
3638  *	skb_get_timestamp - get timestamp from a skb
3639  *	@skb: skb to get stamp from
3640  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3641  *
3642  *	Timestamps are stored in the skb as offsets to a base timestamp.
3643  *	This function converts the offset back to a struct timeval and stores
3644  *	it in stamp.
3645  */
3646 static inline void skb_get_timestamp(const struct sk_buff *skb,
3647 				     struct __kernel_old_timeval *stamp)
3648 {
3649 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3650 }
3651 
3652 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3653 					 struct __kernel_sock_timeval *stamp)
3654 {
3655 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3656 
3657 	stamp->tv_sec = ts.tv_sec;
3658 	stamp->tv_usec = ts.tv_nsec / 1000;
3659 }
3660 
3661 static inline void skb_get_timestampns(const struct sk_buff *skb,
3662 				       struct __kernel_old_timespec *stamp)
3663 {
3664 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3665 
3666 	stamp->tv_sec = ts.tv_sec;
3667 	stamp->tv_nsec = ts.tv_nsec;
3668 }
3669 
3670 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3671 					   struct __kernel_timespec *stamp)
3672 {
3673 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3674 
3675 	stamp->tv_sec = ts.tv_sec;
3676 	stamp->tv_nsec = ts.tv_nsec;
3677 }
3678 
3679 static inline void __net_timestamp(struct sk_buff *skb)
3680 {
3681 	skb->tstamp = ktime_get_real();
3682 }
3683 
3684 static inline ktime_t net_timedelta(ktime_t t)
3685 {
3686 	return ktime_sub(ktime_get_real(), t);
3687 }
3688 
3689 static inline ktime_t net_invalid_timestamp(void)
3690 {
3691 	return 0;
3692 }
3693 
3694 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3695 {
3696 	return skb_shinfo(skb)->meta_len;
3697 }
3698 
3699 static inline void *skb_metadata_end(const struct sk_buff *skb)
3700 {
3701 	return skb_mac_header(skb);
3702 }
3703 
3704 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3705 					  const struct sk_buff *skb_b,
3706 					  u8 meta_len)
3707 {
3708 	const void *a = skb_metadata_end(skb_a);
3709 	const void *b = skb_metadata_end(skb_b);
3710 	/* Using more efficient varaiant than plain call to memcmp(). */
3711 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3712 	u64 diffs = 0;
3713 
3714 	switch (meta_len) {
3715 #define __it(x, op) (x -= sizeof(u##op))
3716 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3717 	case 32: diffs |= __it_diff(a, b, 64);
3718 		 /* fall through */
3719 	case 24: diffs |= __it_diff(a, b, 64);
3720 		 /* fall through */
3721 	case 16: diffs |= __it_diff(a, b, 64);
3722 		 /* fall through */
3723 	case  8: diffs |= __it_diff(a, b, 64);
3724 		break;
3725 	case 28: diffs |= __it_diff(a, b, 64);
3726 		 /* fall through */
3727 	case 20: diffs |= __it_diff(a, b, 64);
3728 		 /* fall through */
3729 	case 12: diffs |= __it_diff(a, b, 64);
3730 		 /* fall through */
3731 	case  4: diffs |= __it_diff(a, b, 32);
3732 		break;
3733 	}
3734 	return diffs;
3735 #else
3736 	return memcmp(a - meta_len, b - meta_len, meta_len);
3737 #endif
3738 }
3739 
3740 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3741 					const struct sk_buff *skb_b)
3742 {
3743 	u8 len_a = skb_metadata_len(skb_a);
3744 	u8 len_b = skb_metadata_len(skb_b);
3745 
3746 	if (!(len_a | len_b))
3747 		return false;
3748 
3749 	return len_a != len_b ?
