xref: /linux/include/linux/spi/spi.h (revision 44f57d78)
1 /* SPDX-License-Identifier: GPL-2.0-or-later
2  *
3  * Copyright (C) 2005 David Brownell
4  */
5 
6 #ifndef __LINUX_SPI_H
7 #define __LINUX_SPI_H
8 
9 #include <linux/device.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/slab.h>
12 #include <linux/kthread.h>
13 #include <linux/completion.h>
14 #include <linux/scatterlist.h>
15 #include <linux/gpio/consumer.h>
16 
17 struct dma_chan;
18 struct property_entry;
19 struct spi_controller;
20 struct spi_transfer;
21 struct spi_controller_mem_ops;
22 
23 /*
24  * INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
25  * and SPI infrastructure.
26  */
27 extern struct bus_type spi_bus_type;
28 
29 /**
30  * struct spi_statistics - statistics for spi transfers
31  * @lock:          lock protecting this structure
32  *
33  * @messages:      number of spi-messages handled
34  * @transfers:     number of spi_transfers handled
35  * @errors:        number of errors during spi_transfer
36  * @timedout:      number of timeouts during spi_transfer
37  *
38  * @spi_sync:      number of times spi_sync is used
39  * @spi_sync_immediate:
40  *                 number of times spi_sync is executed immediately
41  *                 in calling context without queuing and scheduling
42  * @spi_async:     number of times spi_async is used
43  *
44  * @bytes:         number of bytes transferred to/from device
45  * @bytes_tx:      number of bytes sent to device
46  * @bytes_rx:      number of bytes received from device
47  *
48  * @transfer_bytes_histo:
49  *                 transfer bytes histogramm
50  *
51  * @transfers_split_maxsize:
52  *                 number of transfers that have been split because of
53  *                 maxsize limit
54  */
55 struct spi_statistics {
56 	spinlock_t		lock; /* lock for the whole structure */
57 
58 	unsigned long		messages;
59 	unsigned long		transfers;
60 	unsigned long		errors;
61 	unsigned long		timedout;
62 
63 	unsigned long		spi_sync;
64 	unsigned long		spi_sync_immediate;
65 	unsigned long		spi_async;
66 
67 	unsigned long long	bytes;
68 	unsigned long long	bytes_rx;
69 	unsigned long long	bytes_tx;
70 
71 #define SPI_STATISTICS_HISTO_SIZE 17
72 	unsigned long transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
73 
74 	unsigned long transfers_split_maxsize;
75 };
76 
77 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
78 				       struct spi_transfer *xfer,
79 				       struct spi_controller *ctlr);
80 
81 #define SPI_STATISTICS_ADD_TO_FIELD(stats, field, count)	\
82 	do {							\
83 		unsigned long flags;				\
84 		spin_lock_irqsave(&(stats)->lock, flags);	\
85 		(stats)->field += count;			\
86 		spin_unlock_irqrestore(&(stats)->lock, flags);	\
87 	} while (0)
88 
89 #define SPI_STATISTICS_INCREMENT_FIELD(stats, field)	\
90 	SPI_STATISTICS_ADD_TO_FIELD(stats, field, 1)
91 
92 /**
93  * struct spi_device - Controller side proxy for an SPI slave device
94  * @dev: Driver model representation of the device.
95  * @controller: SPI controller used with the device.
96  * @master: Copy of controller, for backwards compatibility.
97  * @max_speed_hz: Maximum clock rate to be used with this chip
98  *	(on this board); may be changed by the device's driver.
99  *	The spi_transfer.speed_hz can override this for each transfer.
100  * @chip_select: Chipselect, distinguishing chips handled by @controller.
101  * @mode: The spi mode defines how data is clocked out and in.
102  *	This may be changed by the device's driver.
103  *	The "active low" default for chipselect mode can be overridden
104  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
105  *	each word in a transfer (by specifying SPI_LSB_FIRST).
106  * @bits_per_word: Data transfers involve one or more words; word sizes
107  *	like eight or 12 bits are common.  In-memory wordsizes are
108  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
109  *	This may be changed by the device's driver, or left at the
110  *	default (0) indicating protocol words are eight bit bytes.
111  *	The spi_transfer.bits_per_word can override this for each transfer.
112  * @irq: Negative, or the number passed to request_irq() to receive
113  *	interrupts from this device.
114  * @controller_state: Controller's runtime state
115  * @controller_data: Board-specific definitions for controller, such as
116  *	FIFO initialization parameters; from board_info.controller_data
117  * @modalias: Name of the driver to use with this device, or an alias
118  *	for that name.  This appears in the sysfs "modalias" attribute
119  *	for driver coldplugging, and in uevents used for hotplugging
120  * @cs_gpio: LEGACY: gpio number of the chipselect line (optional, -ENOENT when
121  *	not using a GPIO line) use cs_gpiod in new drivers by opting in on
122  *	the spi_master.
123  * @cs_gpiod: gpio descriptor of the chipselect line (optional, NULL when
124  *	not using a GPIO line)
125  * @word_delay_usecs: microsecond delay to be inserted between consecutive
126  *	words of a transfer
127  *
128  * @statistics: statistics for the spi_device
129  *
130  * A @spi_device is used to interchange data between an SPI slave
131  * (usually a discrete chip) and CPU memory.
132  *
133  * In @dev, the platform_data is used to hold information about this
134  * device that's meaningful to the device's protocol driver, but not
135  * to its controller.  One example might be an identifier for a chip
136  * variant with slightly different functionality; another might be
137  * information about how this particular board wires the chip's pins.
