xref: /linux/include/linux/skbuff.h (revision d6fd48ef)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
7  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #include <net/page_pool.h>
36 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
37 #include <linux/netfilter/nf_conntrack_common.h>
38 #endif
39 #include <net/net_debug.h>
40 #include <net/dropreason.h>
41 
42 /**
43  * DOC: skb checksums
44  *
45  * The interface for checksum offload between the stack and networking drivers
46  * is as follows...
47  *
48  * IP checksum related features
49  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50  *
51  * Drivers advertise checksum offload capabilities in the features of a device.
52  * From the stack's point of view these are capabilities offered by the driver.
53  * A driver typically only advertises features that it is capable of offloading
54  * to its device.
55  *
56  * .. flat-table:: Checksum related device features
57  *   :widths: 1 10
58  *
59  *   * - %NETIF_F_HW_CSUM
60  *     - The driver (or its device) is able to compute one
61  *	 IP (one's complement) checksum for any combination
62  *	 of protocols or protocol layering. The checksum is
63  *	 computed and set in a packet per the CHECKSUM_PARTIAL
64  *	 interface (see below).
65  *
66  *   * - %NETIF_F_IP_CSUM
67  *     - Driver (device) is only able to checksum plain
68  *	 TCP or UDP packets over IPv4. These are specifically
69  *	 unencapsulated packets of the form IPv4|TCP or
70  *	 IPv4|UDP where the Protocol field in the IPv4 header
71  *	 is TCP or UDP. The IPv4 header may contain IP options.
72  *	 This feature cannot be set in features for a device
73  *	 with NETIF_F_HW_CSUM also set. This feature is being
74  *	 DEPRECATED (see below).
75  *
76  *   * - %NETIF_F_IPV6_CSUM
77  *     - Driver (device) is only able to checksum plain
78  *	 TCP or UDP packets over IPv6. These are specifically
79  *	 unencapsulated packets of the form IPv6|TCP or
80  *	 IPv6|UDP where the Next Header field in the IPv6
81  *	 header is either TCP or UDP. IPv6 extension headers
82  *	 are not supported with this feature. This feature
83  *	 cannot be set in features for a device with
84  *	 NETIF_F_HW_CSUM also set. This feature is being
85  *	 DEPRECATED (see below).
86  *
87  *   * - %NETIF_F_RXCSUM
88  *     - Driver (device) performs receive checksum offload.
89  *	 This flag is only used to disable the RX checksum
90  *	 feature for a device. The stack will accept receive
91  *	 checksum indication in packets received on a device
92  *	 regardless of whether NETIF_F_RXCSUM is set.
93  *
94  * Checksumming of received packets by device
95  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96  *
97  * Indication of checksum verification is set in &sk_buff.ip_summed.
98  * Possible values are:
99  *
100  * - %CHECKSUM_NONE
101  *
102  *   Device did not checksum this packet e.g. due to lack of capabilities.
103  *   The packet contains full (though not verified) checksum in packet but
104  *   not in skb->csum. Thus, skb->csum is undefined in this case.
105  *
106  * - %CHECKSUM_UNNECESSARY
107  *
108  *   The hardware you're dealing with doesn't calculate the full checksum
109  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
110  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
111  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
112  *   though. A driver or device must never modify the checksum field in the
113  *   packet even if checksum is verified.
114  *
115  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
116  *
117  *     - TCP: IPv6 and IPv4.
118  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
119  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
120  *       may perform further validation in this case.
121  *     - GRE: only if the checksum is present in the header.
122  *     - SCTP: indicates the CRC in SCTP header has been validated.
123  *     - FCOE: indicates the CRC in FC frame has been validated.
124  *
125  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
126  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
127  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
128  *   and a device is able to verify the checksums for UDP (possibly zero),
129  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
130  *   two. If the device were only able to verify the UDP checksum and not
131  *   GRE, either because it doesn't support GRE checksum or because GRE
132  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
133  *   not considered in this case).
134  *
135  * - %CHECKSUM_COMPLETE
136  *
137  *   This is the most generic way. The device supplied checksum of the _whole_
138  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
139  *   hardware doesn't need to parse L3/L4 headers to implement this.
140  *
141  *   Notes:
142  *
143  *   - Even if device supports only some protocols, but is able to produce
144  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
145  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
146  *
147  * - %CHECKSUM_PARTIAL
148  *
149  *   A checksum is set up to be offloaded to a device as described in the
150  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
151  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
152  *   on the same host, or it may be set in the input path in GRO or remote
153  *   checksum offload. For the purposes of checksum verification, the checksum
154  *   referred to by skb->csum_start + skb->csum_offset and any preceding
155  *   checksums in the packet are considered verified. Any checksums in the
156  *   packet that are after the checksum being offloaded are not considered to
157  *   be verified.
158  *
159  * Checksumming on transmit for non-GSO
160  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161  *
162  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
163  * Values are:
164  *
165  * - %CHECKSUM_PARTIAL
166  *
167  *   The driver is required to checksum the packet as seen by hard_start_xmit()
168  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
169  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
170  *   A driver may verify that the
171  *   csum_start and csum_offset values are valid values given the length and
172  *   offset of the packet, but it should not attempt to validate that the
173  *   checksum refers to a legitimate transport layer checksum -- it is the
174  *   purview of the stack to validate that csum_start and csum_offset are set
175  *   correctly.
176  *
177  *   When the stack requests checksum offload for a packet, the driver MUST
178  *   ensure that the checksum is set correctly. A driver can either offload the
179  *   checksum calculation to the device, or call skb_checksum_help (in the case
180  *   that the device does not support offload for a particular checksum).
181  *
182  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
183  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
184  *   checksum offload capability.
185  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
186  *   on network device checksumming capabilities: if a packet does not match
187  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
188  *   &sk_buff.csum_not_inet, see :ref:`crc`)
189  *   is called to resolve the checksum.
190  *
191  * - %CHECKSUM_NONE
192  *
193  *   The skb was already checksummed by the protocol, or a checksum is not
194  *   required.
195  *
196  * - %CHECKSUM_UNNECESSARY
197  *
198  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
199  *   output.
200  *
201  * - %CHECKSUM_COMPLETE
202  *
203  *   Not used in checksum output. If a driver observes a packet with this value
204  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
205  *
206  * .. _crc:
207  *
208  * Non-IP checksum (CRC) offloads
209  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
210  *
211  * .. flat-table::
212  *   :widths: 1 10
213  *
214  *   * - %NETIF_F_SCTP_CRC
215  *     - This feature indicates that a device is capable of
216  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
217  *	 will set csum_start and csum_offset accordingly, set ip_summed to
218  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
219  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
220  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
221  *	 must verify which offload is configured for a packet by testing the
222  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
223  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
224  *
225  *   * - %NETIF_F_FCOE_CRC
226  *     - This feature indicates that a device is capable of offloading the FCOE
227  *	 CRC in a packet. To perform this offload the stack will set ip_summed
228  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
229  *	 accordingly. Note that there is no indication in the skbuff that the
230  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
231  *	 both IP checksum offload and FCOE CRC offload must verify which offload
232  *	 is configured for a packet, presumably by inspecting packet headers.
233  *
234  * Checksumming on output with GSO
235  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
236  *
237  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
238  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
239  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
240  * part of the GSO operation is implied. If a checksum is being offloaded
241  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
242  * csum_offset are set to refer to the outermost checksum being offloaded
243  * (two offloaded checksums are possible with UDP encapsulation).
244  */
245 
246 /* Don't change this without changing skb_csum_unnecessary! */
247 #define CHECKSUM_NONE		0
248 #define CHECKSUM_UNNECESSARY	1
249 #define CHECKSUM_COMPLETE	2
250 #define CHECKSUM_PARTIAL	3
251 
252 /* Maximum value in skb->csum_level */
253 #define SKB_MAX_CSUM_LEVEL	3
254 
255 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
256 #define SKB_WITH_OVERHEAD(X)	\
257 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
258 
259 /* For X bytes available in skb->head, what is the minimal
260  * allocation needed, knowing struct skb_shared_info needs
261  * to be aligned.
262  */
263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
264 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
265 
266 #define SKB_MAX_ORDER(X, ORDER) \
267 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
268 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
269 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
270 
271 /* return minimum truesize of one skb containing X bytes of data */
272 #define SKB_TRUESIZE(X) ((X) +						\
273 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
274 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
275 
276 struct ahash_request;
277 struct net_device;
278 struct scatterlist;
279 struct pipe_inode_info;
280 struct iov_iter;
281 struct napi_struct;
282 struct bpf_prog;
283 union bpf_attr;
284 struct skb_ext;
285 struct ts_config;
286 
287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
288 struct nf_bridge_info {
289 	enum {
290 		BRNF_PROTO_UNCHANGED,
291 		BRNF_PROTO_8021Q,
292 		BRNF_PROTO_PPPOE
293 	} orig_proto:8;
294 	u8			pkt_otherhost:1;
295 	u8			in_prerouting:1;
296 	u8			bridged_dnat:1;
297 	__u16			frag_max_size;
298 	struct net_device	*physindev;
299 
300 	/* always valid & non-NULL from FORWARD on, for physdev match */
301 	struct net_device	*physoutdev;
302 	union {
303 		/* prerouting: detect dnat in orig/reply direction */
304 		__be32          ipv4_daddr;
305 		struct in6_addr ipv6_daddr;
306 
307 		/* after prerouting + nat detected: store original source
308 		 * mac since neigh resolution overwrites it, only used while
309 		 * skb is out in neigh layer.
310 		 */
311 		char neigh_header[8];
312 	};
313 };
314 #endif
315 
316 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
317 /* Chain in tc_skb_ext will be used to share the tc chain with
318  * ovs recirc_id. It will be set to the current chain by tc
319  * and read by ovs to recirc_id.
320  */
321 struct tc_skb_ext {
322 	union {
323 		u64 act_miss_cookie;
324 		__u32 chain;
325 	};
326 	__u16 mru;
327 	__u16 zone;
328 	u8 post_ct:1;
329 	u8 post_ct_snat:1;
330 	u8 post_ct_dnat:1;
331 	u8 act_miss:1; /* Set if act_miss_cookie is used */
332 };
333 #endif
334 
335 struct sk_buff_head {
336 	/* These two members must be first to match sk_buff. */
337 	struct_group_tagged(sk_buff_list, list,
338 		struct sk_buff	*next;
339 		struct sk_buff	*prev;
340 	);
341 
342 	__u32		qlen;
343 	spinlock_t	lock;
344 };
345 
346 struct sk_buff;
347 
348 /* To allow 64K frame to be packed as single skb without frag_list we
349  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
350  * buffers which do not start on a page boundary.
351  *
352  * Since GRO uses frags we allocate at least 16 regardless of page
353  * size.
354  */
355 #if (65536/PAGE_SIZE + 1) < 16
356 #define MAX_SKB_FRAGS 16UL
357 #else
358 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
359 #endif
360 extern int sysctl_max_skb_frags;
361 
362 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
363  * segment using its current segmentation instead.
364  */
365 #define GSO_BY_FRAGS	0xFFFF
366 
367 typedef struct bio_vec skb_frag_t;
368 
369 /**
370  * skb_frag_size() - Returns the size of a skb fragment
371  * @frag: skb fragment
372  */
373 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
374 {
375 	return frag->bv_len;
376 }
377 
378 /**
379  * skb_frag_size_set() - Sets the size of a skb fragment
380  * @frag: skb fragment
381  * @size: size of fragment
382  */
383 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
384 {
385 	frag->bv_len = size;
386 }
387 
388 /**
389  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
390  * @frag: skb fragment
391  * @delta: value to add
392  */
393 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
394 {
395 	frag->bv_len += delta;
396 }
397 
398 /**
399  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
400  * @frag: skb fragment
401  * @delta: value to subtract
402  */
403 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
404 {
405 	frag->bv_len -= delta;
406 }
407 
408 /**
409  * skb_frag_must_loop - Test if %p is a high memory page
410  * @p: fragment's page
411  */
412 static inline bool skb_frag_must_loop(struct page *p)
413 {
414 #if defined(CONFIG_HIGHMEM)
415 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
416 		return true;
417 #endif
418 	return false;
419 }
420 
421 /**
422  *	skb_frag_foreach_page - loop over pages in a fragment
423  *
424  *	@f:		skb frag to operate on
425  *	@f_off:		offset from start of f->bv_page
426  *	@f_len:		length from f_off to loop over
427  *	@p:		(temp var) current page
428  *	@p_off:		(temp var) offset from start of current page,
429  *	                           non-zero only on first page.
430  *	@p_len:		(temp var) length in current page,
431  *				   < PAGE_SIZE only on first and last page.
432  *	@copied:	(temp var) length so far, excluding current p_len.
433  *
434  *	A fragment can hold a compound page, in which case per-page
435  *	operations, notably kmap_atomic, must be called for each
436  *	regular page.
437  */
438 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
439 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
440 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
441 	     p_len = skb_frag_must_loop(p) ?				\
442 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
443 	     copied = 0;						\
444 	     copied < f_len;						\
445 	     copied += p_len, p++, p_off = 0,				\
446 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
447 
448 #define HAVE_HW_TIME_STAMP
449 
450 /**
451  * struct skb_shared_hwtstamps - hardware time stamps
452  * @hwtstamp:		hardware time stamp transformed into duration
453  *			since arbitrary point in time
454  * @netdev_data:	address/cookie of network device driver used as
455  *			reference to actual hardware time stamp
456  *
457  * Software time stamps generated by ktime_get_real() are stored in
458  * skb->tstamp.
459  *
460  * hwtstamps can only be compared against other hwtstamps from
461  * the same device.
462  *
463  * This structure is attached to packets as part of the
464  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
465  */
466 struct skb_shared_hwtstamps {
467 	union {
468 		ktime_t	hwtstamp;
469 		void *netdev_data;
470 	};
471 };
472 
473 /* Definitions for tx_flags in struct skb_shared_info */
474 enum {
475 	/* generate hardware time stamp */
476 	SKBTX_HW_TSTAMP = 1 << 0,
477 
478 	/* generate software time stamp when queueing packet to NIC */
479 	SKBTX_SW_TSTAMP = 1 << 1,
480 
481 	/* device driver is going to provide hardware time stamp */
482 	SKBTX_IN_PROGRESS = 1 << 2,
483 
484 	/* generate hardware time stamp based on cycles if supported */
485 	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
486 
487 	/* generate wifi status information (where possible) */
488 	SKBTX_WIFI_STATUS = 1 << 4,
489 
490 	/* determine hardware time stamp based on time or cycles */
491 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
492 
493 	/* generate software time stamp when entering packet scheduling */
494 	SKBTX_SCHED_TSTAMP = 1 << 6,
495 };
496 
497 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
498 				 SKBTX_SCHED_TSTAMP)
499 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
500 				 SKBTX_HW_TSTAMP_USE_CYCLES | \
501 				 SKBTX_ANY_SW_TSTAMP)
502 
503 /* Definitions for flags in struct skb_shared_info */
504 enum {
505 	/* use zcopy routines */
506 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
507 
508 	/* This indicates at least one fragment might be overwritten
509 	 * (as in vmsplice(), sendfile() ...)
510 	 * If we need to compute a TX checksum, we'll need to copy
511 	 * all frags to avoid possible bad checksum
512 	 */
513 	SKBFL_SHARED_FRAG = BIT(1),
514 
515 	/* segment contains only zerocopy data and should not be
516 	 * charged to the kernel memory.
517 	 */
518 	SKBFL_PURE_ZEROCOPY = BIT(2),
519 
520 	SKBFL_DONT_ORPHAN = BIT(3),
521 
522 	/* page references are managed by the ubuf_info, so it's safe to
523 	 * use frags only up until ubuf_info is released
524 	 */
525 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
526 };
527 
528 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
529 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
530 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
531 
532 /*
533  * The callback notifies userspace to release buffers when skb DMA is done in
534  * lower device, the skb last reference should be 0 when calling this.
535  * The zerocopy_success argument is true if zero copy transmit occurred,
536  * false on data copy or out of memory error caused by data copy attempt.
537  * The ctx field is used to track device context.
538  * The desc field is used to track userspace buffer index.
539  */
540 struct ubuf_info {
541 	void (*callback)(struct sk_buff *, struct ubuf_info *,
542 			 bool zerocopy_success);
543 	refcount_t refcnt;
544 	u8 flags;
545 };
546 
547 struct ubuf_info_msgzc {
548 	struct ubuf_info ubuf;
549 
550 	union {
551 		struct {
552 			unsigned long desc;
553 			void *ctx;
554 		};
555 		struct {
556 			u32 id;
557 			u16 len;
558 			u16 zerocopy:1;
559 			u32 bytelen;
560 		};
561 	};
562 
563 	struct mmpin {
564 		struct user_struct *user;
565 		unsigned int num_pg;
566 	} mmp;
567 };
568 
569 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
570 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
571 					     ubuf)
572 
573 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
574 void mm_unaccount_pinned_pages(struct mmpin *mmp);
575 
576 /* This data is invariant across clones and lives at
577  * the end of the header data, ie. at skb->end.
578  */
579 struct skb_shared_info {
580 	__u8		flags;
581 	__u8		meta_len;
582 	__u8		nr_frags;
583 	__u8		tx_flags;
584 	unsigned short	gso_size;
585 	/* Warning: this field is not always filled in (UFO)! */
586 	unsigned short	gso_segs;
587 	struct sk_buff	*frag_list;
588 	struct skb_shared_hwtstamps hwtstamps;
589 	unsigned int	gso_type;
590 	u32		tskey;
591 
592 	/*
593 	 * Warning : all fields before dataref are cleared in __alloc_skb()
594 	 */
595 	atomic_t	dataref;
596 	unsigned int	xdp_frags_size;
597 
598 	/* Intermediate layers must ensure that destructor_arg
599 	 * remains valid until skb destructor */
600 	void *		destructor_arg;
601 
602 	/* must be last field, see pskb_expand_head() */
603 	skb_frag_t	frags[MAX_SKB_FRAGS];
604 };
605 
606 /**
607  * DOC: dataref and headerless skbs
608  *
609  * Transport layers send out clones of payload skbs they hold for
610  * retransmissions. To allow lower layers of the stack to prepend their headers
611  * we split &skb_shared_info.dataref into two halves.
