xref: /linux/include/math-emu/op-1.h (revision 1da177e4)
1*1da177e4SLinus Torvalds /* Software floating-point emulation.
2*1da177e4SLinus Torvalds    Basic one-word fraction declaration and manipulation.
3*1da177e4SLinus Torvalds    Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
4*1da177e4SLinus Torvalds    This file is part of the GNU C Library.
5*1da177e4SLinus Torvalds    Contributed by Richard Henderson (rth@cygnus.com),
6*1da177e4SLinus Torvalds 		  Jakub Jelinek (jj@ultra.linux.cz),
7*1da177e4SLinus Torvalds 		  David S. Miller (davem@redhat.com) and
8*1da177e4SLinus Torvalds 		  Peter Maydell (pmaydell@chiark.greenend.org.uk).
9*1da177e4SLinus Torvalds 
10*1da177e4SLinus Torvalds    The GNU C Library is free software; you can redistribute it and/or
11*1da177e4SLinus Torvalds    modify it under the terms of the GNU Library General Public License as
12*1da177e4SLinus Torvalds    published by the Free Software Foundation; either version 2 of the
13*1da177e4SLinus Torvalds    License, or (at your option) any later version.
14*1da177e4SLinus Torvalds 
15*1da177e4SLinus Torvalds    The GNU C Library is distributed in the hope that it will be useful,
16*1da177e4SLinus Torvalds    but WITHOUT ANY WARRANTY; without even the implied warranty of
17*1da177e4SLinus Torvalds    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18*1da177e4SLinus Torvalds    Library General Public License for more details.
19*1da177e4SLinus Torvalds 
20*1da177e4SLinus Torvalds    You should have received a copy of the GNU Library General Public
21*1da177e4SLinus Torvalds    License along with the GNU C Library; see the file COPYING.LIB.  If
22*1da177e4SLinus Torvalds    not, write to the Free Software Foundation, Inc.,
23*1da177e4SLinus Torvalds    59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
24*1da177e4SLinus Torvalds 
25*1da177e4SLinus Torvalds #ifndef    __MATH_EMU_OP_1_H__
26*1da177e4SLinus Torvalds #define    __MATH_EMU_OP_1_H__
27*1da177e4SLinus Torvalds 
28*1da177e4SLinus Torvalds #define _FP_FRAC_DECL_1(X)	_FP_W_TYPE X##_f=0
29*1da177e4SLinus Torvalds #define _FP_FRAC_COPY_1(D,S)	(D##_f = S##_f)
30*1da177e4SLinus Torvalds #define _FP_FRAC_SET_1(X,I)	(X##_f = I)
31*1da177e4SLinus Torvalds #define _FP_FRAC_HIGH_1(X)	(X##_f)
32*1da177e4SLinus Torvalds #define _FP_FRAC_LOW_1(X)	(X##_f)
33*1da177e4SLinus Torvalds #define _FP_FRAC_WORD_1(X,w)	(X##_f)
34*1da177e4SLinus Torvalds 
35*1da177e4SLinus Torvalds #define _FP_FRAC_ADDI_1(X,I)	(X##_f += I)
36*1da177e4SLinus Torvalds #define _FP_FRAC_SLL_1(X,N)			\
37*1da177e4SLinus Torvalds   do {						\
38*1da177e4SLinus Torvalds     if (__builtin_constant_p(N) && (N) == 1)	\
39*1da177e4SLinus Torvalds       X##_f += X##_f;				\
40*1da177e4SLinus Torvalds     else					\
41*1da177e4SLinus Torvalds       X##_f <<= (N);				\
42*1da177e4SLinus Torvalds   } while (0)
43*1da177e4SLinus Torvalds #define _FP_FRAC_SRL_1(X,N)	(X##_f >>= N)
44*1da177e4SLinus Torvalds 