138  */
139 struct spi_device {
140 	struct device		dev;
141 	struct spi_controller	*controller;
142 	struct spi_controller	*master;	/* compatibility layer */
143 	u32			max_speed_hz;
144 	u8			chip_select;
145 	u8			bits_per_word;
146 	u32			mode;
147 #define	SPI_CPHA	0x01			/* clock phase */
148 #define	SPI_CPOL	0x02			/* clock polarity */
149 #define	SPI_MODE_0	(0|0)			/* (original MicroWire) */
150 #define	SPI_MODE_1	(0|SPI_CPHA)
151 #define	SPI_MODE_2	(SPI_CPOL|0)
152 #define	SPI_MODE_3	(SPI_CPOL|SPI_CPHA)
153 #define	SPI_CS_HIGH	0x04			/* chipselect active high? */
154 #define	SPI_LSB_FIRST	0x08			/* per-word bits-on-wire */
155 #define	SPI_3WIRE	0x10			/* SI/SO signals shared */
156 #define	SPI_LOOP	0x20			/* loopback mode */
157 #define	SPI_NO_CS	0x40			/* 1 dev/bus, no chipselect */
158 #define	SPI_READY	0x80			/* slave pulls low to pause */
159 #define	SPI_TX_DUAL	0x100			/* transmit with 2 wires */
160 #define	SPI_TX_QUAD	0x200			/* transmit with 4 wires */
161 #define	SPI_RX_DUAL	0x400			/* receive with 2 wires */
162 #define	SPI_RX_QUAD	0x800			/* receive with 4 wires */
163 #define	SPI_CS_WORD	0x1000			/* toggle cs after each word */
164 #define	SPI_TX_OCTAL	0x2000			/* transmit with 8 wires */
165 #define	SPI_RX_OCTAL	0x4000			/* receive with 8 wires */
166 #define	SPI_3WIRE_HIZ	0x8000			/* high impedance turnaround */
167 	int			irq;
168 	void			*controller_state;
169 	void			*controller_data;
170 	char			modalias[SPI_NAME_SIZE];
171 	const char		*driver_override;
172 	int			cs_gpio;	/* LEGACY: chip select gpio */
173 	struct gpio_desc	*cs_gpiod;	/* chip select gpio desc */
174 	uint8_t			word_delay_usecs; /* inter-word delay */
175 
176 	/* the statistics */
177 	struct spi_statistics	statistics;
178 
179 	/*
180 	 * likely need more hooks for more protocol options affecting how
181 	 * the controller talks to each chip, like:
182 	 *  - memory packing (12 bit samples into low bits, others zeroed)
183 	 *  - priority
184 	 *  - chipselect delays
185 	 *  - ...
186 	 */
187 };
188 
189 static inline struct spi_device *to_spi_device(struct device *dev)
190 {
191 	return dev ? container_of(dev, struct spi_device, dev) : NULL;
192 }
193 
194 /* most drivers won't need to care about device refcounting */
195 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
196 {
197 	return (spi && get_device(&spi->dev)) ? spi : NULL;
198 }
199 
200 static inline void spi_dev_put(struct spi_device *spi)
201 {
202 	if (spi)
203 		put_device(&spi->dev);
204 }
205 
206 /* ctldata is for the bus_controller driver's runtime state */
207 static inline void *spi_get_ctldata(struct spi_device *spi)
208 {
209 	return spi->controller_state;
210 }
211 
212 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
213 {
214 	spi->controller_state = state;
215 }
216 
217 /* device driver data */
218 
219 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
220 {
221 	dev_set_drvdata(&spi->dev, data);
222 }
223 
224 static inline void *spi_get_drvdata(struct spi_device *spi)
225 {
226 	return dev_get_drvdata(&spi->dev);
227 }
228 
229 struct spi_message;
230 struct spi_transfer;
231 
232 /**
233  * struct spi_driver - Host side "protocol" driver
234  * @id_table: List of SPI devices supported by this driver
235  * @probe: Binds this driver to the spi device.  Drivers can verify
236  *	that the device is actually present, and may need to configure
237  *	characteristics (such as bits_per_word) which weren't needed for
238  *	the initial configuration done during system setup.
239  * @remove: Unbinds this driver from the spi device
240  * @shutdown: Standard shutdown callback used during system state
241  *	transitions such as powerdown/halt and kexec
242  * @driver: SPI device drivers should initialize the name and owner
243  *	field of this structure.
244  *
245  * This represents the kind of device driver that uses SPI messages to
246  * interact with the hardware at the other end of a SPI link.  It's called
247  * a "protocol" driver because it works through messages rather than talking
248  * directly to SPI hardware (which is what the underlying SPI controller
249  * driver does to pass those messages).  These protocols are defined in the
250  * specification for the device(s) supported by the driver.
251  *
252  * As a rule, those device protocols represent the lowest level interface
253  * supported by a driver, and it will support upper level interfaces too.
254  * Examples of such upper levels include frameworks like MTD, networking,
255  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
256  */
257 struct spi_driver {
258 	const struct spi_device_id *id_table;
259 	int			(*probe)(struct spi_device *spi);
260 	int			(*remove)(struct spi_device *spi);
261 	void			(*shutdown)(struct spi_device *spi);
262 	struct device_driver	driver;
263 };
264 
265 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
266 {
267 	return drv ? container_of(drv, struct spi_driver, driver) : NULL;
268 }
269 
270 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
271 
272 /**
273  * spi_unregister_driver - reverse effect of spi_register_driver
274  * @sdrv: the driver to unregister
275  * Context: can sleep
276  */
277 static inline void spi_unregister_driver(struct spi_driver *sdrv)
278 {
279 	if (sdrv)
280 		driver_unregister(&sdrv->driver);
281 }
282 
283 /* use a define to avoid include chaining to get THIS_MODULE */
284 #define spi_register_driver(driver) \
285 	__spi_register_driver(THIS_MODULE, driver)
286 
287 /**
288  * module_spi_driver() - Helper macro for registering a SPI driver
289  * @__spi_driver: spi_driver struct
290  *
291  * Helper macro for SPI drivers which do not do anything special in module
292  * init/exit. This eliminates a lot of boilerplate. Each module may only
293  * use this macro once, and calling it replaces module_init() and module_exit()
294  */
295 #define module_spi_driver(__spi_driver) \
296 	module_driver(__spi_driver, spi_register_driver, \
297 			spi_unregister_driver)
298 
299 /**
300  * struct spi_controller - interface to SPI master or slave controller
301  * @dev: device interface to this driver
302  * @list: link with the global spi_controller list
303  * @bus_num: board-specific (and often SOC-specific) identifier for a
304  *	given SPI controller.
305  * @num_chipselect: chipselects are used to distinguish individual
306  *	SPI slaves, and are numbered from zero to num_chipselects.
307  *	each slave has a chipselect signal, but it's common that not
308  *	every chipselect is connected to a slave.
309  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
310  * @mode_bits: flags understood by this controller driver
311  * @bits_per_word_mask: A mask indicating which values of bits_per_word are
312  *	supported by the driver. Bit n indicates that a bits_per_word n+1 is
313  *	supported. If set, the SPI core will reject any transfer with an
314  *	unsupported bits_per_word. If not set, this value is simply ignored,
315  *	and it's up to the individual driver to perform any validation.
316  * @min_speed_hz: Lowest supported transfer speed
317  * @max_speed_hz: Highest supported transfer speed
318  * @flags: other constraints relevant to this driver
319  * @slave: indicates that this is an SPI slave controller
320  * @max_transfer_size: function that returns the max transfer size for
321  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
322  * @max_message_size: function that returns the max message size for
323  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
324  * @io_mutex: mutex for physical bus access
325  * @bus_lock_spinlock: spinlock for SPI bus locking
326  * @bus_lock_mutex: mutex for exclusion of multiple callers
327  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
328  * @setup: updates the device mode and clocking records used by a
329  *	device's SPI controller; protocol code may call this.  This
330  *	must fail if an unrecognized or unsupported mode is requested.