612  * The lower 16 bits count the overall number of references.
613  * The higher 16 bits indicate how many of the references are payload-only.
614  * skb_header_cloned() checks if skb is allowed to add / write the headers.
615  *
616  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
617  * (via __skb_header_release()). Any clone created from marked skb will get
618  * &sk_buff.hdr_len populated with the available headroom.
619  * If there's the only clone in existence it's able to modify the headroom
620  * at will. The sequence of calls inside the transport layer is::
621  *
622  *  <alloc skb>
623  *  skb_reserve()
624  *  __skb_header_release()
625  *  skb_clone()
626  *  // send the clone down the stack
627  *
628  * This is not a very generic construct and it depends on the transport layers
629  * doing the right thing. In practice there's usually only one payload-only skb.
630  * Having multiple payload-only skbs with different lengths of hdr_len is not
631  * possible. The payload-only skbs should never leave their owner.
632  */
633 #define SKB_DATAREF_SHIFT 16
634 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
635 
636 
637 enum {
638 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
639 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
640 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
641 };
642 
643 enum {
644 	SKB_GSO_TCPV4 = 1 << 0,
645 
646 	/* This indicates the skb is from an untrusted source. */
647 	SKB_GSO_DODGY = 1 << 1,
648 
649 	/* This indicates the tcp segment has CWR set. */
650 	SKB_GSO_TCP_ECN = 1 << 2,
651 
652 	SKB_GSO_TCP_FIXEDID = 1 << 3,
653 
654 	SKB_GSO_TCPV6 = 1 << 4,
655 
656 	SKB_GSO_FCOE = 1 << 5,
657 
658 	SKB_GSO_GRE = 1 << 6,
659 
660 	SKB_GSO_GRE_CSUM = 1 << 7,
661 
662 	SKB_GSO_IPXIP4 = 1 << 8,
663 
664 	SKB_GSO_IPXIP6 = 1 << 9,
665 
666 	SKB_GSO_UDP_TUNNEL = 1 << 10,
667 
668 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
669 
670 	SKB_GSO_PARTIAL = 1 << 12,
671 
672 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
673 
674 	SKB_GSO_SCTP = 1 << 14,
675 
676 	SKB_GSO_ESP = 1 << 15,
677 
678 	SKB_GSO_UDP = 1 << 16,
679 
680 	SKB_GSO_UDP_L4 = 1 << 17,
681 
682 	SKB_GSO_FRAGLIST = 1 << 18,
683 };
684 
685 #if BITS_PER_LONG > 32
686 #define NET_SKBUFF_DATA_USES_OFFSET 1
687 #endif
688 
689 #ifdef NET_SKBUFF_DATA_USES_OFFSET
690 typedef unsigned int sk_buff_data_t;
691 #else
692 typedef unsigned char *sk_buff_data_t;
693 #endif
694 
695 /**
696  * DOC: Basic sk_buff geometry
697  *
698  * struct sk_buff itself is a metadata structure and does not hold any packet
699  * data. All the data is held in associated buffers.
700  *
701  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
702  * into two parts:
703  *
704  *  - data buffer, containing headers and sometimes payload;
705  *    this is the part of the skb operated on by the common helpers
706  *    such as skb_put() or skb_pull();
707  *  - shared info (struct skb_shared_info) which holds an array of pointers
708  *    to read-only data in the (page, offset, length) format.
709  *
710  * Optionally &skb_shared_info.frag_list may point to another skb.
711  *
712  * Basic diagram may look like this::
713  *
714  *                                  ---------------
715  *                                 | sk_buff       |
716  *                                  ---------------
717  *     ,---------------------------  + head
718  *    /          ,-----------------  + data
719  *   /          /      ,-----------  + tail
720  *  |          |      |            , + end
721  *  |          |      |           |
722  *  v          v      v           v
723  *   -----------------------------------------------
724  *  | headroom | data |  tailroom | skb_shared_info |
725  *   -----------------------------------------------
726  *                                 + [page frag]
727  *                                 + [page frag]
728  *                                 + [page frag]
729  *                                 + [page frag]       ---------
730  *                                 + frag_list    --> | sk_buff |
731  *                                                     ---------
732  *
733  */
734 
735 /**
736  *	struct sk_buff - socket buffer
737  *	@next: Next buffer in list
738  *	@prev: Previous buffer in list
739  *	@tstamp: Time we arrived/left
740  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
741  *		for retransmit timer
742  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
743  *	@list: queue head
744  *	@ll_node: anchor in an llist (eg socket defer_list)
745  *	@sk: Socket we are owned by
746  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
747  *		fragmentation management
748  *	@dev: Device we arrived on/are leaving by
749  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
750  *	@cb: Control buffer. Free for use by every layer. Put private vars here
751  *	@_skb_refdst: destination entry (with norefcount bit)
752  *	@sp: the security path, used for xfrm
753  *	@len: Length of actual data
754  *	@data_len: Data length
755  *	@mac_len: Length of link layer header
756  *	@hdr_len: writable header length of cloned skb
757  *	@csum: Checksum (must include start/offset pair)
758  *	@csum_start: Offset from skb->head where checksumming should start
759  *	@csum_offset: Offset from csum_start where checksum should be stored
760  *	@priority: Packet queueing priority
761  *	@ignore_df: allow local fragmentation
762  *	@cloned: Head may be cloned (check refcnt to be sure)
763  *	@ip_summed: Driver fed us an IP checksum
764  *	@nohdr: Payload reference only, must not modify header
765  *	@pkt_type: Packet class
766  *	@fclone: skbuff clone status
767  *	@ipvs_property: skbuff is owned by ipvs
768  *	@inner_protocol_type: whether the inner protocol is
769  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
770  *	@remcsum_offload: remote checksum offload is enabled
771  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
772  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
773  *	@tc_skip_classify: do not classify packet. set by IFB device
774  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
775  *	@redirected: packet was redirected by packet classifier
776  *	@from_ingress: packet was redirected from the ingress path
777  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
778  *	@peeked: this packet has been seen already, so stats have been
779  *		done for it, don't do them again
780  *	@nf_trace: netfilter packet trace flag
781  *	@protocol: Packet protocol from driver
782  *	@destructor: Destruct function
783  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
784  *	@_sk_redir: socket redirection information for skmsg
785  *	@_nfct: Associated connection, if any (with nfctinfo bits)
786  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
787  *	@skb_iif: ifindex of device we arrived on
788  *	@tc_index: Traffic control index
789  *	@hash: the packet hash
790  *	@queue_mapping: Queue mapping for multiqueue devices
791  *	@head_frag: skb was allocated from page fragments,
792  *		not allocated by kmalloc() or vmalloc().
793  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
794  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
795  *		page_pool support on driver)
796  *	@active_extensions: active extensions (skb_ext_id types)
797  *	@ndisc_nodetype: router type (from link layer)
798  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
799  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
800  *		ports.
801  *	@sw_hash: indicates hash was computed in software stack
802  *	@wifi_acked_valid: wifi_acked was set
803  *	@wifi_acked: whether frame was acked on wifi or not
804  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
805  *	@encapsulation: indicates the inner headers in the skbuff are valid
806  *	@encap_hdr_csum: software checksum is needed
807  *	@csum_valid: checksum is already valid
808  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
809  *	@csum_complete_sw: checksum was completed by software
810  *	@csum_level: indicates the number of consecutive checksums found in
811  *		the packet minus one that have been verified as
812  *		CHECKSUM_UNNECESSARY (max 3)
813  *	@scm_io_uring: SKB holds io_uring registered files
814  *	@dst_pending_confirm: need to confirm neighbour
815  *	@decrypted: Decrypted SKB
816  *	@slow_gro: state present at GRO time, slower prepare step required
817  *	@mono_delivery_time: When set, skb->tstamp has the
818  *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
819  *		skb->tstamp has the (rcv) timestamp at ingress and
820  *		delivery_time at egress.
821  *	@napi_id: id of the NAPI struct this skb came from
822  *	@sender_cpu: (aka @napi_id) source CPU in XPS
823  *	@alloc_cpu: CPU which did the skb allocation.
824  *	@secmark: security marking
825  *	@mark: Generic packet mark
826  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
827  *		at the tail of an sk_buff
828  *	@vlan_all: vlan fields (proto & tci)
829  *	@vlan_proto: vlan encapsulation protocol
830  *	@vlan_tci: vlan tag control information
831  *	@inner_protocol: Protocol (encapsulation)
832  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
833  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
834  *	@inner_transport_header: Inner transport layer header (encapsulation)
835  *	@inner_network_header: Network layer header (encapsulation)
836  *	@inner_mac_header: Link layer header (encapsulation)
837  *	@transport_header: Transport layer header
838  *	@network_header: Network layer header
839  *	@mac_header: Link layer header
840  *	@kcov_handle: KCOV remote handle for remote coverage collection
841  *	@tail: Tail pointer
842  *	@end: End pointer
843  *	@head: Head of buffer
844  *	@data: Data head pointer
845  *	@truesize: Buffer size
846  *	@users: User count - see {datagram,tcp}.c
847  *	@extensions: allocated extensions, valid if active_extensions is nonzero
848  */
849 
850 struct sk_buff {
851 	union {
852 		struct {
853 			/* These two members must be first to match sk_buff_head. */
854 			struct sk_buff		*next;
855 			struct sk_buff		*prev;
856 
857 			union {
858 				struct net_device	*dev;
859 				/* Some protocols might use this space to store information,
860 				 * while device pointer would be NULL.
861 				 * UDP receive path is one user.
862 				 */
863 				unsigned long		dev_scratch;
864 			};
865 		};
866 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
867 		struct list_head	list;
868 		struct llist_node	ll_node;
869 	};
870 
871 	union {
872 		struct sock		*sk;
873 		int			ip_defrag_offset;
874 	};
875 
876 	union {
877 		ktime_t		tstamp;
878 		u64		skb_mstamp_ns; /* earliest departure time */
879 	};
880 	/*
881 	 * This is the control buffer. It is free to use for every
882 	 * layer. Please put your private variables there. If you
883 	 * want to keep them across layers you have to do a skb_clone()
884 	 * first. This is owned by whoever has the skb queued ATM.
885 	 */
886 	char			cb[48] __aligned(8);
887 
888 	union {
889 		struct {
890 			unsigned long	_skb_refdst;
891 			void		(*destructor)(struct sk_buff *skb);
892 		};
893 		struct list_head	tcp_tsorted_anchor;
894 #ifdef CONFIG_NET_SOCK_MSG
895 		unsigned long		_sk_redir;
896 #endif
897 	};
898 
899 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
900 	unsigned long		 _nfct;
901 #endif
902 	unsigned int		len,
903 				data_len;
904 	__u16			mac_len,
905 				hdr_len;
906 
907 	/* Following fields are _not_ copied in __copy_skb_header()
908 	 * Note that queue_mapping is here mostly to fill a hole.
909 	 */
910 	__u16			queue_mapping;
911 
912 /* if you move cloned around you also must adapt those constants */
913 #ifdef __BIG_ENDIAN_BITFIELD
914 #define CLONED_MASK	(1 << 7)
915 #else
916 #define CLONED_MASK	1
917 #endif
918 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
919 
920 	/* private: */
921 	__u8			__cloned_offset[0];
922 	/* public: */
923 	__u8			cloned:1,
924 				nohdr:1,
925 				fclone:2,
926 				peeked:1,
927 				head_frag:1,
928 				pfmemalloc:1,
929 				pp_recycle:1; /* page_pool recycle indicator */
930 #ifdef CONFIG_SKB_EXTENSIONS
931 	__u8			active_extensions;
932 #endif
933 
934 	/* Fields enclosed in headers group are copied
935 	 * using a single memcpy() in __copy_skb_header()
936 	 */
937 	struct_group(headers,
938 
939 	/* private: */
940 	__u8			__pkt_type_offset[0];
941 	/* public: */
942 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
943 	__u8			ignore_df:1;
944 	__u8			nf_trace:1;
945 	__u8			ip_summed:2;
946 	__u8			ooo_okay:1;
947 
948 	__u8			l4_hash:1;
949 	__u8			sw_hash:1;
950 	__u8			wifi_acked_valid:1;
951 	__u8			wifi_acked:1;
952 	__u8			no_fcs:1;
953 	/* Indicates the inner headers are valid in the skbuff. */
954 	__u8			encapsulation:1;
955 	__u8			encap_hdr_csum:1;
956 	__u8			csum_valid:1;
957 
958 	/* private: */
959 	__u8			__pkt_vlan_present_offset[0];
960 	/* public: */
961 	__u8			remcsum_offload:1;
962 	__u8			csum_complete_sw:1;
963 	__u8			csum_level:2;
964 	__u8			dst_pending_confirm:1;
965 	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
966 #ifdef CONFIG_NET_CLS_ACT
967 	__u8			tc_skip_classify:1;
968 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
969 #endif
970 #ifdef CONFIG_IPV6_NDISC_NODETYPE
971 	__u8			ndisc_nodetype:2;
972 #endif
973 
974 	__u8			ipvs_property:1;
975 	__u8			inner_protocol_type:1;
976 #ifdef CONFIG_NET_SWITCHDEV
977 	__u8			offload_fwd_mark:1;
978 	__u8			offload_l3_fwd_mark:1;
979 #endif
980 	__u8			redirected:1;
981 #ifdef CONFIG_NET_REDIRECT
982 	__u8			from_ingress:1;
983 #endif
984 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
985 	__u8			nf_skip_egress:1;
986 #endif
987 #ifdef CONFIG_TLS_DEVICE
988 	__u8			decrypted:1;
989 #endif
990 	__u8			slow_gro:1;
991 	__u8			csum_not_inet:1;
992 	__u8			scm_io_uring:1;
993 
994 #ifdef CONFIG_NET_SCHED
995 	__u16			tc_index;	/* traffic control index */
996 #endif
997 
998 	union {
999 		__wsum		csum;
1000 		struct {
1001 			__u16	csum_start;
1002 			__u16	csum_offset;
1003 		};
1004 	};
1005 	__u32			priority;
1006 	int			skb_iif;
1007 	__u32			hash;
1008 	union {
1009 		u32		vlan_all;
1010 		struct {
1011 			__be16	vlan_proto;
1012 			__u16	vlan_tci;
1013 		};
1014 	};
1015 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1016 	union {
1017 		unsigned int	napi_id;
1018 		unsigned int	sender_cpu;
1019 	};
1020 #endif
1021 	u16			alloc_cpu;
1022 #ifdef CONFIG_NETWORK_SECMARK
1023 	__u32		secmark;
1024 #endif
1025 
1026 	union {
1027 		__u32		mark;
1028 		__u32		reserved_tailroom;
1029 	};
1030 
1031 	union {
1032 		__be16		inner_protocol;
1033 		__u8		inner_ipproto;
1034 	};
1035 
1036 	__u16			inner_transport_header;
1037 	__u16			inner_network_header;
1038 	__u16			inner_mac_header;
1039 
1040 	__be16			protocol;
1041 	__u16			transport_header;
1042 	__u16			network_header;
1043 	__u16			mac_header;
1044 
1045 #ifdef CONFIG_KCOV
1046 	u64			kcov_handle;
1047 #endif
1048 
1049 	); /* end headers group */
1050 
1051 	/* These elements must be at the end, see alloc_skb() for details.  */
1052 	sk_buff_data_t		tail;
1053 	sk_buff_data_t		end;
1054 	unsigned char		*head,
1055 				*data;
1056 	unsigned int		truesize;
1057 	refcount_t		users;
1058 
1059 #ifdef CONFIG_SKB_EXTENSIONS
1060 	/* only useable after checking ->active_extensions != 0 */
1061 	struct skb_ext		*extensions;
1062 #endif
1063 };
1064 
1065 /* if you move pkt_type around you also must adapt those constants */
1066 #ifdef __BIG_ENDIAN_BITFIELD
1067 #define PKT_TYPE_MAX	(7 << 5)
1068 #else
1069 #define PKT_TYPE_MAX	7
1070 #endif
1071 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1072 
1073 /* if you move tc_at_ingress or mono_delivery_time
1074  * around, you also must adapt these constants.
1075  */
1076 #ifdef __BIG_ENDIAN_BITFIELD
1077 #define TC_AT_INGRESS_MASK		(1 << 0)
1078 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 2)
1079 #else
1080 #define TC_AT_INGRESS_MASK		(1 << 7)
1081 #define SKB_MONO_DELIVERY_TIME_MASK	(1 << 5)
1082 #endif
1083 #define PKT_VLAN_PRESENT_OFFSET	offsetof(struct sk_buff, __pkt_vlan_present_offset)
1084 
1085 #ifdef __KERNEL__
1086 /*
1087  *	Handling routines are only of interest to the kernel
1088  */
1089 
1090 #define SKB_ALLOC_FCLONE	0x01
1091 #define SKB_ALLOC_RX		0x02
1092 #define SKB_ALLOC_NAPI		0x04
1093 
1094 /**
1095  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1096  * @skb: buffer
1097  */
1098 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1099 {
1100 	return unlikely(skb->pfmemalloc);
1101 }
1102 
1103 /*
1104  * skb might have a dst pointer attached, refcounted or not.
1105  * _skb_refdst low order bit is set if refcount was _not_ taken
1106  */
1107 #define SKB_DST_NOREF	1UL
1108 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1109 
1110 /**
1111  * skb_dst - returns skb dst_entry
1112  * @skb: buffer
1113  *
1114  * Returns skb dst_entry, regardless of reference taken or not.
1115  */
1116 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1117 {
1118 	/* If refdst was not refcounted, check we still are in a
1119 	 * rcu_read_lock section
1120 	 */
1121 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1122 		!rcu_read_lock_held() &&
1123 		!rcu_read_lock_bh_held());
1124 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1125 }
1126 
1127 /**
1128  * skb_dst_set - sets skb dst
1129  * @skb: buffer
1130  * @dst: dst entry
1131  *
1132  * Sets skb dst, assuming a reference was taken on dst and should
1133  * be released by skb_dst_drop()
1134  */
1135 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1136 {
1137 	skb->slow_gro |= !!dst;
1138 	skb->_skb_refdst = (unsigned long)dst;
1139 }
1140 
1141 /**
1142  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1143  * @skb: buffer
1144  * @dst: dst entry
1145  *
1146  * Sets skb dst, assuming a reference was not taken on dst.