3750 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3751 }
3752 
3753 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3754 {
3755 	skb_shinfo(skb)->meta_len = meta_len;
3756 }
3757 
3758 static inline void skb_metadata_clear(struct sk_buff *skb)
3759 {
3760 	skb_metadata_set(skb, 0);
3761 }
3762 
3763 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3764 
3765 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3766 
3767 void skb_clone_tx_timestamp(struct sk_buff *skb);
3768 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3769 
3770 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3771 
3772 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3773 {
3774 }
3775 
3776 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3777 {
3778 	return false;
3779 }
3780 
3781 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3782 
3783 /**
3784  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3785  *
3786  * PHY drivers may accept clones of transmitted packets for
3787  * timestamping via their phy_driver.txtstamp method. These drivers
3788  * must call this function to return the skb back to the stack with a
3789  * timestamp.
3790  *
3791  * @skb: clone of the the original outgoing packet
3792  * @hwtstamps: hardware time stamps
3793  *
3794  */
3795 void skb_complete_tx_timestamp(struct sk_buff *skb,
3796 			       struct skb_shared_hwtstamps *hwtstamps);
3797 
3798 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3799 		     struct skb_shared_hwtstamps *hwtstamps,
3800 		     struct sock *sk, int tstype);
3801 
3802 /**
3803  * skb_tstamp_tx - queue clone of skb with send time stamps
3804  * @orig_skb:	the original outgoing packet
3805  * @hwtstamps:	hardware time stamps, may be NULL if not available
3806  *
3807  * If the skb has a socket associated, then this function clones the
3808  * skb (thus sharing the actual data and optional structures), stores
3809  * the optional hardware time stamping information (if non NULL) or
3810  * generates a software time stamp (otherwise), then queues the clone
3811  * to the error queue of the socket.  Errors are silently ignored.
3812  */
3813 void skb_tstamp_tx(struct sk_buff *orig_skb,
3814 		   struct skb_shared_hwtstamps *hwtstamps);
3815 
3816 /**
3817  * skb_tx_timestamp() - Driver hook for transmit timestamping
3818  *
3819  * Ethernet MAC Drivers should call this function in their hard_xmit()
3820  * function immediately before giving the sk_buff to the MAC hardware.
3821  *
3822  * Specifically, one should make absolutely sure that this function is
3823  * called before TX completion of this packet can trigger.  Otherwise
3824  * the packet could potentially already be freed.
3825  *
3826  * @skb: A socket buffer.
3827  */
3828 static inline void skb_tx_timestamp(struct sk_buff *skb)
3829 {
3830 	skb_clone_tx_timestamp(skb);
3831 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3832 		skb_tstamp_tx(skb, NULL);
3833 }
3834 
3835 /**
3836  * skb_complete_wifi_ack - deliver skb with wifi status
3837  *
3838  * @skb: the original outgoing packet
3839  * @acked: ack status
3840  *
3841  */
3842 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3843 
3844 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3845 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3846 
3847 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3848 {
3849 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3850 		skb->csum_valid ||
3851 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3852 		 skb_checksum_start_offset(skb) >= 0));
3853 }
3854 
3855 /**
3856  *	skb_checksum_complete - Calculate checksum of an entire packet
3857  *	@skb: packet to process
3858  *
3859  *	This function calculates the checksum over the entire packet plus
3860  *	the value of skb->csum.  The latter can be used to supply the
3861  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3862  *	checksum.
3863  *
3864  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
3865  *	this function can be used to verify that checksum on received
3866  *	packets.  In that case the function should return zero if the
3867  *	checksum is correct.  In particular, this function will return zero
3868  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3869  *	hardware has already verified the correctness of the checksum.
3870  */
3871 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3872 {
3873 	return skb_csum_unnecessary(skb) ?
3874 	       0 : __skb_checksum_complete(skb);
3875 }
3876 
3877 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3878 {
3879 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3880 		if (skb->csum_level == 0)
3881 			skb->ip_summed = CHECKSUM_NONE;
3882 		else
3883 			skb->csum_level--;
3884 	}
3885 }
3886 
3887 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3888 {
3889 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3890 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3891 			skb->csum_level++;
3892 	} else if (skb->ip_summed == CHECKSUM_NONE) {
3893 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3894 		skb->csum_level = 0;
3895 	}
3896 }
3897 
3898 /* Check if we need to perform checksum complete validation.
3899  *
3900  * Returns true if checksum complete is needed, false otherwise
3901  * (either checksum is unnecessary or zero checksum is allowed).