331  *	It's always safe to call this unless transfers are pending on
332  *	the device whose settings are being modified.
333  * @set_cs_timing: optional hook for SPI devices to request SPI master
334  * controller for configuring specific CS setup time, hold time and inactive
335  * delay interms of clock counts
336  * @transfer: adds a message to the controller's transfer queue.
337  * @cleanup: frees controller-specific state
338  * @can_dma: determine whether this controller supports DMA
339  * @queued: whether this controller is providing an internal message queue
340  * @kworker: thread struct for message pump
341  * @kworker_task: pointer to task for message pump kworker thread
342  * @pump_messages: work struct for scheduling work to the message pump
343  * @queue_lock: spinlock to syncronise access to message queue
344  * @queue: message queue
345  * @idling: the device is entering idle state
346  * @cur_msg: the currently in-flight message
347  * @cur_msg_prepared: spi_prepare_message was called for the currently
348  *                    in-flight message
349  * @cur_msg_mapped: message has been mapped for DMA
350  * @xfer_completion: used by core transfer_one_message()
351  * @busy: message pump is busy
352  * @running: message pump is running
353  * @rt: whether this queue is set to run as a realtime task
354  * @auto_runtime_pm: the core should ensure a runtime PM reference is held
355  *                   while the hardware is prepared, using the parent
356  *                   device for the spidev
357  * @max_dma_len: Maximum length of a DMA transfer for the device.
358  * @prepare_transfer_hardware: a message will soon arrive from the queue
359  *	so the subsystem requests the driver to prepare the transfer hardware
360  *	by issuing this call
361  * @transfer_one_message: the subsystem calls the driver to transfer a single
362  *	message while queuing transfers that arrive in the meantime. When the
363  *	driver is finished with this message, it must call
364  *	spi_finalize_current_message() so the subsystem can issue the next
365  *	message
366  * @unprepare_transfer_hardware: there are currently no more messages on the
367  *	queue so the subsystem notifies the driver that it may relax the
368  *	hardware by issuing this call
369  *
370  * @set_cs: set the logic level of the chip select line.  May be called
371  *          from interrupt context.
372  * @prepare_message: set up the controller to transfer a single message,
373  *                   for example doing DMA mapping.  Called from threaded
374  *                   context.
375  * @transfer_one: transfer a single spi_transfer.
376  *                  - return 0 if the transfer is finished,
377  *                  - return 1 if the transfer is still in progress. When
378  *                    the driver is finished with this transfer it must
379  *                    call spi_finalize_current_transfer() so the subsystem
380  *                    can issue the next transfer. Note: transfer_one and
381  *                    transfer_one_message are mutually exclusive; when both
382  *                    are set, the generic subsystem does not call your
383  *                    transfer_one callback.
384  * @handle_err: the subsystem calls the driver to handle an error that occurs
385  *		in the generic implementation of transfer_one_message().
386  * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
387  *	     This field is optional and should only be implemented if the
388  *	     controller has native support for memory like operations.
389  * @unprepare_message: undo any work done by prepare_message().
390  * @slave_abort: abort the ongoing transfer request on an SPI slave controller
391  * @cs_gpios: LEGACY: array of GPIO descs to use as chip select lines; one per
392  *	CS number. Any individual value may be -ENOENT for CS lines that
393  *	are not GPIOs (driven by the SPI controller itself). Use the cs_gpiods
394  *	in new drivers.
395  * @cs_gpiods: Array of GPIO descs to use as chip select lines; one per CS
396  *	number. Any individual value may be NULL for CS lines that
397  *	are not GPIOs (driven by the SPI controller itself).
398  * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
399  *	GPIO descriptors rather than using global GPIO numbers grabbed by the
400  *	driver. This will fill in @cs_gpiods and @cs_gpios should not be used,
401  *	and SPI devices will have the cs_gpiod assigned rather than cs_gpio.
402  * @statistics: statistics for the spi_controller
403  * @dma_tx: DMA transmit channel
404  * @dma_rx: DMA receive channel
405  * @dummy_rx: dummy receive buffer for full-duplex devices
406  * @dummy_tx: dummy transmit buffer for full-duplex devices
407  * @fw_translate_cs: If the boot firmware uses different numbering scheme
408  *	what Linux expects, this optional hook can be used to translate
409  *	between the two.
410  *
411  * Each SPI controller can communicate with one or more @spi_device
412  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
413  * but not chip select signals.  Each device may be configured to use a
414  * different clock rate, since those shared signals are ignored unless
415  * the chip is selected.
416  *
417  * The driver for an SPI controller manages access to those devices through
418  * a queue of spi_message transactions, copying data between CPU memory and
419  * an SPI slave device.  For each such message it queues, it calls the
420  * message's completion function when the transaction completes.
421  */
422 struct spi_controller {
423 	struct device	dev;
424 
425 	struct list_head list;
426 
427 	/* other than negative (== assign one dynamically), bus_num is fully
428 	 * board-specific.  usually that simplifies to being SOC-specific.
429 	 * example:  one SOC has three SPI controllers, numbered 0..2,
430 	 * and one board's schematics might show it using SPI-2.  software
431 	 * would normally use bus_num=2 for that controller.
432 	 */
433 	s16			bus_num;
434 
435 	/* chipselects will be integral to many controllers; some others
436 	 * might use board-specific GPIOs.
437 	 */
438 	u16			num_chipselect;
439 
440 	/* some SPI controllers pose alignment requirements on DMAable
441 	 * buffers; let protocol drivers know about these requirements.
442 	 */
443 	u16			dma_alignment;
444 
445 	/* spi_device.mode flags understood by this controller driver */
446 	u32			mode_bits;
447 
448 	/* bitmask of supported bits_per_word for transfers */
449 	u32			bits_per_word_mask;
450 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
451 #define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1)
452 
453 	/* limits on transfer speed */
454 	u32			min_speed_hz;
455 	u32			max_speed_hz;
456 
457 	/* other constraints relevant to this driver */
458 	u16			flags;
459 #define SPI_CONTROLLER_HALF_DUPLEX	BIT(0)	/* can't do full duplex */
460 #define SPI_CONTROLLER_NO_RX		BIT(1)	/* can't do buffer read */
461 #define SPI_CONTROLLER_NO_TX		BIT(2)	/* can't do buffer write */
462 #define SPI_CONTROLLER_MUST_RX		BIT(3)	/* requires rx */
463 #define SPI_CONTROLLER_MUST_TX		BIT(4)	/* requires tx */
464 
465 #define SPI_MASTER_GPIO_SS		BIT(5)	/* GPIO CS must select slave */
466 
467 	/* flag indicating this is an SPI slave controller */
468 	bool			slave;
469 
470 	/*
471 	 * on some hardware transfer / message size may be constrained
472 	 * the limit may depend on device transfer settings
473 	 */
474 	size_t (*max_transfer_size)(struct spi_device *spi);
475 	size_t (*max_message_size)(struct spi_device *spi);
476 
477 	/* I/O mutex */
478 	struct mutex		io_mutex;
479 
480 	/* lock and mutex for SPI bus locking */
481 	spinlock_t		bus_lock_spinlock;
482 	struct mutex		bus_lock_mutex;
483 
484 	/* flag indicating that the SPI bus is locked for exclusive use */
485 	bool			bus_lock_flag;
486 
487 	/* Setup mode and clock, etc (spi driver may call many times).