1147  * If dst entry is cached, we do not take reference and dst_release
1148  * will be avoided by refdst_drop. If dst entry is not cached, we take
1149  * reference, so that last dst_release can destroy the dst immediately.
1150  */
1151 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1152 {
1153 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1154 	skb->slow_gro |= !!dst;
1155 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1156 }
1157 
1158 /**
1159  * skb_dst_is_noref - Test if skb dst isn't refcounted
1160  * @skb: buffer
1161  */
1162 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1163 {
1164 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1165 }
1166 
1167 /**
1168  * skb_rtable - Returns the skb &rtable
1169  * @skb: buffer
1170  */
1171 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1172 {
1173 	return (struct rtable *)skb_dst(skb);
1174 }
1175 
1176 /* For mangling skb->pkt_type from user space side from applications
1177  * such as nft, tc, etc, we only allow a conservative subset of
1178  * possible pkt_types to be set.
1179 */
1180 static inline bool skb_pkt_type_ok(u32 ptype)
1181 {
1182 	return ptype <= PACKET_OTHERHOST;
1183 }
1184 
1185 /**
1186  * skb_napi_id - Returns the skb's NAPI id
1187  * @skb: buffer
1188  */
1189 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1190 {
1191 #ifdef CONFIG_NET_RX_BUSY_POLL
1192 	return skb->napi_id;
1193 #else
1194 	return 0;
1195 #endif
1196 }
1197 
1198 /**
1199  * skb_unref - decrement the skb's reference count
1200  * @skb: buffer
1201  *
1202  * Returns true if we can free the skb.
1203  */
1204 static inline bool skb_unref(struct sk_buff *skb)
1205 {
1206 	if (unlikely(!skb))
1207 		return false;
1208 	if (likely(refcount_read(&skb->users) == 1))
1209 		smp_rmb();
1210 	else if (likely(!refcount_dec_and_test(&skb->users)))
1211 		return false;
1212 
1213 	return true;
1214 }
1215 
1216 void __fix_address
1217 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1218 
1219 /**
1220  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1221  *	@skb: buffer to free
1222  */
1223 static inline void kfree_skb(struct sk_buff *skb)
1224 {
1225 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1226 }
1227 
1228 void skb_release_head_state(struct sk_buff *skb);
1229 void kfree_skb_list_reason(struct sk_buff *segs,
1230 			   enum skb_drop_reason reason);
1231 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1232 void skb_tx_error(struct sk_buff *skb);
1233 
1234 static inline void kfree_skb_list(struct sk_buff *segs)
1235 {
1236 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1237 }
1238 
1239 #ifdef CONFIG_TRACEPOINTS
1240 void consume_skb(struct sk_buff *skb);
1241 #else
1242 static inline void consume_skb(struct sk_buff *skb)
1243 {
1244 	return kfree_skb(skb);
1245 }
1246 #endif
1247 
1248 void __consume_stateless_skb(struct sk_buff *skb);
1249 void  __kfree_skb(struct sk_buff *skb);
1250 extern struct kmem_cache *skbuff_cache;
1251 
1252 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1253 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1254 		      bool *fragstolen, int *delta_truesize);
1255 
1256 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1257 			    int node);
1258 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1259 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1260 struct sk_buff *build_skb_around(struct sk_buff *skb,
1261 				 void *data, unsigned int frag_size);
1262 void skb_attempt_defer_free(struct sk_buff *skb);
1263 
1264 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1265 struct sk_buff *slab_build_skb(void *data);
1266 
1267 /**
1268  * alloc_skb - allocate a network buffer
1269  * @size: size to allocate
1270  * @priority: allocation mask
1271  *
1272  * This function is a convenient wrapper around __alloc_skb().
1273  */
1274 static inline struct sk_buff *alloc_skb(unsigned int size,
1275 					gfp_t priority)
1276 {
1277 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1278 }
1279 
1280 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1281 				     unsigned long data_len,
1282 				     int max_page_order,
1283 				     int *errcode,
1284 				     gfp_t gfp_mask);
1285 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1286 
1287 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1288 struct sk_buff_fclones {
1289 	struct sk_buff	skb1;
1290 
1291 	struct sk_buff	skb2;
1292 
1293 	refcount_t	fclone_ref;
1294 };
1295 
1296 /**
1297  *	skb_fclone_busy - check if fclone is busy
1298  *	@sk: socket
1299  *	@skb: buffer
1300  *
1301  * Returns true if skb is a fast clone, and its clone is not freed.
1302  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1303  * so we also check that this didnt happen.
1304  */
1305 static inline bool skb_fclone_busy(const struct sock *sk,
1306 				   const struct sk_buff *skb)
1307 {
1308 	const struct sk_buff_fclones *fclones;
1309 
1310 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1311 
1312 	return skb->fclone == SKB_FCLONE_ORIG &&
1313 	       refcount_read(&fclones->fclone_ref) > 1 &&
1314 	       READ_ONCE(fclones->skb2.sk) == sk;
1315 }
1316 
1317 /**
1318  * alloc_skb_fclone - allocate a network buffer from fclone cache
1319  * @size: size to allocate
1320  * @priority: allocation mask
1321  *
1322  * This function is a convenient wrapper around __alloc_skb().
1323  */
1324 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1325 					       gfp_t priority)
1326 {
1327 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1328 }
1329 
1330 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1331 void skb_headers_offset_update(struct sk_buff *skb, int off);
1332 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1333 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1334 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1335 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1336 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1337 				   gfp_t gfp_mask, bool fclone);
1338 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1339 					  gfp_t gfp_mask)
1340 {
1341 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1342 }
1343 
1344 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1345 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1346 				     unsigned int headroom);
1347 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1348 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1349 				int newtailroom, gfp_t priority);
1350 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1351 				     int offset, int len);
1352 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1353 			      int offset, int len);
1354 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1355 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1356 
1357 /**
1358  *	skb_pad			-	zero pad the tail of an skb
1359  *	@skb: buffer to pad
1360  *	@pad: space to pad
1361  *
1362  *	Ensure that a buffer is followed by a padding area that is zero
1363  *	filled. Used by network drivers which may DMA or transfer data
1364  *	beyond the buffer end onto the wire.
1365  *
1366  *	May return error in out of memory cases. The skb is freed on error.
1367  */
1368 static inline int skb_pad(struct sk_buff *skb, int pad)
1369 {
1370 	return __skb_pad(skb, pad, true);
1371 }
1372 #define dev_kfree_skb(a)	consume_skb(a)
1373 
1374 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1375 			 int offset, size_t size);
1376 
1377 struct skb_seq_state {
1378 	__u32		lower_offset;
1379 	__u32		upper_offset;
1380 	__u32		frag_idx;
1381 	__u32		stepped_offset;
1382 	struct sk_buff	*root_skb;
1383 	struct sk_buff	*cur_skb;
1384 	__u8		*frag_data;
1385 	__u32		frag_off;
1386 };
1387 
1388 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1389 			  unsigned int to, struct skb_seq_state *st);
1390 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1391 			  struct skb_seq_state *st);
1392 void skb_abort_seq_read(struct skb_seq_state *st);
1393 
1394 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1395 			   unsigned int to, struct ts_config *config);
1396 
1397 /*
1398  * Packet hash types specify the type of hash in skb_set_hash.
1399  *
1400  * Hash types refer to the protocol layer addresses which are used to
1401  * construct a packet's hash. The hashes are used to differentiate or identify
1402  * flows of the protocol layer for the hash type. Hash types are either
1403  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1404  *
1405  * Properties of hashes:
1406  *
1407  * 1) Two packets in different flows have different hash values
1408  * 2) Two packets in the same flow should have the same hash value
1409  *
1410  * A hash at a higher layer is considered to be more specific. A driver should
1411  * set the most specific hash possible.
1412  *
1413  * A driver cannot indicate a more specific hash than the layer at which a hash
1414  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1415  *
1416  * A driver may indicate a hash level which is less specific than the
1417  * actual layer the hash was computed on. For instance, a hash computed
1418  * at L4 may be considered an L3 hash. This should only be done if the
1419  * driver can't unambiguously determine that the HW computed the hash at
1420  * the higher layer. Note that the "should" in the second property above
1421  * permits this.
1422  */
1423 enum pkt_hash_types {
1424 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1425 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1426 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1427 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1428 };
1429 
1430 static inline void skb_clear_hash(struct sk_buff *skb)
1431 {
1432 	skb->hash = 0;
1433 	skb->sw_hash = 0;
1434 	skb->l4_hash = 0;
1435 }
1436 
1437 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1438 {
1439 	if (!skb->l4_hash)
1440 		skb_clear_hash(skb);
1441 }
1442 
1443 static inline void
1444 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1445 {
1446 	skb->l4_hash = is_l4;
1447 	skb->sw_hash = is_sw;
1448 	skb->hash = hash;
1449 }
1450 
1451 static inline void
1452 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1453 {
1454 	/* Used by drivers to set hash from HW */
1455 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1456 }
1457 
1458 static inline void
1459 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1460 {
1461 	__skb_set_hash(skb, hash, true, is_l4);
1462 }
1463 
1464 void __skb_get_hash(struct sk_buff *skb);
1465 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1466 u32 skb_get_poff(const struct sk_buff *skb);
1467 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1468 		   const struct flow_keys_basic *keys, int hlen);
1469 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1470 			    const void *data, int hlen_proto);
1471 
1472 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1473 					int thoff, u8 ip_proto)
1474 {
1475 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1476 }
1477 
1478 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1479 			     const struct flow_dissector_key *key,
1480 			     unsigned int key_count);
1481 
1482 struct bpf_flow_dissector;
1483 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1484 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1485 
1486 bool __skb_flow_dissect(const struct net *net,
1487 			const struct sk_buff *skb,
1488 			struct flow_dissector *flow_dissector,
1489 			void *target_container, const void *data,
1490 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1491 
1492 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1493 				    struct flow_dissector *flow_dissector,
1494 				    void *target_container, unsigned int flags)
1495 {
1496 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1497 				  target_container, NULL, 0, 0, 0, flags);
1498 }
1499 
1500 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1501 					      struct flow_keys *flow,
1502 					      unsigned int flags)
1503 {
1504 	memset(flow, 0, sizeof(*flow));
1505 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1506 				  flow, NULL, 0, 0, 0, flags);
1507 }
1508 
1509 static inline bool
1510 skb_flow_dissect_flow_keys_basic(const struct net *net,
1511 				 const struct sk_buff *skb,
1512 				 struct flow_keys_basic *flow,
1513 				 const void *data, __be16 proto,
1514 				 int nhoff, int hlen, unsigned int flags)
1515 {
1516 	memset(flow, 0, sizeof(*flow));
1517 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1518 				  data, proto, nhoff, hlen, flags);
1519 }
1520 
1521 void skb_flow_dissect_meta(const struct sk_buff *skb,
1522 			   struct flow_dissector *flow_dissector,
1523 			   void *target_container);
1524 
1525 /* Gets a skb connection tracking info, ctinfo map should be a
1526  * map of mapsize to translate enum ip_conntrack_info states
1527  * to user states.
1528  */
1529 void
1530 skb_flow_dissect_ct(const struct sk_buff *skb,
1531 		    struct flow_dissector *flow_dissector,
1532 		    void *target_container,
1533 		    u16 *ctinfo_map, size_t mapsize,
1534 		    bool post_ct, u16 zone);
1535 void
1536 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1537 			     struct flow_dissector *flow_dissector,
1538 			     void *target_container);
1539 
1540 void skb_flow_dissect_hash(const struct sk_buff *skb,
1541 			   struct flow_dissector *flow_dissector,
1542 			   void *target_container);
1543 
1544 static inline __u32 skb_get_hash(struct sk_buff *skb)
1545 {
1546 	if (!skb->l4_hash && !skb->sw_hash)
1547 		__skb_get_hash(skb);
1548 
1549 	return skb->hash;
1550 }
1551 
1552 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1553 {
1554 	if (!skb->l4_hash && !skb->sw_hash) {
1555 		struct flow_keys keys;
1556 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1557 
1558 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1559 	}
1560 
1561 	return skb->hash;
1562 }
1563 
1564 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1565 			   const siphash_key_t *perturb);
1566 
1567 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1568 {
1569 	return skb->hash;
1570 }
1571 
1572 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1573 {
1574 	to->hash = from->hash;
1575 	to->sw_hash = from->sw_hash;
1576 	to->l4_hash = from->l4_hash;
1577 };
1578 
1579 static inline void skb_copy_decrypted(struct sk_buff *to,
1580 				      const struct sk_buff *from)
1581 {
1582 #ifdef CONFIG_TLS_DEVICE
1583 	to->decrypted = from->decrypted;
1584 #endif
1585 }
1586 
1587 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1588 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1589 {
1590 	return skb->head + skb->end;
1591 }
1592 
1593 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1594 {
1595 	return skb->end;
1596 }
1597 
1598 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1599 {
1600 	skb->end = offset;
1601 }
1602 #else
1603 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1604 {
1605 	return skb->end;
1606 }
1607 
1608 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1609 {
1610 	return skb->end - skb->head;
1611 }
1612 
1613 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1614 {
1615 	skb->end = skb->head + offset;
1616 }
1617 #endif
1618 
1619 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1620 				       struct ubuf_info *uarg);
1621 
1622 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1623 
1624 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1625 			   bool success);
1626 
1627 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1628 			    struct sk_buff *skb, struct iov_iter *from,
1629 			    size_t length);
1630 
1631 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1632 					  struct msghdr *msg, int len)
1633 {
1634 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1635 }
1636 
1637 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1638 			     struct msghdr *msg, int len,
1639 			     struct ubuf_info *uarg);
1640 
1641 /* Internal */
1642 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1643 
1644 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1645 {
1646 	return &skb_shinfo(skb)->hwtstamps;
1647 }
1648 
1649 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1650 {
1651 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1652 
1653 	return is_zcopy ? skb_uarg(skb) : NULL;
1654 }
1655 
1656 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1657 {
1658 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1659 }
1660 
1661 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1662 {
1663 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1664 }
1665 
1666 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1667 				       const struct sk_buff *skb2)
1668 {
1669 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1670 }
1671 
1672 static inline void net_zcopy_get(struct ubuf_info *uarg)
1673 {
1674 	refcount_inc(&uarg->refcnt);
1675 }
1676 
1677 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1678 {
1679 	skb_shinfo(skb)->destructor_arg = uarg;
1680 	skb_shinfo(skb)->flags |= uarg->flags;
1681 }
1682 
1683 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1684 				 bool *have_ref)
1685 {
1686 	if (skb && uarg && !skb_zcopy(skb)) {
1687 		if (unlikely(have_ref && *have_ref))
1688 			*have_ref = false;
1689 		else
1690 			net_zcopy_get(uarg);
1691 		skb_zcopy_init(skb, uarg);
1692 	}
1693 }
1694 
1695 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1696 {
1697 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1698 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1699 }
1700 
1701 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1702 {
1703 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1704 }
1705 
1706 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1707 {
1708 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1709 }
1710 
1711 static inline void net_zcopy_put(struct ubuf_info *uarg)
1712 {
1713 	if (uarg)
1714 		uarg->callback(NULL, uarg, true);
1715 }
1716 
1717 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1718 {
1719 	if (uarg) {
1720 		if (uarg->callback == msg_zerocopy_callback)
1721 			msg_zerocopy_put_abort(uarg, have_uref);
1722 		else if (have_uref)
1723 			net_zcopy_put(uarg);
1724 	}
1725 }
1726 
1727 /* Release a reference on a zerocopy structure */
1728 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1729 {
1730 	struct ubuf_info *uarg = skb_zcopy(skb);
1731 
1732 	if (uarg) {
1733 		if (!skb_zcopy_is_nouarg(skb))
1734 			uarg->callback(skb, uarg, zerocopy_success);
1735 
1736 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1737 	}
1738 }
1739 
1740 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1741 
1742 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1743 {
1744 	if (unlikely(skb_zcopy_managed(skb)))
1745 		__skb_zcopy_downgrade_managed(skb);
1746 }
1747 
1748 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1749 {
1750 	skb->next = NULL;
1751 }
1752 
1753 static inline void skb_poison_list(struct sk_buff *skb)
1754 {
1755 #ifdef CONFIG_DEBUG_NET
1756 	skb->next = SKB_LIST_POISON_NEXT;
1757 #endif
1758 }
1759 
1760 /* Iterate through singly-linked GSO fragments of an skb. */
1761 #define skb_list_walk_safe(first, skb, next_skb)                               \
1762 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1763 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1764 
1765 static inline void skb_list_del_init(struct sk_buff *skb)
1766 {
1767 	__list_del_entry(&skb->list);
1768 	skb_mark_not_on_list(skb);
1769 }
1770 
1771 /**
1772  *	skb_queue_empty - check if a queue is empty
1773  *	@list: queue head
1774  *
1775  *	Returns true if the queue is empty, false otherwise.
1776  */
1777 static inline int skb_queue_empty(const struct sk_buff_head *list)
1778 {
1779 	return list->next == (const struct sk_buff *) list;
1780 }
1781 
1782 /**
1783  *	skb_queue_empty_lockless - check if a queue is empty
1784  *	@list: queue head
1785  *
1786  *	Returns true if the queue is empty, false otherwise.
1787  *	This variant can be used in lockless contexts.
1788  */
1789 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1790 {
1791 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1792 }
1793 
1794 
1795 /**
1796  *	skb_queue_is_last - check if skb is the last entry in the queue
1797  *	@list: queue head
1798  *	@skb: buffer
1799  *
1800  *	Returns true if @skb is the last buffer on the list.
