xref: /linux/include/net/tcp.h (revision 9a6b55ac)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the TCP module.
8  *
9  * Version:	@(#)tcp.h	1.0.5	05/23/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  */
14 #ifndef _TCP_H
15 #define _TCP_H
16 
17 #define FASTRETRANS_DEBUG 1
18 
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/cryptohash.h>
27 #include <linux/kref.h>
28 #include <linux/ktime.h>
29 
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 
43 #include <linux/seq_file.h>
44 #include <linux/memcontrol.h>
45 #include <linux/bpf-cgroup.h>
46 #include <linux/siphash.h>
47 
48 extern struct inet_hashinfo tcp_hashinfo;
49 
50 extern struct percpu_counter tcp_orphan_count;
51 void tcp_time_wait(struct sock *sk, int state, int timeo);
52 
53 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
54 #define MAX_TCP_OPTION_SPACE 40
55 #define TCP_MIN_SND_MSS		48
56 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
57 
58 /*
59  * Never offer a window over 32767 without using window scaling. Some
60  * poor stacks do signed 16bit maths!
61  */
62 #define MAX_TCP_WINDOW		32767U
63 
64 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
65 #define TCP_MIN_MSS		88U
66 
67 /* The initial MTU to use for probing */
68 #define TCP_BASE_MSS		1024
69 
70 /* probing interval, default to 10 minutes as per RFC4821 */
71 #define TCP_PROBE_INTERVAL	600
72 
73 /* Specify interval when tcp mtu probing will stop */
74 #define TCP_PROBE_THRESHOLD	8
75 
76 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
77 #define TCP_FASTRETRANS_THRESH 3
78 
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS	16U
81 
82 /* Maximal number of window scale according to RFC1323 */
83 #define TCP_MAX_WSCALE		14U
84 
85 /* urg_data states */
86 #define TCP_URG_VALID	0x0100
87 #define TCP_URG_NOTYET	0x0200
88 #define TCP_URG_READ	0x0400
89 
90 #define TCP_RETR1	3	/*
91 				 * This is how many retries it does before it
92 				 * tries to figure out if the gateway is
93 				 * down. Minimal RFC value is 3; it corresponds
94 				 * to ~3sec-8min depending on RTO.
95 				 */
96 
97 #define TCP_RETR2	15	/*
98 				 * This should take at least
99 				 * 90 minutes to time out.
100 				 * RFC1122 says that the limit is 100 sec.
101 				 * 15 is ~13-30min depending on RTO.
102 				 */
103 
104 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
105 				 * when active opening a connection.
106 				 * RFC1122 says the minimum retry MUST
107 				 * be at least 180secs.  Nevertheless
108 				 * this value is corresponding to
109 				 * 63secs of retransmission with the
110 				 * current initial RTO.
111 				 */
112 
113 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
114 				 * when passive opening a connection.
115 				 * This is corresponding to 31secs of
116 				 * retransmission with the current
117 				 * initial RTO.
118 				 */
119 
120 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
121 				  * state, about 60 seconds	*/
122 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
123                                  /* BSD style FIN_WAIT2 deadlock breaker.
124 				  * It used to be 3min, new value is 60sec,
125 				  * to combine FIN-WAIT-2 timeout with
126 				  * TIME-WAIT timer.
127 				  */
128 
129 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
130 #if HZ >= 100
131 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
132 #define TCP_ATO_MIN	((unsigned)(HZ/25))
133 #else
134 #define TCP_DELACK_MIN	4U
135 #define TCP_ATO_MIN	4U
136 #endif
137 #define TCP_RTO_MAX	((unsigned)(120*HZ))
138 #define TCP_RTO_MIN	((unsigned)(HZ/5))
139 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
140 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
141 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
142 						 * used as a fallback RTO for the
143 						 * initial data transmission if no
144 						 * valid RTT sample has been acquired,
145 						 * most likely due to retrans in 3WHS.
146 						 */
147 
148 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
149 					                 * for local resources.
150 					                 */
151 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
152 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
153 #define TCP_KEEPALIVE_INTVL	(75*HZ)
154 
155 #define MAX_TCP_KEEPIDLE	32767
156 #define MAX_TCP_KEEPINTVL	32767
157 #define MAX_TCP_KEEPCNT		127
158 #define MAX_TCP_SYNCNT		127
159 
160 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
161 
162 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
163 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
164 					 * after this time. It should be equal
165 					 * (or greater than) TCP_TIMEWAIT_LEN
166 					 * to provide reliability equal to one
167 					 * provided by timewait state.
168 					 */
169 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
170 					 * timestamps. It must be less than
171 					 * minimal timewait lifetime.
172 					 */
173 /*
174  *	TCP option
175  */
176 
177 #define TCPOPT_NOP		1	/* Padding */
178 #define TCPOPT_EOL		0	/* End of options */
179 #define TCPOPT_MSS		2	/* Segment size negotiating */
180 #define TCPOPT_WINDOW		3	/* Window scaling */
181 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
182 #define TCPOPT_SACK             5       /* SACK Block */
183 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
184 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
185 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
186 #define TCPOPT_EXP		254	/* Experimental */
187 /* Magic number to be after the option value for sharing TCP
188  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
189  */
190 #define TCPOPT_FASTOPEN_MAGIC	0xF989
191 #define TCPOPT_SMC_MAGIC	0xE2D4C3D9
192 
193 /*
194  *     TCP option lengths
195  */
196 
197 #define TCPOLEN_MSS            4
198 #define TCPOLEN_WINDOW         3
199 #define TCPOLEN_SACK_PERM      2
200 #define TCPOLEN_TIMESTAMP      10
201 #define TCPOLEN_MD5SIG         18
202 #define TCPOLEN_FASTOPEN_BASE  2
203 #define TCPOLEN_EXP_FASTOPEN_BASE  4
204 #define TCPOLEN_EXP_SMC_BASE   6
205 
206 /* But this is what stacks really send out. */
207 #define TCPOLEN_TSTAMP_ALIGNED		12
208 #define TCPOLEN_WSCALE_ALIGNED		4
209 #define TCPOLEN_SACKPERM_ALIGNED	4
210 #define TCPOLEN_SACK_BASE		2
211 #define TCPOLEN_SACK_BASE_ALIGNED	4
212 #define TCPOLEN_SACK_PERBLOCK		8
213 #define TCPOLEN_MD5SIG_ALIGNED		20
214 #define TCPOLEN_MSS_ALIGNED		4
215 #define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
216 
217 /* Flags in tp->nonagle */
218 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
219 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
220 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
221 
222 /* TCP thin-stream limits */
223 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
224 
225 /* TCP initial congestion window as per rfc6928 */
226 #define TCP_INIT_CWND		10
227 
228 /* Bit Flags for sysctl_tcp_fastopen */
229 #define	TFO_CLIENT_ENABLE	1
230 #define	TFO_SERVER_ENABLE	2
231 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
232 
233 /* Accept SYN data w/o any cookie option */
234 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
235 
236 /* Force enable TFO on all listeners, i.e., not requiring the
237  * TCP_FASTOPEN socket option.
