xref: /linux/include/linux/swapops.h (revision d6fd48ef)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SWAPOPS_H
3 #define _LINUX_SWAPOPS_H
4 
5 #include <linux/radix-tree.h>
6 #include <linux/bug.h>
7 #include <linux/mm_types.h>
8 
9 #ifdef CONFIG_MMU
10 
11 #ifdef CONFIG_SWAP
12 #include <linux/swapfile.h>
13 #endif	/* CONFIG_SWAP */
14 
15 /*
16  * swapcache pages are stored in the swapper_space radix tree.  We want to
17  * get good packing density in that tree, so the index should be dense in
18  * the low-order bits.
19  *
20  * We arrange the `type' and `offset' fields so that `type' is at the six
21  * high-order bits of the swp_entry_t and `offset' is right-aligned in the
22  * remaining bits.  Although `type' itself needs only five bits, we allow for
23  * shmem/tmpfs to shift it all up a further one bit: see swp_to_radix_entry().
24  *
25  * swp_entry_t's are *never* stored anywhere in their arch-dependent format.
26  */
27 #define SWP_TYPE_SHIFT	(BITS_PER_XA_VALUE - MAX_SWAPFILES_SHIFT)
28 #define SWP_OFFSET_MASK	((1UL << SWP_TYPE_SHIFT) - 1)
29 
30 /*
31  * Definitions only for PFN swap entries (see is_pfn_swap_entry()).  To
32  * store PFN, we only need SWP_PFN_BITS bits.  Each of the pfn swap entries
33  * can use the extra bits to store other information besides PFN.
34  */
35 #ifdef MAX_PHYSMEM_BITS
36 #define SWP_PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
37 #else  /* MAX_PHYSMEM_BITS */
38 #define SWP_PFN_BITS		min_t(int, \
39 				      sizeof(phys_addr_t) * 8 - PAGE_SHIFT, \
40 				      SWP_TYPE_SHIFT)
41 #endif	/* MAX_PHYSMEM_BITS */
42 #define SWP_PFN_MASK		(BIT(SWP_PFN_BITS) - 1)
43 
44 /**
45  * Migration swap entry specific bitfield definitions.  Layout:
46  *
47  *   |----------+--------------------|
48  *   | swp_type | swp_offset         |
49  *   |----------+--------+-+-+-------|
50  *   |          | resv   |D|A|  PFN  |
51  *   |----------+--------+-+-+-------|
52  *
53  * @SWP_MIG_YOUNG_BIT: Whether the page used to have young bit set (bit A)
54  * @SWP_MIG_DIRTY_BIT: Whether the page used to have dirty bit set (bit D)
55  *
56  * Note: A/D bits will be stored in migration entries iff there're enough
57  * free bits in arch specific swp offset.  By default we'll ignore A/D bits
58  * when migrating a page.  Please refer to migration_entry_supports_ad()
59  * for more information.  If there're more bits besides PFN and A/D bits,
60  * they should be reserved and always be zeros.
61  */
62 #define SWP_MIG_YOUNG_BIT		(SWP_PFN_BITS)
63 #define SWP_MIG_DIRTY_BIT		(SWP_PFN_BITS + 1)
64 #define SWP_MIG_TOTAL_BITS		(SWP_PFN_BITS + 2)
65 
66 #define SWP_MIG_YOUNG			BIT(SWP_MIG_YOUNG_BIT)
67 #define SWP_MIG_DIRTY			BIT(SWP_MIG_DIRTY_BIT)
68 
69 static inline bool is_pfn_swap_entry(swp_entry_t entry);
70 
71 /* Clear all flags but only keep swp_entry_t related information */
72 static inline pte_t pte_swp_clear_flags(pte_t pte)
73 {
74 	if (pte_swp_exclusive(pte))
75 		pte = pte_swp_clear_exclusive(pte);
76 	if (pte_swp_soft_dirty(pte))
77 		pte = pte_swp_clear_soft_dirty(pte);
78 	if (pte_swp_uffd_wp(pte))
79 		pte = pte_swp_clear_uffd_wp(pte);
80 	return pte;
81 }
82 
83 /*
84  * Store a type+offset into a swp_entry_t in an arch-independent format
85  */
86 static inline swp_entry_t swp_entry(unsigned long type, pgoff_t offset)
87 {
88 	swp_entry_t ret;
89 
90 	ret.val = (type << SWP_TYPE_SHIFT) | (offset & SWP_OFFSET_MASK);
91 	return ret;
92 }
93 
94 /*
95  * Extract the `type' field from a swp_entry_t.  The swp_entry_t is in
96  * arch-independent format
97  */
98 static inline unsigned swp_type(swp_entry_t entry)
99 {
100 	return (entry.val >> SWP_TYPE_SHIFT);
101 }
102 
103 /*
104  * Extract the `offset' field from a swp_entry_t.  The swp_entry_t is in
105  * arch-independent format
106  */
107 static inline pgoff_t swp_offset(swp_entry_t entry)
108 {
109 	return entry.val & SWP_OFFSET_MASK;
110 }
111 
112 /*
113  * This should only be called upon a pfn swap entry to get the PFN stored
114  * in the swap entry.  Please refers to is_pfn_swap_entry() for definition
115  * of pfn swap entry.