1801  */
1802 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1803 				     const struct sk_buff *skb)
1804 {
1805 	return skb->next == (const struct sk_buff *) list;
1806 }
1807 
1808 /**
1809  *	skb_queue_is_first - check if skb is the first entry in the queue
1810  *	@list: queue head
1811  *	@skb: buffer
1812  *
1813  *	Returns true if @skb is the first buffer on the list.
1814  */
1815 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1816 				      const struct sk_buff *skb)
1817 {
1818 	return skb->prev == (const struct sk_buff *) list;
1819 }
1820 
1821 /**
1822  *	skb_queue_next - return the next packet in the queue
1823  *	@list: queue head
1824  *	@skb: current buffer
1825  *
1826  *	Return the next packet in @list after @skb.  It is only valid to
1827  *	call this if skb_queue_is_last() evaluates to false.
1828  */
1829 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1830 					     const struct sk_buff *skb)
1831 {
1832 	/* This BUG_ON may seem severe, but if we just return then we
1833 	 * are going to dereference garbage.
1834 	 */
1835 	BUG_ON(skb_queue_is_last(list, skb));
1836 	return skb->next;
1837 }
1838 
1839 /**
1840  *	skb_queue_prev - return the prev packet in the queue
1841  *	@list: queue head
1842  *	@skb: current buffer
1843  *
1844  *	Return the prev packet in @list before @skb.  It is only valid to
1845  *	call this if skb_queue_is_first() evaluates to false.
1846  */
1847 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1848 					     const struct sk_buff *skb)
1849 {
1850 	/* This BUG_ON may seem severe, but if we just return then we
1851 	 * are going to dereference garbage.
1852 	 */
1853 	BUG_ON(skb_queue_is_first(list, skb));
1854 	return skb->prev;
1855 }
1856 
1857 /**
1858  *	skb_get - reference buffer
1859  *	@skb: buffer to reference
1860  *
1861  *	Makes another reference to a socket buffer and returns a pointer
1862  *	to the buffer.
1863  */
1864 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1865 {
1866 	refcount_inc(&skb->users);
1867 	return skb;
1868 }
1869 
1870 /*
1871  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1872  */
1873 
1874 /**
1875  *	skb_cloned - is the buffer a clone
1876  *	@skb: buffer to check
1877  *
1878  *	Returns true if the buffer was generated with skb_clone() and is
1879  *	one of multiple shared copies of the buffer. Cloned buffers are
1880  *	shared data so must not be written to under normal circumstances.
1881  */
1882 static inline int skb_cloned(const struct sk_buff *skb)
1883 {
1884 	return skb->cloned &&
1885 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1886 }
1887 
1888 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1889 {
1890 	might_sleep_if(gfpflags_allow_blocking(pri));
1891 
1892 	if (skb_cloned(skb))
1893 		return pskb_expand_head(skb, 0, 0, pri);
1894 
1895 	return 0;
1896 }
1897 
1898 /* This variant of skb_unclone() makes sure skb->truesize
1899  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1900  *
1901  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1902  * when various debugging features are in place.
1903  */
1904 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1905 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1906 {
1907 	might_sleep_if(gfpflags_allow_blocking(pri));
1908 
1909 	if (skb_cloned(skb))
1910 		return __skb_unclone_keeptruesize(skb, pri);
1911 	return 0;
1912 }
1913 
1914 /**
1915  *	skb_header_cloned - is the header a clone
1916  *	@skb: buffer to check
1917  *
1918  *	Returns true if modifying the header part of the buffer requires
1919  *	the data to be copied.
1920  */
1921 static inline int skb_header_cloned(const struct sk_buff *skb)
1922 {
1923 	int dataref;
1924 
1925 	if (!skb->cloned)
1926 		return 0;
1927 
1928 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1929 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1930 	return dataref != 1;
1931 }
1932 
1933 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1934 {
1935 	might_sleep_if(gfpflags_allow_blocking(pri));
1936 
1937 	if (skb_header_cloned(skb))
1938 		return pskb_expand_head(skb, 0, 0, pri);
1939 
1940 	return 0;
1941 }
1942 
1943 /**
1944  * __skb_header_release() - allow clones to use the headroom
1945  * @skb: buffer to operate on
1946  *
1947  * See "DOC: dataref and headerless skbs".
1948  */
1949 static inline void __skb_header_release(struct sk_buff *skb)
1950 {
1951 	skb->nohdr = 1;
1952 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1953 }
1954 
1955 
1956 /**
1957  *	skb_shared - is the buffer shared
1958  *	@skb: buffer to check
1959  *
1960  *	Returns true if more than one person has a reference to this
1961  *	buffer.
1962  */
1963 static inline int skb_shared(const struct sk_buff *skb)
1964 {
1965 	return refcount_read(&skb->users) != 1;
1966 }
1967 
1968 /**
1969  *	skb_share_check - check if buffer is shared and if so clone it
1970  *	@skb: buffer to check
1971  *	@pri: priority for memory allocation
1972  *
1973  *	If the buffer is shared the buffer is cloned and the old copy
1974  *	drops a reference. A new clone with a single reference is returned.
1975  *	If the buffer is not shared the original buffer is returned. When
1976  *	being called from interrupt status or with spinlocks held pri must
1977  *	be GFP_ATOMIC.
1978  *
1979  *	NULL is returned on a memory allocation failure.
1980  */
1981 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1982 {
1983 	might_sleep_if(gfpflags_allow_blocking(pri));
1984 	if (skb_shared(skb)) {
1985 		struct sk_buff *nskb = skb_clone(skb, pri);
1986 
1987 		if (likely(nskb))
1988 			consume_skb(skb);
1989 		else
1990 			kfree_skb(skb);
1991 		skb = nskb;
1992 	}
1993 	return skb;
1994 }
1995 
1996 /*
1997  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1998  *	packets to handle cases where we have a local reader and forward
1999  *	and a couple of other messy ones. The normal one is tcpdumping
2000  *	a packet thats being forwarded.
2001  */
2002 
2003 /**
2004  *	skb_unshare - make a copy of a shared buffer
2005  *	@skb: buffer to check
2006  *	@pri: priority for memory allocation
2007  *
2008  *	If the socket buffer is a clone then this function creates a new
2009  *	copy of the data, drops a reference count on the old copy and returns
2010  *	the new copy with the reference count at 1. If the buffer is not a clone
2011  *	the original buffer is returned. When called with a spinlock held or
2012  *	from interrupt state @pri must be %GFP_ATOMIC
2013  *
2014  *	%NULL is returned on a memory allocation failure.
2015  */
2016 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2017 					  gfp_t pri)
2018 {
2019 	might_sleep_if(gfpflags_allow_blocking(pri));
2020 	if (skb_cloned(skb)) {
2021 		struct sk_buff *nskb = skb_copy(skb, pri);
2022 
2023 		/* Free our shared copy */
2024 		if (likely(nskb))
2025 			consume_skb(skb);
2026 		else
2027 			kfree_skb(skb);
2028 		skb = nskb;
2029 	}
2030 	return skb;
2031 }
2032 
2033 /**
2034  *	skb_peek - peek at the head of an &sk_buff_head
2035  *	@list_: list to peek at
2036  *
2037  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2038  *	be careful with this one. A peek leaves the buffer on the
2039  *	list and someone else may run off with it. You must hold
2040  *	the appropriate locks or have a private queue to do this.
2041  *
2042  *	Returns %NULL for an empty list or a pointer to the head element.
2043  *	The reference count is not incremented and the reference is therefore
2044  *	volatile. Use with caution.
2045  */
2046 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2047 {
2048 	struct sk_buff *skb = list_->next;
2049 
2050 	if (skb == (struct sk_buff *)list_)
2051 		skb = NULL;
2052 	return skb;
2053 }
2054 
2055 /**
2056  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2057  *	@list_: list to peek at
2058  *
2059  *	Like skb_peek(), but the caller knows that the list is not empty.
2060  */
2061 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2062 {
2063 	return list_->next;
2064 }
2065 
2066 /**
2067  *	skb_peek_next - peek skb following the given one from a queue
2068  *	@skb: skb to start from
2069  *	@list_: list to peek at
2070  *
2071  *	Returns %NULL when the end of the list is met or a pointer to the
2072  *	next element. The reference count is not incremented and the
2073  *	reference is therefore volatile. Use with caution.
2074  */
2075 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2076 		const struct sk_buff_head *list_)
2077 {
2078 	struct sk_buff *next = skb->next;
2079 
2080 	if (next == (struct sk_buff *)list_)
2081 		next = NULL;
2082 	return next;
2083 }
2084 
2085 /**
2086  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2087  *	@list_: list to peek at
2088  *
2089  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2090  *	be careful with this one. A peek leaves the buffer on the
2091  *	list and someone else may run off with it. You must hold
2092  *	the appropriate locks or have a private queue to do this.
2093  *
2094  *	Returns %NULL for an empty list or a pointer to the tail element.
2095  *	The reference count is not incremented and the reference is therefore
2096  *	volatile. Use with caution.
2097  */
2098 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2099 {
2100 	struct sk_buff *skb = READ_ONCE(list_->prev);
2101 
2102 	if (skb == (struct sk_buff *)list_)
2103 		skb = NULL;
2104 	return skb;
2105 
2106 }
2107 
2108 /**
2109  *	skb_queue_len	- get queue length
2110  *	@list_: list to measure
2111  *
2112  *	Return the length of an &sk_buff queue.
2113  */
2114 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2115 {
2116 	return list_->qlen;
2117 }
2118 
2119 /**
2120  *	skb_queue_len_lockless	- get queue length
2121  *	@list_: list to measure
2122  *
2123  *	Return the length of an &sk_buff queue.
2124  *	This variant can be used in lockless contexts.
2125  */
2126 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2127 {
2128 	return READ_ONCE(list_->qlen);
2129 }
2130 
2131 /**
2132  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2133  *	@list: queue to initialize
2134  *
2135  *	This initializes only the list and queue length aspects of
2136  *	an sk_buff_head object.  This allows to initialize the list
2137  *	aspects of an sk_buff_head without reinitializing things like
2138  *	the spinlock.  It can also be used for on-stack sk_buff_head
2139  *	objects where the spinlock is known to not be used.
2140  */
2141 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2142 {
2143 	list->prev = list->next = (struct sk_buff *)list;
2144 	list->qlen = 0;
2145 }
2146 
2147 /*
2148  * This function creates a split out lock class for each invocation;
2149  * this is needed for now since a whole lot of users of the skb-queue
2150  * infrastructure in drivers have different locking usage (in hardirq)
2151  * than the networking core (in softirq only). In the long run either the
2152  * network layer or drivers should need annotation to consolidate the
2153  * main types of usage into 3 classes.
2154  */
2155 static inline void skb_queue_head_init(struct sk_buff_head *list)
2156 {
2157 	spin_lock_init(&list->lock);
2158 	__skb_queue_head_init(list);
2159 }
2160 
2161 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2162 		struct lock_class_key *class)
2163 {
2164 	skb_queue_head_init(list);
2165 	lockdep_set_class(&list->lock, class);
2166 }
2167 
2168 /*
2169  *	Insert an sk_buff on a list.
2170  *
2171  *	The "__skb_xxxx()" functions are the non-atomic ones that
2172  *	can only be called with interrupts disabled.
2173  */
2174 static inline void __skb_insert(struct sk_buff *newsk,
2175 				struct sk_buff *prev, struct sk_buff *next,
2176 				struct sk_buff_head *list)
2177 {
2178 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2179 	 * for the opposite READ_ONCE()
2180 	 */
2181 	WRITE_ONCE(newsk->next, next);
2182 	WRITE_ONCE(newsk->prev, prev);
2183 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2184 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2185 	WRITE_ONCE(list->qlen, list->qlen + 1);
2186 }
2187 
2188 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2189 				      struct sk_buff *prev,
2190 				      struct sk_buff *next)
2191 {
2192 	struct sk_buff *first = list->next;
2193 	struct sk_buff *last = list->prev;
2194 
2195 	WRITE_ONCE(first->prev, prev);
2196 	WRITE_ONCE(prev->next, first);
2197 
2198 	WRITE_ONCE(last->next, next);
2199 	WRITE_ONCE(next->prev, last);
2200 }
2201 
2202 /**
2203  *	skb_queue_splice - join two skb lists, this is designed for stacks
2204  *	@list: the new list to add
2205  *	@head: the place to add it in the first list
2206  */
2207 static inline void skb_queue_splice(const struct sk_buff_head *list,
2208 				    struct sk_buff_head *head)
2209 {
2210 	if (!skb_queue_empty(list)) {
2211 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2212 		head->qlen += list->qlen;
2213 	}
2214 }
2215 
2216 /**
2217  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2218  *	@list: the new list to add
2219  *	@head: the place to add it in the first list
2220  *
2221  *	The list at @list is reinitialised
2222  */
2223 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2224 					 struct sk_buff_head *head)
2225 {
2226 	if (!skb_queue_empty(list)) {
2227 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2228 		head->qlen += list->qlen;
2229 		__skb_queue_head_init(list);
2230 	}
2231 }
2232 
2233 /**
2234  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2235  *	@list: the new list to add
2236  *	@head: the place to add it in the first list
2237  */
2238 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2239 					 struct sk_buff_head *head)
2240 {
2241 	if (!skb_queue_empty(list)) {
2242 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2243 		head->qlen += list->qlen;
2244 	}
2245 }
2246 
2247 /**
2248  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2249  *	@list: the new list to add
2250  *	@head: the place to add it in the first list
2251  *
2252  *	Each of the lists is a queue.
2253  *	The list at @list is reinitialised
2254  */
2255 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2256 					      struct sk_buff_head *head)
2257 {
2258 	if (!skb_queue_empty(list)) {
2259 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2260 		head->qlen += list->qlen;
2261 		__skb_queue_head_init(list);
2262 	}
2263 }
2264 
2265 /**
2266  *	__skb_queue_after - queue a buffer at the list head
2267  *	@list: list to use
2268  *	@prev: place after this buffer
2269  *	@newsk: buffer to queue
2270  *
2271  *	Queue a buffer int the middle of a list. This function takes no locks
2272  *	and you must therefore hold required locks before calling it.
2273  *
2274  *	A buffer cannot be placed on two lists at the same time.
2275  */
2276 static inline void __skb_queue_after(struct sk_buff_head *list,
2277 				     struct sk_buff *prev,
2278 				     struct sk_buff *newsk)
2279 {
2280 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2281 }
2282 
2283 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2284 		struct sk_buff_head *list);
2285 
2286 static inline void __skb_queue_before(struct sk_buff_head *list,
2287 				      struct sk_buff *next,
2288 				      struct sk_buff *newsk)
2289 {
2290 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2291 }
2292 
2293 /**
2294  *	__skb_queue_head - queue a buffer at the list head
2295  *	@list: list to use
2296  *	@newsk: buffer to queue
2297  *
2298  *	Queue a buffer at the start of a list. This function takes no locks
2299  *	and you must therefore hold required locks before calling it.
2300  *
2301  *	A buffer cannot be placed on two lists at the same time.
2302  */
2303 static inline void __skb_queue_head(struct sk_buff_head *list,
2304 				    struct sk_buff *newsk)
2305 {
2306 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2307 }
2308 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2309 
2310 /**
2311  *	__skb_queue_tail - queue a buffer at the list tail
2312  *	@list: list to use
2313  *	@newsk: buffer to queue
2314  *
2315  *	Queue a buffer at the end of a list. This function takes no locks
2316  *	and you must therefore hold required locks before calling it.
2317  *
2318  *	A buffer cannot be placed on two lists at the same time.
2319  */
2320 static inline void __skb_queue_tail(struct sk_buff_head *list,
2321 				   struct sk_buff *newsk)
2322 {
2323 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2324 }
2325 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2326 
2327 /*
2328  * remove sk_buff from list. _Must_ be called atomically, and with
2329  * the list known..
2330  */
2331 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2332 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2333 {
2334 	struct sk_buff *next, *prev;
2335 
2336 	WRITE_ONCE(list->qlen, list->qlen - 1);
2337 	next	   = skb->next;
2338 	prev	   = skb->prev;
2339 	skb->next  = skb->prev = NULL;
2340 	WRITE_ONCE(next->prev, prev);
2341 	WRITE_ONCE(prev->next, next);
2342 }
2343 
2344 /**
2345  *	__skb_dequeue - remove from the head of the queue
2346  *	@list: list to dequeue from
2347  *
2348  *	Remove the head of the list. This function does not take any locks
2349  *	so must be used with appropriate locks held only. The head item is
2350  *	returned or %NULL if the list is empty.
2351  */
2352 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2353 {
2354 	struct sk_buff *skb = skb_peek(list);
2355 	if (skb)
2356 		__skb_unlink(skb, list);
2357 	return skb;
2358 }
2359 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2360 
2361 /**
2362  *	__skb_dequeue_tail - remove from the tail of the queue
2363  *	@list: list to dequeue from
2364  *
2365  *	Remove the tail of the list. This function does not take any locks
2366  *	so must be used with appropriate locks held only. The tail item is
2367  *	returned or %NULL if the list is empty.
2368  */
2369 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2370 {
2371 	struct sk_buff *skb = skb_peek_tail(list);
2372 	if (skb)
2373 		__skb_unlink(skb, list);
2374 	return skb;
2375 }
2376 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2377 
2378 
2379 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2380 {
2381 	return skb->data_len;
2382 }
2383 
2384 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2385 {
2386 	return skb->len - skb->data_len;
2387 }
2388 
2389 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2390 {
2391 	unsigned int i, len = 0;
2392 
2393 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2394 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2395 	return len;
2396 }
2397 
2398 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2399 {
2400 	return skb_headlen(skb) + __skb_pagelen(skb);
2401 }
2402 
2403 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2404 					      int i, struct page *page,
2405 					      int off, int size)
2406 {
2407 	skb_frag_t *frag = &shinfo->frags[i];
2408 
2409 	/*
2410 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2411 	 * that not all callers have unique ownership of the page but rely
2412 	 * on page_is_pfmemalloc doing the right thing(tm).