3902  */
3903 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3904 						  bool zero_okay,
3905 						  __sum16 check)
3906 {
3907 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3908 		skb->csum_valid = 1;
3909 		__skb_decr_checksum_unnecessary(skb);
3910 		return false;
3911 	}
3912 
3913 	return true;
3914 }
3915 
3916 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
3917  * in checksum_init.
3918  */
3919 #define CHECKSUM_BREAK 76
3920 
3921 /* Unset checksum-complete
3922  *
3923  * Unset checksum complete can be done when packet is being modified
3924  * (uncompressed for instance) and checksum-complete value is
3925  * invalidated.
3926  */
3927 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3928 {
3929 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3930 		skb->ip_summed = CHECKSUM_NONE;
3931 }
3932 
3933 /* Validate (init) checksum based on checksum complete.
3934  *
3935  * Return values:
3936  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3937  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3938  *	checksum is stored in skb->csum for use in __skb_checksum_complete
3939  *   non-zero: value of invalid checksum
3940  *
3941  */
3942 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3943 						       bool complete,
3944 						       __wsum psum)
3945 {
3946 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
3947 		if (!csum_fold(csum_add(psum, skb->csum))) {
3948 			skb->csum_valid = 1;
3949 			return 0;
3950 		}
3951 	}
3952 
3953 	skb->csum = psum;
3954 
3955 	if (complete || skb->len <= CHECKSUM_BREAK) {
3956 		__sum16 csum;
3957 
3958 		csum = __skb_checksum_complete(skb);
3959 		skb->csum_valid = !csum;
3960 		return csum;
3961 	}
3962 
3963 	return 0;
3964 }
3965 
3966 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3967 {
3968 	return 0;
3969 }
3970 
3971 /* Perform checksum validate (init). Note that this is a macro since we only
3972  * want to calculate the pseudo header which is an input function if necessary.
3973  * First we try to validate without any computation (checksum unnecessary) and
3974  * then calculate based on checksum complete calling the function to compute
3975  * pseudo header.
3976  *
3977  * Return values:
3978  *   0: checksum is validated or try to in skb_checksum_complete
3979  *   non-zero: value of invalid checksum
3980  */
3981 #define __skb_checksum_validate(skb, proto, complete,			\
3982 				zero_okay, check, compute_pseudo)	\
3983 ({									\
3984 	__sum16 __ret = 0;						\
3985 	skb->csum_valid = 0;						\
3986 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
3987 		__ret = __skb_checksum_validate_complete(skb,		\
3988 				complete, compute_pseudo(skb, proto));	\
3989 	__ret;								\
3990 })
3991 
3992 #define skb_checksum_init(skb, proto, compute_pseudo)			\
3993 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3994 
3995 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
3996 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3997 
3998 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
3999 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4000 
4001 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4002 					 compute_pseudo)		\
4003 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4004 
4005 #define skb_checksum_simple_validate(skb)				\
4006 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4007 
4008 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4009 {
4010 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4011 }
4012 
4013 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4014 {
4015 	skb->csum = ~pseudo;
4016 	skb->ip_summed = CHECKSUM_COMPLETE;
4017 }
4018 
4019 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4020 do {									\
4021 	if (__skb_checksum_convert_check(skb))				\
4022 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4023 } while (0)
4024 
4025 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4026 					      u16 start, u16 offset)
4027 {
4028 	skb->ip_summed = CHECKSUM_PARTIAL;
4029 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4030 	skb->csum_offset = offset - start;
4031 }
4032 
4033 /* Update skbuf and packet to reflect the remote checksum offload operation.