238  */
239 #define	TFO_SERVER_WO_SOCKOPT1	0x400
240 
241 
242 /* sysctl variables for tcp */
243 extern int sysctl_tcp_max_orphans;
244 extern long sysctl_tcp_mem[3];
245 
246 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
247 #define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
248 #define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
249 
250 extern atomic_long_t tcp_memory_allocated;
251 extern struct percpu_counter tcp_sockets_allocated;
252 extern unsigned long tcp_memory_pressure;
253 
254 /* optimized version of sk_under_memory_pressure() for TCP sockets */
255 static inline bool tcp_under_memory_pressure(const struct sock *sk)
256 {
257 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
258 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
259 		return true;
260 
261 	return READ_ONCE(tcp_memory_pressure);
262 }
263 /*
264  * The next routines deal with comparing 32 bit unsigned ints
265  * and worry about wraparound (automatic with unsigned arithmetic).
266  */
267 
268 static inline bool before(__u32 seq1, __u32 seq2)
269 {
270         return (__s32)(seq1-seq2) < 0;
271 }
272 #define after(seq2, seq1) 	before(seq1, seq2)
273 
274 /* is s2<=s1<=s3 ? */
275 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
276 {
277 	return seq3 - seq2 >= seq1 - seq2;
278 }
279 
280 static inline bool tcp_out_of_memory(struct sock *sk)
281 {
282 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
283 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
284 		return true;
285 	return false;
286 }
287 
288 void sk_forced_mem_schedule(struct sock *sk, int size);
289 
290 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
291 {
292 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
293 	int orphans = percpu_counter_read_positive(ocp);
294 
295 	if (orphans << shift > sysctl_tcp_max_orphans) {
296 		orphans = percpu_counter_sum_positive(ocp);
297 		if (orphans << shift > sysctl_tcp_max_orphans)
298 			return true;
299 	}
300 	return false;
301 }
302 
303 bool tcp_check_oom(struct sock *sk, int shift);
304 
305 
306 extern struct proto tcp_prot;
307 
308 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
309 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
310 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
311 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
312 
313 void tcp_tasklet_init(void);
314 
315 int tcp_v4_err(struct sk_buff *skb, u32);
316 
317 void tcp_shutdown(struct sock *sk, int how);
318 
319 int tcp_v4_early_demux(struct sk_buff *skb);
320 int tcp_v4_rcv(struct sk_buff *skb);
321 
322 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
323 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
324 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
325 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
326 		 int flags);
327 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
328 			size_t size, int flags);
329 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
330 		 size_t size, int flags);
331 void tcp_release_cb(struct sock *sk);
332 void tcp_wfree(struct sk_buff *skb);
333 void tcp_write_timer_handler(struct sock *sk);
334 void tcp_delack_timer_handler(struct sock *sk);
335 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
336 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
337 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
338 void tcp_rcv_space_adjust(struct sock *sk);
339 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
340 void tcp_twsk_destructor(struct sock *sk);
341 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
342 			struct pipe_inode_info *pipe, size_t len,
343 			unsigned int flags);
344 
345 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
346 static inline void tcp_dec_quickack_mode(struct sock *sk,
347 					 const unsigned int pkts)
348 {
349 	struct inet_connection_sock *icsk = inet_csk(sk);
350 
351 	if (icsk->icsk_ack.quick) {
352 		if (pkts >= icsk->icsk_ack.quick) {
353 			icsk->icsk_ack.quick = 0;
354 			/* Leaving quickack mode we deflate ATO. */
355 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
356 		} else
357 			icsk->icsk_ack.quick -= pkts;
358 	}
359 }
360 
361 #define	TCP_ECN_OK		1
362 #define	TCP_ECN_QUEUE_CWR	2
363 #define	TCP_ECN_DEMAND_CWR	4
364 #define	TCP_ECN_SEEN		8
365 
366 enum tcp_tw_status {
367 	TCP_TW_SUCCESS = 0,
368 	TCP_TW_RST = 1,
369 	TCP_TW_ACK = 2,
370 	TCP_TW_SYN = 3
371 };
372 
373 
374 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
375 					      struct sk_buff *skb,
376 					      const struct tcphdr *th);
377 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
378 			   struct request_sock *req, bool fastopen,
379 			   bool *lost_race);
380 int tcp_child_process(struct sock *parent, struct sock *child,
381 		      struct sk_buff *skb);
382 void tcp_enter_loss(struct sock *sk);
383 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
384 void tcp_clear_retrans(struct tcp_sock *tp);
385 void tcp_update_metrics(struct sock *sk);
386 void tcp_init_metrics(struct sock *sk);
387 void tcp_metrics_init(void);
388 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
389 void tcp_close(struct sock *sk, long timeout);
390 void tcp_init_sock(struct sock *sk);
391 void tcp_init_transfer(struct sock *sk, int bpf_op);
392 __poll_t tcp_poll(struct file *file, struct socket *sock,
393 		      struct poll_table_struct *wait);
394 int tcp_getsockopt(struct sock *sk, int level, int optname,
395 		   char __user *optval, int __user *optlen);
396 int tcp_setsockopt(struct sock *sk, int level, int optname,
397 		   char __user *optval, unsigned int optlen);
398 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
399 			  char __user *optval, int __user *optlen);
400 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
401 			  char __user *optval, unsigned int optlen);
402 void tcp_set_keepalive(struct sock *sk, int val);
403 void tcp_syn_ack_timeout(const struct request_sock *req);
404 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
405 		int flags, int *addr_len);
406 int tcp_set_rcvlowat(struct sock *sk, int val);
407 void tcp_data_ready(struct sock *sk);
408 #ifdef CONFIG_MMU
409 int tcp_mmap(struct file *file, struct socket *sock,
410 	     struct vm_area_struct *vma);
411 #endif
412 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
413 		       struct tcp_options_received *opt_rx,
414 		       int estab, struct tcp_fastopen_cookie *foc);
415 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
416 
417 /*
418  *	BPF SKB-less helpers
419  */
420 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
421 			 struct tcphdr *th, u32 *cookie);
422 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
423 			 struct tcphdr *th, u32 *cookie);
424 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
425 			  const struct tcp_request_sock_ops *af_ops,
426 			  struct sock *sk, struct tcphdr *th);
427 /*
428  *	TCP v4 functions exported for the inet6 API
429  */
430 
431 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
432 void tcp_v4_mtu_reduced(struct sock *sk);
433 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
434 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
435 struct sock *tcp_create_openreq_child(const struct sock *sk,
436 				      struct request_sock *req,
437 				      struct sk_buff *skb);