2413 	 */
2414 	frag->bv_page		  = page;
2415 	frag->bv_offset		  = off;
2416 	skb_frag_size_set(frag, size);
2417 }
2418 
2419 /**
2420  * skb_len_add - adds a number to len fields of skb
2421  * @skb: buffer to add len to
2422  * @delta: number of bytes to add
2423  */
2424 static inline void skb_len_add(struct sk_buff *skb, int delta)
2425 {
2426 	skb->len += delta;
2427 	skb->data_len += delta;
2428 	skb->truesize += delta;
2429 }
2430 
2431 /**
2432  * __skb_fill_page_desc - initialise a paged fragment in an skb
2433  * @skb: buffer containing fragment to be initialised
2434  * @i: paged fragment index to initialise
2435  * @page: the page to use for this fragment
2436  * @off: the offset to the data with @page
2437  * @size: the length of the data
2438  *
2439  * Initialises the @i'th fragment of @skb to point to &size bytes at
2440  * offset @off within @page.
2441  *
2442  * Does not take any additional reference on the fragment.
2443  */
2444 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2445 					struct page *page, int off, int size)
2446 {
2447 	__skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2448 	page = compound_head(page);
2449 	if (page_is_pfmemalloc(page))
2450 		skb->pfmemalloc	= true;
2451 }
2452 
2453 /**
2454  * skb_fill_page_desc - initialise a paged fragment in an skb
2455  * @skb: buffer containing fragment to be initialised
2456  * @i: paged fragment index to initialise
2457  * @page: the page to use for this fragment
2458  * @off: the offset to the data with @page
2459  * @size: the length of the data
2460  *
2461  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2462  * @skb to point to @size bytes at offset @off within @page. In
2463  * addition updates @skb such that @i is the last fragment.
2464  *
2465  * Does not take any additional reference on the fragment.
2466  */
2467 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2468 				      struct page *page, int off, int size)
2469 {
2470 	__skb_fill_page_desc(skb, i, page, off, size);
2471 	skb_shinfo(skb)->nr_frags = i + 1;
2472 }
2473 
2474 /**
2475  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2476  * @skb: buffer containing fragment to be initialised
2477  * @i: paged fragment index to initialise
2478  * @page: the page to use for this fragment
2479  * @off: the offset to the data with @page
2480  * @size: the length of the data
2481  *
2482  * Variant of skb_fill_page_desc() which does not deal with
2483  * pfmemalloc, if page is not owned by us.
2484  */
2485 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2486 					    struct page *page, int off,
2487 					    int size)
2488 {
2489 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2490 
2491 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2492 	shinfo->nr_frags = i + 1;
2493 }
2494 
2495 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2496 		     int size, unsigned int truesize);
2497 
2498 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2499 			  unsigned int truesize);
2500 
2501 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2502 
2503 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2504 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2505 {
2506 	return skb->head + skb->tail;
2507 }
2508 
2509 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2510 {
2511 	skb->tail = skb->data - skb->head;
2512 }
2513 
2514 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2515 {
2516 	skb_reset_tail_pointer(skb);
2517 	skb->tail += offset;
2518 }
2519 
2520 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2521 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2522 {
2523 	return skb->tail;
2524 }
2525 
2526 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2527 {
2528 	skb->tail = skb->data;
2529 }
2530 
2531 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2532 {
2533 	skb->tail = skb->data + offset;
2534 }
2535 
2536 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2537 
2538 static inline void skb_assert_len(struct sk_buff *skb)
2539 {
2540 #ifdef CONFIG_DEBUG_NET
2541 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2542 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2543 #endif /* CONFIG_DEBUG_NET */
2544 }
2545 
2546 /*
2547  *	Add data to an sk_buff
2548  */
2549 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2550 void *skb_put(struct sk_buff *skb, unsigned int len);
2551 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2552 {
2553 	void *tmp = skb_tail_pointer(skb);
2554 	SKB_LINEAR_ASSERT(skb);
2555 	skb->tail += len;
2556 	skb->len  += len;
2557 	return tmp;
2558 }
2559 
2560 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2561 {
2562 	void *tmp = __skb_put(skb, len);
2563 
2564 	memset(tmp, 0, len);
2565 	return tmp;
2566 }
2567 
2568 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2569 				   unsigned int len)
2570 {
2571 	void *tmp = __skb_put(skb, len);
2572 
2573 	memcpy(tmp, data, len);
2574 	return tmp;
2575 }
2576 
2577 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2578 {
2579 	*(u8 *)__skb_put(skb, 1) = val;
2580 }
2581 
2582 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2583 {
2584 	void *tmp = skb_put(skb, len);
2585 
2586 	memset(tmp, 0, len);
2587 
2588 	return tmp;
2589 }
2590 
2591 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2592 				 unsigned int len)
2593 {
2594 	void *tmp = skb_put(skb, len);
2595 
2596 	memcpy(tmp, data, len);
2597 
2598 	return tmp;
2599 }
2600 
2601 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2602 {
2603 	*(u8 *)skb_put(skb, 1) = val;
2604 }
2605 
2606 void *skb_push(struct sk_buff *skb, unsigned int len);
2607 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2608 {
2609 	skb->data -= len;
2610 	skb->len  += len;
2611 	return skb->data;
2612 }
2613 
2614 void *skb_pull(struct sk_buff *skb, unsigned int len);
2615 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2616 {
2617 	skb->len -= len;
2618 	if (unlikely(skb->len < skb->data_len)) {
2619 #if defined(CONFIG_DEBUG_NET)
2620 		skb->len += len;
2621 		pr_err("__skb_pull(len=%u)\n", len);
2622 		skb_dump(KERN_ERR, skb, false);
2623 #endif
2624 		BUG();
2625 	}
2626 	return skb->data += len;
2627 }
2628 
2629 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2630 {
2631 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2632 }
2633 
2634 void *skb_pull_data(struct sk_buff *skb, size_t len);
2635 
2636 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2637 
2638 static inline enum skb_drop_reason
2639 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2640 {
2641 	if (likely(len <= skb_headlen(skb)))
2642 		return SKB_NOT_DROPPED_YET;
2643 
2644 	if (unlikely(len > skb->len))
2645 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2646 
2647 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2648 		return SKB_DROP_REASON_NOMEM;
2649 
2650 	return SKB_NOT_DROPPED_YET;
2651 }
2652 
2653 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2654 {
2655 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2656 }
2657 
2658 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2659 {
2660 	if (!pskb_may_pull(skb, len))
2661 		return NULL;
2662 
2663 	skb->len -= len;
2664 	return skb->data += len;
2665 }
2666 
2667 void skb_condense(struct sk_buff *skb);
2668 
2669 /**
2670  *	skb_headroom - bytes at buffer head
2671  *	@skb: buffer to check
2672  *
2673  *	Return the number of bytes of free space at the head of an &sk_buff.
2674  */
2675 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2676 {
2677 	return skb->data - skb->head;
2678 }
2679 
2680 /**
2681  *	skb_tailroom - bytes at buffer end
2682  *	@skb: buffer to check
2683  *
2684  *	Return the number of bytes of free space at the tail of an sk_buff
2685  */
2686 static inline int skb_tailroom(const struct sk_buff *skb)
2687 {
2688 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2689 }
2690 
2691 /**
2692  *	skb_availroom - bytes at buffer end
2693  *	@skb: buffer to check
2694  *
2695  *	Return the number of bytes of free space at the tail of an sk_buff
2696  *	allocated by sk_stream_alloc()
2697  */
2698 static inline int skb_availroom(const struct sk_buff *skb)
2699 {
2700 	if (skb_is_nonlinear(skb))
2701 		return 0;
2702 
2703 	return skb->end - skb->tail - skb->reserved_tailroom;
2704 }
2705 
2706 /**
2707  *	skb_reserve - adjust headroom
2708  *	@skb: buffer to alter
2709  *	@len: bytes to move
2710  *
2711  *	Increase the headroom of an empty &sk_buff by reducing the tail
2712  *	room. This is only allowed for an empty buffer.
2713  */
2714 static inline void skb_reserve(struct sk_buff *skb, int len)
2715 {
2716 	skb->data += len;
2717 	skb->tail += len;
2718 }
2719 
2720 /**
2721  *	skb_tailroom_reserve - adjust reserved_tailroom
2722  *	@skb: buffer to alter
2723  *	@mtu: maximum amount of headlen permitted
2724  *	@needed_tailroom: minimum amount of reserved_tailroom
2725  *
2726  *	Set reserved_tailroom so that headlen can be as large as possible but
2727  *	not larger than mtu and tailroom cannot be smaller than
2728  *	needed_tailroom.
2729  *	The required headroom should already have been reserved before using
2730  *	this function.
2731  */
2732 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2733 					unsigned int needed_tailroom)
2734 {
2735 	SKB_LINEAR_ASSERT(skb);
2736 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2737 		/* use at most mtu */
2738 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2739 	else
2740 		/* use up to all available space */
2741 		skb->reserved_tailroom = needed_tailroom;
2742 }
2743 
2744 #define ENCAP_TYPE_ETHER	0
2745 #define ENCAP_TYPE_IPPROTO	1
2746 
2747 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2748 					  __be16 protocol)
2749 {
2750 	skb->inner_protocol = protocol;
2751 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2752 }
2753 
2754 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2755 					 __u8 ipproto)
2756 {
2757 	skb->inner_ipproto = ipproto;
2758 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2759 }
2760 
2761 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2762 {
2763 	skb->inner_mac_header = skb->mac_header;
2764 	skb->inner_network_header = skb->network_header;
2765 	skb->inner_transport_header = skb->transport_header;
2766 }
2767 
2768 static inline void skb_reset_mac_len(struct sk_buff *skb)
2769 {
2770 	skb->mac_len = skb->network_header - skb->mac_header;
2771 }
2772 
2773 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2774 							*skb)
2775 {
2776 	return skb->head + skb->inner_transport_header;
2777 }
2778 
2779 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2780 {
2781 	return skb_inner_transport_header(skb) - skb->data;
2782 }
2783 
2784 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2785 {
2786 	skb->inner_transport_header = skb->data - skb->head;
2787 }
2788 
2789 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2790 						   const int offset)
2791 {
2792 	skb_reset_inner_transport_header(skb);
2793 	skb->inner_transport_header += offset;
2794 }
2795 
2796 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2797 {
2798 	return skb->head + skb->inner_network_header;
2799 }
2800 
2801 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2802 {
2803 	skb->inner_network_header = skb->data - skb->head;
2804 }
2805 
2806 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2807 						const int offset)
2808 {
2809 	skb_reset_inner_network_header(skb);
2810 	skb->inner_network_header += offset;
2811 }
2812 
2813 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2814 {
2815 	return skb->head + skb->inner_mac_header;
2816 }
2817 
2818 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2819 {
2820 	skb->inner_mac_header = skb->data - skb->head;
2821 }
2822 
2823 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2824 					    const int offset)
2825 {
2826 	skb_reset_inner_mac_header(skb);
2827 	skb->inner_mac_header += offset;
2828 }
2829 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2830 {
2831 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2832 }
2833 
2834 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2835 {
2836 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2837 	return skb->head + skb->transport_header;
2838 }
2839 
2840 static inline void skb_reset_transport_header(struct sk_buff *skb)
2841 {
2842 	skb->transport_header = skb->data - skb->head;
2843 }
2844 
2845 static inline void skb_set_transport_header(struct sk_buff *skb,
2846 					    const int offset)
2847 {
2848 	skb_reset_transport_header(skb);
2849 	skb->transport_header += offset;
2850 }
2851 
2852 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2853 {
2854 	return skb->head + skb->network_header;
2855 }
2856 
2857 static inline void skb_reset_network_header(struct sk_buff *skb)
2858 {
2859 	skb->network_header = skb->data - skb->head;
2860 }
2861 
2862 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2863 {
2864 	skb_reset_network_header(skb);
2865 	skb->network_header += offset;
2866 }
2867 
2868 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2869 {
2870 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2871 }
2872 
2873 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2874 {
2875 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2876 	return skb->head + skb->mac_header;
2877 }
2878 
2879 static inline int skb_mac_offset(const struct sk_buff *skb)
2880 {
2881 	return skb_mac_header(skb) - skb->data;
2882 }
2883 
2884 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2885 {
2886 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2887 	return skb->network_header - skb->mac_header;
2888 }
2889 
2890 static inline void skb_unset_mac_header(struct sk_buff *skb)
2891 {
2892 	skb->mac_header = (typeof(skb->mac_header))~0U;
2893 }
2894 
2895 static inline void skb_reset_mac_header(struct sk_buff *skb)
2896 {
2897 	skb->mac_header = skb->data - skb->head;
2898 }
2899 
2900 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2901 {
2902 	skb_reset_mac_header(skb);
2903 	skb->mac_header += offset;
2904 }
2905 
2906 static inline void skb_pop_mac_header(struct sk_buff *skb)
2907 {
2908 	skb->mac_header = skb->network_header;
2909 }
2910 
2911 static inline void skb_probe_transport_header(struct sk_buff *skb)
2912 {
2913 	struct flow_keys_basic keys;
2914 
2915 	if (skb_transport_header_was_set(skb))
2916 		return;
2917 
2918 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2919 					     NULL, 0, 0, 0, 0))
2920 		skb_set_transport_header(skb, keys.control.thoff);
2921 }
2922 
2923 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2924 {
2925 	if (skb_mac_header_was_set(skb)) {
2926 		const unsigned char *old_mac = skb_mac_header(skb);
2927 
2928 		skb_set_mac_header(skb, -skb->mac_len);
2929 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2930 	}
2931 }
2932 
2933 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2934 {
2935 	return skb->csum_start - skb_headroom(skb);
2936 }
2937 
2938 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2939 {
2940 	return skb->head + skb->csum_start;
2941 }
2942 
2943 static inline int skb_transport_offset(const struct sk_buff *skb)
2944 {
2945 	return skb_transport_header(skb) - skb->data;
2946 }
2947 
2948 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2949 {
2950 	return skb->transport_header - skb->network_header;
2951 }
2952 
2953 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2954 {
2955 	return skb->inner_transport_header - skb->inner_network_header;
2956 }
2957 
2958 static inline int skb_network_offset(const struct sk_buff *skb)
2959 {
2960 	return skb_network_header(skb) - skb->data;
2961 }
2962 
2963 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2964 {
2965 	return skb_inner_network_header(skb) - skb->data;
2966 }
2967 
2968 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2969 {
2970 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2971 }
2972 
2973 /*
2974  * CPUs often take a performance hit when accessing unaligned memory
2975  * locations. The actual performance hit varies, it can be small if the
2976  * hardware handles it or large if we have to take an exception and fix it
2977  * in software.
2978  *
2979  * Since an ethernet header is 14 bytes network drivers often end up with
2980  * the IP header at an unaligned offset. The IP header can be aligned by
2981  * shifting the start of the packet by 2 bytes. Drivers should do this
2982  * with:
2983  *
2984  * skb_reserve(skb, NET_IP_ALIGN);
2985  *
2986  * The downside to this alignment of the IP header is that the DMA is now
2987  * unaligned. On some architectures the cost of an unaligned DMA is high
2988  * and this cost outweighs the gains made by aligning the IP header.
2989  *
2990  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2991  * to be overridden.
2992  */
2993 #ifndef NET_IP_ALIGN
2994 #define NET_IP_ALIGN	2
2995 #endif
2996 
2997 /*
2998  * The networking layer reserves some headroom in skb data (via
2999  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3000  * the header has to grow. In the default case, if the header has to grow
3001  * 32 bytes or less we avoid the reallocation.
3002  *
3003  * Unfortunately this headroom changes the DMA alignment of the resulting
3004  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3005  * on some architectures. An architecture can override this value,
3006  * perhaps setting it to a cacheline in size (since that will maintain
3007  * cacheline alignment of the DMA). It must be a power of 2.
3008  *
3009  * Various parts of the networking layer expect at least 32 bytes of
3010  * headroom, you should not reduce this.
3011  *
3012  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3013  * to reduce average number of cache lines per packet.
3014  * get_rps_cpu() for example only access one 64 bytes aligned block :
3015  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3016  */
3017 #ifndef NET_SKB_PAD
3018 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3019 #endif
3020 
3021 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3022 
3023 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3024 {
3025 	if (WARN_ON(skb_is_nonlinear(skb)))
3026 		return;
3027 	skb->len = len;
3028 	skb_set_tail_pointer(skb, len);
3029 }
3030 
3031 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3032 {
3033 	__skb_set_length(skb, len);
3034 }
3035 
3036 void skb_trim(struct sk_buff *skb, unsigned int len);
3037 
3038 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3039 {
3040 	if (skb->data_len)
3041 		return ___pskb_trim(skb, len);
3042 	__skb_trim(skb, len);
3043 	return 0;
3044 }
3045 
3046 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3047 {
3048 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3049 }
3050 
3051 /**
3052  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3053  *	@skb: buffer to alter
3054  *	@len: new length
3055  *
3056  *	This is identical to pskb_trim except that the caller knows that
3057  *	the skb is not cloned so we should never get an error due to out-
3058  *	of-memory.
3059  */
3060 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3061 {
3062 	int err = pskb_trim(skb, len);
3063 	BUG_ON(err);
3064 }
3065 
3066 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3067 {
3068 	unsigned int diff = len - skb->len;
3069 
3070 	if (skb_tailroom(skb) < diff) {
3071 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3072 					   GFP_ATOMIC);
3073 		if (ret)
3074 			return ret;
3075 	}
3076 	__skb_set_length(skb, len);
3077 	return 0;
3078 }
3079 
3080 /**
3081  *	skb_orphan - orphan a buffer
3082  *	@skb: buffer to orphan
3083  *
3084  *	If a buffer currently has an owner then we call the owner's
3085  *	destructor function and make the @skb unowned. The buffer continues
3086  *	to exist but is no longer charged to its former owner.
3087  */
3088 static inline void skb_orphan(struct sk_buff *skb)
3089 {
3090 	if (skb->destructor) {
3091 		skb->destructor(skb);
3092 		skb->destructor = NULL;
3093 		skb->sk		= NULL;
3094 	} else {
3095 		BUG_ON(skb->sk);
3096 	}
3097 }
3098 
3099 /**
3100  *	skb_orphan_frags - orphan the frags contained in a buffer
3101  *	@skb: buffer to orphan frags from
3102  *	@gfp_mask: allocation mask for replacement pages
3103  *
3104  *	For each frag in the SKB which needs a destructor (i.e. has an
3105  *	owner) create a copy of that frag and release the original
3106  *	page by calling the destructor.
