xref: /linux/include/linux/swait.h (revision 44f57d78)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SWAIT_H
3 #define _LINUX_SWAIT_H
4 
5 #include <linux/list.h>
6 #include <linux/stddef.h>
7 #include <linux/spinlock.h>
8 #include <linux/wait.h>
9 #include <asm/current.h>
10 
11 /*
12  * BROKEN wait-queues.
13  *
14  * These "simple" wait-queues are broken garbage, and should never be
15  * used. The comments below claim that they are "similar" to regular
16  * wait-queues, but the semantics are actually completely different, and
17  * every single user we have ever had has been buggy (or pointless).
18  *
19  * A "swake_up_one()" only wakes up _one_ waiter, which is not at all what
20  * "wake_up()" does, and has led to problems. In other cases, it has
21  * been fine, because there's only ever one waiter (kvm), but in that
22  * case gthe whole "simple" wait-queue is just pointless to begin with,
23  * since there is no "queue". Use "wake_up_process()" with a direct
24  * pointer instead.
25  *
26  * While these are very similar to regular wait queues (wait.h) the most
27  * important difference is that the simple waitqueue allows for deterministic
28  * behaviour -- IOW it has strictly bounded IRQ and lock hold times.
29  *
30  * Mainly, this is accomplished by two things. Firstly not allowing swake_up_all
31  * from IRQ disabled, and dropping the lock upon every wakeup, giving a higher
32  * priority task a chance to run.
33  *
34  * Secondly, we had to drop a fair number of features of the other waitqueue
35  * code; notably:
36  *
37  *  - mixing INTERRUPTIBLE and UNINTERRUPTIBLE sleeps on the same waitqueue;
38  *    all wakeups are TASK_NORMAL in order to avoid O(n) lookups for the right
39  *    sleeper state.
40  *
41  *  - the !exclusive mode; because that leads to O(n) wakeups, everything is
42  *    exclusive.
43  *
44  *  - custom wake callback functions; because you cannot give any guarantees
45  *    about random code. This also allows swait to be used in RT, such that
46  *    raw spinlock can be used for the swait queue head.
47  *
48  * As a side effect of these; the data structures are slimmer albeit more ad-hoc.
49  * For all the above, note that simple wait queues should _only_ be used under
50  * very specific realtime constraints -- it is best to stick with the regular
51  * wait queues in most cases.
52  */
53 
54 struct task_struct;
55 
56 struct swait_queue_head {
57 	raw_spinlock_t		lock;
58 	struct list_head	task_list;
59 };
60 
61 struct swait_queue {
62 	struct task_struct	*task;
63 	struct list_head	task_list;
64 };
65 
66 #define __SWAITQUEUE_INITIALIZER(name) {				\
67 	.task		= current,					\
68 	.task_list	= LIST_HEAD_INIT((name).task_list),		\
69 }
70 
71 #define DECLARE_SWAITQUEUE(name)					\
72 	struct swait_queue name = __SWAITQUEUE_INITIALIZER(name)
73 
74 #define __SWAIT_QUEUE_HEAD_INITIALIZER(name) {				\
75 	.lock		= __RAW_SPIN_LOCK_UNLOCKED(name.lock),		\
76 	.task_list	= LIST_HEAD_INIT((name).task_list),		\
77 }
78 
79 #define DECLARE_SWAIT_QUEUE_HEAD(name)					\
80 	struct swait_queue_head name = __SWAIT_QUEUE_HEAD_INITIALIZER(name)
81 
82 extern void __init_swait_queue_head(struct swait_queue_head *q, const char *name,
83 				    struct lock_class_key *key);
84 
85 #define init_swait_queue_head(q)				\
86 	do {							\
87 		static struct lock_class_key __key;		\
88 		__init_swait_queue_head((q), #q, &__key);	\
89 	} while (0)
90 
91 #ifdef CONFIG_LOCKDEP
92 # define __SWAIT_QUEUE_HEAD_INIT_ONSTACK(name)			\
93 	({ init_swait_queue_head(&name); name; })
94 # define DECLARE_SWAIT_QUEUE_HEAD_ONSTACK(name)			\
95 	struct swait_queue_head name = __SWAIT_QUEUE_HEAD_INIT_ONSTACK(name)
96 #else
97 # define DECLARE_SWAIT_QUEUE_HEAD_ONSTACK(name)			\
98 	DECLARE_SWAIT_QUEUE_HEAD(name)
99 #endif
100 
101 /**
102  * swait_active -- locklessly test for waiters on the queue
103  * @wq: the waitqueue to test for waiters
104  *
105  * returns true if the wait list is not empty
106  *
107  * NOTE: this function is lockless and requires care, incorrect usage _will_
108  * lead to sporadic and non-obvious failure.