438 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
439 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
440 				  struct request_sock *req,
441 				  struct dst_entry *dst,
442 				  struct request_sock *req_unhash,
443 				  bool *own_req);
444 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
445 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
446 int tcp_connect(struct sock *sk);
447 enum tcp_synack_type {
448 	TCP_SYNACK_NORMAL,
449 	TCP_SYNACK_FASTOPEN,
450 	TCP_SYNACK_COOKIE,
451 };
452 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
453 				struct request_sock *req,
454 				struct tcp_fastopen_cookie *foc,
455 				enum tcp_synack_type synack_type);
456 int tcp_disconnect(struct sock *sk, int flags);
457 
458 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
459 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
460 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
461 
462 /* From syncookies.c */
463 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
464 				 struct request_sock *req,
465 				 struct dst_entry *dst, u32 tsoff);
466 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
467 		      u32 cookie);
468 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
469 #ifdef CONFIG_SYN_COOKIES
470 
471 /* Syncookies use a monotonic timer which increments every 60 seconds.
472  * This counter is used both as a hash input and partially encoded into
473  * the cookie value.  A cookie is only validated further if the delta
474  * between the current counter value and the encoded one is less than this,
475  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
476  * the counter advances immediately after a cookie is generated).
477  */
478 #define MAX_SYNCOOKIE_AGE	2
479 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
480 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
481 
482 /* syncookies: remember time of last synqueue overflow
483  * But do not dirty this field too often (once per second is enough)
484  * It is racy as we do not hold a lock, but race is very minor.
485  */
486 static inline void tcp_synq_overflow(const struct sock *sk)
487 {
488 	unsigned int last_overflow;
489 	unsigned int now = jiffies;
490 
491 	if (sk->sk_reuseport) {
492 		struct sock_reuseport *reuse;
493 
494 		reuse = rcu_dereference(sk->sk_reuseport_cb);
495 		if (likely(reuse)) {
496 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
497 			if (!time_between32(now, last_overflow,
498 					    last_overflow + HZ))
499 				WRITE_ONCE(reuse->synq_overflow_ts, now);
500 			return;
501 		}
502 	}
503 
504 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
505 	if (!time_between32(now, last_overflow, last_overflow + HZ))
506 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
507 }
508 
509 /* syncookies: no recent synqueue overflow on this listening socket? */
510 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
511 {
512 	unsigned int last_overflow;
513 	unsigned int now = jiffies;
514 
515 	if (sk->sk_reuseport) {
516 		struct sock_reuseport *reuse;
517 
518 		reuse = rcu_dereference(sk->sk_reuseport_cb);
519 		if (likely(reuse)) {
520 			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
521 			return !time_between32(now, last_overflow - HZ,
522 					       last_overflow +
523 					       TCP_SYNCOOKIE_VALID);
524 		}
525 	}
526 
527 	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
528 
529 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
530 	 * then we're under synflood. However, we have to use
531 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
532 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
533 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
534 	 * which could lead to rejecting a valid syncookie.
535 	 */
536 	return !time_between32(now, last_overflow - HZ,
537 			       last_overflow + TCP_SYNCOOKIE_VALID);
538 }
539 
540 static inline u32 tcp_cookie_time(void)
541 {
542 	u64 val = get_jiffies_64();
543 
544 	do_div(val, TCP_SYNCOOKIE_PERIOD);
545 	return val;
546 }
547 
548 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
549 			      u16 *mssp);
550 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
551 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
552 bool cookie_timestamp_decode(const struct net *net,
553 			     struct tcp_options_received *opt);
554 bool cookie_ecn_ok(const struct tcp_options_received *opt,
555 		   const struct net *net, const struct dst_entry *dst);
556 
557 /* From net/ipv6/syncookies.c */
558 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
559 		      u32 cookie);
560 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
561 
562 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
563 			      const struct tcphdr *th, u16 *mssp);
564 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
565 #endif
566 /* tcp_output.c */
567 
568 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
569 			       int nonagle);
570 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
571 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
572 void tcp_retransmit_timer(struct sock *sk);
573 void tcp_xmit_retransmit_queue(struct sock *);
574 void tcp_simple_retransmit(struct sock *);
575 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
576 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
577 enum tcp_queue {
578 	TCP_FRAG_IN_WRITE_QUEUE,
579 	TCP_FRAG_IN_RTX_QUEUE,
580 };
581 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
582 		 struct sk_buff *skb, u32 len,
583 		 unsigned int mss_now, gfp_t gfp);
584 
585 void tcp_send_probe0(struct sock *);
586 void tcp_send_partial(struct sock *);
587 int tcp_write_wakeup(struct sock *, int mib);
588 void tcp_send_fin(struct sock *sk);
589 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
590 int tcp_send_synack(struct sock *);
591 void tcp_push_one(struct sock *, unsigned int mss_now);
592 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
593 void tcp_send_ack(struct sock *sk);
594 void tcp_send_delayed_ack(struct sock *sk);
595 void tcp_send_loss_probe(struct sock *sk);
596 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
597 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
598 			     const struct sk_buff *next_skb);
599 
600 /* tcp_input.c */
601 void tcp_rearm_rto(struct sock *sk);
602 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
603 void tcp_reset(struct sock *sk);
604 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
605 void tcp_fin(struct sock *sk);
606 
607 /* tcp_timer.c */
608 void tcp_init_xmit_timers(struct sock *);
609 static inline void tcp_clear_xmit_timers(struct sock *sk)
610 {
611 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
612 		__sock_put(sk);
613 
614 	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
615 		__sock_put(sk);
616 
617 	inet_csk_clear_xmit_timers(sk);
618 }
619 
620 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
621 unsigned int tcp_current_mss(struct sock *sk);
622 
623 /* Bound MSS / TSO packet size with the half of the window */
624 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
625 {
626 	int cutoff;
627 
628 	/* When peer uses tiny windows, there is no use in packetizing
629 	 * to sub-MSS pieces for the sake of SWS or making sure there
630 	 * are enough packets in the pipe for fast recovery.