4034  * When called, ptr indicates the starting point for skb->csum when
4035  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4036  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4037  */
4038 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4039 				       int start, int offset, bool nopartial)
4040 {
4041 	__wsum delta;
4042 
4043 	if (!nopartial) {
4044 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4045 		return;
4046 	}
4047 
4048 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4049 		__skb_checksum_complete(skb);
4050 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4051 	}
4052 
4053 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4054 
4055 	/* Adjust skb->csum since we changed the packet */
4056 	skb->csum = csum_add(skb->csum, delta);
4057 }
4058 
4059 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4060 {
4061 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4062 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4063 #else
4064 	return NULL;
4065 #endif
4066 }
4067 
4068 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4069 {
4070 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4071 	return skb->_nfct;
4072 #else
4073 	return 0UL;
4074 #endif
4075 }
4076 
4077 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4078 {
4079 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4080 	skb->_nfct = nfct;
4081 #endif
4082 }
4083 
4084 #ifdef CONFIG_SKB_EXTENSIONS
4085 enum skb_ext_id {
4086 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4087 	SKB_EXT_BRIDGE_NF,
4088 #endif
4089 #ifdef CONFIG_XFRM
4090 	SKB_EXT_SEC_PATH,
4091 #endif
4092 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4093 	TC_SKB_EXT,
4094 #endif
4095 	SKB_EXT_NUM, /* must be last */
4096 };
4097 
4098 /**
4099  *	struct skb_ext - sk_buff extensions
4100  *	@refcnt: 1 on allocation, deallocated on 0
4101  *	@offset: offset to add to @data to obtain extension address
4102  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4103  *	@data: start of extension data, variable sized
4104  *
4105  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4106  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4107  */
4108 struct skb_ext {
4109 	refcount_t refcnt;
4110 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4111 	u8 chunks;		/* same */
4112 	char data[0] __aligned(8);
4113 };
4114 
4115 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4116 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4117 void __skb_ext_put(struct skb_ext *ext);
4118 
4119 static inline void skb_ext_put(struct sk_buff *skb)
4120 {
4121 	if (skb->active_extensions)
4122 		__skb_ext_put(skb->extensions);
4123 }
4124 
4125 static inline void __skb_ext_copy(struct sk_buff *dst,
4126 				  const struct sk_buff *src)
4127 {
4128 	dst->active_extensions = src->active_extensions;
4129 
4130 	if (src->active_extensions) {
4131 		struct skb_ext *ext = src->extensions;
4132 
4133 		refcount_inc(&ext->refcnt);
4134 		dst->extensions = ext;
4135 	}
4136 }
4137 
4138 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4139 {
4140 	skb_ext_put(dst);
4141 	__skb_ext_copy(dst, src);
4142 }
4143 
4144 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4145 {
4146 	return !!ext->offset[i];
4147 }
4148 
4149 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4150 {
4151 	return skb->active_extensions & (1 << id);
4152 }
4153 
4154 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4155 {
4156 	if (skb_ext_exist(skb, id))
4157 		__skb_ext_del(skb, id);
4158 }
4159 
4160 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4161 {
4162 	if (skb_ext_exist(skb, id)) {
4163 		struct skb_ext *ext = skb->extensions;
4164 
4165 		return (void *)ext + (ext->offset[id] << 3);
4166 	}
4167 
4168 	return NULL;
4169 }
4170 
4171 static inline void skb_ext_reset(struct sk_buff *skb)
4172 {
4173 	if (unlikely(skb->active_extensions)) {
4174 		__skb_ext_put(skb->extensions);
4175 		skb->active_extensions = 0;
4176 	}
4177 }
4178 
4179 static inline bool skb_has_extensions(struct sk_buff *skb)
4180 {
4181 	return unlikely(skb->active_extensions);
4182 }
4183 #else
4184 static inline void skb_ext_put(struct sk_buff *skb) {}
4185 static inline void skb_ext_reset(struct sk_buff *skb) {}
4186 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4187 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4188 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4189 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4190 #endif /* CONFIG_SKB_EXTENSIONS */
4191 
4192 static inline void nf_reset_ct(struct sk_buff *skb)
4193 {
4194 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4195 	nf_conntrack_put(skb_nfct(skb));
4196 	skb->_nfct = 0;
4197 #endif
4198 }
4199 
4200 static inline void nf_reset_trace(struct sk_buff *skb)