109  *
110  * NOTE2: this function has the same above implications as regular waitqueues.
111  *
112  * Use either while holding swait_queue_head::lock or when used for wakeups
113  * with an extra smp_mb() like:
114  *
115  *      CPU0 - waker                    CPU1 - waiter
116  *
117  *                                      for (;;) {
118  *      @cond = true;                     prepare_to_swait_exclusive(&wq_head, &wait, state);
119  *      smp_mb();                         // smp_mb() from set_current_state()
120  *      if (swait_active(wq_head))        if (@cond)
121  *        wake_up(wq_head);                      break;
122  *                                        schedule();
123  *                                      }
124  *                                      finish_swait(&wq_head, &wait);
125  *
126  * Because without the explicit smp_mb() it's possible for the
127  * swait_active() load to get hoisted over the @cond store such that we'll
128  * observe an empty wait list while the waiter might not observe @cond.
129  * This, in turn, can trigger missing wakeups.
130  *
131  * Also note that this 'optimization' trades a spin_lock() for an smp_mb(),
132  * which (when the lock is uncontended) are of roughly equal cost.
133  */
134 static inline int swait_active(struct swait_queue_head *wq)
135 {
136 	return !list_empty(&wq->task_list);
137 }
138 
139 /**
140  * swq_has_sleeper - check if there are any waiting processes
141  * @wq: the waitqueue to test for waiters
142  *
143  * Returns true if @wq has waiting processes
144  *
145  * Please refer to the comment for swait_active.
146  */
147 static inline bool swq_has_sleeper(struct swait_queue_head *wq)
148 {
149 	/*
150 	 * We need to be sure we are in sync with the list_add()
151 	 * modifications to the wait queue (task_list).
152 	 *
153 	 * This memory barrier should be paired with one on the
154 	 * waiting side.
155 	 */
156 	smp_mb();
157 	return swait_active(wq);
158 }
159 
160 extern void swake_up_one(struct swait_queue_head *q);
161 extern void swake_up_all(struct swait_queue_head *q);
162 extern void swake_up_locked(struct swait_queue_head *q);
163 
164 extern void prepare_to_swait_exclusive(struct swait_queue_head *q, struct swait_queue *wait, int state);
165 extern long prepare_to_swait_event(struct swait_queue_head *q, struct swait_queue *wait, int state);
166 
167 extern void __finish_swait(struct swait_queue_head *q, struct swait_queue *wait);
168 extern void finish_swait(struct swait_queue_head *q, struct swait_queue *wait);
169 
170 /* as per ___wait_event() but for swait, therefore "exclusive == 1" */
171 #define ___swait_event(wq, condition, state, ret, cmd)			\
172 ({									\
173 	__label__ __out;						\
174 	struct swait_queue __wait;					\
175 	long __ret = ret;						\
176 									\
177 	INIT_LIST_HEAD(&__wait.task_list);				\
178 	for (;;) {							\
179 		long __int = prepare_to_swait_event(&wq, &__wait, state);\
180 									\
181 		if (condition)						\
182 			break;						\
183 									\
184 		if (___wait_is_interruptible(state) && __int) {		\
185 			__ret = __int;					\
186 			goto __out;					\
187 		}							\
188 									\
189 		cmd;							\
190 	}								\
191 	finish_swait(&wq, &__wait);					\
192 __out:	__ret;								\
193 })
194 
195 #define __swait_event(wq, condition)					\
196 	(void)___swait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0,	\
197 			    schedule())
198 
199 #define swait_event_exclusive(wq, condition)				\
200 do {									\
201 	if (condition)							\
202 		break;							\
203 	__swait_event(wq, condition);					\
204 } while (0)
205 