631 	 *
632 	 * On the other hand, for extremely large MSS devices, handling
633 	 * smaller than MSS windows in this way does make sense.
634 	 */
635 	if (tp->max_window > TCP_MSS_DEFAULT)
636 		cutoff = (tp->max_window >> 1);
637 	else
638 		cutoff = tp->max_window;
639 
640 	if (cutoff && pktsize > cutoff)
641 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
642 	else
643 		return pktsize;
644 }
645 
646 /* tcp.c */
647 void tcp_get_info(struct sock *, struct tcp_info *);
648 
649 /* Read 'sendfile()'-style from a TCP socket */
650 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
651 		  sk_read_actor_t recv_actor);
652 
653 void tcp_initialize_rcv_mss(struct sock *sk);
654 
655 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
656 int tcp_mss_to_mtu(struct sock *sk, int mss);
657 void tcp_mtup_init(struct sock *sk);
658 void tcp_init_buffer_space(struct sock *sk);
659 
660 static inline void tcp_bound_rto(const struct sock *sk)
661 {
662 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
663 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
664 }
665 
666 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
667 {
668 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
669 }
670 
671 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
672 {
673 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
674 			       ntohl(TCP_FLAG_ACK) |
675 			       snd_wnd);
676 }
677 
678 static inline void tcp_fast_path_on(struct tcp_sock *tp)
679 {
680 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
681 }
682 
683 static inline void tcp_fast_path_check(struct sock *sk)
684 {
685 	struct tcp_sock *tp = tcp_sk(sk);
686 
687 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
688 	    tp->rcv_wnd &&
689 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
690 	    !tp->urg_data)
691 		tcp_fast_path_on(tp);
692 }
693 
694 /* Compute the actual rto_min value */
695 static inline u32 tcp_rto_min(struct sock *sk)
696 {
697 	const struct dst_entry *dst = __sk_dst_get(sk);
698 	u32 rto_min = TCP_RTO_MIN;
699 
700 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
701 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
702 	return rto_min;
703 }
704 
705 static inline u32 tcp_rto_min_us(struct sock *sk)
706 {
707 	return jiffies_to_usecs(tcp_rto_min(sk));
708 }
709 
710 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
711 {
712 	return dst_metric_locked(dst, RTAX_CC_ALGO);
713 }
714 
715 /* Minimum RTT in usec. ~0 means not available. */
716 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
717 {
718 	return minmax_get(&tp->rtt_min);
719 }
720 
721 /* Compute the actual receive window we are currently advertising.
722  * Rcv_nxt can be after the window if our peer push more data
723  * than the offered window.
724  */
725 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
726 {
727 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
728 
729 	if (win < 0)
730 		win = 0;
731 	return (u32) win;
732 }
733 
734 /* Choose a new window, without checks for shrinking, and without
735  * scaling applied to the result.  The caller does these things
736  * if necessary.  This is a "raw" window selection.
737  */
738 u32 __tcp_select_window(struct sock *sk);
739 
740 void tcp_send_window_probe(struct sock *sk);
741 
742 /* TCP uses 32bit jiffies to save some space.
743  * Note that this is different from tcp_time_stamp, which
744  * historically has been the same until linux-4.13.
745  */
746 #define tcp_jiffies32 ((u32)jiffies)
747 
748 /*
749  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
750  * It is no longer tied to jiffies, but to 1 ms clock.
751  * Note: double check if you want to use tcp_jiffies32 instead of this.
752  */
753 #define TCP_TS_HZ	1000
754 
755 static inline u64 tcp_clock_ns(void)
756 {
757 	return ktime_get_ns();
758 }
759 
760 static inline u64 tcp_clock_us(void)
761 {
762 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
763 }
764 
765 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
766 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
767 {
768 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
769 }
770 
771 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
772 static inline u32 tcp_ns_to_ts(u64 ns)
773 {
774 	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
775 }
776 
777 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
778 static inline u32 tcp_time_stamp_raw(void)
779 {
780 	return tcp_ns_to_ts(tcp_clock_ns());
781 }
782 
783 void tcp_mstamp_refresh(struct tcp_sock *tp);
784 
785 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
786 {
787 	return max_t(s64, t1 - t0, 0);
788 }
789 
790 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
791 {
792 	return tcp_ns_to_ts(skb->skb_mstamp_ns);
793 }
794 
795 /* provide the departure time in us unit */
796 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
797 {
798 	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
799 }
800 
801 
802 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
803 
804 #define TCPHDR_FIN 0x01
805 #define TCPHDR_SYN 0x02
806 #define TCPHDR_RST 0x04
807 #define TCPHDR_PSH 0x08
808 #define TCPHDR_ACK 0x10
809 #define TCPHDR_URG 0x20
810 #define TCPHDR_ECE 0x40
811 #define TCPHDR_CWR 0x80
812 
813 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
814 
815 /* This is what the send packet queuing engine uses to pass
816  * TCP per-packet control information to the transmission code.
817  * We also store the host-order sequence numbers in here too.