116  */
117 static inline unsigned long swp_offset_pfn(swp_entry_t entry)
118 {
119 	VM_BUG_ON(!is_pfn_swap_entry(entry));
120 	return swp_offset(entry) & SWP_PFN_MASK;
121 }
122 
123 /* check whether a pte points to a swap entry */
124 static inline int is_swap_pte(pte_t pte)
125 {
126 	return !pte_none(pte) && !pte_present(pte);
127 }
128 
129 /*
130  * Convert the arch-dependent pte representation of a swp_entry_t into an
131  * arch-independent swp_entry_t.
132  */
133 static inline swp_entry_t pte_to_swp_entry(pte_t pte)
134 {
135 	swp_entry_t arch_entry;
136 
137 	pte = pte_swp_clear_flags(pte);
138 	arch_entry = __pte_to_swp_entry(pte);
139 	return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry));
140 }
141 
142 /*
143  * Convert the arch-independent representation of a swp_entry_t into the
144  * arch-dependent pte representation.
145  */
146 static inline pte_t swp_entry_to_pte(swp_entry_t entry)
147 {
148 	swp_entry_t arch_entry;
149 
150 	arch_entry = __swp_entry(swp_type(entry), swp_offset(entry));
151 	return __swp_entry_to_pte(arch_entry);
152 }
153 
154 static inline swp_entry_t radix_to_swp_entry(void *arg)
155 {
156 	swp_entry_t entry;
157 
158 	entry.val = xa_to_value(arg);
159 	return entry;
160 }
161 
162 static inline void *swp_to_radix_entry(swp_entry_t entry)
163 {
164 	return xa_mk_value(entry.val);
165 }
166 
167 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE)
168 static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset)
169 {
170 	return swp_entry(SWP_DEVICE_READ, offset);
171 }
172 
173 static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset)
174 {
175 	return swp_entry(SWP_DEVICE_WRITE, offset);
176 }
177 
178 static inline bool is_device_private_entry(swp_entry_t entry)
179 {
180 	int type = swp_type(entry);
181 	return type == SWP_DEVICE_READ || type == SWP_DEVICE_WRITE;
182 }
183 
184 static inline bool is_writable_device_private_entry(swp_entry_t entry)
185 {
186 	return unlikely(swp_type(entry) == SWP_DEVICE_WRITE);
187 }
188 
189 static inline swp_entry_t make_readable_device_exclusive_entry(pgoff_t offset)
190 {
191 	return swp_entry(SWP_DEVICE_EXCLUSIVE_READ, offset);
192 }
193 
194 static inline swp_entry_t make_writable_device_exclusive_entry(pgoff_t offset)
195 {
196 	return swp_entry(SWP_DEVICE_EXCLUSIVE_WRITE, offset);
197 }
198 
199 static inline bool is_device_exclusive_entry(swp_entry_t entry)
200 {
201 	return swp_type(entry) == SWP_DEVICE_EXCLUSIVE_READ ||
202 		swp_type(entry) == SWP_DEVICE_EXCLUSIVE_WRITE;
203 }
204 
205 static inline bool is_writable_device_exclusive_entry(swp_entry_t entry)
206 {
207 	return unlikely(swp_type(entry) == SWP_DEVICE_EXCLUSIVE_WRITE);
208 }
209 #else /* CONFIG_DEVICE_PRIVATE */
210 static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset)
211 {
212 	return swp_entry(0, 0);
213 }
214 
215 static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset)
216 {
217 	return swp_entry(0, 0);
218 }
219 
220 static inline bool is_device_private_entry(swp_entry_t entry)
221 {
222 	return false;
223 }
224 
225 static inline bool is_writable_device_private_entry(swp_entry_t entry)
226 {
227 	return false;
228 }
229 
230 static inline swp_entry_t make_readable_device_exclusive_entry(pgoff_t offset)
231 {
232 	return swp_entry(0, 0);
233 }
234 
235 static inline swp_entry_t make_writable_device_exclusive_entry(pgoff_t offset)
236 {
237 	return swp_entry(0, 0);
238 }
239 