45*1da177e4SLinus Torvalds /* Right shift with sticky-lsb.  */
46*1da177e4SLinus Torvalds #define _FP_FRAC_SRS_1(X,N,sz)	__FP_FRAC_SRS_1(X##_f, N, sz)
47*1da177e4SLinus Torvalds 
48*1da177e4SLinus Torvalds #define __FP_FRAC_SRS_1(X,N,sz)						\
49*1da177e4SLinus Torvalds    (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1		\
50*1da177e4SLinus Torvalds 		     ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
51*1da177e4SLinus Torvalds 
52*1da177e4SLinus Torvalds #define _FP_FRAC_ADD_1(R,X,Y)	(R##_f = X##_f + Y##_f)
53*1da177e4SLinus Torvalds #define _FP_FRAC_SUB_1(R,X,Y)	(R##_f = X##_f - Y##_f)
54*1da177e4SLinus Torvalds #define _FP_FRAC_DEC_1(X,Y)	(X##_f -= Y##_f)
55*1da177e4SLinus Torvalds #define _FP_FRAC_CLZ_1(z, X)	__FP_CLZ(z, X##_f)
56*1da177e4SLinus Torvalds 
57*1da177e4SLinus Torvalds /* Predicates */
58*1da177e4SLinus Torvalds #define _FP_FRAC_NEGP_1(X)	((_FP_WS_TYPE)X##_f < 0)
59*1da177e4SLinus Torvalds #define _FP_FRAC_ZEROP_1(X)	(X##_f == 0)
60*1da177e4SLinus Torvalds #define _FP_FRAC_OVERP_1(fs,X)	(X##_f & _FP_OVERFLOW_##fs)
61*1da177e4SLinus Torvalds #define _FP_FRAC_CLEAR_OVERP_1(fs,X)	(X##_f &= ~_FP_OVERFLOW_##fs)
62*1da177e4SLinus Torvalds #define _FP_FRAC_EQ_1(X, Y)	(X##_f == Y##_f)
63*1da177e4SLinus Torvalds #define _FP_FRAC_GE_1(X, Y)	(X##_f >= Y##_f)
64*1da177e4SLinus Torvalds #define _FP_FRAC_GT_1(X, Y)	(X##_f > Y##_f)
65*1da177e4SLinus Torvalds 
66*1da177e4SLinus Torvalds #define _FP_ZEROFRAC_1		0
67*1da177e4SLinus Torvalds #define _FP_MINFRAC_1		1
68*1da177e4SLinus Torvalds #define _FP_MAXFRAC_1		(~(_FP_WS_TYPE)0)
69*1da177e4SLinus Torvalds 
70*1da177e4SLinus Torvalds /*
71*1da177e4SLinus Torvalds  * Unpack the raw bits of a native fp value.  Do not classify or
72*1da177e4SLinus Torvalds  * normalize the data.
73*1da177e4SLinus Torvalds  */
74*1da177e4SLinus Torvalds 
75*1da177e4SLinus Torvalds #define _FP_UNPACK_RAW_1(fs, X, val)				\
76*1da177e4SLinus Torvalds   do {								\
77*1da177e4SLinus Torvalds     union _FP_UNION_##fs _flo; _flo.flt = (val);		\
78*1da177e4SLinus Torvalds 								\
79*1da177e4SLinus Torvalds     X##_f = _flo.bits.frac;					\
80*1da177e4SLinus Torvalds     X##_e = _flo.bits.exp;					\
81*1da177e4SLinus Torvalds     X##_s = _flo.bits.sign;					\
82*1da177e4SLinus Torvalds   } while (0)
83*1da177e4SLinus Torvalds 
84*1da177e4SLinus Torvalds #define _FP_UNPACK_RAW_1_P(fs, X, val)				\
85*1da177e4SLinus Torvalds   do {								\
86*1da177e4SLinus Torvalds     union _FP_UNION_##fs *_flo =				\
87*1da177e4SLinus Torvalds       (union _FP_UNION_##fs *)(val);				\
88*1da177e4SLinus Torvalds 								\
89*1da177e4SLinus Torvalds     X##_f = _flo->bits.frac;					\
90*1da177e4SLinus Torvalds     X##_e = _flo->bits.exp;					\
91*1da177e4SLinus Torvalds     X##_s = _flo->bits.sign;					\
92*1da177e4SLinus Torvalds   } while (0)
93*1da177e4SLinus Torvalds 
94*1da177e4SLinus Torvalds /*
95*1da177e4SLinus Torvalds  * Repack the raw bits of a native fp value.