818  * This is 44 bytes if IPV6 is enabled.
819  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
820  */
821 struct tcp_skb_cb {
822 	__u32		seq;		/* Starting sequence number	*/
823 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
824 	union {
825 		/* Note : tcp_tw_isn is used in input path only
826 		 *	  (isn chosen by tcp_timewait_state_process())
827 		 *
828 		 * 	  tcp_gso_segs/size are used in write queue only,
829 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
830 		 */
831 		__u32		tcp_tw_isn;
832 		struct {
833 			u16	tcp_gso_segs;
834 			u16	tcp_gso_size;
835 		};
836 	};
837 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
838 
839 	__u8		sacked;		/* State flags for SACK.	*/
840 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
841 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
842 #define TCPCB_LOST		0x04	/* SKB is lost			*/
843 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
844 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
845 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
846 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
847 				TCPCB_REPAIRED)
848 
849 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
850 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
851 			eor:1,		/* Is skb MSG_EOR marked? */
852 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
853 			unused:5;
854 	__u32		ack_seq;	/* Sequence number ACK'd	*/
855 	union {
856 		struct {
857 			/* There is space for up to 24 bytes */
858 			__u32 in_flight:30,/* Bytes in flight at transmit */
859 			      is_app_limited:1, /* cwnd not fully used? */
860 			      unused:1;
861 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
862 			__u32 delivered;
863 			/* start of send pipeline phase */
864 			u64 first_tx_mstamp;
865 			/* when we reached the "delivered" count */
866 			u64 delivered_mstamp;
867 		} tx;   /* only used for outgoing skbs */
868 		union {
869 			struct inet_skb_parm	h4;
870 #if IS_ENABLED(CONFIG_IPV6)
871 			struct inet6_skb_parm	h6;
872 #endif
873 		} header;	/* For incoming skbs */
874 		struct {
875 			__u32 flags;
876 			struct sock *sk_redir;
877 			void *data_end;
878 		} bpf;
879 	};
880 };
881 
882 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
883 
884 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
885 {
886 	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
887 }
888 
889 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
890 {
891 	return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
892 }
893 
894 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
895 {
896 	return TCP_SKB_CB(skb)->bpf.sk_redir;
897 }
898 
899 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
900 {
901 	TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
902 }
903 
904 #if IS_ENABLED(CONFIG_IPV6)
905 /* This is the variant of inet6_iif() that must be used by TCP,
906  * as TCP moves IP6CB into a different location in skb->cb[]
907  */
908 static inline int tcp_v6_iif(const struct sk_buff *skb)
909 {
910 	return TCP_SKB_CB(skb)->header.h6.iif;
911 }
912 
913 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
914 {
915 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
916 
917 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
918 }
919 
920 /* TCP_SKB_CB reference means this can not be used from early demux */
921 static inline int tcp_v6_sdif(const struct sk_buff *skb)
922 {
923 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
924 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
925 		return TCP_SKB_CB(skb)->header.h6.iif;
926 #endif
927 	return 0;
928 }
929 #endif
930 
931 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
932 {
933 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
934 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
935 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
936 		return true;
937 #endif
938 	return false;
939 }
940 
941 /* TCP_SKB_CB reference means this can not be used from early demux */
942 static inline int tcp_v4_sdif(struct sk_buff *skb)
943 {
944 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
945 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
946 		return TCP_SKB_CB(skb)->header.h4.iif;
947 #endif
948 	return 0;
949 }
950 
951 /* Due to TSO, an SKB can be composed of multiple actual
952  * packets.  To keep these tracked properly, we use this.
953  */
954 static inline int tcp_skb_pcount(const struct sk_buff *skb)
955 {
956 	return TCP_SKB_CB(skb)->tcp_gso_segs;
957 }
958 
959 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
960 {
961 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
962 }
963 
964 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
965 {
966 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
967 }
968 
969 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
970 static inline int tcp_skb_mss(const struct sk_buff *skb)
971 {
972 	return TCP_SKB_CB(skb)->tcp_gso_size;
973 }
974 
975 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
976 {
977 	return likely(!TCP_SKB_CB(skb)->eor);
978 }
979 
980 /* Events passed to congestion control interface */
981 enum tcp_ca_event {
982 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
983 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
984 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
985 	CA_EVENT_LOSS,		/* loss timeout */
986 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
987 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
988 };
989 
990 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
991 enum tcp_ca_ack_event_flags {
992 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
993 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
994 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
995 };
996 
997 /*
998  * Interface for adding new TCP congestion control handlers
999  */
1000 #define TCP_CA_NAME_MAX	16
1001 #define TCP_CA_MAX	128
1002 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1003 
1004 #define TCP_CA_UNSPEC	0
1005 
1006 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1007 #define TCP_CONG_NON_RESTRICTED 0x1
1008 /* Requires ECN/ECT set on all packets */
1009 #define TCP_CONG_NEEDS_ECN	0x2
1010 
1011 union tcp_cc_info;
1012 
1013 struct ack_sample {
1014 	u32 pkts_acked;
1015 	s32 rtt_us;
1016 	u32 in_flight;
1017 };
1018 
1019 /* A rate sample measures the number of (original/retransmitted) data
1020  * packets delivered "delivered" over an interval of time "interval_us".
1021  * The tcp_rate.c code fills in the rate sample, and congestion
1022  * control modules that define a cong_control function to run at the end
1023  * of ACK processing can optionally chose to consult this sample when
1024  * setting cwnd and pacing rate.
1025  * A sample is invalid if "delivered" or "interval_us" is negative.