240 static inline bool is_device_exclusive_entry(swp_entry_t entry)
241 {
242 	return false;
243 }
244 
245 static inline bool is_writable_device_exclusive_entry(swp_entry_t entry)
246 {
247 	return false;
248 }
249 #endif /* CONFIG_DEVICE_PRIVATE */
250 
251 #ifdef CONFIG_MIGRATION
252 static inline int is_migration_entry(swp_entry_t entry)
253 {
254 	return unlikely(swp_type(entry) == SWP_MIGRATION_READ ||
255 			swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE ||
256 			swp_type(entry) == SWP_MIGRATION_WRITE);
257 }
258 
259 static inline int is_writable_migration_entry(swp_entry_t entry)
260 {
261 	return unlikely(swp_type(entry) == SWP_MIGRATION_WRITE);
262 }
263 
264 static inline int is_readable_migration_entry(swp_entry_t entry)
265 {
266 	return unlikely(swp_type(entry) == SWP_MIGRATION_READ);
267 }
268 
269 static inline int is_readable_exclusive_migration_entry(swp_entry_t entry)
270 {
271 	return unlikely(swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE);
272 }
273 
274 static inline swp_entry_t make_readable_migration_entry(pgoff_t offset)
275 {
276 	return swp_entry(SWP_MIGRATION_READ, offset);
277 }
278 
279 static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset)
280 {
281 	return swp_entry(SWP_MIGRATION_READ_EXCLUSIVE, offset);
282 }
283 
284 static inline swp_entry_t make_writable_migration_entry(pgoff_t offset)
285 {
286 	return swp_entry(SWP_MIGRATION_WRITE, offset);
287 }
288 
289 /*
290  * Returns whether the host has large enough swap offset field to support
291  * carrying over pgtable A/D bits for page migrations.  The result is
292  * pretty much arch specific.
293  */
294 static inline bool migration_entry_supports_ad(void)
295 {
296 #ifdef CONFIG_SWAP
297 	return swap_migration_ad_supported;
298 #else  /* CONFIG_SWAP */
299 	return false;
300 #endif	/* CONFIG_SWAP */
301 }
302 
303 static inline swp_entry_t make_migration_entry_young(swp_entry_t entry)
304 {
305 	if (migration_entry_supports_ad())
306 		return swp_entry(swp_type(entry),
307 				 swp_offset(entry) | SWP_MIG_YOUNG);
308 	return entry;
309 }
310 
311 static inline bool is_migration_entry_young(swp_entry_t entry)
312 {
313 	if (migration_entry_supports_ad())
314 		return swp_offset(entry) & SWP_MIG_YOUNG;
315 	/* Keep the old behavior of aging page after migration */
316 	return false;
317 }
318 
319 static inline swp_entry_t make_migration_entry_dirty(swp_entry_t entry)
320 {
321 	if (migration_entry_supports_ad())
322 		return swp_entry(swp_type(entry),
323 				 swp_offset(entry) | SWP_MIG_DIRTY);
324 	return entry;
325 }
326 
327 static inline bool is_migration_entry_dirty(swp_entry_t entry)
328 {
329 	if (migration_entry_supports_ad())
330 		return swp_offset(entry) & SWP_MIG_DIRTY;
331 	/* Keep the old behavior of clean page after migration */
332 	return false;
333 }
334 
335 extern void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
336 					spinlock_t *ptl);
337 extern void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
338 					unsigned long address);
339 #ifdef CONFIG_HUGETLB_PAGE
340 extern void __migration_entry_wait_huge(struct vm_area_struct *vma,
341 					pte_t *ptep, spinlock_t *ptl);
342 extern void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte);
343 #endif	/* CONFIG_HUGETLB_PAGE */
344 #else  /* CONFIG_MIGRATION */
345 static inline swp_entry_t make_readable_migration_entry(pgoff_t offset)
346 {
347 	return swp_entry(0, 0);