96*1da177e4SLinus Torvalds  */
97*1da177e4SLinus Torvalds 
98*1da177e4SLinus Torvalds #define _FP_PACK_RAW_1(fs, val, X)				\
99*1da177e4SLinus Torvalds   do {								\
100*1da177e4SLinus Torvalds     union _FP_UNION_##fs _flo;					\
101*1da177e4SLinus Torvalds 								\
102*1da177e4SLinus Torvalds     _flo.bits.frac = X##_f;					\
103*1da177e4SLinus Torvalds     _flo.bits.exp  = X##_e;					\
104*1da177e4SLinus Torvalds     _flo.bits.sign = X##_s;					\
105*1da177e4SLinus Torvalds 								\
106*1da177e4SLinus Torvalds     (val) = _flo.flt;						\
107*1da177e4SLinus Torvalds   } while (0)
108*1da177e4SLinus Torvalds 
109*1da177e4SLinus Torvalds #define _FP_PACK_RAW_1_P(fs, val, X)				\
110*1da177e4SLinus Torvalds   do {								\
111*1da177e4SLinus Torvalds     union _FP_UNION_##fs *_flo =				\
112*1da177e4SLinus Torvalds       (union _FP_UNION_##fs *)(val);				\
113*1da177e4SLinus Torvalds 								\
114*1da177e4SLinus Torvalds     _flo->bits.frac = X##_f;					\
115*1da177e4SLinus Torvalds     _flo->bits.exp  = X##_e;					\
116*1da177e4SLinus Torvalds     _flo->bits.sign = X##_s;					\
117*1da177e4SLinus Torvalds   } while (0)
118*1da177e4SLinus Torvalds 
119*1da177e4SLinus Torvalds 
120*1da177e4SLinus Torvalds /*
121*1da177e4SLinus Torvalds  * Multiplication algorithms:
122*1da177e4SLinus Torvalds  */
123*1da177e4SLinus Torvalds 
124*1da177e4SLinus Torvalds /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
125*1da177e4SLinus Torvalds    multiplication immediately.  */
126*1da177e4SLinus Torvalds 
127*1da177e4SLinus Torvalds #define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y)				\
128*1da177e4SLinus Torvalds   do {									\
129*1da177e4SLinus Torvalds     R##_f = X##_f * Y##_f;						\
130*1da177e4SLinus Torvalds     /* Normalize since we know where the msb of the multiplicands	\
131*1da177e4SLinus Torvalds        were (bit B), we know that the msb of the of the product is	\
132*1da177e4SLinus Torvalds        at either 2B or 2B-1.  */					\
133*1da177e4SLinus Torvalds     _FP_FRAC_SRS_1(R, wfracbits-1, 2*wfracbits);			\
134*1da177e4SLinus Torvalds   } while (0)
135*1da177e4SLinus Torvalds 
136*1da177e4SLinus Torvalds /* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */
137*1da177e4SLinus Torvalds 
138*1da177e4SLinus Torvalds #define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit)			\
139*1da177e4SLinus Torvalds   do {									\
140*1da177e4SLinus Torvalds     _FP_W_TYPE _Z_f0, _Z_f1;						\
141*1da177e4SLinus Torvalds     doit(_Z_f1, _Z_f0, X##_f, Y##_f);					\
142*1da177e4SLinus Torvalds     /* Normalize since we know where the msb of the multiplicands	\
143*1da177e4SLinus Torvalds        were (bit B), we know that the msb of the of the product is	\
144*1da177e4SLinus Torvalds        at either 2B or 2B-1.  */					\
145*1da177e4SLinus Torvalds     _FP_FRAC_SRS_2(_Z, wfracbits-1, 2*wfracbits);			\
146*1da177e4SLinus Torvalds     R##_f = _Z_f0;							\
147*1da177e4SLinus Torvalds   } while (0)
148*1da177e4SLinus Torvalds 
149*1da177e4SLinus Torvalds /* Finally, a simple widening multiply algorithm.  What fun!  */