1026  */
1027 struct rate_sample {
1028 	u64  prior_mstamp; /* starting timestamp for interval */
1029 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1030 	s32  delivered;		/* number of packets delivered over interval */
1031 	long interval_us;	/* time for tp->delivered to incr "delivered" */
1032 	u32 snd_interval_us;	/* snd interval for delivered packets */
1033 	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1034 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1035 	int  losses;		/* number of packets marked lost upon ACK */
1036 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1037 	u32  prior_in_flight;	/* in flight before this ACK */
1038 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1039 	bool is_retrans;	/* is sample from retransmission? */
1040 	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1041 };
1042 
1043 struct tcp_congestion_ops {
1044 	struct list_head	list;
1045 	u32 key;
1046 	u32 flags;
1047 
1048 	/* initialize private data (optional) */
1049 	void (*init)(struct sock *sk);
1050 	/* cleanup private data  (optional) */
1051 	void (*release)(struct sock *sk);
1052 
1053 	/* return slow start threshold (required) */
1054 	u32 (*ssthresh)(struct sock *sk);
1055 	/* do new cwnd calculation (required) */
1056 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1057 	/* call before changing ca_state (optional) */
1058 	void (*set_state)(struct sock *sk, u8 new_state);
1059 	/* call when cwnd event occurs (optional) */
1060 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1061 	/* call when ack arrives (optional) */
1062 	void (*in_ack_event)(struct sock *sk, u32 flags);
1063 	/* new value of cwnd after loss (required) */
1064 	u32  (*undo_cwnd)(struct sock *sk);
1065 	/* hook for packet ack accounting (optional) */
1066 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1067 	/* override sysctl_tcp_min_tso_segs */
1068 	u32 (*min_tso_segs)(struct sock *sk);
1069 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1070 	u32 (*sndbuf_expand)(struct sock *sk);
1071 	/* call when packets are delivered to update cwnd and pacing rate,
1072 	 * after all the ca_state processing. (optional)
1073 	 */
1074 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1075 	/* get info for inet_diag (optional) */
1076 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1077 			   union tcp_cc_info *info);
1078 
1079 	char 		name[TCP_CA_NAME_MAX];
1080 	struct module 	*owner;
1081 };
1082 
1083 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1084 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1085 
1086 void tcp_assign_congestion_control(struct sock *sk);
1087 void tcp_init_congestion_control(struct sock *sk);
1088 void tcp_cleanup_congestion_control(struct sock *sk);
1089 int tcp_set_default_congestion_control(struct net *net, const char *name);
1090 void tcp_get_default_congestion_control(struct net *net, char *name);
1091 void tcp_get_available_congestion_control(char *buf, size_t len);
1092 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1093 int tcp_set_allowed_congestion_control(char *allowed);
1094 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1095 			       bool reinit, bool cap_net_admin);
1096 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1097 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1098 
1099 u32 tcp_reno_ssthresh(struct sock *sk);
1100 u32 tcp_reno_undo_cwnd(struct sock *sk);
1101 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1102 extern struct tcp_congestion_ops tcp_reno;
1103 
1104 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1105 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1106 #ifdef CONFIG_INET
1107 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1108 #else
1109 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1110 {
1111 	return NULL;
1112 }
1113 #endif
1114 
1115 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1116 {
1117 	const struct inet_connection_sock *icsk = inet_csk(sk);
1118 
1119 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1120 }
1121 
1122 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1123 {
1124 	struct inet_connection_sock *icsk = inet_csk(sk);
1125 
1126 	if (icsk->icsk_ca_ops->set_state)
1127 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1128 	icsk->icsk_ca_state = ca_state;
1129 }
1130 
1131 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1132 {
1133 	const struct inet_connection_sock *icsk = inet_csk(sk);
1134 
1135 	if (icsk->icsk_ca_ops->cwnd_event)
1136 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1137 }
1138 
1139 /* From tcp_rate.c */
1140 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1141 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1142 			    struct rate_sample *rs);
1143 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1144 		  bool is_sack_reneg, struct rate_sample *rs);
1145 void tcp_rate_check_app_limited(struct sock *sk);
1146 
1147 /* These functions determine how the current flow behaves in respect of SACK
1148  * handling. SACK is negotiated with the peer, and therefore it can vary
1149  * between different flows.
1150  *
1151  * tcp_is_sack - SACK enabled
1152  * tcp_is_reno - No SACK
1153  */
1154 static inline int tcp_is_sack(const struct tcp_sock *tp)
1155 {
1156 	return likely(tp->rx_opt.sack_ok);
1157 }
1158 
1159 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1160 {
1161 	return !tcp_is_sack(tp);
1162 }
1163 
1164 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1165 {
1166 	return tp->sacked_out + tp->lost_out;
1167 }
1168 
1169 /* This determines how many packets are "in the network" to the best
1170  * of our knowledge.  In many cases it is conservative, but where
1171  * detailed information is available from the receiver (via SACK
1172  * blocks etc.) we can make more aggressive calculations.
1173  *
1174  * Use this for decisions involving congestion control, use just
1175  * tp->packets_out to determine if the send queue is empty or not.
1176  *
1177  * Read this equation as:
1178  *
1179  *	"Packets sent once on transmission queue" MINUS
1180  *	"Packets left network, but not honestly ACKed yet" PLUS
1181  *	"Packets fast retransmitted"
1182  */
1183 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1184 {
1185 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1186 }
1187 
1188 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1189 
1190 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1191 {
1192 	return tp->snd_cwnd < tp->snd_ssthresh;
1193 }
1194 
1195 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1196 {
1197 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1198 }
1199 
1200 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1201 {
1202 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1203 	       (1 << inet_csk(sk)->icsk_ca_state);
1204 }
1205 
1206 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1207  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1208  * ssthresh.
1209  */
1210 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1211 {
1212 	const struct tcp_sock *tp = tcp_sk(sk);
1213 
1214 	if (tcp_in_cwnd_reduction(sk))
1215 		return tp->snd_ssthresh;
1216 	else
1217 		return max(tp->snd_ssthresh,
1218 			   ((tp->snd_cwnd >> 1) +
1219 			    (tp->snd_cwnd >> 2)));
1220 }
1221 
1222 /* Use define here intentionally to get WARN_ON location shown at the caller */
1223 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1224 
1225 void tcp_enter_cwr(struct sock *sk);
1226 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1227 
1228 /* The maximum number of MSS of available cwnd for which TSO defers
1229  * sending if not using sysctl_tcp_tso_win_divisor.
1230  */
1231 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1232 {
1233 	return 3;
1234 }
1235 
1236 /* Returns end sequence number of the receiver's advertised window */
1237 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1238 {
1239 	return tp->snd_una + tp->snd_wnd;
1240 }
1241 
1242 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1243  * flexible approach. The RFC suggests cwnd should not be raised unless
1244  * it was fully used previously. And that's exactly what we do in
1245  * congestion avoidance mode. But in slow start we allow cwnd to grow
1246  * as long as the application has used half the cwnd.