3107  */
3108 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3109 {
3110 	if (likely(!skb_zcopy(skb)))
3111 		return 0;
3112 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3113 		return 0;
3114 	return skb_copy_ubufs(skb, gfp_mask);
3115 }
3116 
3117 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3118 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3119 {
3120 	if (likely(!skb_zcopy(skb)))
3121 		return 0;
3122 	return skb_copy_ubufs(skb, gfp_mask);
3123 }
3124 
3125 /**
3126  *	__skb_queue_purge - empty a list
3127  *	@list: list to empty
3128  *
3129  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3130  *	the list and one reference dropped. This function does not take the
3131  *	list lock and the caller must hold the relevant locks to use it.
3132  */
3133 static inline void __skb_queue_purge(struct sk_buff_head *list)
3134 {
3135 	struct sk_buff *skb;
3136 	while ((skb = __skb_dequeue(list)) != NULL)
3137 		kfree_skb(skb);
3138 }
3139 void skb_queue_purge(struct sk_buff_head *list);
3140 
3141 unsigned int skb_rbtree_purge(struct rb_root *root);
3142 
3143 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3144 
3145 /**
3146  * netdev_alloc_frag - allocate a page fragment
3147  * @fragsz: fragment size
3148  *
3149  * Allocates a frag from a page for receive buffer.
3150  * Uses GFP_ATOMIC allocations.
3151  */
3152 static inline void *netdev_alloc_frag(unsigned int fragsz)
3153 {
3154 	return __netdev_alloc_frag_align(fragsz, ~0u);
3155 }
3156 
3157 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3158 					    unsigned int align)
3159 {
3160 	WARN_ON_ONCE(!is_power_of_2(align));
3161 	return __netdev_alloc_frag_align(fragsz, -align);
3162 }
3163 
3164 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3165 				   gfp_t gfp_mask);
3166 
3167 /**
3168  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3169  *	@dev: network device to receive on
3170  *	@length: length to allocate
3171  *
3172  *	Allocate a new &sk_buff and assign it a usage count of one. The
3173  *	buffer has unspecified headroom built in. Users should allocate
3174  *	the headroom they think they need without accounting for the
3175  *	built in space. The built in space is used for optimisations.
3176  *
3177  *	%NULL is returned if there is no free memory. Although this function
3178  *	allocates memory it can be called from an interrupt.
3179  */
3180 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3181 					       unsigned int length)
3182 {
3183 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3184 }
3185 
3186 /* legacy helper around __netdev_alloc_skb() */
3187 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3188 					      gfp_t gfp_mask)
3189 {
3190 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3191 }
3192 
3193 /* legacy helper around netdev_alloc_skb() */
3194 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3195 {
3196 	return netdev_alloc_skb(NULL, length);
3197 }
3198 
3199 
3200 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3201 		unsigned int length, gfp_t gfp)
3202 {
3203 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3204 
3205 	if (NET_IP_ALIGN && skb)
3206 		skb_reserve(skb, NET_IP_ALIGN);
3207 	return skb;
3208 }
3209 
3210 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3211 		unsigned int length)
3212 {
3213 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3214 }
3215 
3216 static inline void skb_free_frag(void *addr)
3217 {
3218 	page_frag_free(addr);
3219 }
3220 
3221 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3222 
3223 static inline void *napi_alloc_frag(unsigned int fragsz)
3224 {
3225 	return __napi_alloc_frag_align(fragsz, ~0u);
3226 }
3227 
3228 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3229 					  unsigned int align)
3230 {
3231 	WARN_ON_ONCE(!is_power_of_2(align));
3232 	return __napi_alloc_frag_align(fragsz, -align);
3233 }
3234 
3235 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3236 				 unsigned int length, gfp_t gfp_mask);
3237 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3238 					     unsigned int length)
3239 {
3240 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3241 }
3242 void napi_consume_skb(struct sk_buff *skb, int budget);
3243 
3244 void napi_skb_free_stolen_head(struct sk_buff *skb);
3245 void __kfree_skb_defer(struct sk_buff *skb);
3246 
3247 /**
3248  * __dev_alloc_pages - allocate page for network Rx
3249  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3250  * @order: size of the allocation
3251  *
3252  * Allocate a new page.
3253  *
3254  * %NULL is returned if there is no free memory.
3255 */
3256 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3257 					     unsigned int order)
3258 {
3259 	/* This piece of code contains several assumptions.
3260 	 * 1.  This is for device Rx, therefor a cold page is preferred.
3261 	 * 2.  The expectation is the user wants a compound page.
3262 	 * 3.  If requesting a order 0 page it will not be compound
3263 	 *     due to the check to see if order has a value in prep_new_page
3264 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3265 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3266 	 */
3267 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3268 
3269 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3270 }
3271 
3272 static inline struct page *dev_alloc_pages(unsigned int order)
3273 {
3274 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3275 }
3276 
3277 /**
3278  * __dev_alloc_page - allocate a page for network Rx
3279  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3280  *
3281  * Allocate a new page.
3282  *
3283  * %NULL is returned if there is no free memory.
3284  */
3285 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3286 {
3287 	return __dev_alloc_pages(gfp_mask, 0);
3288 }
3289 
3290 static inline struct page *dev_alloc_page(void)
3291 {
3292 	return dev_alloc_pages(0);
3293 }
3294 
3295 /**
3296  * dev_page_is_reusable - check whether a page can be reused for network Rx
3297  * @page: the page to test
3298  *
3299  * A page shouldn't be considered for reusing/recycling if it was allocated
3300  * under memory pressure or at a distant memory node.
3301  *
3302  * Returns false if this page should be returned to page allocator, true
3303  * otherwise.
3304  */
3305 static inline bool dev_page_is_reusable(const struct page *page)
3306 {
3307 	return likely(page_to_nid(page) == numa_mem_id() &&
3308 		      !page_is_pfmemalloc(page));
3309 }
3310 
3311 /**
3312  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3313  *	@page: The page that was allocated from skb_alloc_page
3314  *	@skb: The skb that may need pfmemalloc set
3315  */
3316 static inline void skb_propagate_pfmemalloc(const struct page *page,
3317 					    struct sk_buff *skb)
3318 {
3319 	if (page_is_pfmemalloc(page))
3320 		skb->pfmemalloc = true;
3321 }
3322 
3323 /**
3324  * skb_frag_off() - Returns the offset of a skb fragment
3325  * @frag: the paged fragment
3326  */
3327 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3328 {
3329 	return frag->bv_offset;
3330 }
3331 
3332 /**
3333  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3334  * @frag: skb fragment
3335  * @delta: value to add
3336  */
3337 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3338 {
3339 	frag->bv_offset += delta;
3340 }
3341 
3342 /**
3343  * skb_frag_off_set() - Sets the offset of a skb fragment
3344  * @frag: skb fragment
3345  * @offset: offset of fragment
3346  */
3347 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3348 {
3349 	frag->bv_offset = offset;
3350 }
3351 
3352 /**
3353  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3354  * @fragto: skb fragment where offset is set
3355  * @fragfrom: skb fragment offset is copied from
3356  */
3357 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3358 				     const skb_frag_t *fragfrom)
3359 {
3360 	fragto->bv_offset = fragfrom->bv_offset;
3361 }
3362 
3363 /**
3364  * skb_frag_page - retrieve the page referred to by a paged fragment
3365  * @frag: the paged fragment
3366  *
3367  * Returns the &struct page associated with @frag.
3368  */
3369 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3370 {
3371 	return frag->bv_page;
3372 }
3373 
3374 /**
3375  * __skb_frag_ref - take an addition reference on a paged fragment.
3376  * @frag: the paged fragment
3377  *
3378  * Takes an additional reference on the paged fragment @frag.
3379  */
3380 static inline void __skb_frag_ref(skb_frag_t *frag)
3381 {
3382 	get_page(skb_frag_page(frag));
3383 }
3384 
3385 /**
3386  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3387  * @skb: the buffer
3388  * @f: the fragment offset.
3389  *
3390  * Takes an additional reference on the @f'th paged fragment of @skb.
3391  */
3392 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3393 {
3394 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3395 }
3396 
3397 /**
3398  * __skb_frag_unref - release a reference on a paged fragment.
3399  * @frag: the paged fragment
3400  * @recycle: recycle the page if allocated via page_pool
3401  *
3402  * Releases a reference on the paged fragment @frag
3403  * or recycles the page via the page_pool API.
3404  */
3405 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3406 {
3407 	struct page *page = skb_frag_page(frag);
3408 
3409 #ifdef CONFIG_PAGE_POOL
3410 	if (recycle && page_pool_return_skb_page(page))
3411 		return;
3412 #endif
3413 	put_page(page);
3414 }
3415 
3416 /**
3417  * skb_frag_unref - release a reference on a paged fragment of an skb.
3418  * @skb: the buffer
3419  * @f: the fragment offset
3420  *
3421  * Releases a reference on the @f'th paged fragment of @skb.
3422  */
3423 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3424 {
3425 	struct skb_shared_info *shinfo = skb_shinfo(skb);
3426 
3427 	if (!skb_zcopy_managed(skb))
3428 		__skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3429 }
3430 
3431 /**
3432  * skb_frag_address - gets the address of the data contained in a paged fragment
3433  * @frag: the paged fragment buffer
3434  *
3435  * Returns the address of the data within @frag. The page must already
3436  * be mapped.
3437  */
3438 static inline void *skb_frag_address(const skb_frag_t *frag)
3439 {
3440 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3441 }
3442 
3443 /**
3444  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3445  * @frag: the paged fragment buffer
3446  *
3447  * Returns the address of the data within @frag. Checks that the page
3448  * is mapped and returns %NULL otherwise.
3449  */
3450 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3451 {
3452 	void *ptr = page_address(skb_frag_page(frag));
3453 	if (unlikely(!ptr))
3454 		return NULL;
3455 
3456 	return ptr + skb_frag_off(frag);
3457 }
3458 
3459 /**
3460  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3461  * @fragto: skb fragment where page is set
3462  * @fragfrom: skb fragment page is copied from
3463  */
3464 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3465 				      const skb_frag_t *fragfrom)
3466 {
3467 	fragto->bv_page = fragfrom->bv_page;
3468 }
3469 
3470 /**
3471  * __skb_frag_set_page - sets the page contained in a paged fragment
3472  * @frag: the paged fragment
3473  * @page: the page to set
3474  *
3475  * Sets the fragment @frag to contain @page.
3476  */
3477 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3478 {
3479 	frag->bv_page = page;
3480 }
3481 
3482 /**
3483  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3484  * @skb: the buffer
3485  * @f: the fragment offset
3486  * @page: the page to set
3487  *
3488  * Sets the @f'th fragment of @skb to contain @page.
3489  */
3490 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3491 				     struct page *page)
3492 {
3493 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3494 }
3495 
3496 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3497 
3498 /**
3499  * skb_frag_dma_map - maps a paged fragment via the DMA API
3500  * @dev: the device to map the fragment to
3501  * @frag: the paged fragment to map
3502  * @offset: the offset within the fragment (starting at the
3503  *          fragment's own offset)
3504  * @size: the number of bytes to map
3505  * @dir: the direction of the mapping (``PCI_DMA_*``)
3506  *
3507  * Maps the page associated with @frag to @device.
3508  */
3509 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3510 					  const skb_frag_t *frag,
3511 					  size_t offset, size_t size,
3512 					  enum dma_data_direction dir)
3513 {
3514 	return dma_map_page(dev, skb_frag_page(frag),
3515 			    skb_frag_off(frag) + offset, size, dir);
3516 }
3517 
3518 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3519 					gfp_t gfp_mask)
3520 {
3521 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3522 }
3523 
3524 
3525 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3526 						  gfp_t gfp_mask)
3527 {
3528 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3529 }
3530 
3531 
3532 /**
3533  *	skb_clone_writable - is the header of a clone writable
3534  *	@skb: buffer to check
3535  *	@len: length up to which to write
3536  *
3537  *	Returns true if modifying the header part of the cloned buffer
3538  *	does not requires the data to be copied.
3539  */
3540 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3541 {
3542 	return !skb_header_cloned(skb) &&
3543 	       skb_headroom(skb) + len <= skb->hdr_len;
3544 }
3545 
3546 static inline int skb_try_make_writable(struct sk_buff *skb,
3547 					unsigned int write_len)
3548 {
3549 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3550 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3551 }
3552 
3553 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3554 			    int cloned)
3555 {
3556 	int delta = 0;
3557 
3558 	if (headroom > skb_headroom(skb))
3559 		delta = headroom - skb_headroom(skb);
3560 
3561 	if (delta || cloned)
3562 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3563 					GFP_ATOMIC);
3564 	return 0;
3565 }
3566 
3567 /**
3568  *	skb_cow - copy header of skb when it is required
3569  *	@skb: buffer to cow
3570  *	@headroom: needed headroom
3571  *
3572  *	If the skb passed lacks sufficient headroom or its data part
3573  *	is shared, data is reallocated. If reallocation fails, an error
3574  *	is returned and original skb is not changed.
3575  *
3576  *	The result is skb with writable area skb->head...skb->tail
3577  *	and at least @headroom of space at head.
3578  */
3579 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3580 {
3581 	return __skb_cow(skb, headroom, skb_cloned(skb));
3582 }
3583 
3584 /**
3585  *	skb_cow_head - skb_cow but only making the head writable
3586  *	@skb: buffer to cow
3587  *	@headroom: needed headroom
3588  *
3589  *	This function is identical to skb_cow except that we replace the
3590  *	skb_cloned check by skb_header_cloned.  It should be used when
3591  *	you only need to push on some header and do not need to modify
3592  *	the data.
3593  */
3594 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3595 {
3596 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3597 }
3598 
3599 /**
3600  *	skb_padto	- pad an skbuff up to a minimal size
3601  *	@skb: buffer to pad
3602  *	@len: minimal length
3603  *
3604  *	Pads up a buffer to ensure the trailing bytes exist and are
3605  *	blanked. If the buffer already contains sufficient data it
3606  *	is untouched. Otherwise it is extended. Returns zero on
3607  *	success. The skb is freed on error.
3608  */
3609 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3610 {
3611 	unsigned int size = skb->len;
3612 	if (likely(size >= len))
3613 		return 0;
3614 	return skb_pad(skb, len - size);
3615 }
3616 
3617 /**
3618  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3619  *	@skb: buffer to pad
3620  *	@len: minimal length
3621  *	@free_on_error: free buffer on error
3622  *
3623  *	Pads up a buffer to ensure the trailing bytes exist and are
3624  *	blanked. If the buffer already contains sufficient data it
3625  *	is untouched. Otherwise it is extended. Returns zero on
3626  *	success. The skb is freed on error if @free_on_error is true.
3627  */
3628 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3629 					       unsigned int len,
3630 					       bool free_on_error)
3631 {
3632 	unsigned int size = skb->len;
3633 
3634 	if (unlikely(size < len)) {
3635 		len -= size;
3636 		if (__skb_pad(skb, len, free_on_error))
3637 			return -ENOMEM;
3638 		__skb_put(skb, len);
3639 	}
3640 	return 0;
3641 }
3642 
3643 /**
3644  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3645  *	@skb: buffer to pad
3646  *	@len: minimal length
3647  *
3648  *	Pads up a buffer to ensure the trailing bytes exist and are
3649  *	blanked. If the buffer already contains sufficient data it
3650  *	is untouched. Otherwise it is extended. Returns zero on
3651  *	success. The skb is freed on error.
3652  */
3653 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3654 {
3655 	return __skb_put_padto(skb, len, true);
3656 }
3657 
3658 static inline int skb_add_data(struct sk_buff *skb,
3659 			       struct iov_iter *from, int copy)
3660 {
3661 	const int off = skb->len;
3662 
3663 	if (skb->ip_summed == CHECKSUM_NONE) {
3664 		__wsum csum = 0;
3665 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3666 					         &csum, from)) {
3667 			skb->csum = csum_block_add(skb->csum, csum, off);
3668 			return 0;
3669 		}
3670 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3671 		return 0;
3672 
3673 	__skb_trim(skb, off);
3674 	return -EFAULT;
3675 }
3676 
3677 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3678 				    const struct page *page, int off)
3679 {
3680 	if (skb_zcopy(skb))
3681 		return false;
3682 	if (i) {
3683 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3684 
3685 		return page == skb_frag_page(frag) &&
3686 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3687 	}
3688 	return false;
3689 }
3690 
3691 static inline int __skb_linearize(struct sk_buff *skb)
3692 {
3693 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3694 }
3695 
3696 /**
3697  *	skb_linearize - convert paged skb to linear one
3698  *	@skb: buffer to linarize
3699  *
3700  *	If there is no free memory -ENOMEM is returned, otherwise zero
3701  *	is returned and the old skb data released.
3702  */
3703 static inline int skb_linearize(struct sk_buff *skb)
3704 {
3705 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3706 }
3707 
3708 /**
3709  * skb_has_shared_frag - can any frag be overwritten
3710  * @skb: buffer to test
3711  *
3712  * Return true if the skb has at least one frag that might be modified
3713  * by an external entity (as in vmsplice()/sendfile())
3714  */
3715 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3716 {
3717 	return skb_is_nonlinear(skb) &&
3718 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3719 }
3720 
3721 /**
3722  *	skb_linearize_cow - make sure skb is linear and writable
3723  *	@skb: buffer to process
3724  *
3725  *	If there is no free memory -ENOMEM is returned, otherwise zero
3726  *	is returned and the old skb data released.