150*1da177e4SLinus Torvalds 
151*1da177e4SLinus Torvalds #define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y)				\
152*1da177e4SLinus Torvalds   do {									\
153*1da177e4SLinus Torvalds     _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1;		\
154*1da177e4SLinus Torvalds 									\
155*1da177e4SLinus Torvalds     /* split the words in half */					\
156*1da177e4SLinus Torvalds     _xh = X##_f >> (_FP_W_TYPE_SIZE/2);					\
157*1da177e4SLinus Torvalds     _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);		\
158*1da177e4SLinus Torvalds     _yh = Y##_f >> (_FP_W_TYPE_SIZE/2);					\
159*1da177e4SLinus Torvalds     _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);		\
160*1da177e4SLinus Torvalds 									\
161*1da177e4SLinus Torvalds     /* multiply the pieces */						\
162*1da177e4SLinus Torvalds     _z_f0 = _xl * _yl;							\
163*1da177e4SLinus Torvalds     _a_f0 = _xh * _yl;							\
164*1da177e4SLinus Torvalds     _a_f1 = _xl * _yh;							\
165*1da177e4SLinus Torvalds     _z_f1 = _xh * _yh;							\
166*1da177e4SLinus Torvalds 									\
167*1da177e4SLinus Torvalds     /* reassemble into two full words */				\
168*1da177e4SLinus Torvalds     if ((_a_f0 += _a_f1) < _a_f1)					\
169*1da177e4SLinus Torvalds       _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2);			\
170*1da177e4SLinus Torvalds     _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2);				\
171*1da177e4SLinus Torvalds     _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2);				\
172*1da177e4SLinus Torvalds     _FP_FRAC_ADD_2(_z, _z, _a);						\
173*1da177e4SLinus Torvalds 									\
174*1da177e4SLinus Torvalds     /* normalize */							\
175*1da177e4SLinus Torvalds     _FP_FRAC_SRS_2(_z, wfracbits - 1, 2*wfracbits);			\
176*1da177e4SLinus Torvalds     R##_f = _z_f0;							\
177*1da177e4SLinus Torvalds   } while (0)
178*1da177e4SLinus Torvalds 
179*1da177e4SLinus Torvalds 
180*1da177e4SLinus Torvalds /*
181*1da177e4SLinus Torvalds  * Division algorithms:
182*1da177e4SLinus Torvalds  */
183*1da177e4SLinus Torvalds 
184*1da177e4SLinus Torvalds /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the
185*1da177e4SLinus Torvalds    division immediately.  Give this macro either _FP_DIV_HELP_imm for
186*1da177e4SLinus Torvalds    C primitives or _FP_DIV_HELP_ldiv for the ISO function.  Which you
187*1da177e4SLinus Torvalds    choose will depend on what the compiler does with divrem4.  */
188*1da177e4SLinus Torvalds 
189*1da177e4SLinus Torvalds #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit)		\
190*1da177e4SLinus Torvalds   do {							\
191*1da177e4SLinus Torvalds     _FP_W_TYPE _q, _r;					\
192*1da177e4SLinus Torvalds     X##_f <<= (X##_f < Y##_f				\
193*1da177e4SLinus Torvalds 	       ? R##_e--, _FP_WFRACBITS_##fs		\
194*1da177e4SLinus Torvalds 	       : _FP_WFRACBITS_##fs - 1);		\
195*1da177e4SLinus Torvalds     doit(_q, _r, X##_f, Y##_f);				\
196*1da177e4SLinus Torvalds     R##_f = _q | (_r != 0);				\
197*1da177e4SLinus Torvalds   } while (0)
198*1da177e4SLinus Torvalds 