206 #define __swait_event_timeout(wq, condition, timeout)			\
207 	___swait_event(wq, ___wait_cond_timeout(condition),		\
208 		      TASK_UNINTERRUPTIBLE, timeout,			\
209 		      __ret = schedule_timeout(__ret))
210 
211 #define swait_event_timeout_exclusive(wq, condition, timeout)		\
212 ({									\
213 	long __ret = timeout;						\
214 	if (!___wait_cond_timeout(condition))				\
215 		__ret = __swait_event_timeout(wq, condition, timeout);	\
216 	__ret;								\
217 })
218 
219 #define __swait_event_interruptible(wq, condition)			\
220 	___swait_event(wq, condition, TASK_INTERRUPTIBLE, 0,		\
221 		      schedule())
222 
223 #define swait_event_interruptible_exclusive(wq, condition)		\
224 ({									\
225 	int __ret = 0;							\
226 	if (!(condition))						\
227 		__ret = __swait_event_interruptible(wq, condition);	\
228 	__ret;								\
229 })
230 
231 #define __swait_event_interruptible_timeout(wq, condition, timeout)	\
232 	___swait_event(wq, ___wait_cond_timeout(condition),		\
233 		      TASK_INTERRUPTIBLE, timeout,			\
234 		      __ret = schedule_timeout(__ret))
235 
236 #define swait_event_interruptible_timeout_exclusive(wq, condition, timeout)\
237 ({									\
238 	long __ret = timeout;						\
239 	if (!___wait_cond_timeout(condition))				\
240 		__ret = __swait_event_interruptible_timeout(wq,		\
241 						condition, timeout);	\
242 	__ret;								\
243 })
244 
245 #define __swait_event_idle(wq, condition)				\
246 	(void)___swait_event(wq, condition, TASK_IDLE, 0, schedule())
247 
248 /**
249  * swait_event_idle_exclusive - wait without system load contribution
250  * @wq: the waitqueue to wait on
251  * @condition: a C expression for the event to wait for
252  *
253  * The process is put to sleep (TASK_IDLE) until the @condition evaluates to
254  * true. The @condition is checked each time the waitqueue @wq is woken up.
255  *
256  * This function is mostly used when a kthread or workqueue waits for some
257  * condition and doesn't want to contribute to system load. Signals are
258  * ignored.
259  */
260 #define swait_event_idle_exclusive(wq, condition)			\
261 do {									\
262 	if (condition)							\
263 		break;							\
264 	__swait_event_idle(wq, condition);				\
265 } while (0)
266 
267 #define __swait_event_idle_timeout(wq, condition, timeout)		\
268 	___swait_event(wq, ___wait_cond_timeout(condition),		\
269 		       TASK_IDLE, timeout,				\
270 		       __ret = schedule_timeout(__ret))
271 
272 /**
273  * swait_event_idle_timeout_exclusive - wait up to timeout without load contribution
274  * @wq: the waitqueue to wait on
275  * @condition: a C expression for the event to wait for
276  * @timeout: timeout at which we'll give up in jiffies
277  *
278  * The process is put to sleep (TASK_IDLE) until the @condition evaluates to
279  * true. The @condition is checked each time the waitqueue @wq is woken up.
280  *
281  * This function is mostly used when a kthread or workqueue waits for some
282  * condition and doesn't want to contribute to system load. Signals are
283  * ignored.
284  *
285  * Returns:
286  * 0 if the @condition evaluated to %false after the @timeout elapsed,
287  * 1 if the @condition evaluated to %true after the @timeout elapsed,
288  * or the remaining jiffies (at least 1) if the @condition evaluated
289  * to %true before the @timeout elapsed.
290  */
291 #define swait_event_idle_timeout_exclusive(wq, condition, timeout)	\
292 ({									\
293 	long __ret = timeout;						\
294 	if (!___wait_cond_timeout(condition))				\
295 		__ret = __swait_event_idle_timeout(wq,			\
296 						   condition, timeout);	\
297 	__ret;								\
298 })
299 
300 #endif /* _LINUX_SWAIT_H */
301