xref: /linux/include/linux/wait_bit.h (revision 2da68a77)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_WAIT_BIT_H
3 #define _LINUX_WAIT_BIT_H
4 
5 /*
6  * Linux wait-bit related types and methods:
7  */
8 #include <linux/wait.h>
9 
10 struct wait_bit_key {
11 	void			*flags;
12 	int			bit_nr;
13 	unsigned long		timeout;
14 };
15 
16 struct wait_bit_queue_entry {
17 	struct wait_bit_key	key;
18 	struct wait_queue_entry	wq_entry;
19 };
20 
21 #define __WAIT_BIT_KEY_INITIALIZER(word, bit)					\
22 	{ .flags = word, .bit_nr = bit, }
23 
24 typedef int wait_bit_action_f(struct wait_bit_key *key, int mode);
25 
26 void __wake_up_bit(struct wait_queue_head *wq_head, void *word, int bit);
27 int __wait_on_bit(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode);
28 int __wait_on_bit_lock(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode);
29 void wake_up_bit(void *word, int bit);
30 int out_of_line_wait_on_bit(void *word, int, wait_bit_action_f *action, unsigned int mode);
31 int out_of_line_wait_on_bit_timeout(void *word, int, wait_bit_action_f *action, unsigned int mode, unsigned long timeout);
32 int out_of_line_wait_on_bit_lock(void *word, int, wait_bit_action_f *action, unsigned int mode);
33 struct wait_queue_head *bit_waitqueue(void *word, int bit);
34 extern void __init wait_bit_init(void);
35 
36 int wake_bit_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key);
37 
38 #define DEFINE_WAIT_BIT(name, word, bit)					\
39 	struct wait_bit_queue_entry name = {					\
40 		.key = __WAIT_BIT_KEY_INITIALIZER(word, bit),			\
41 		.wq_entry = {							\
42 			.private	= current,				\
43 			.func		= wake_bit_function,			\
44 			.entry		=					\
45 				LIST_HEAD_INIT((name).wq_entry.entry),		\
46 		},								\
47 	}
48 
49 extern int bit_wait(struct wait_bit_key *key, int mode);
50 extern int bit_wait_io(struct wait_bit_key *key, int mode);
51 extern int bit_wait_timeout(struct wait_bit_key *key, int mode);
52 extern int bit_wait_io_timeout(struct wait_bit_key *key, int mode);
53 
54 /**
55  * wait_on_bit - wait for a bit to be cleared
56  * @word: the word being waited on, a kernel virtual address
57  * @bit: the bit of the word being waited on
58  * @mode: the task state to sleep in
59  *
60  * There is a standard hashed waitqueue table for generic use. This
61  * is the part of the hashtable's accessor API that waits on a bit.
62  * For instance, if one were to have waiters on a bitflag, one would
63  * call wait_on_bit() in threads waiting for the bit to clear.
64  * One uses wait_on_bit() where one is waiting for the bit to clear,
65  * but has no intention of setting it.
66  * Returned value will be zero if the bit was cleared, or non-zero
67  * if the process received a signal and the mode permitted wakeup
68  * on that signal.
69  */
70 static inline int
71 wait_on_bit(unsigned long *word, int bit, unsigned mode)
72 {
73 	might_sleep();
74 	if (!test_bit_acquire(bit, word))
75 		return 0;
76 	return out_of_line_wait_on_bit(word, bit,
77 				       bit_wait,
78 				       mode);
79 }
80 
81 /**
82  * wait_on_bit_io - wait for a bit to be cleared
83  * @word: the word being waited on, a kernel virtual address
84  * @bit: the bit of the word being waited on
85  * @mode: the task state to sleep in
86  *
87  * Use the standard hashed waitqueue table to wait for a bit
88  * to be cleared.  This is similar to wait_on_bit(), but calls
89  * io_schedule() instead of schedule() for the actual waiting.
90  *
91  * Returned value will be zero if the bit was cleared, or non-zero
92  * if the process received a signal and the mode permitted wakeup
93  * on that signal.
94  */
95 static inline int
96 wait_on_bit_io(unsigned long *word, int bit, unsigned mode)
97 {
98 	might_sleep();
99 	if (!test_bit_acquire(bit, word))
100 		return 0;
101 	return out_of_line_wait_on_bit(word, bit,
102 				       bit_wait_io,
103 				       mode);
104 }
105 
106 /**
107  * wait_on_bit_timeout - wait for a bit to be cleared or a timeout elapses
108  * @word: the word being waited on, a kernel virtual address
109  * @bit: the bit of the word being waited on
110  * @mode: the task state to sleep in
111  * @timeout: timeout, in jiffies
112  *
113  * Use the standard hashed waitqueue table to wait for a bit
114  * to be cleared. This is similar to wait_on_bit(), except also takes a
115  * timeout parameter.