488 	 *
489 	 * IMPORTANT:  this may be called when transfers to another
490 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
491 	 * which could break those transfers.
492 	 */
493 	int			(*setup)(struct spi_device *spi);
494 
495 	/*
496 	 * set_cs_timing() method is for SPI controllers that supports
497 	 * configuring CS timing.
498 	 *
499 	 * This hook allows SPI client drivers to request SPI controllers
500 	 * to configure specific CS timing through spi_set_cs_timing() after
501 	 * spi_setup().
502 	 */
503 	void (*set_cs_timing)(struct spi_device *spi, u8 setup_clk_cycles,
504 			      u8 hold_clk_cycles, u8 inactive_clk_cycles);
505 
506 	/* bidirectional bulk transfers
507 	 *
508 	 * + The transfer() method may not sleep; its main role is
509 	 *   just to add the message to the queue.
510 	 * + For now there's no remove-from-queue operation, or
511 	 *   any other request management
512 	 * + To a given spi_device, message queueing is pure fifo
513 	 *
514 	 * + The controller's main job is to process its message queue,
515 	 *   selecting a chip (for masters), then transferring data
516 	 * + If there are multiple spi_device children, the i/o queue
517 	 *   arbitration algorithm is unspecified (round robin, fifo,
518 	 *   priority, reservations, preemption, etc)
519 	 *
520 	 * + Chipselect stays active during the entire message
521 	 *   (unless modified by spi_transfer.cs_change != 0).
522 	 * + The message transfers use clock and SPI mode parameters
523 	 *   previously established by setup() for this device
524 	 */
525 	int			(*transfer)(struct spi_device *spi,
526 						struct spi_message *mesg);
527 
528 	/* called on release() to free memory provided by spi_controller */
529 	void			(*cleanup)(struct spi_device *spi);
530 
531 	/*
532 	 * Used to enable core support for DMA handling, if can_dma()
533 	 * exists and returns true then the transfer will be mapped
534 	 * prior to transfer_one() being called.  The driver should
535 	 * not modify or store xfer and dma_tx and dma_rx must be set
536 	 * while the device is prepared.
537 	 */
538 	bool			(*can_dma)(struct spi_controller *ctlr,
539 					   struct spi_device *spi,
540 					   struct spi_transfer *xfer);
541 
542 	/*
543 	 * These hooks are for drivers that want to use the generic
544 	 * controller transfer queueing mechanism. If these are used, the
545 	 * transfer() function above must NOT be specified by the driver.
546 	 * Over time we expect SPI drivers to be phased over to this API.
547 	 */
548 	bool				queued;
549 	struct kthread_worker		kworker;
550 	struct task_struct		*kworker_task;
551 	struct kthread_work		pump_messages;
552 	spinlock_t			queue_lock;
553 	struct list_head		queue;
554 	struct spi_message		*cur_msg;
555 	bool				idling;
556 	bool				busy;
557 	bool				running;
558 	bool				rt;
559 	bool				auto_runtime_pm;
560 	bool                            cur_msg_prepared;
561 	bool				cur_msg_mapped;
562 	struct completion               xfer_completion;
563 	size_t				max_dma_len;
564 
565 	int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
566 	int (*transfer_one_message)(struct spi_controller *ctlr,
567 				    struct spi_message *mesg);
568 	int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
569 	int (*prepare_message)(struct spi_controller *ctlr,
570 			       struct spi_message *message);
571 	int (*unprepare_message)(struct spi_controller *ctlr,
572 				 struct spi_message *message);
573 	int (*slave_abort)(struct spi_controller *ctlr);
574 
575 	/*
576 	 * These hooks are for drivers that use a generic implementation
577 	 * of transfer_one_message() provied by the core.
578 	 */
579 	void (*set_cs)(struct spi_device *spi, bool enable);
580 	int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
581 			    struct spi_transfer *transfer);
582 	void (*handle_err)(struct spi_controller *ctlr,
583 			   struct spi_message *message);
584 
585 	/* Optimized handlers for SPI memory-like operations. */
586 	const struct spi_controller_mem_ops *mem_ops;
587 
588 	/* gpio chip select */
589 	int			*cs_gpios;
590 	struct gpio_desc	**cs_gpiods;
591 	bool			use_gpio_descriptors;
592 
593 	/* statistics */
594 	struct spi_statistics	statistics;
595 
596 	/* DMA channels for use with core dmaengine helpers */
597 	struct dma_chan		*dma_tx;
598 	struct dma_chan		*dma_rx;
599 
600 	/* dummy data for full duplex devices */
601 	void			*dummy_rx;
602 	void			*dummy_tx;
603 
604 	int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
605 };
606 
607 static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
608 {
609 	return dev_get_drvdata(&ctlr->dev);
610 }
611 
612 static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
613 					      void *data)
614 {
615 	dev_set_drvdata(&ctlr->dev, data);
616 }
617 
618 static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
619 {
620 	if (!ctlr || !get_device(&ctlr->dev))
621 		return NULL;
622 	return ctlr;
623 }
624 
625 static inline void spi_controller_put(struct spi_controller *ctlr)
626 {
627 	if (ctlr)
628 		put_device(&ctlr->dev);
629 }
630 
631 static inline bool spi_controller_is_slave(struct spi_controller *ctlr)
632 {
633 	return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->slave;
634 }
635 
636 /* PM calls that need to be issued by the driver */
637 extern int spi_controller_suspend(struct spi_controller *ctlr);
638 extern int spi_controller_resume(struct spi_controller *ctlr);
639 
640 /* Calls the driver make to interact with the message queue */
641 extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
642 extern void spi_finalize_current_message(struct spi_controller *ctlr);
643 extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
644 
645 /* the spi driver core manages memory for the spi_controller classdev */
646 extern struct spi_controller *__spi_alloc_controller(struct device *host,
647 						unsigned int size, bool slave);
648 
649 static inline struct spi_controller *spi_alloc_master(struct device *host,
650 						      unsigned int size)
651 {
652 	return __spi_alloc_controller(host, size, false);
653 }
654 
655 static inline struct spi_controller *spi_alloc_slave(struct device *host,
656 						     unsigned int size)
657 {
658 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
659 		return NULL;
660 
661 	return __spi_alloc_controller(host, size, true);
662 }
663 
664 extern int spi_register_controller(struct spi_controller *ctlr);
665 extern int devm_spi_register_controller(struct device *dev,
666 					struct spi_controller *ctlr);
667 extern void spi_unregister_controller(struct spi_controller *ctlr);
668 
669 extern struct spi_controller *spi_busnum_to_master(u16 busnum);
670 
671 /*
672  * SPI resource management while processing a SPI message
673  */
674 
675 typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
676 				  struct spi_message *msg,
677 				  void *res);
678 
679 /**
680  * struct spi_res - spi resource management structure
681  * @entry:   list entry
682  * @release: release code called prior to freeing this resource
683  * @data:    extra data allocated for the specific use-case
684  *
685  * this is based on ideas from devres, but focused on life-cycle
686  * management during spi_message processing
687  */
688 struct spi_res {
689 	struct list_head        entry;
690 	spi_res_release_t       release;
691 	unsigned long long      data[]; /* guarantee ull alignment */
692 };
693 
694 extern void *spi_res_alloc(struct spi_device *spi,
695 			   spi_res_release_t release,
696 			   size_t size, gfp_t gfp);
697 extern void spi_res_add(struct spi_message *message, void *res);
698 extern void spi_res_free(void *res);
699 
700 extern void spi_res_release(struct spi_controller *ctlr,
701 			    struct spi_message *message);
702 
703 /*---------------------------------------------------------------------------*/
704 
705 /*
706  * I/O INTERFACE between SPI controller and protocol drivers
707  *
708  * Protocol drivers use a queue of spi_messages, each transferring data
709  * between the controller and memory buffers.