1247  * Example :
1248  *    cwnd is 10 (IW10), but application sends 9 frames.
1249  *    We allow cwnd to reach 18 when all frames are ACKed.
1250  * This check is safe because it's as aggressive as slow start which already
1251  * risks 100% overshoot. The advantage is that we discourage application to
1252  * either send more filler packets or data to artificially blow up the cwnd
1253  * usage, and allow application-limited process to probe bw more aggressively.
1254  */
1255 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1256 {
1257 	const struct tcp_sock *tp = tcp_sk(sk);
1258 
1259 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1260 	if (tcp_in_slow_start(tp))
1261 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1262 
1263 	return tp->is_cwnd_limited;
1264 }
1265 
1266 /* BBR congestion control needs pacing.
1267  * Same remark for SO_MAX_PACING_RATE.
1268  * sch_fq packet scheduler is efficiently handling pacing,
1269  * but is not always installed/used.
1270  * Return true if TCP stack should pace packets itself.
1271  */
1272 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1273 {
1274 	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1275 }
1276 
1277 /* Return in jiffies the delay before one skb is sent.
1278  * If @skb is NULL, we look at EDT for next packet being sent on the socket.
1279  */
1280 static inline unsigned long tcp_pacing_delay(const struct sock *sk,
1281 					     const struct sk_buff *skb)
1282 {
1283 	s64 pacing_delay = skb ? skb->tstamp : tcp_sk(sk)->tcp_wstamp_ns;
1284 
1285 	pacing_delay -= tcp_sk(sk)->tcp_clock_cache;
1286 
1287 	return pacing_delay > 0 ? nsecs_to_jiffies(pacing_delay) : 0;
1288 }
1289 
1290 static inline void tcp_reset_xmit_timer(struct sock *sk,
1291 					const int what,
1292 					unsigned long when,
1293 					const unsigned long max_when,
1294 					const struct sk_buff *skb)
1295 {
1296 	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk, skb),
1297 				  max_when);
1298 }
1299 
1300 /* Something is really bad, we could not queue an additional packet,
1301  * because qdisc is full or receiver sent a 0 window, or we are paced.
1302  * We do not want to add fuel to the fire, or abort too early,
1303  * so make sure the timer we arm now is at least 200ms in the future,
1304  * regardless of current icsk_rto value (as it could be ~2ms)
1305  */
1306 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1307 {
1308 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1309 }
1310 
1311 /* Variant of inet_csk_rto_backoff() used for zero window probes */
1312 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1313 					    unsigned long max_when)
1314 {
1315 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1316 
1317 	return (unsigned long)min_t(u64, when, max_when);
1318 }
1319 
1320 static inline void tcp_check_probe_timer(struct sock *sk)
1321 {
1322 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1323 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1324 				     tcp_probe0_base(sk), TCP_RTO_MAX,
1325 				     NULL);
1326 }
1327 
1328 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1329 {
1330 	tp->snd_wl1 = seq;
1331 }
1332 
1333 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1334 {
1335 	tp->snd_wl1 = seq;
1336 }
1337 
1338 /*
1339  * Calculate(/check) TCP checksum
1340  */
1341 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1342 				   __be32 daddr, __wsum base)
1343 {
1344 	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1345 }
1346 
1347 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1348 {
1349 	return !skb_csum_unnecessary(skb) &&
1350 		__skb_checksum_complete(skb);
1351 }
1352 
1353 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1354 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1355 void tcp_set_state(struct sock *sk, int state);
1356 void tcp_done(struct sock *sk);
1357 int tcp_abort(struct sock *sk, int err);
1358 
1359 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1360 {
1361 	rx_opt->dsack = 0;
1362 	rx_opt->num_sacks = 0;
1363 }
1364 
1365 u32 tcp_default_init_rwnd(u32 mss);
1366 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1367 
1368 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1369 {
1370 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1371 	struct tcp_sock *tp = tcp_sk(sk);
1372 	s32 delta;
1373 
1374 	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1375 	    ca_ops->cong_control)
1376 		return;
1377 	delta = tcp_jiffies32 - tp->lsndtime;
1378 	if (delta > inet_csk(sk)->icsk_rto)
1379 		tcp_cwnd_restart(sk, delta);
1380 }
1381 
1382 /* Determine a window scaling and initial window to offer. */
1383 void tcp_select_initial_window(const struct sock *sk, int __space,
1384 			       __u32 mss, __u32 *rcv_wnd,
1385 			       __u32 *window_clamp, int wscale_ok,
1386 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1387 
1388 static inline int tcp_win_from_space(const struct sock *sk, int space)
1389 {
1390 	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1391 
1392 	return tcp_adv_win_scale <= 0 ?
1393 		(space>>(-tcp_adv_win_scale)) :
1394 		space - (space>>tcp_adv_win_scale);
1395 }
1396 
1397 /* Note: caller must be prepared to deal with negative returns */
1398 static inline int tcp_space(const struct sock *sk)
1399 {
1400 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1401 				  READ_ONCE(sk->sk_backlog.len) -
1402 				  atomic_read(&sk->sk_rmem_alloc));
1403 }
1404 
1405 static inline int tcp_full_space(const struct sock *sk)
1406 {
1407 	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1408 }
1409 
1410 extern void tcp_openreq_init_rwin(struct request_sock *req,
1411 				  const struct sock *sk_listener,
1412 				  const struct dst_entry *dst);
1413 
1414 void tcp_enter_memory_pressure(struct sock *sk);
1415 void tcp_leave_memory_pressure(struct sock *sk);
1416 
1417 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1418 {
1419 	struct net *net = sock_net((struct sock *)tp);
1420 
1421 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1422 }
1423 
1424 static inline int keepalive_time_when(const struct tcp_sock *tp)
1425 {
1426 	struct net *net = sock_net((struct sock *)tp);
1427 
1428 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1429 }
1430 
1431 static inline int keepalive_probes(const struct tcp_sock *tp)
1432 {
1433 	struct net *net = sock_net((struct sock *)tp);
1434 
1435 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1436 }
1437 
1438 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1439 {
1440 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1441 
1442 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1443 			  tcp_jiffies32 - tp->rcv_tstamp);
1444 }
1445 
1446 static inline int tcp_fin_time(const struct sock *sk)
1447 {
1448 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1449 	const int rto = inet_csk(sk)->icsk_rto;
1450 
1451 	if (fin_timeout < (rto << 2) - (rto >> 1))
1452 		fin_timeout = (rto << 2) - (rto >> 1);
1453 
1454 	return fin_timeout;
1455 }
1456 
1457 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1458 				  int paws_win)
1459 {
1460 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1461 		return true;
1462 	if (unlikely(!time_before32(ktime_get_seconds(),
1463 				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1464 		return true;
1465 	/*
1466 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1467 	 * then following tcp messages have valid values. Ignore 0 value,
1468 	 * or else 'negative' tsval might forbid us to accept their packets.