348 }
349 
350 static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset)
351 {
352 	return swp_entry(0, 0);
353 }
354 
355 static inline swp_entry_t make_writable_migration_entry(pgoff_t offset)
356 {
357 	return swp_entry(0, 0);
358 }
359 
360 static inline int is_migration_entry(swp_entry_t swp)
361 {
362 	return 0;
363 }
364 
365 static inline void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
366 					spinlock_t *ptl) { }
367 static inline void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
368 					 unsigned long address) { }
369 #ifdef CONFIG_HUGETLB_PAGE
370 static inline void __migration_entry_wait_huge(struct vm_area_struct *vma,
371 					       pte_t *ptep, spinlock_t *ptl) { }
372 static inline void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte) { }
373 #endif	/* CONFIG_HUGETLB_PAGE */
374 static inline int is_writable_migration_entry(swp_entry_t entry)
375 {
376 	return 0;
377 }
378 static inline int is_readable_migration_entry(swp_entry_t entry)
379 {
380 	return 0;
381 }
382 
383 static inline swp_entry_t make_migration_entry_young(swp_entry_t entry)
384 {
385 	return entry;
386 }
387 
388 static inline bool is_migration_entry_young(swp_entry_t entry)
389 {
390 	return false;
391 }
392 
393 static inline swp_entry_t make_migration_entry_dirty(swp_entry_t entry)
394 {
395 	return entry;
396 }
397 
398 static inline bool is_migration_entry_dirty(swp_entry_t entry)
399 {
400 	return false;
401 }
402 #endif	/* CONFIG_MIGRATION */
403 
404 typedef unsigned long pte_marker;
405 
406 #define  PTE_MARKER_UFFD_WP			BIT(0)
407 #define  PTE_MARKER_SWAPIN_ERROR		BIT(1)
408 #define  PTE_MARKER_MASK			(BIT(2) - 1)
409 
410 static inline swp_entry_t make_pte_marker_entry(pte_marker marker)
411 {
412 	return swp_entry(SWP_PTE_MARKER, marker);
413 }
414 
415 static inline bool is_pte_marker_entry(swp_entry_t entry)
416 {
417 	return swp_type(entry) == SWP_PTE_MARKER;
418 }
419 
420 static inline pte_marker pte_marker_get(swp_entry_t entry)
421 {
422 	return swp_offset(entry) & PTE_MARKER_MASK;
423 }
424 
425 static inline bool is_pte_marker(pte_t pte)
426 {
427 	return is_swap_pte(pte) && is_pte_marker_entry(pte_to_swp_entry(pte));
428 }
429 
430 static inline pte_t make_pte_marker(pte_marker marker)
431 {
432 	return swp_entry_to_pte(make_pte_marker_entry(marker));
433 }
434 
435 static inline swp_entry_t make_swapin_error_entry(void)
436 {
437 	return make_pte_marker_entry(PTE_MARKER_SWAPIN_ERROR);
438 }
439 
440 static inline int is_swapin_error_entry(swp_entry_t entry)
441 {
442 	return is_pte_marker_entry(entry) &&
443 	    (pte_marker_get(entry) & PTE_MARKER_SWAPIN_ERROR);
444 }
445 
446 /*
447  * This is a special version to check pte_none() just to cover the case when
448  * the pte is a pte marker.  It existed because in many cases the pte marker
449  * should be seen as a none pte; it's just that we have stored some information
450  * onto the none pte so it becomes not-none any more.
451  *
452  * It should be used when the pte is file-backed, ram-based and backing
453  * userspace pages, like shmem.  It is not needed upon pgtables that do not
454  * support pte markers at all.  For example, it's not needed on anonymous
455  * memory, kernel-only memory (including when the system is during-boot),
456  * non-ram based generic file-system.  It's fine to be used even there, but the
457  * extra pte marker check will be pure overhead.