3727  */
3728 static inline int skb_linearize_cow(struct sk_buff *skb)
3729 {
3730 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3731 	       __skb_linearize(skb) : 0;
3732 }
3733 
3734 static __always_inline void
3735 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3736 		     unsigned int off)
3737 {
3738 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3739 		skb->csum = csum_block_sub(skb->csum,
3740 					   csum_partial(start, len, 0), off);
3741 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3742 		 skb_checksum_start_offset(skb) < 0)
3743 		skb->ip_summed = CHECKSUM_NONE;
3744 }
3745 
3746 /**
3747  *	skb_postpull_rcsum - update checksum for received skb after pull
3748  *	@skb: buffer to update
3749  *	@start: start of data before pull
3750  *	@len: length of data pulled
3751  *
3752  *	After doing a pull on a received packet, you need to call this to
3753  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3754  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3755  */
3756 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3757 				      const void *start, unsigned int len)
3758 {
3759 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3760 		skb->csum = wsum_negate(csum_partial(start, len,
3761 						     wsum_negate(skb->csum)));
3762 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3763 		 skb_checksum_start_offset(skb) < 0)
3764 		skb->ip_summed = CHECKSUM_NONE;
3765 }
3766 
3767 static __always_inline void
3768 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3769 		     unsigned int off)
3770 {
3771 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3772 		skb->csum = csum_block_add(skb->csum,
3773 					   csum_partial(start, len, 0), off);
3774 }
3775 
3776 /**
3777  *	skb_postpush_rcsum - update checksum for received skb after push
3778  *	@skb: buffer to update
3779  *	@start: start of data after push
3780  *	@len: length of data pushed
3781  *
3782  *	After doing a push on a received packet, you need to call this to
3783  *	update the CHECKSUM_COMPLETE checksum.
3784  */
3785 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3786 				      const void *start, unsigned int len)
3787 {
3788 	__skb_postpush_rcsum(skb, start, len, 0);
3789 }
3790 
3791 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3792 
3793 /**
3794  *	skb_push_rcsum - push skb and update receive checksum
3795  *	@skb: buffer to update
3796  *	@len: length of data pulled
3797  *
3798  *	This function performs an skb_push on the packet and updates
3799  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3800  *	receive path processing instead of skb_push unless you know
3801  *	that the checksum difference is zero (e.g., a valid IP header)
3802  *	or you are setting ip_summed to CHECKSUM_NONE.
3803  */
3804 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3805 {
3806 	skb_push(skb, len);
3807 	skb_postpush_rcsum(skb, skb->data, len);
3808 	return skb->data;
3809 }
3810 
3811 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3812 /**
3813  *	pskb_trim_rcsum - trim received skb and update checksum
3814  *	@skb: buffer to trim
3815  *	@len: new length
3816  *
3817  *	This is exactly the same as pskb_trim except that it ensures the
3818  *	checksum of received packets are still valid after the operation.
3819  *	It can change skb pointers.
3820  */
3821 
3822 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3823 {
3824 	if (likely(len >= skb->len))
3825 		return 0;
3826 	return pskb_trim_rcsum_slow(skb, len);
3827 }
3828 
3829 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3830 {
3831 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3832 		skb->ip_summed = CHECKSUM_NONE;
3833 	__skb_trim(skb, len);
3834 	return 0;
3835 }
3836 
3837 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3838 {
3839 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3840 		skb->ip_summed = CHECKSUM_NONE;
3841 	return __skb_grow(skb, len);
3842 }
3843 
3844 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3845 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3846 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3847 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3848 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3849 
3850 #define skb_queue_walk(queue, skb) \
3851 		for (skb = (queue)->next;					\
3852 		     skb != (struct sk_buff *)(queue);				\
3853 		     skb = skb->next)
3854 
3855 #define skb_queue_walk_safe(queue, skb, tmp)					\
3856 		for (skb = (queue)->next, tmp = skb->next;			\
3857 		     skb != (struct sk_buff *)(queue);				\
3858 		     skb = tmp, tmp = skb->next)
3859 
3860 #define skb_queue_walk_from(queue, skb)						\
3861 		for (; skb != (struct sk_buff *)(queue);			\
3862 		     skb = skb->next)
3863 
3864 #define skb_rbtree_walk(skb, root)						\
3865 		for (skb = skb_rb_first(root); skb != NULL;			\
3866 		     skb = skb_rb_next(skb))
3867 
3868 #define skb_rbtree_walk_from(skb)						\
3869 		for (; skb != NULL;						\
3870 		     skb = skb_rb_next(skb))
3871 
3872 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3873 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3874 		     skb = tmp)
3875 
3876 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3877 		for (tmp = skb->next;						\
3878 		     skb != (struct sk_buff *)(queue);				\
3879 		     skb = tmp, tmp = skb->next)
3880 
3881 #define skb_queue_reverse_walk(queue, skb) \
3882 		for (skb = (queue)->prev;					\
3883 		     skb != (struct sk_buff *)(queue);				\
3884 		     skb = skb->prev)
3885 
3886 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3887 		for (skb = (queue)->prev, tmp = skb->prev;			\
3888 		     skb != (struct sk_buff *)(queue);				\
3889 		     skb = tmp, tmp = skb->prev)
3890 
3891 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3892 		for (tmp = skb->prev;						\
3893 		     skb != (struct sk_buff *)(queue);				\
3894 		     skb = tmp, tmp = skb->prev)
3895 
3896 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3897 {
3898 	return skb_shinfo(skb)->frag_list != NULL;
3899 }
3900 
3901 static inline void skb_frag_list_init(struct sk_buff *skb)
3902 {
3903 	skb_shinfo(skb)->frag_list = NULL;
3904 }
3905 
3906 #define skb_walk_frags(skb, iter)	\
3907 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3908 
3909 
3910 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3911 				int *err, long *timeo_p,
3912 				const struct sk_buff *skb);
3913 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3914 					  struct sk_buff_head *queue,
3915 					  unsigned int flags,
3916 					  int *off, int *err,
3917 					  struct sk_buff **last);
3918 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3919 					struct sk_buff_head *queue,
3920 					unsigned int flags, int *off, int *err,
3921 					struct sk_buff **last);
3922 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3923 				    struct sk_buff_head *sk_queue,
3924 				    unsigned int flags, int *off, int *err);
3925 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3926 __poll_t datagram_poll(struct file *file, struct socket *sock,
3927 			   struct poll_table_struct *wait);
3928 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3929 			   struct iov_iter *to, int size);
3930 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3931 					struct msghdr *msg, int size)
3932 {
3933 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3934 }
3935 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3936 				   struct msghdr *msg);
3937 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3938 			   struct iov_iter *to, int len,
3939 			   struct ahash_request *hash);
3940 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3941 				 struct iov_iter *from, int len);
3942 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3943 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3944 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3945 static inline void skb_free_datagram_locked(struct sock *sk,
3946 					    struct sk_buff *skb)
3947 {
3948 	__skb_free_datagram_locked(sk, skb, 0);
3949 }
3950 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3951 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3952 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3953 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3954 			      int len);
3955 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3956 		    struct pipe_inode_info *pipe, unsigned int len,
3957 		    unsigned int flags);
3958 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3959 			 int len);
3960 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3961 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3962 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3963 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3964 		 int len, int hlen);
3965 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3966 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3967 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3968 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3969 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3970 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3971 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3972 				 unsigned int offset);
3973 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3974 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
3975 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3976 int skb_vlan_pop(struct sk_buff *skb);
3977 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3978 int skb_eth_pop(struct sk_buff *skb);
3979 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3980 		 const unsigned char *src);
3981 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3982 		  int mac_len, bool ethernet);
3983 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3984 		 bool ethernet);
3985 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3986 int skb_mpls_dec_ttl(struct sk_buff *skb);
3987 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3988 			     gfp_t gfp);
3989 
3990 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3991 {
3992 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3993 }
3994 
3995 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3996 {
3997 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3998 }
3999 
4000 struct skb_checksum_ops {
4001 	__wsum (*update)(const void *mem, int len, __wsum wsum);
4002 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4003 };
4004 
4005 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4006 
4007 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4008 		      __wsum csum, const struct skb_checksum_ops *ops);
4009 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4010 		    __wsum csum);
4011 
4012 static inline void * __must_check
4013 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4014 		     const void *data, int hlen, void *buffer)
4015 {
4016 	if (likely(hlen - offset >= len))
4017 		return (void *)data + offset;
4018 
4019 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4020 		return NULL;
4021 
4022 	return buffer;
4023 }
4024 
4025 static inline void * __must_check
4026 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4027 {
4028 	return __skb_header_pointer(skb, offset, len, skb->data,
4029 				    skb_headlen(skb), buffer);
4030 }
4031 
4032 /**
4033  *	skb_needs_linearize - check if we need to linearize a given skb
4034  *			      depending on the given device features.
4035  *	@skb: socket buffer to check
4036  *	@features: net device features
4037  *
4038  *	Returns true if either:
4039  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4040  *	2. skb is fragmented and the device does not support SG.
4041  */
4042 static inline bool skb_needs_linearize(struct sk_buff *skb,
4043 				       netdev_features_t features)
4044 {
4045 	return skb_is_nonlinear(skb) &&
4046 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4047 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4048 }
4049 
4050 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4051 					     void *to,
4052 					     const unsigned int len)
4053 {
4054 	memcpy(to, skb->data, len);
4055 }
4056 
4057 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4058 						    const int offset, void *to,
4059 						    const unsigned int len)
4060 {
4061 	memcpy(to, skb->data + offset, len);
4062 }
4063 
4064 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4065 					   const void *from,
4066 					   const unsigned int len)
4067 {
4068 	memcpy(skb->data, from, len);
4069 }
4070 
4071 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4072 						  const int offset,
4073 						  const void *from,
4074 						  const unsigned int len)
4075 {
4076 	memcpy(skb->data + offset, from, len);
4077 }
4078 
4079 void skb_init(void);
4080 
4081 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4082 {
4083 	return skb->tstamp;
4084 }
4085 
4086 /**
4087  *	skb_get_timestamp - get timestamp from a skb
4088  *	@skb: skb to get stamp from
4089  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4090  *
4091  *	Timestamps are stored in the skb as offsets to a base timestamp.
4092  *	This function converts the offset back to a struct timeval and stores
4093  *	it in stamp.
4094  */
4095 static inline void skb_get_timestamp(const struct sk_buff *skb,
4096 				     struct __kernel_old_timeval *stamp)
4097 {
4098 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4099 }
4100 
4101 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4102 					 struct __kernel_sock_timeval *stamp)
4103 {
4104 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4105 
4106 	stamp->tv_sec = ts.tv_sec;
4107 	stamp->tv_usec = ts.tv_nsec / 1000;
4108 }
4109 
4110 static inline void skb_get_timestampns(const struct sk_buff *skb,
4111 				       struct __kernel_old_timespec *stamp)
4112 {
4113 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4114 
4115 	stamp->tv_sec = ts.tv_sec;
4116 	stamp->tv_nsec = ts.tv_nsec;
4117 }
4118 
4119 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4120 					   struct __kernel_timespec *stamp)
4121 {
4122 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4123 
4124 	stamp->tv_sec = ts.tv_sec;
4125 	stamp->tv_nsec = ts.tv_nsec;
4126 }
4127 
4128 static inline void __net_timestamp(struct sk_buff *skb)
4129 {
4130 	skb->tstamp = ktime_get_real();
4131 	skb->mono_delivery_time = 0;
4132 }
4133 
4134 static inline ktime_t net_timedelta(ktime_t t)
4135 {
4136 	return ktime_sub(ktime_get_real(), t);
4137 }
4138 
4139 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4140 					 bool mono)
4141 {
4142 	skb->tstamp = kt;
4143 	skb->mono_delivery_time = kt && mono;
4144 }
4145 
4146 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4147 
4148 /* It is used in the ingress path to clear the delivery_time.
4149  * If needed, set the skb->tstamp to the (rcv) timestamp.
4150  */
4151 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4152 {
4153 	if (skb->mono_delivery_time) {
4154 		skb->mono_delivery_time = 0;
4155 		if (static_branch_unlikely(&netstamp_needed_key))
4156 			skb->tstamp = ktime_get_real();
4157 		else
4158 			skb->tstamp = 0;
4159 	}
4160 }
4161 
4162 static inline void skb_clear_tstamp(struct sk_buff *skb)
4163 {
4164 	if (skb->mono_delivery_time)
4165 		return;
4166 
4167 	skb->tstamp = 0;
4168 }
4169 
4170 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4171 {
4172 	if (skb->mono_delivery_time)
4173 		return 0;
4174 
4175 	return skb->tstamp;
4176 }
4177 
4178 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4179 {
4180 	if (!skb->mono_delivery_time && skb->tstamp)
4181 		return skb->tstamp;
4182 
4183 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4184 		return ktime_get_real();
4185 
4186 	return 0;
4187 }
4188 
4189 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4190 {
4191 	return skb_shinfo(skb)->meta_len;
4192 }
4193 
4194 static inline void *skb_metadata_end(const struct sk_buff *skb)
4195 {
4196 	return skb_mac_header(skb);
4197 }
4198 
4199 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4200 					  const struct sk_buff *skb_b,
4201 					  u8 meta_len)
4202 {
4203 	const void *a = skb_metadata_end(skb_a);
4204 	const void *b = skb_metadata_end(skb_b);
4205 	/* Using more efficient varaiant than plain call to memcmp(). */
4206 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4207 	u64 diffs = 0;
4208 
4209 	switch (meta_len) {
4210 #define __it(x, op) (x -= sizeof(u##op))
4211 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4212 	case 32: diffs |= __it_diff(a, b, 64);
4213 		fallthrough;
4214 	case 24: diffs |= __it_diff(a, b, 64);
4215 		fallthrough;
4216 	case 16: diffs |= __it_diff(a, b, 64);
4217 		fallthrough;
4218 	case  8: diffs |= __it_diff(a, b, 64);
4219 		break;
4220 	case 28: diffs |= __it_diff(a, b, 64);
4221 		fallthrough;
4222 	case 20: diffs |= __it_diff(a, b, 64);
4223 		fallthrough;
4224 	case 12: diffs |= __it_diff(a, b, 64);
4225 		fallthrough;
4226 	case  4: diffs |= __it_diff(a, b, 32);
4227 		break;
4228 	}
4229 	return diffs;
4230 #else
4231 	return memcmp(a - meta_len, b - meta_len, meta_len);
4232 #endif
4233 }
4234 
4235 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4236 					const struct sk_buff *skb_b)
4237 {
4238 	u8 len_a = skb_metadata_len(skb_a);
4239 	u8 len_b = skb_metadata_len(skb_b);
4240 
4241 	if (!(len_a | len_b))
4242 		return false;
4243 
4244 	return len_a != len_b ?
4245 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4246 }
4247 
4248 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4249 {
4250 	skb_shinfo(skb)->meta_len = meta_len;
4251 }
4252 
4253 static inline void skb_metadata_clear(struct sk_buff *skb)
4254 {
4255 	skb_metadata_set(skb, 0);
4256 }
4257 
4258 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4259 
4260 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4261 
4262 void skb_clone_tx_timestamp(struct sk_buff *skb);
4263 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4264 
4265 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4266 
4267 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4268 {
4269 }
4270 
4271 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4272 {
4273 	return false;
4274 }
4275 
4276 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4277 
4278 /**
4279  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4280  *
4281  * PHY drivers may accept clones of transmitted packets for
4282  * timestamping via their phy_driver.txtstamp method. These drivers
4283  * must call this function to return the skb back to the stack with a
4284  * timestamp.
4285  *
4286  * @skb: clone of the original outgoing packet
4287  * @hwtstamps: hardware time stamps
4288  *
4289  */
4290 void skb_complete_tx_timestamp(struct sk_buff *skb,
4291 			       struct skb_shared_hwtstamps *hwtstamps);
4292 
4293 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4294 		     struct skb_shared_hwtstamps *hwtstamps,
4295 		     struct sock *sk, int tstype);
4296 
4297 /**
4298  * skb_tstamp_tx - queue clone of skb with send time stamps
4299  * @orig_skb:	the original outgoing packet
4300  * @hwtstamps:	hardware time stamps, may be NULL if not available
4301  *
4302  * If the skb has a socket associated, then this function clones the
4303  * skb (thus sharing the actual data and optional structures), stores
4304  * the optional hardware time stamping information (if non NULL) or
4305  * generates a software time stamp (otherwise), then queues the clone
4306  * to the error queue of the socket.  Errors are silently ignored.
4307  */
4308 void skb_tstamp_tx(struct sk_buff *orig_skb,
4309 		   struct skb_shared_hwtstamps *hwtstamps);
4310 
4311 /**
4312  * skb_tx_timestamp() - Driver hook for transmit timestamping
4313  *
4314  * Ethernet MAC Drivers should call this function in their hard_xmit()
4315  * function immediately before giving the sk_buff to the MAC hardware.
4316  *
4317  * Specifically, one should make absolutely sure that this function is
4318  * called before TX completion of this packet can trigger.  Otherwise
4319  * the packet could potentially already be freed.
4320  *
4321  * @skb: A socket buffer.
4322  */
4323 static inline void skb_tx_timestamp(struct sk_buff *skb)
4324 {
4325 	skb_clone_tx_timestamp(skb);
4326 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4327 		skb_tstamp_tx(skb, NULL);
4328 }
4329 
4330 /**
4331  * skb_complete_wifi_ack - deliver skb with wifi status
4332  *
4333  * @skb: the original outgoing packet
4334  * @acked: ack status
4335  *
4336  */
4337 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4338 
4339 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4340 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4341 
4342 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4343 {
4344 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4345 		skb->csum_valid ||
4346 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4347 		 skb_checksum_start_offset(skb) >= 0));
4348 }
4349 
4350 /**
4351  *	skb_checksum_complete - Calculate checksum of an entire packet
4352  *	@skb: packet to process
4353  *
4354  *	This function calculates the checksum over the entire packet plus
4355  *	the value of skb->csum.  The latter can be used to supply the
4356  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4357  *	checksum.
4358  *
4359  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4360  *	this function can be used to verify that checksum on received
4361  *	packets.  In that case the function should return zero if the
4362  *	checksum is correct.  In particular, this function will return zero
4363  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4364  *	hardware has already verified the correctness of the checksum.
4365  */
4366 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4367 {
4368 	return skb_csum_unnecessary(skb) ?