199*1da177e4SLinus Torvalds /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
200*1da177e4SLinus Torvalds    that may be useful in this situation.  This first is for a primitive
201*1da177e4SLinus Torvalds    that requires normalization, the second for one that does not.  Look
202*1da177e4SLinus Torvalds    for UDIV_NEEDS_NORMALIZATION to tell which your machine needs.  */
203*1da177e4SLinus Torvalds 
204*1da177e4SLinus Torvalds #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y)				\
205*1da177e4SLinus Torvalds   do {									\
206*1da177e4SLinus Torvalds     _FP_W_TYPE _nh, _nl, _q, _r, _y;					\
207*1da177e4SLinus Torvalds 									\
208*1da177e4SLinus Torvalds     /* Normalize Y -- i.e. make the most significant bit set.  */	\
209*1da177e4SLinus Torvalds     _y = Y##_f << _FP_WFRACXBITS_##fs;					\
210*1da177e4SLinus Torvalds 									\
211*1da177e4SLinus Torvalds     /* Shift X op correspondingly high, that is, up one full word.  */	\
212*1da177e4SLinus Torvalds     if (X##_f < Y##_f)							\
213*1da177e4SLinus Torvalds       {									\
214*1da177e4SLinus Torvalds 	R##_e--;							\
215*1da177e4SLinus Torvalds 	_nl = 0;							\
216*1da177e4SLinus Torvalds 	_nh = X##_f;							\
217*1da177e4SLinus Torvalds       }									\
218*1da177e4SLinus Torvalds     else								\
219*1da177e4SLinus Torvalds       {									\
220*1da177e4SLinus Torvalds 	_nl = X##_f << (_FP_W_TYPE_SIZE - 1);				\
221*1da177e4SLinus Torvalds 	_nh = X##_f >> 1;						\
222*1da177e4SLinus Torvalds       }									\
223*1da177e4SLinus Torvalds     									\
224*1da177e4SLinus Torvalds     udiv_qrnnd(_q, _r, _nh, _nl, _y);					\
225*1da177e4SLinus Torvalds     R##_f = _q | (_r != 0);						\
226*1da177e4SLinus Torvalds   } while (0)
227*1da177e4SLinus Torvalds 
228*1da177e4SLinus Torvalds #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y)		\
229*1da177e4SLinus Torvalds   do {							\
230*1da177e4SLinus Torvalds     _FP_W_TYPE _nh, _nl, _q, _r;			\
231*1da177e4SLinus Torvalds     if (X##_f < Y##_f)					\
232*1da177e4SLinus Torvalds       {							\
233*1da177e4SLinus Torvalds 	R##_e--;					\
234*1da177e4SLinus Torvalds 	_nl = X##_f << _FP_WFRACBITS_##fs;		\
235*1da177e4SLinus Torvalds 	_nh = X##_f >> _FP_WFRACXBITS_##fs;		\
236*1da177e4SLinus Torvalds       }							\
237*1da177e4SLinus Torvalds     else						\
238*1da177e4SLinus Torvalds       {							\
239*1da177e4SLinus Torvalds 	_nl = X##_f << (_FP_WFRACBITS_##fs - 1);	\
240*1da177e4SLinus Torvalds 	_nh = X##_f >> (_FP_WFRACXBITS_##fs + 1);	\
241*1da177e4SLinus Torvalds       }							\
242*1da177e4SLinus Torvalds     udiv_qrnnd(_q, _r, _nh, _nl, Y##_f);		\
243*1da177e4SLinus Torvalds     R##_f = _q | (_r != 0);				\
244*1da177e4SLinus Torvalds   } while (0)
245*1da177e4SLinus Torvalds 
246*1da177e4SLinus Torvalds 
247*1da177e4SLinus Torvalds /*
248*1da177e4SLinus Torvalds  * Square root algorithms:
249*1da177e4SLinus Torvalds  * We have just one right now, maybe Newton approximation
250*1da177e4SLinus Torvalds  * should be added for those machines where division is fast.