710  *
711  * The spi_messages themselves consist of a series of read+write transfer
712  * segments.  Those segments always read the same number of bits as they
713  * write; but one or the other is easily ignored by passing a null buffer
714  * pointer.  (This is unlike most types of I/O API, because SPI hardware
715  * is full duplex.)
716  *
717  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
718  * up to the protocol driver, which guarantees the integrity of both (as
719  * well as the data buffers) for as long as the message is queued.
720  */
721 
722 /**
723  * struct spi_transfer - a read/write buffer pair
724  * @tx_buf: data to be written (dma-safe memory), or NULL
725  * @rx_buf: data to be read (dma-safe memory), or NULL
726  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
727  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
728  * @tx_nbits: number of bits used for writing. If 0 the default
729  *      (SPI_NBITS_SINGLE) is used.
730  * @rx_nbits: number of bits used for reading. If 0 the default
731  *      (SPI_NBITS_SINGLE) is used.
732  * @len: size of rx and tx buffers (in bytes)
733  * @speed_hz: Select a speed other than the device default for this
734  *      transfer. If 0 the default (from @spi_device) is used.
735  * @bits_per_word: select a bits_per_word other than the device default
736  *      for this transfer. If 0 the default (from @spi_device) is used.
737  * @cs_change: affects chipselect after this transfer completes
738  * @delay_usecs: microseconds to delay after this transfer before
739  *	(optionally) changing the chipselect status, then starting
740  *	the next transfer or completing this @spi_message.
741  * @word_delay_usecs: microseconds to inter word delay after each word size
742  *	(set by bits_per_word) transmission.
743  * @word_delay: clock cycles to inter word delay after each word size
744  *	(set by bits_per_word) transmission.
745  * @transfer_list: transfers are sequenced through @spi_message.transfers
746  * @tx_sg: Scatterlist for transmit, currently not for client use
747  * @rx_sg: Scatterlist for receive, currently not for client use
748  *
749  * SPI transfers always write the same number of bytes as they read.
750  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
751  * In some cases, they may also want to provide DMA addresses for
752  * the data being transferred; that may reduce overhead, when the
753  * underlying driver uses dma.
754  *
755  * If the transmit buffer is null, zeroes will be shifted out
756  * while filling @rx_buf.  If the receive buffer is null, the data
757  * shifted in will be discarded.  Only "len" bytes shift out (or in).
758  * It's an error to try to shift out a partial word.  (For example, by
759  * shifting out three bytes with word size of sixteen or twenty bits;
760  * the former uses two bytes per word, the latter uses four bytes.)
761  *
762  * In-memory data values are always in native CPU byte order, translated
763  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
764  * for example when bits_per_word is sixteen, buffers are 2N bytes long
765  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
766  *
767  * When the word size of the SPI transfer is not a power-of-two multiple
768  * of eight bits, those in-memory words include extra bits.  In-memory
769  * words are always seen by protocol drivers as right-justified, so the
770  * undefined (rx) or unused (tx) bits are always the most significant bits.
771  *
772  * All SPI transfers start with the relevant chipselect active.  Normally
773  * it stays selected until after the last transfer in a message.  Drivers
774  * can affect the chipselect signal using cs_change.
775  *
776  * (i) If the transfer isn't the last one in the message, this flag is
777  * used to make the chipselect briefly go inactive in the middle of the
778  * message.  Toggling chipselect in this way may be needed to terminate
779  * a chip command, letting a single spi_message perform all of group of
780  * chip transactions together.
781  *
782  * (ii) When the transfer is the last one in the message, the chip may
783  * stay selected until the next transfer.  On multi-device SPI busses
784  * with nothing blocking messages going to other devices, this is just
785  * a performance hint; starting a message to another device deselects
786  * this one.  But in other cases, this can be used to ensure correctness.
787  * Some devices need protocol transactions to be built from a series of
788  * spi_message submissions, where the content of one message is determined
789  * by the results of previous messages and where the whole transaction
790  * ends when the chipselect goes intactive.
791  *
792  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
793  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
794  * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
795  * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
796  *
797  * The code that submits an spi_message (and its spi_transfers)
798  * to the lower layers is responsible for managing its memory.
799  * Zero-initialize every field you don't set up explicitly, to
800  * insulate against future API updates.  After you submit a message
801  * and its transfers, ignore them until its completion callback.
802  */
803 struct spi_transfer {
804 	/* it's ok if tx_buf == rx_buf (right?)