116  *
117  * Returned value will be zero if the bit was cleared before the
118  * @timeout elapsed, or non-zero if the @timeout elapsed or process
119  * received a signal and the mode permitted wakeup on that signal.
120  */
121 static inline int
122 wait_on_bit_timeout(unsigned long *word, int bit, unsigned mode,
123 		    unsigned long timeout)
124 {
125 	might_sleep();
126 	if (!test_bit_acquire(bit, word))
127 		return 0;
128 	return out_of_line_wait_on_bit_timeout(word, bit,
129 					       bit_wait_timeout,
130 					       mode, timeout);
131 }
132 
133 /**
134  * wait_on_bit_action - wait for a bit to be cleared
135  * @word: the word being waited on, a kernel virtual address
136  * @bit: the bit of the word being waited on
137  * @action: the function used to sleep, which may take special actions
138  * @mode: the task state to sleep in
139  *
140  * Use the standard hashed waitqueue table to wait for a bit
141  * to be cleared, and allow the waiting action to be specified.
142  * This is like wait_on_bit() but allows fine control of how the waiting
143  * is done.
144  *
145  * Returned value will be zero if the bit was cleared, or non-zero
146  * if the process received a signal and the mode permitted wakeup
147  * on that signal.
148  */
149 static inline int
150 wait_on_bit_action(unsigned long *word, int bit, wait_bit_action_f *action,
151 		   unsigned mode)
152 {
153 	might_sleep();
154 	if (!test_bit_acquire(bit, word))
155 		return 0;
156 	return out_of_line_wait_on_bit(word, bit, action, mode);
157 }
158 
159 /**
160  * wait_on_bit_lock - wait for a bit to be cleared, when wanting to set it
161  * @word: the word being waited on, a kernel virtual address
162  * @bit: the bit of the word being waited on
163  * @mode: the task state to sleep in
164  *
165  * There is a standard hashed waitqueue table for generic use. This
166  * is the part of the hashtable's accessor API that waits on a bit
167  * when one intends to set it, for instance, trying to lock bitflags.
168  * For instance, if one were to have waiters trying to set bitflag
169  * and waiting for it to clear before setting it, one would call
170  * wait_on_bit() in threads waiting to be able to set the bit.
171  * One uses wait_on_bit_lock() where one is waiting for the bit to
172  * clear with the intention of setting it, and when done, clearing it.
173  *
174  * Returns zero if the bit was (eventually) found to be clear and was
175  * set.  Returns non-zero if a signal was delivered to the process and
176  * the @mode allows that signal to wake the process.
177  */
178 static inline int
179 wait_on_bit_lock(unsigned long *word, int bit, unsigned mode)
180 {
181 	might_sleep();
182 	if (!test_and_set_bit(bit, word))
183 		return 0;
184 	return out_of_line_wait_on_bit_lock(word, bit, bit_wait, mode);
185 }
186 
187 /**
188  * wait_on_bit_lock_io - wait for a bit to be cleared, when wanting to set it
189  * @word: the word being waited on, a kernel virtual address
190  * @bit: the bit of the word being waited on
191  * @mode: the task state to sleep in
192  *
193  * Use the standard hashed waitqueue table to wait for a bit
194  * to be cleared and then to atomically set it.  This is similar
195  * to wait_on_bit(), but calls io_schedule() instead of schedule()
196  * for the actual waiting.
197  *
198  * Returns zero if the bit was (eventually) found to be clear and was
199  * set.  Returns non-zero if a signal was delivered to the process and
200  * the @mode allows that signal to wake the process.
201  */
202 static inline int
203 wait_on_bit_lock_io(unsigned long *word, int bit, unsigned mode)
204 {
205 	might_sleep();
206 	if (!test_and_set_bit(bit, word))
207 		return 0;
208 	return out_of_line_wait_on_bit_lock(word, bit, bit_wait_io, mode);
209 }
210 
211 /**
212  * wait_on_bit_lock_action - wait for a bit to be cleared, when wanting to set it
213  * @word: the word being waited on, a kernel virtual address
214  * @bit: the bit of the word being waited on
215  * @action: the function used to sleep, which may take special actions
216  * @mode: the task state to sleep in
217  *
218  * Use the standard hashed waitqueue table to wait for a bit
219  * to be cleared and then to set it, and allow the waiting action
220  * to be specified.