251*1da177e4SLinus Torvalds  */
252*1da177e4SLinus Torvalds 
253*1da177e4SLinus Torvalds #define _FP_SQRT_MEAT_1(R, S, T, X, q)			\
254*1da177e4SLinus Torvalds   do {							\
255*1da177e4SLinus Torvalds     while (q != _FP_WORK_ROUND)				\
256*1da177e4SLinus Torvalds       {							\
257*1da177e4SLinus Torvalds         T##_f = S##_f + q;				\
258*1da177e4SLinus Torvalds         if (T##_f <= X##_f)				\
259*1da177e4SLinus Torvalds           {						\
260*1da177e4SLinus Torvalds             S##_f = T##_f + q;				\
261*1da177e4SLinus Torvalds             X##_f -= T##_f;				\
262*1da177e4SLinus Torvalds             R##_f += q;					\
263*1da177e4SLinus Torvalds           }						\
264*1da177e4SLinus Torvalds         _FP_FRAC_SLL_1(X, 1);				\
265*1da177e4SLinus Torvalds         q >>= 1;					\
266*1da177e4SLinus Torvalds       }							\
267*1da177e4SLinus Torvalds     if (X##_f)						\
268*1da177e4SLinus Torvalds       {							\
269*1da177e4SLinus Torvalds 	if (S##_f < X##_f)				\
270*1da177e4SLinus Torvalds 	  R##_f |= _FP_WORK_ROUND;			\
271*1da177e4SLinus Torvalds 	R##_f |= _FP_WORK_STICKY;			\
272*1da177e4SLinus Torvalds       }							\
273*1da177e4SLinus Torvalds   } while (0)
274*1da177e4SLinus Torvalds 
275*1da177e4SLinus Torvalds /*
276*1da177e4SLinus Torvalds  * Assembly/disassembly for converting to/from integral types.
277*1da177e4SLinus Torvalds  * No shifting or overflow handled here.
278*1da177e4SLinus Torvalds  */
279*1da177e4SLinus Torvalds 
280*1da177e4SLinus Torvalds #define _FP_FRAC_ASSEMBLE_1(r, X, rsize)	(r = X##_f)
281*1da177e4SLinus Torvalds #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize)	(X##_f = r)
282*1da177e4SLinus Torvalds 
283*1da177e4SLinus Torvalds 
284*1da177e4SLinus Torvalds /*
285*1da177e4SLinus Torvalds  * Convert FP values between word sizes
286*1da177e4SLinus Torvalds  */
287*1da177e4SLinus Torvalds 
288*1da177e4SLinus Torvalds #define _FP_FRAC_CONV_1_1(dfs, sfs, D, S)				\
289*1da177e4SLinus Torvalds   do {									\
290*1da177e4SLinus Torvalds     D##_f = S##_f;							\
291*1da177e4SLinus Torvalds     if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs)			\
292*1da177e4SLinus Torvalds       {									\
293*1da177e4SLinus Torvalds 	if (S##_c != FP_CLS_NAN)					\
294*1da177e4SLinus Torvalds 	  _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs),	\
295*1da177e4SLinus Torvalds 			 _FP_WFRACBITS_##sfs);				\
296*1da177e4SLinus Torvalds 	else								\
297*1da177e4SLinus Torvalds 	  _FP_FRAC_SRL_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs));	\
298*1da177e4SLinus Torvalds       }									\
299*1da177e4SLinus Torvalds     else								\
300*1da177e4SLinus Torvalds       D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs;		\
301*1da177e4SLinus Torvalds   } while (0)
302*1da177e4SLinus Torvalds 
303*1da177e4SLinus Torvalds #endif /* __MATH_EMU_OP_1_H__ */
304