458  */
459 static inline int pte_none_mostly(pte_t pte)
460 {
461 	return pte_none(pte) || is_pte_marker(pte);
462 }
463 
464 static inline struct page *pfn_swap_entry_to_page(swp_entry_t entry)
465 {
466 	struct page *p = pfn_to_page(swp_offset_pfn(entry));
467 
468 	/*
469 	 * Any use of migration entries may only occur while the
470 	 * corresponding page is locked
471 	 */
472 	BUG_ON(is_migration_entry(entry) && !PageLocked(p));
473 
474 	return p;
475 }
476 
477 /*
478  * A pfn swap entry is a special type of swap entry that always has a pfn stored
479  * in the swap offset. They are used to represent unaddressable device memory
480  * and to restrict access to a page undergoing migration.
481  */
482 static inline bool is_pfn_swap_entry(swp_entry_t entry)
483 {
484 	/* Make sure the swp offset can always store the needed fields */
485 	BUILD_BUG_ON(SWP_TYPE_SHIFT < SWP_PFN_BITS);
486 
487 	return is_migration_entry(entry) || is_device_private_entry(entry) ||
488 	       is_device_exclusive_entry(entry);
489 }
490 
491 struct page_vma_mapped_walk;
492 
493 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
494 extern int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
495 		struct page *page);
496 
497 extern void remove_migration_pmd(struct page_vma_mapped_walk *pvmw,
498 		struct page *new);
499 
500 extern void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd);
501 
502 static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd)
503 {
504 	swp_entry_t arch_entry;
505 
506 	if (pmd_swp_soft_dirty(pmd))
507 		pmd = pmd_swp_clear_soft_dirty(pmd);
508 	if (pmd_swp_uffd_wp(pmd))
509 		pmd = pmd_swp_clear_uffd_wp(pmd);
510 	arch_entry = __pmd_to_swp_entry(pmd);
511 	return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry));
512 }
513 
514 static inline pmd_t swp_entry_to_pmd(swp_entry_t entry)
515 {
516 	swp_entry_t arch_entry;
517 
518 	arch_entry = __swp_entry(swp_type(entry), swp_offset(entry));
519 	return __swp_entry_to_pmd(arch_entry);
520 }
521 
522 static inline int is_pmd_migration_entry(pmd_t pmd)
523 {
524 	return is_swap_pmd(pmd) && is_migration_entry(pmd_to_swp_entry(pmd));
525 }
526 #else  /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
527 static inline int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
528 		struct page *page)
529 {
530 	BUILD_BUG();
531 }
532 
533 static inline void remove_migration_pmd(struct page_vma_mapped_walk *pvmw,
534 		struct page *new)
535 {
536 	BUILD_BUG();
537 }
538 
539 static inline void pmd_migration_entry_wait(struct mm_struct *m, pmd_t *p) { }
540 
541 static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd)
542 {
543 	return swp_entry(0, 0);
544 }
545 
546 static inline pmd_t swp_entry_to_pmd(swp_entry_t entry)
547 {
548 	return __pmd(0);
549 }
550 
551 static inline int is_pmd_migration_entry(pmd_t pmd)
552 {
553 	return 0;
554 }
555 #endif  /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
556 
557 #ifdef CONFIG_MEMORY_FAILURE
558 
559 /*
560  * Support for hardware poisoned pages
561  */
562 static inline swp_entry_t make_hwpoison_entry(struct page *page)
563 {
564 	BUG_ON(!PageLocked(page));
565 	return swp_entry(SWP_HWPOISON, page_to_pfn(page));
566 }
567 
568 static inline int is_hwpoison_entry(swp_entry_t entry)
569 {
570 	return swp_type(entry) == SWP_HWPOISON;
571 }
572 
573 #else
574 
575 static inline swp_entry_t make_hwpoison_entry(struct page *page)
576 {
577 	return swp_entry(0, 0);
578 }
579 
580 static inline int is_hwpoison_entry(swp_entry_t swp)
581 {
582 	return 0;
583 }
584 #endif
585 
586 static inline int non_swap_entry(swp_entry_t entry)
587 {
588 	return swp_type(entry) >= MAX_SWAPFILES;
589 }
590 
591 #endif /* CONFIG_MMU */
592 #endif /* _LINUX_SWAPOPS_H */
593