805 	 * for MicroWire, one buffer must be null
806 	 * buffers must work with dma_*map_single() calls, unless
807 	 *   spi_message.is_dma_mapped reports a pre-existing mapping
808 	 */
809 	const void	*tx_buf;
810 	void		*rx_buf;
811 	unsigned	len;
812 
813 	dma_addr_t	tx_dma;
814 	dma_addr_t	rx_dma;
815 	struct sg_table tx_sg;
816 	struct sg_table rx_sg;
817 
818 	unsigned	cs_change:1;
819 	unsigned	tx_nbits:3;
820 	unsigned	rx_nbits:3;
821 #define	SPI_NBITS_SINGLE	0x01 /* 1bit transfer */
822 #define	SPI_NBITS_DUAL		0x02 /* 2bits transfer */
823 #define	SPI_NBITS_QUAD		0x04 /* 4bits transfer */
824 	u8		bits_per_word;
825 	u8		word_delay_usecs;
826 	u16		delay_usecs;
827 	u32		speed_hz;
828 	u16		word_delay;
829 
830 	struct list_head transfer_list;
831 };
832 
833 /**
834  * struct spi_message - one multi-segment SPI transaction
835  * @transfers: list of transfer segments in this transaction
836  * @spi: SPI device to which the transaction is queued
837  * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
838  *	addresses for each transfer buffer
839  * @complete: called to report transaction completions
840  * @context: the argument to complete() when it's called
841  * @frame_length: the total number of bytes in the message
842  * @actual_length: the total number of bytes that were transferred in all
843  *	successful segments
844  * @status: zero for success, else negative errno
845  * @queue: for use by whichever driver currently owns the message
846  * @state: for use by whichever driver currently owns the message
847  * @resources: for resource management when the spi message is processed
848  *
849  * A @spi_message is used to execute an atomic sequence of data transfers,
850  * each represented by a struct spi_transfer.  The sequence is "atomic"
851  * in the sense that no other spi_message may use that SPI bus until that
852  * sequence completes.  On some systems, many such sequences can execute as
853  * as single programmed DMA transfer.  On all systems, these messages are
854  * queued, and might complete after transactions to other devices.  Messages
855  * sent to a given spi_device are always executed in FIFO order.
856  *
857  * The code that submits an spi_message (and its spi_transfers)
858  * to the lower layers is responsible for managing its memory.
859  * Zero-initialize every field you don't set up explicitly, to
860  * insulate against future API updates.  After you submit a message
861  * and its transfers, ignore them until its completion callback.
862  */
863 struct spi_message {
864 	struct list_head	transfers;
865 
866 	struct spi_device	*spi;
867 
868 	unsigned		is_dma_mapped:1;
869 
870 	/* REVISIT:  we might want a flag affecting the behavior of the
871 	 * last transfer ... allowing things like "read 16 bit length L"
872 	 * immediately followed by "read L bytes".  Basically imposing
873 	 * a specific message scheduling algorithm.
874 	 *
875 	 * Some controller drivers (message-at-a-time queue processing)
876 	 * could provide that as their default scheduling algorithm.  But
877 	 * others (with multi-message pipelines) could need a flag to
878 	 * tell them about such special cases.
879 	 */
880 
881 	/* completion is reported through a callback */
882 	void			(*complete)(void *context);
883 	void			*context;
884 	unsigned		frame_length;
885 	unsigned		actual_length;
886 	int			status;
887 
888 	/* for optional use by whatever driver currently owns the
889 	 * spi_message ...  between calls to spi_async and then later
890 	 * complete(), that's the spi_controller controller driver.
891 	 */
892 	struct list_head	queue;
893 	void			*state;
894 
895 	/* list of spi_res reources when the spi message is processed */
896 	struct list_head        resources;
897 };
898 
899 static inline void spi_message_init_no_memset(struct spi_message *m)
900 {
901 	INIT_LIST_HEAD(&m->transfers);
902 	INIT_LIST_HEAD(&m->resources);
903 }
904 
905 static inline void spi_message_init(struct spi_message *m)
906 {
907 	memset(m, 0, sizeof *m);
908 	spi_message_init_no_memset(m);
909 }
910 
911 static inline void
912 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
913 {
914 	list_add_tail(&t->transfer_list, &m->transfers);
915 }
916 
917 static inline void
918 spi_transfer_del(struct spi_transfer *t)
919 {
920 	list_del(&t->transfer_list);
921 }
922 
923 /**
924  * spi_message_init_with_transfers - Initialize spi_message and append transfers
925  * @m: spi_message to be initialized
926  * @xfers: An array of spi transfers
927  * @num_xfers: Number of items in the xfer array
928  *
929  * This function initializes the given spi_message and adds each spi_transfer in
930  * the given array to the message.
931  */
932 static inline void
933 spi_message_init_with_transfers(struct spi_message *m,
934 struct spi_transfer *xfers, unsigned int num_xfers)
935 {
936 	unsigned int i;
937 
938 	spi_message_init(m);
939 	for (i = 0; i < num_xfers; ++i)
940 		spi_message_add_tail(&xfers[i], m);
941 }
942 
943 /* It's fine to embed message and transaction structures in other data
944  * structures so long as you don't free them while they're in use.
945  */
946 
947 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
948 {
949 	struct spi_message *m;
950 
951 	m = kzalloc(sizeof(struct spi_message)
952 			+ ntrans * sizeof(struct spi_transfer),
953 			flags);
954 	if (m) {
955 		unsigned i;
956 		struct spi_transfer *t = (struct spi_transfer *)(m + 1);
957 
958 		spi_message_init_no_memset(m);
959 		for (i = 0; i < ntrans; i++, t++)
960 			spi_message_add_tail(t, m);
961 	}
962 	return m;
963 }
964 
965 static inline void spi_message_free(struct spi_message *m)
966 {
967 	kfree(m);
968 }
969 
970 extern int spi_setup(struct spi_device *spi);
971 extern int spi_async(struct spi_device *spi, struct spi_message *message);
972 extern int spi_async_locked(struct spi_device *spi,
973 			    struct spi_message *message);
974 extern int spi_slave_abort(struct spi_device *spi);
975 
976 static inline size_t
977 spi_max_message_size(struct spi_device *spi)
978 {
979 	struct spi_controller *ctlr = spi->controller;
980 
981 	if (!ctlr->max_message_size)
982 		return SIZE_MAX;
983 	return ctlr->max_message_size(spi);
984 }
985 
986 static inline size_t
987 spi_max_transfer_size(struct spi_device *spi)
988 {
989 	struct spi_controller *ctlr = spi->controller;
990 	size_t tr_max = SIZE_MAX;
991 	size_t msg_max = spi_max_message_size(spi);
992 
993 	if (ctlr->max_transfer_size)
994 		tr_max = ctlr->max_transfer_size(spi);
995 
996 	/* transfer size limit must not be greater than messsage size limit */
997 	return min(tr_max, msg_max);
998 }
999 
1000 /*---------------------------------------------------------------------------*/
1001 
1002 /* SPI transfer replacement methods which make use of spi_res */
1003 
1004 struct spi_replaced_transfers;
1005 typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
1006 				       struct spi_message *msg,
1007 				       struct spi_replaced_transfers *res);
1008 /**
1009  * struct spi_replaced_transfers - structure describing the spi_transfer
1010  *                                 replacements that have occurred
1011  *                                 so that they can get reverted
1012  * @release:            some extra release code to get executed prior to
1013  *                      relasing this structure
1014  * @extradata:          pointer to some extra data if requested or NULL
1015  * @replaced_transfers: transfers that have been replaced and which need
1016  *                      to get restored
1017  * @replaced_after:     the transfer after which the @replaced_transfers
1018  *                      are to get re-inserted
1019  * @inserted:           number of transfers inserted
1020  * @inserted_transfers: array of spi_transfers of array-size @inserted,
1021  *                      that have been replacing replaced_transfers
1022  *
1023  * note: that @extradata will point to @inserted_transfers[@inserted]
1024  * if some extra allocation is requested, so alignment will be the same
1025  * as for spi_transfers
1026  */
1027 struct spi_replaced_transfers {
1028 	spi_replaced_release_t release;
1029 	void *extradata;
1030 	struct list_head replaced_transfers;
1031 	struct list_head *replaced_after;
1032 	size_t inserted;
1033 	struct spi_transfer inserted_transfers[];
1034 };
1035 
1036 extern struct spi_replaced_transfers *spi_replace_transfers(
1037 	struct spi_message *msg,
1038 	struct spi_transfer *xfer_first,
1039 	size_t remove,
1040 	size_t insert,
1041 	spi_replaced_release_t release,
1042 	size_t extradatasize,
1043 	gfp_t gfp);
1044 
1045 /*---------------------------------------------------------------------------*/
1046 
1047 /* SPI transfer transformation methods */
1048 
1049 extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
1050 				       struct spi_message *msg,
1051 				       size_t maxsize,
1052 				       gfp_t gfp);
1053 
1054 /*---------------------------------------------------------------------------*/
1055 
1056 /* All these synchronous SPI transfer routines are utilities layered
1057  * over the core async transfer primitive.  Here, "synchronous" means
1058  * they will sleep uninterruptibly until the async transfer completes.