221  * This is like wait_on_bit() but allows fine control of how the waiting
222  * is done.
223  *
224  * Returns zero if the bit was (eventually) found to be clear and was
225  * set.  Returns non-zero if a signal was delivered to the process and
226  * the @mode allows that signal to wake the process.
227  */
228 static inline int
229 wait_on_bit_lock_action(unsigned long *word, int bit, wait_bit_action_f *action,
230 			unsigned mode)
231 {
232 	might_sleep();
233 	if (!test_and_set_bit(bit, word))
234 		return 0;
235 	return out_of_line_wait_on_bit_lock(word, bit, action, mode);
236 }
237 
238 extern void init_wait_var_entry(struct wait_bit_queue_entry *wbq_entry, void *var, int flags);
239 extern void wake_up_var(void *var);
240 extern wait_queue_head_t *__var_waitqueue(void *p);
241 
242 #define ___wait_var_event(var, condition, state, exclusive, ret, cmd)	\
243 ({									\
244 	__label__ __out;						\
245 	struct wait_queue_head *__wq_head = __var_waitqueue(var);	\
246 	struct wait_bit_queue_entry __wbq_entry;			\
247 	long __ret = ret; /* explicit shadow */				\
248 									\
249 	init_wait_var_entry(&__wbq_entry, var,				\
250 			    exclusive ? WQ_FLAG_EXCLUSIVE : 0);		\
251 	for (;;) {							\
252 		long __int = prepare_to_wait_event(__wq_head,		\
253 						   &__wbq_entry.wq_entry, \
254 						   state);		\
255 		if (condition)						\
256 			break;						\
257 									\
258 		if (___wait_is_interruptible(state) && __int) {		\
259 			__ret = __int;					\
260 			goto __out;					\
261 		}							\
262 									\
263 		cmd;							\
264 	}								\
265 	finish_wait(__wq_head, &__wbq_entry.wq_entry);			\
266 __out:	__ret;								\
267 })
268 
269 #define __wait_var_event(var, condition)				\
270 	___wait_var_event(var, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
271 			  schedule())
272 
273 #define wait_var_event(var, condition)					\
274 do {									\
275 	might_sleep();							\
276 	if (condition)							\
277 		break;							\
278 	__wait_var_event(var, condition);				\
279 } while (0)
280 
281 #define __wait_var_event_killable(var, condition)			\
282 	___wait_var_event(var, condition, TASK_KILLABLE, 0, 0,		\
283 			  schedule())
284 
285 #define wait_var_event_killable(var, condition)				\
286 ({									\
287 	int __ret = 0;							\
288 	might_sleep();							\
289 	if (!(condition))						\
290 		__ret = __wait_var_event_killable(var, condition);	\
291 	__ret;								\
292 })
293 
294 #define __wait_var_event_timeout(var, condition, timeout)		\
295 	___wait_var_event(var, ___wait_cond_timeout(condition),		\
296 			  TASK_UNINTERRUPTIBLE, 0, timeout,		\
297 			  __ret = schedule_timeout(__ret))
298 
299 #define wait_var_event_timeout(var, condition, timeout)			\
300 ({									\
301 	long __ret = timeout;						\
302 	might_sleep();							\
303 	if (!___wait_cond_timeout(condition))				\
304 		__ret = __wait_var_event_timeout(var, condition, timeout); \
305 	__ret;								\
306 })
307 
308 #define __wait_var_event_interruptible(var, condition)			\
309 	___wait_var_event(var, condition, TASK_INTERRUPTIBLE, 0, 0,	\
310 			  schedule())
311 
312 #define wait_var_event_interruptible(var, condition)			\
313 ({									\
314 	int __ret = 0;							\
315 	might_sleep();							\
316 	if (!(condition))						\
317 		__ret = __wait_var_event_interruptible(var, condition);	\
318 	__ret;								\
319 })
320 
321 /**
322  * clear_and_wake_up_bit - clear a bit and wake up anyone waiting on that bit
323  *
324  * @bit: the bit of the word being waited on
325  * @word: the word being waited on, a kernel virtual address
326  *
327  * You can use this helper if bitflags are manipulated atomically rather than
328  * non-atomically under a lock.
329  */
330 static inline void clear_and_wake_up_bit(int bit, void *word)
331 {
332 	clear_bit_unlock(bit, word);
333 	/* See wake_up_bit() for which memory barrier you need to use. */
334 	smp_mb__after_atomic();
335 	wake_up_bit(word, bit);
336 }
337 
338 #endif /* _LINUX_WAIT_BIT_H */
339