4369 	       0 : __skb_checksum_complete(skb);
4370 }
4371 
4372 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4373 {
4374 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4375 		if (skb->csum_level == 0)
4376 			skb->ip_summed = CHECKSUM_NONE;
4377 		else
4378 			skb->csum_level--;
4379 	}
4380 }
4381 
4382 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4383 {
4384 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4385 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4386 			skb->csum_level++;
4387 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4388 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4389 		skb->csum_level = 0;
4390 	}
4391 }
4392 
4393 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4394 {
4395 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4396 		skb->ip_summed = CHECKSUM_NONE;
4397 		skb->csum_level = 0;
4398 	}
4399 }
4400 
4401 /* Check if we need to perform checksum complete validation.
4402  *
4403  * Returns true if checksum complete is needed, false otherwise
4404  * (either checksum is unnecessary or zero checksum is allowed).
4405  */
4406 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4407 						  bool zero_okay,
4408 						  __sum16 check)
4409 {
4410 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4411 		skb->csum_valid = 1;
4412 		__skb_decr_checksum_unnecessary(skb);
4413 		return false;
4414 	}
4415 
4416 	return true;
4417 }
4418 
4419 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4420  * in checksum_init.
4421  */
4422 #define CHECKSUM_BREAK 76
4423 
4424 /* Unset checksum-complete
4425  *
4426  * Unset checksum complete can be done when packet is being modified
4427  * (uncompressed for instance) and checksum-complete value is
4428  * invalidated.
4429  */
4430 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4431 {
4432 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4433 		skb->ip_summed = CHECKSUM_NONE;
4434 }
4435 
4436 /* Validate (init) checksum based on checksum complete.
4437  *
4438  * Return values:
4439  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4440  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4441  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4442  *   non-zero: value of invalid checksum
4443  *
4444  */
4445 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4446 						       bool complete,
4447 						       __wsum psum)
4448 {
4449 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4450 		if (!csum_fold(csum_add(psum, skb->csum))) {
4451 			skb->csum_valid = 1;
4452 			return 0;
4453 		}
4454 	}
4455 
4456 	skb->csum = psum;
4457 
4458 	if (complete || skb->len <= CHECKSUM_BREAK) {
4459 		__sum16 csum;
4460 
4461 		csum = __skb_checksum_complete(skb);
4462 		skb->csum_valid = !csum;
4463 		return csum;
4464 	}
4465 
4466 	return 0;
4467 }
4468 
4469 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4470 {
4471 	return 0;
4472 }
4473 
4474 /* Perform checksum validate (init). Note that this is a macro since we only
4475  * want to calculate the pseudo header which is an input function if necessary.
4476  * First we try to validate without any computation (checksum unnecessary) and
4477  * then calculate based on checksum complete calling the function to compute
4478  * pseudo header.
4479  *
4480  * Return values:
4481  *   0: checksum is validated or try to in skb_checksum_complete
4482  *   non-zero: value of invalid checksum
4483  */
4484 #define __skb_checksum_validate(skb, proto, complete,			\
4485 				zero_okay, check, compute_pseudo)	\
4486 ({									\
4487 	__sum16 __ret = 0;						\
4488 	skb->csum_valid = 0;						\
4489 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4490 		__ret = __skb_checksum_validate_complete(skb,		\
4491 				complete, compute_pseudo(skb, proto));	\
4492 	__ret;								\
4493 })
4494 
4495 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4496 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4497 
4498 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4499 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4500 
4501 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4502 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4503 
4504 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4505 					 compute_pseudo)		\
4506 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4507 
4508 #define skb_checksum_simple_validate(skb)				\
4509 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4510 
4511 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4512 {
4513 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4514 }
4515 
4516 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4517 {
4518 	skb->csum = ~pseudo;
4519 	skb->ip_summed = CHECKSUM_COMPLETE;
4520 }
4521 
4522 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4523 do {									\
4524 	if (__skb_checksum_convert_check(skb))				\
4525 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4526 } while (0)
4527 
4528 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4529 					      u16 start, u16 offset)
4530 {
4531 	skb->ip_summed = CHECKSUM_PARTIAL;
4532 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4533 	skb->csum_offset = offset - start;
4534 }
4535 
4536 /* Update skbuf and packet to reflect the remote checksum offload operation.
4537  * When called, ptr indicates the starting point for skb->csum when
4538  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4539  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4540  */
4541 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4542 				       int start, int offset, bool nopartial)
4543 {
4544 	__wsum delta;
4545 
4546 	if (!nopartial) {
4547 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4548 		return;
4549 	}
4550 
4551 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4552 		__skb_checksum_complete(skb);
4553 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4554 	}
4555 
4556 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4557 
4558 	/* Adjust skb->csum since we changed the packet */
4559 	skb->csum = csum_add(skb->csum, delta);
4560 }
4561 
4562 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4563 {
4564 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4565 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4566 #else
4567 	return NULL;
4568 #endif
4569 }
4570 
4571 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4572 {
4573 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4574 	return skb->_nfct;
4575 #else
4576 	return 0UL;
4577 #endif
4578 }
4579 
4580 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4581 {
4582 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4583 	skb->slow_gro |= !!nfct;
4584 	skb->_nfct = nfct;
4585 #endif
4586 }
4587 
4588 #ifdef CONFIG_SKB_EXTENSIONS
4589 enum skb_ext_id {
4590 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4591 	SKB_EXT_BRIDGE_NF,
4592 #endif
4593 #ifdef CONFIG_XFRM
4594 	SKB_EXT_SEC_PATH,
4595 #endif
4596 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4597 	TC_SKB_EXT,
4598 #endif
4599 #if IS_ENABLED(CONFIG_MPTCP)
4600 	SKB_EXT_MPTCP,
4601 #endif
4602 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4603 	SKB_EXT_MCTP,
4604 #endif
4605 	SKB_EXT_NUM, /* must be last */
4606 };
4607 
4608 /**
4609  *	struct skb_ext - sk_buff extensions
4610  *	@refcnt: 1 on allocation, deallocated on 0
4611  *	@offset: offset to add to @data to obtain extension address
4612  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4613  *	@data: start of extension data, variable sized
4614  *
4615  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4616  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4617  */
4618 struct skb_ext {
4619 	refcount_t refcnt;
4620 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4621 	u8 chunks;		/* same */
4622 	char data[] __aligned(8);
4623 };
4624 
4625 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4626 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4627 		    struct skb_ext *ext);
4628 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4629 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4630 void __skb_ext_put(struct skb_ext *ext);
4631 
4632 static inline void skb_ext_put(struct sk_buff *skb)
4633 {
4634 	if (skb->active_extensions)
4635 		__skb_ext_put(skb->extensions);
4636 }
4637 
4638 static inline void __skb_ext_copy(struct sk_buff *dst,
4639 				  const struct sk_buff *src)
4640 {
4641 	dst->active_extensions = src->active_extensions;
4642 
4643 	if (src->active_extensions) {
4644 		struct skb_ext *ext = src->extensions;
4645 
4646 		refcount_inc(&ext->refcnt);
4647 		dst->extensions = ext;
4648 	}
4649 }
4650 
4651 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4652 {
4653 	skb_ext_put(dst);
4654 	__skb_ext_copy(dst, src);
4655 }
4656 
4657 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4658 {
4659 	return !!ext->offset[i];
4660 }
4661 
4662 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4663 {
4664 	return skb->active_extensions & (1 << id);
4665 }
4666 
4667 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4668 {
4669 	if (skb_ext_exist(skb, id))
4670 		__skb_ext_del(skb, id);
4671 }
4672 
4673 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4674 {
4675 	if (skb_ext_exist(skb, id)) {
4676 		struct skb_ext *ext = skb->extensions;
4677 
4678 		return (void *)ext + (ext->offset[id] << 3);
4679 	}
4680 
4681 	return NULL;
4682 }
4683 
4684 static inline void skb_ext_reset(struct sk_buff *skb)
4685 {
4686 	if (unlikely(skb->active_extensions)) {
4687 		__skb_ext_put(skb->extensions);
4688 		skb->active_extensions = 0;
4689 	}
4690 }
4691 
4692 static inline bool skb_has_extensions(struct sk_buff *skb)
4693 {
4694 	return unlikely(skb->active_extensions);
4695 }
4696 #else
4697 static inline void skb_ext_put(struct sk_buff *skb) {}
4698 static inline void skb_ext_reset(struct sk_buff *skb) {}
4699 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4700 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4701 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4702 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4703 #endif /* CONFIG_SKB_EXTENSIONS */
4704 
4705 static inline void nf_reset_ct(struct sk_buff *skb)
4706 {
4707 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4708 	nf_conntrack_put(skb_nfct(skb));
4709 	skb->_nfct = 0;
4710 #endif
4711 }
4712 
4713 static inline void nf_reset_trace(struct sk_buff *skb)
4714 {
4715 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4716 	skb->nf_trace = 0;
4717 #endif
4718 }
4719 
4720 static inline void ipvs_reset(struct sk_buff *skb)
4721 {
4722 #if IS_ENABLED(CONFIG_IP_VS)
4723 	skb->ipvs_property = 0;
4724 #endif
4725 }
4726 
4727 /* Note: This doesn't put any conntrack info in dst. */
4728 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4729 			     bool copy)
4730 {
4731 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4732 	dst->_nfct = src->_nfct;
4733 	nf_conntrack_get(skb_nfct(src));
4734 #endif
4735 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4736 	if (copy)
4737 		dst->nf_trace = src->nf_trace;
4738 #endif
4739 }
4740 
4741 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4742 {
4743 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4744 	nf_conntrack_put(skb_nfct(dst));
4745 #endif
4746 	dst->slow_gro = src->slow_gro;
4747 	__nf_copy(dst, src, true);
4748 }
4749 
4750 #ifdef CONFIG_NETWORK_SECMARK
4751 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4752 {
4753 	to->secmark = from->secmark;
4754 }
4755 
4756 static inline void skb_init_secmark(struct sk_buff *skb)
4757 {
4758 	skb->secmark = 0;
4759 }
4760 #else
4761 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4762 { }
4763 
4764 static inline void skb_init_secmark(struct sk_buff *skb)
4765 { }
4766 #endif
4767 
4768 static inline int secpath_exists(const struct sk_buff *skb)
4769 {
4770 #ifdef CONFIG_XFRM
4771 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4772 #else
4773 	return 0;
4774 #endif
4775 }
4776 
4777 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4778 {
4779 	return !skb->destructor &&
4780 		!secpath_exists(skb) &&
4781 		!skb_nfct(skb) &&
4782 		!skb->_skb_refdst &&
4783 		!skb_has_frag_list(skb);
4784 }
4785 
4786 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4787 {
4788 	skb->queue_mapping = queue_mapping;
4789 }
4790 
4791 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4792 {
4793 	return skb->queue_mapping;
4794 }
4795 
4796 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4797 {
4798 	to->queue_mapping = from->queue_mapping;
4799 }
4800 
4801 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4802 {
4803 	skb->queue_mapping = rx_queue + 1;
4804 }
4805 
4806 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4807 {
4808 	return skb->queue_mapping - 1;
4809 }
4810 
4811 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4812 {
4813 	return skb->queue_mapping != 0;
4814 }
4815 
4816 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4817 {
4818 	skb->dst_pending_confirm = val;
4819 }
4820 
4821 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4822 {
4823 	return skb->dst_pending_confirm != 0;
4824 }
4825 
4826 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4827 {
4828 #ifdef CONFIG_XFRM
4829 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4830 #else
4831 	return NULL;
4832 #endif
4833 }
4834 
4835 /* Keeps track of mac header offset relative to skb->head.
4836  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4837  * For non-tunnel skb it points to skb_mac_header() and for
4838  * tunnel skb it points to outer mac header.
4839  * Keeps track of level of encapsulation of network headers.
4840  */
4841 struct skb_gso_cb {
4842 	union {
4843 		int	mac_offset;
4844 		int	data_offset;
4845 	};
4846 	int	encap_level;
4847 	__wsum	csum;
4848 	__u16	csum_start;
4849 };
4850 #define SKB_GSO_CB_OFFSET	32
4851 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4852 
4853 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4854 {
4855 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4856 		SKB_GSO_CB(inner_skb)->mac_offset;
4857 }
4858 
4859 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4860 {
4861 	int new_headroom, headroom;
4862 	int ret;
4863 
4864 	headroom = skb_headroom(skb);
4865 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4866 	if (ret)
4867 		return ret;
4868 
4869 	new_headroom = skb_headroom(skb);
4870 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4871 	return 0;
4872 }
4873 
4874 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4875 {
4876 	/* Do not update partial checksums if remote checksum is enabled. */
4877 	if (skb->remcsum_offload)
4878 		return;
4879 
4880 	SKB_GSO_CB(skb)->csum = res;
4881 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4882 }
4883 
4884 /* Compute the checksum for a gso segment. First compute the checksum value
4885  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4886  * then add in skb->csum (checksum from csum_start to end of packet).
4887  * skb->csum and csum_start are then updated to reflect the checksum of the
4888  * resultant packet starting from the transport header-- the resultant checksum
4889  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4890  * header.
4891  */
4892 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4893 {
4894 	unsigned char *csum_start = skb_transport_header(skb);
4895 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4896 	__wsum partial = SKB_GSO_CB(skb)->csum;
4897 
4898 	SKB_GSO_CB(skb)->csum = res;
4899 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4900 
4901 	return csum_fold(csum_partial(csum_start, plen, partial));
4902 }
4903 
4904 static inline bool skb_is_gso(const struct sk_buff *skb)
4905 {
4906 	return skb_shinfo(skb)->gso_size;
4907 }
4908 
4909 /* Note: Should be called only if skb_is_gso(skb) is true */
4910 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4911 {
4912 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4913 }
4914 
4915 /* Note: Should be called only if skb_is_gso(skb) is true */
4916 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4917 {
4918 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4919 }
4920 
4921 /* Note: Should be called only if skb_is_gso(skb) is true */
4922 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4923 {
4924 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4925 }
4926 
4927 static inline void skb_gso_reset(struct sk_buff *skb)
4928 {
4929 	skb_shinfo(skb)->gso_size = 0;
4930 	skb_shinfo(skb)->gso_segs = 0;
4931 	skb_shinfo(skb)->gso_type = 0;
4932 }
4933 
4934 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4935 					 u16 increment)
4936 {
4937 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4938 		return;
4939 	shinfo->gso_size += increment;
4940 }
4941 
4942 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4943 					 u16 decrement)
4944 {
4945 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4946 		return;
4947 	shinfo->gso_size -= decrement;
4948 }
4949 
4950 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4951 
4952 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4953 {
4954 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4955 	 * wanted then gso_type will be set. */
4956 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4957 
4958 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4959 	    unlikely(shinfo->gso_type == 0)) {
4960 		__skb_warn_lro_forwarding(skb);
4961 		return true;
4962 	}
4963 	return false;
4964 }
4965 
4966 static inline void skb_forward_csum(struct sk_buff *skb)
4967 {
4968 	/* Unfortunately we don't support this one.  Any brave souls? */
4969 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4970 		skb->ip_summed = CHECKSUM_NONE;
4971 }
4972 
4973 /**
4974  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4975  * @skb: skb to check
4976  *
4977  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4978  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4979  * use this helper, to document places where we make this assertion.
4980  */
4981 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4982 {
4983 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4984 }
4985 
4986 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4987 
4988 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4989 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4990 				     unsigned int transport_len,
4991 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4992 
4993 /**
4994  * skb_head_is_locked - Determine if the skb->head is locked down
4995  * @skb: skb to check
4996  *
4997  * The head on skbs build around a head frag can be removed if they are
4998  * not cloned.  This function returns true if the skb head is locked down
4999  * due to either being allocated via kmalloc, or by being a clone with
5000  * multiple references to the head.
5001  */
5002 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5003 {
5004 	return !skb->head_frag || skb_cloned(skb);
5005 }
5006 
5007 /* Local Checksum Offload.
5008  * Compute outer checksum based on the assumption that the
5009  * inner checksum will be offloaded later.
5010  * See Documentation/networking/checksum-offloads.rst for
5011  * explanation of how this works.
5012  * Fill in outer checksum adjustment (e.g. with sum of outer
5013  * pseudo-header) before calling.
5014  * Also ensure that inner checksum is in linear data area.
5015  */
5016 static inline __wsum lco_csum(struct sk_buff *skb)
5017 {
5018 	unsigned char *csum_start = skb_checksum_start(skb);
5019 	unsigned char *l4_hdr = skb_transport_header(skb);
5020 	__wsum partial;
5021 
5022 	/* Start with complement of inner checksum adjustment */
5023 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5024 						    skb->csum_offset));
5025 
5026 	/* Add in checksum of our headers (incl. outer checksum
5027 	 * adjustment filled in by caller) and return result.
5028 	 */
5029 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5030 }
5031 
5032 static inline bool skb_is_redirected(const struct sk_buff *skb)
5033 {
5034 	return skb->redirected;
5035 }
5036 
5037 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5038 {
5039 	skb->redirected = 1;
5040 #ifdef CONFIG_NET_REDIRECT
5041 	skb->from_ingress = from_ingress;
5042 	if (skb->from_ingress)
5043 		skb_clear_tstamp(skb);
5044 #endif
5045 }
5046 
5047 static inline void skb_reset_redirect(struct sk_buff *skb)
5048 {
5049 	skb->redirected = 0;
5050 }
5051 
5052 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5053 {
5054 	return skb->csum_not_inet;
5055 }
5056 
5057 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5058 				       const u64 kcov_handle)
5059 {
5060 #ifdef CONFIG_KCOV
5061 	skb->kcov_handle = kcov_handle;
5062 #endif
5063 }
5064 
5065 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5066 {
5067 #ifdef CONFIG_KCOV
5068 	return skb->kcov_handle;
5069 #else
5070 	return 0;
5071 #endif
5072 }
5073 
5074 #ifdef CONFIG_PAGE_POOL
5075 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5076 {
5077 	skb->pp_recycle = 1;
5078 }
5079 #endif
5080 
5081 #endif	/* __KERNEL__ */
5082 #endif	/* _LINUX_SKBUFF_H */
5083