1059  */
1060 
1061 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
1062 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
1063 extern int spi_bus_lock(struct spi_controller *ctlr);
1064 extern int spi_bus_unlock(struct spi_controller *ctlr);
1065 
1066 /**
1067  * spi_sync_transfer - synchronous SPI data transfer
1068  * @spi: device with which data will be exchanged
1069  * @xfers: An array of spi_transfers
1070  * @num_xfers: Number of items in the xfer array
1071  * Context: can sleep
1072  *
1073  * Does a synchronous SPI data transfer of the given spi_transfer array.
1074  *
1075  * For more specific semantics see spi_sync().
1076  *
1077  * Return: Return: zero on success, else a negative error code.
1078  */
1079 static inline int
1080 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1081 	unsigned int num_xfers)
1082 {
1083 	struct spi_message msg;
1084 
1085 	spi_message_init_with_transfers(&msg, xfers, num_xfers);
1086 
1087 	return spi_sync(spi, &msg);
1088 }
1089 
1090 /**
1091  * spi_write - SPI synchronous write
1092  * @spi: device to which data will be written
1093  * @buf: data buffer
1094  * @len: data buffer size
1095  * Context: can sleep
1096  *
1097  * This function writes the buffer @buf.
1098  * Callable only from contexts that can sleep.
1099  *
1100  * Return: zero on success, else a negative error code.
1101  */
1102 static inline int
1103 spi_write(struct spi_device *spi, const void *buf, size_t len)
1104 {
1105 	struct spi_transfer	t = {
1106 			.tx_buf		= buf,
1107 			.len		= len,
1108 		};
1109 
1110 	return spi_sync_transfer(spi, &t, 1);
1111 }
1112 
1113 /**
1114  * spi_read - SPI synchronous read
1115  * @spi: device from which data will be read
1116  * @buf: data buffer
1117  * @len: data buffer size
1118  * Context: can sleep
1119  *
1120  * This function reads the buffer @buf.
1121  * Callable only from contexts that can sleep.
1122  *
1123  * Return: zero on success, else a negative error code.
1124  */
1125 static inline int
1126 spi_read(struct spi_device *spi, void *buf, size_t len)
1127 {
1128 	struct spi_transfer	t = {
1129 			.rx_buf		= buf,
1130 			.len		= len,
1131 		};
1132 
1133 	return spi_sync_transfer(spi, &t, 1);
1134 }
1135 
1136 /* this copies txbuf and rxbuf data; for small transfers only! */
1137 extern int spi_write_then_read(struct spi_device *spi,
1138 		const void *txbuf, unsigned n_tx,
1139 		void *rxbuf, unsigned n_rx);
1140 
1141 /**
1142  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1143  * @spi: device with which data will be exchanged
1144  * @cmd: command to be written before data is read back
1145  * Context: can sleep
1146  *
1147  * Callable only from contexts that can sleep.
1148  *
1149  * Return: the (unsigned) eight bit number returned by the
1150  * device, or else a negative error code.
1151  */
1152 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1153 {
1154 	ssize_t			status;
1155 	u8			result;
1156 
1157 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1158 
1159 	/* return negative errno or unsigned value */
1160 	return (status < 0) ? status : result;
1161 }
1162 
1163 /**
1164  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1165  * @spi: device with which data will be exchanged
1166  * @cmd: command to be written before data is read back
1167  * Context: can sleep
1168  *
1169  * The number is returned in wire-order, which is at least sometimes
1170  * big-endian.
1171  *
1172  * Callable only from contexts that can sleep.
1173  *
1174  * Return: the (unsigned) sixteen bit number returned by the
1175  * device, or else a negative error code.
1176  */
1177 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1178 {
1179 	ssize_t			status;
1180 	u16			result;
1181 
1182 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1183 
1184 	/* return negative errno or unsigned value */
1185 	return (status < 0) ? status : result;
1186 }
1187 
1188 /**
1189  * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1190  * @spi: device with which data will be exchanged
1191  * @cmd: command to be written before data is read back
1192  * Context: can sleep
1193  *
1194  * This function is similar to spi_w8r16, with the exception that it will
1195  * convert the read 16 bit data word from big-endian to native endianness.
1196  *
1197  * Callable only from contexts that can sleep.
1198  *
1199  * Return: the (unsigned) sixteen bit number returned by the device in cpu
1200  * endianness, or else a negative error code.
1201  */
1202 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1203 
1204 {
1205 	ssize_t status;
1206 	__be16 result;
1207 
1208 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1209 	if (status < 0)
1210 		return status;
1211 
1212 	return be16_to_cpu(result);
1213 }
1214 
1215 /*---------------------------------------------------------------------------*/
1216 
1217 /*
1218  * INTERFACE between board init code and SPI infrastructure.
1219  *
1220  * No SPI driver ever sees these SPI device table segments, but
1221  * it's how the SPI core (or adapters that get hotplugged) grows
1222  * the driver model tree.