4201 {
4202 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4203 	skb->nf_trace = 0;
4204 #endif
4205 }
4206 
4207 static inline void ipvs_reset(struct sk_buff *skb)
4208 {
4209 #if IS_ENABLED(CONFIG_IP_VS)
4210 	skb->ipvs_property = 0;
4211 #endif
4212 }
4213 
4214 /* Note: This doesn't put any conntrack info in dst. */
4215 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4216 			     bool copy)
4217 {
4218 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4219 	dst->_nfct = src->_nfct;
4220 	nf_conntrack_get(skb_nfct(src));
4221 #endif
4222 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4223 	if (copy)
4224 		dst->nf_trace = src->nf_trace;
4225 #endif
4226 }
4227 
4228 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4229 {
4230 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4231 	nf_conntrack_put(skb_nfct(dst));
4232 #endif
4233 	__nf_copy(dst, src, true);
4234 }
4235 
4236 #ifdef CONFIG_NETWORK_SECMARK
4237 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4238 {
4239 	to->secmark = from->secmark;
4240 }
4241 
4242 static inline void skb_init_secmark(struct sk_buff *skb)
4243 {
4244 	skb->secmark = 0;
4245 }
4246 #else
4247 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4248 { }
4249 
4250 static inline void skb_init_secmark(struct sk_buff *skb)
4251 { }
4252 #endif
4253 
4254 static inline int secpath_exists(const struct sk_buff *skb)
4255 {
4256 #ifdef CONFIG_XFRM
4257 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4258 #else
4259 	return 0;
4260 #endif
4261 }
4262 
4263 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4264 {
4265 	return !skb->destructor &&
4266 		!secpath_exists(skb) &&
4267 		!skb_nfct(skb) &&
4268 		!skb->_skb_refdst &&
4269 		!skb_has_frag_list(skb);
4270 }
4271 
4272 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4273 {
4274 	skb->queue_mapping = queue_mapping;
4275 }
4276 
4277 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4278 {
4279 	return skb->queue_mapping;
4280 }
4281 
4282 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4283 {
4284 	to->queue_mapping = from->queue_mapping;
4285 }
4286 
4287 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4288 {
4289 	skb->queue_mapping = rx_queue + 1;
4290 }
4291 
4292 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4293 {
4294 	return skb->queue_mapping - 1;
4295 }
4296 
4297 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4298 {
4299 	return skb->queue_mapping != 0;
4300 }
4301 
4302 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4303 {
4304 	skb->dst_pending_confirm = val;
4305 }
4306 
4307 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4308 {
4309 	return skb->dst_pending_confirm != 0;
4310 }
4311 
4312 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4313 {
4314 #ifdef CONFIG_XFRM
4315 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4316 #else
4317 	return NULL;
4318 #endif
4319 }
4320 
4321 /* Keeps track of mac header offset relative to skb->head.
4322  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4323  * For non-tunnel skb it points to skb_mac_header() and for
4324  * tunnel skb it points to outer mac header.
4325  * Keeps track of level of encapsulation of network headers.
4326  */
4327 struct skb_gso_cb {
4328 	union {
4329 		int	mac_offset;
4330 		int	data_offset;
4331 	};
4332 	int	encap_level;
4333 	__wsum	csum;
4334 	__u16	csum_start;
4335 };
4336 #define SKB_SGO_CB_OFFSET	32
4337 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
4338 
4339 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4340 {
4341 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4342 		SKB_GSO_CB(inner_skb)->mac_offset;
4343 }
4344 
4345 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4346 {
4347 	int new_headroom, headroom;
4348 	int ret;
4349 
4350 	headroom = skb_headroom(skb);
4351 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4352 	if (ret)
4353 		return ret;
4354 
4355 	new_headroom = skb_headroom(skb);
4356 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4357 	return 0;
4358 }
4359 
4360 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4361 {
4362 	/* Do not update partial checksums if remote checksum is enabled. */
4363 	if (skb->remcsum_offload)
4364 		return;
4365 
4366 	SKB_GSO_CB(skb)->csum = res;
4367 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4368 }
4369 
4370 /* Compute the checksum for a gso segment. First compute the checksum value
4371  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4372  * then add in skb->csum (checksum from csum_start to end of packet).
4373  * skb->csum and csum_start are then updated to reflect the checksum of the
4374  * resultant packet starting from the transport header-- the resultant checksum
4375  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4376  * header.