1223  *
1224  * As a rule, SPI devices can't be probed.  Instead, board init code
1225  * provides a table listing the devices which are present, with enough
1226  * information to bind and set up the device's driver.  There's basic
1227  * support for nonstatic configurations too; enough to handle adding
1228  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1229  */
1230 
1231 /**
1232  * struct spi_board_info - board-specific template for a SPI device
1233  * @modalias: Initializes spi_device.modalias; identifies the driver.
1234  * @platform_data: Initializes spi_device.platform_data; the particular
1235  *	data stored there is driver-specific.
1236  * @properties: Additional device properties for the device.
1237  * @controller_data: Initializes spi_device.controller_data; some
1238  *	controllers need hints about hardware setup, e.g. for DMA.
1239  * @irq: Initializes spi_device.irq; depends on how the board is wired.
1240  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1241  *	from the chip datasheet and board-specific signal quality issues.
1242  * @bus_num: Identifies which spi_controller parents the spi_device; unused
1243  *	by spi_new_device(), and otherwise depends on board wiring.
1244  * @chip_select: Initializes spi_device.chip_select; depends on how
1245  *	the board is wired.
1246  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1247  *	wiring (some devices support both 3WIRE and standard modes), and
1248  *	possibly presence of an inverter in the chipselect path.
1249  *
1250  * When adding new SPI devices to the device tree, these structures serve
1251  * as a partial device template.  They hold information which can't always
1252  * be determined by drivers.  Information that probe() can establish (such
1253  * as the default transfer wordsize) is not included here.
1254  *
1255  * These structures are used in two places.  Their primary role is to
1256  * be stored in tables of board-specific device descriptors, which are
1257  * declared early in board initialization and then used (much later) to
1258  * populate a controller's device tree after the that controller's driver
1259  * initializes.  A secondary (and atypical) role is as a parameter to
1260  * spi_new_device() call, which happens after those controller drivers
1261  * are active in some dynamic board configuration models.
1262  */
1263 struct spi_board_info {
1264 	/* the device name and module name are coupled, like platform_bus;
1265 	 * "modalias" is normally the driver name.
1266 	 *
1267 	 * platform_data goes to spi_device.dev.platform_data,
1268 	 * controller_data goes to spi_device.controller_data,
1269 	 * device properties are copied and attached to spi_device,
1270 	 * irq is copied too
1271 	 */
1272 	char		modalias[SPI_NAME_SIZE];
1273 	const void	*platform_data;
1274 	const struct property_entry *properties;
1275 	void		*controller_data;
1276 	int		irq;
1277 
1278 	/* slower signaling on noisy or low voltage boards */
1279 	u32		max_speed_hz;
1280 
1281 
1282 	/* bus_num is board specific and matches the bus_num of some
1283 	 * spi_controller that will probably be registered later.
1284 	 *
1285 	 * chip_select reflects how this chip is wired to that master;
1286 	 * it's less than num_chipselect.
1287 	 */
1288 	u16		bus_num;
1289 	u16		chip_select;
1290 
1291 	/* mode becomes spi_device.mode, and is essential for chips
1292 	 * where the default of SPI_CS_HIGH = 0 is wrong.
1293 	 */
1294 	u32		mode;
1295 
1296 	/* ... may need additional spi_device chip config data here.
1297 	 * avoid stuff protocol drivers can set; but include stuff
1298 	 * needed to behave without being bound to a driver:
1299 	 *  - quirks like clock rate mattering when not selected
1300 	 */
1301 };
1302 
1303 #ifdef	CONFIG_SPI
1304 extern int
1305 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1306 #else
1307 /* board init code may ignore whether SPI is configured or not */
1308 static inline int
1309 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1310 	{ return 0; }
1311 #endif
1312 
1313 /* If you're hotplugging an adapter with devices (parport, usb, etc)
1314  * use spi_new_device() to describe each device.  You can also call
1315  * spi_unregister_device() to start making that device vanish, but
1316  * normally that would be handled by spi_unregister_controller().
1317  *
1318  * You can also use spi_alloc_device() and spi_add_device() to use a two
1319  * stage registration sequence for each spi_device.  This gives the caller
1320  * some more control over the spi_device structure before it is registered,
1321  * but requires that caller to initialize fields that would otherwise
1322  * be defined using the board info.
1323  */
1324 extern struct spi_device *
1325 spi_alloc_device(struct spi_controller *ctlr);
1326 
1327 extern int
1328 spi_add_device(struct spi_device *spi);
1329 
1330 extern struct spi_device *
1331 spi_new_device(struct spi_controller *, struct spi_board_info *);
1332 
1333 extern void spi_unregister_device(struct spi_device *spi);
1334 
1335 extern const struct spi_device_id *
1336 spi_get_device_id(const struct spi_device *sdev);
1337 
1338 static inline bool
1339 spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
1340 {
1341 	return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
1342 }
1343 
1344 /* OF support code */
1345 #if IS_ENABLED(CONFIG_OF)
1346 
1347 /* must call put_device() when done with returned spi_device device */
1348 extern struct spi_device *
1349 of_find_spi_device_by_node(struct device_node *node);
1350 
1351 #else
1352 
1353 static inline struct spi_device *
1354 of_find_spi_device_by_node(struct device_node *node)
1355 {
1356 	return NULL;
1357 }
1358 
1359 #endif /* IS_ENABLED(CONFIG_OF) */
1360 
1361 /* Compatibility layer */
1362 #define spi_master			spi_controller
1363 
1364 #define SPI_MASTER_HALF_DUPLEX		SPI_CONTROLLER_HALF_DUPLEX
1365 #define SPI_MASTER_NO_RX		SPI_CONTROLLER_NO_RX
1366 #define SPI_MASTER_NO_TX		SPI_CONTROLLER_NO_TX
1367 #define SPI_MASTER_MUST_RX		SPI_CONTROLLER_MUST_RX
1368 #define SPI_MASTER_MUST_TX		SPI_CONTROLLER_MUST_TX
1369 
1370 #define spi_master_get_devdata(_ctlr)	spi_controller_get_devdata(_ctlr)
1371 #define spi_master_set_devdata(_ctlr, _data)	\
1372 	spi_controller_set_devdata(_ctlr, _data)
1373 #define spi_master_get(_ctlr)		spi_controller_get(_ctlr)
1374 #define spi_master_put(_ctlr)		spi_controller_put(_ctlr)
1375 #define spi_master_suspend(_ctlr)	spi_controller_suspend(_ctlr)
1376 #define spi_master_resume(_ctlr)	spi_controller_resume(_ctlr)
1377 
1378 #define spi_register_master(_ctlr)	spi_register_controller(_ctlr)
1379 #define devm_spi_register_master(_dev, _ctlr) \
1380 	devm_spi_register_controller(_dev, _ctlr)
1381 #define spi_unregister_master(_ctlr)	spi_unregister_controller(_ctlr)
1382 
1383 #endif /* __LINUX_SPI_H */
1384