4377  */
4378 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4379 {
4380 	unsigned char *csum_start = skb_transport_header(skb);
4381 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4382 	__wsum partial = SKB_GSO_CB(skb)->csum;
4383 
4384 	SKB_GSO_CB(skb)->csum = res;
4385 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4386 
4387 	return csum_fold(csum_partial(csum_start, plen, partial));
4388 }
4389 
4390 static inline bool skb_is_gso(const struct sk_buff *skb)
4391 {
4392 	return skb_shinfo(skb)->gso_size;
4393 }
4394 
4395 /* Note: Should be called only if skb_is_gso(skb) is true */
4396 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4397 {
4398 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4399 }
4400 
4401 /* Note: Should be called only if skb_is_gso(skb) is true */
4402 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4403 {
4404 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4405 }
4406 
4407 /* Note: Should be called only if skb_is_gso(skb) is true */
4408 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4409 {
4410 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4411 }
4412 
4413 static inline void skb_gso_reset(struct sk_buff *skb)
4414 {
4415 	skb_shinfo(skb)->gso_size = 0;
4416 	skb_shinfo(skb)->gso_segs = 0;
4417 	skb_shinfo(skb)->gso_type = 0;
4418 }
4419 
4420 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4421 					 u16 increment)
4422 {
4423 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4424 		return;
4425 	shinfo->gso_size += increment;
4426 }
4427 
4428 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4429 					 u16 decrement)
4430 {
4431 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4432 		return;
4433 	shinfo->gso_size -= decrement;
4434 }
4435 
4436 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4437 
4438 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4439 {
4440 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4441 	 * wanted then gso_type will be set. */
4442 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4443 
4444 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4445 	    unlikely(shinfo->gso_type == 0)) {
4446 		__skb_warn_lro_forwarding(skb);
4447 		return true;
4448 	}
4449 	return false;
4450 }
4451 
4452 static inline void skb_forward_csum(struct sk_buff *skb)
4453 {
4454 	/* Unfortunately we don't support this one.  Any brave souls? */
4455 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4456 		skb->ip_summed = CHECKSUM_NONE;
4457 }
4458 
4459 /**
4460  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4461  * @skb: skb to check
4462  *
4463  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4464  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4465  * use this helper, to document places where we make this assertion.
4466  */
4467 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4468 {
4469 #ifdef DEBUG
4470 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4471 #endif
4472 }
4473 
4474 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4475 
4476 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4477 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4478 				     unsigned int transport_len,
4479 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4480 
4481 /**
4482  * skb_head_is_locked - Determine if the skb->head is locked down
4483  * @skb: skb to check
4484  *
4485  * The head on skbs build around a head frag can be removed if they are
4486  * not cloned.  This function returns true if the skb head is locked down
4487  * due to either being allocated via kmalloc, or by being a clone with
4488  * multiple references to the head.
4489  */
4490 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4491 {
4492 	return !skb->head_frag || skb_cloned(skb);
4493 }
4494 
4495 /* Local Checksum Offload.
4496  * Compute outer checksum based on the assumption that the
4497  * inner checksum will be offloaded later.
4498  * See Documentation/networking/checksum-offloads.rst for
4499  * explanation of how this works.
4500  * Fill in outer checksum adjustment (e.g. with sum of outer
4501  * pseudo-header) before calling.
4502  * Also ensure that inner checksum is in linear data area.
4503  */
4504 static inline __wsum lco_csum(struct sk_buff *skb)
4505 {
4506 	unsigned char *csum_start = skb_checksum_start(skb);
4507 	unsigned char *l4_hdr = skb_transport_header(skb);
4508 	__wsum partial;
4509 
4510 	/* Start with complement of inner checksum adjustment */
4511 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4512 						    skb->csum_offset));
4513 
4514 	/* Add in checksum of our headers (incl. outer checksum
4515 	 * adjustment filled in by caller) and return result.
4516 	 */
4517 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4518 }
4519 
4520 #endif	/* __KERNEL__ */
4521 #endif	/* _LINUX_SKBUFF_H */
4522