1469 	 */
1470 	if (!rx_opt->ts_recent)
1471 		return true;
1472 	return false;
1473 }
1474 
1475 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1476 				   int rst)
1477 {
1478 	if (tcp_paws_check(rx_opt, 0))
1479 		return false;
1480 
1481 	/* RST segments are not recommended to carry timestamp,
1482 	   and, if they do, it is recommended to ignore PAWS because
1483 	   "their cleanup function should take precedence over timestamps."
1484 	   Certainly, it is mistake. It is necessary to understand the reasons
1485 	   of this constraint to relax it: if peer reboots, clock may go
1486 	   out-of-sync and half-open connections will not be reset.
1487 	   Actually, the problem would be not existing if all
1488 	   the implementations followed draft about maintaining clock
1489 	   via reboots. Linux-2.2 DOES NOT!
1490 
1491 	   However, we can relax time bounds for RST segments to MSL.
1492 	 */
1493 	if (rst && !time_before32(ktime_get_seconds(),
1494 				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1495 		return false;
1496 	return true;
1497 }
1498 
1499 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1500 			  int mib_idx, u32 *last_oow_ack_time);
1501 
1502 static inline void tcp_mib_init(struct net *net)
1503 {
1504 	/* See RFC 2012 */
1505 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1506 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1507 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1508 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1509 }
1510 
1511 /* from STCP */
1512 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1513 {
1514 	tp->lost_skb_hint = NULL;
1515 }
1516 
1517 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1518 {
1519 	tcp_clear_retrans_hints_partial(tp);
1520 	tp->retransmit_skb_hint = NULL;
1521 }
1522 
1523 union tcp_md5_addr {
1524 	struct in_addr  a4;
1525 #if IS_ENABLED(CONFIG_IPV6)
1526 	struct in6_addr	a6;
1527 #endif
1528 };
1529 
1530 /* - key database */
1531 struct tcp_md5sig_key {
1532 	struct hlist_node	node;
1533 	u8			keylen;
1534 	u8			family; /* AF_INET or AF_INET6 */
1535 	union tcp_md5_addr	addr;
1536 	u8			prefixlen;
1537 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1538 	struct rcu_head		rcu;
1539 };
1540 
1541 /* - sock block */
1542 struct tcp_md5sig_info {
1543 	struct hlist_head	head;
1544 	struct rcu_head		rcu;
1545 };
1546 
1547 /* - pseudo header */
1548 struct tcp4_pseudohdr {
1549 	__be32		saddr;
1550 	__be32		daddr;
1551 	__u8		pad;
1552 	__u8		protocol;
1553 	__be16		len;
1554 };
1555 
1556 struct tcp6_pseudohdr {
1557 	struct in6_addr	saddr;
1558 	struct in6_addr daddr;
1559 	__be32		len;
1560 	__be32		protocol;	/* including padding */
1561 };
1562 
1563 union tcp_md5sum_block {
1564 	struct tcp4_pseudohdr ip4;
1565 #if IS_ENABLED(CONFIG_IPV6)
1566 	struct tcp6_pseudohdr ip6;
1567 #endif
1568 };
1569 
1570 /* - pool: digest algorithm, hash description and scratch buffer */
1571 struct tcp_md5sig_pool {
1572 	struct ahash_request	*md5_req;
1573 	void			*scratch;
1574 };
1575 
1576 /* - functions */
1577 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1578 			const struct sock *sk, const struct sk_buff *skb);
1579 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1580 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1581 		   gfp_t gfp);
1582 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1583 		   int family, u8 prefixlen);
1584 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1585 					 const struct sock *addr_sk);
1586 
1587 #ifdef CONFIG_TCP_MD5SIG
1588 #include <linux/jump_label.h>
1589 extern struct static_key_false tcp_md5_needed;
1590 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk,
1591 					   const union tcp_md5_addr *addr,
1592 					   int family);
1593 static inline struct tcp_md5sig_key *
1594 tcp_md5_do_lookup(const struct sock *sk,
1595 		  const union tcp_md5_addr *addr,
1596 		  int family)
1597 {
1598 	if (!static_branch_unlikely(&tcp_md5_needed))
1599 		return NULL;
1600 	return __tcp_md5_do_lookup(sk, addr, family);
1601 }
1602 
1603 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1604 #else
1605 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1606 					 const union tcp_md5_addr *addr,
1607 					 int family)
1608 {
1609 	return NULL;
1610 }
1611 #define tcp_twsk_md5_key(twsk)	NULL
1612 #endif
1613 
1614 bool tcp_alloc_md5sig_pool(void);
1615 
1616 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1617 static inline void tcp_put_md5sig_pool(void)
1618 {
1619 	local_bh_enable();
1620 }
1621 
1622 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1623 			  unsigned int header_len);
1624 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1625 		     const struct tcp_md5sig_key *key);
1626 
1627 /* From tcp_fastopen.c */
1628 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1629 			    struct tcp_fastopen_cookie *cookie);
1630 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1631 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1632 			    u16 try_exp);
1633 struct tcp_fastopen_request {
1634 	/* Fast Open cookie. Size 0 means a cookie request */
1635 	struct tcp_fastopen_cookie	cookie;
1636 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1637 	size_t				size;
1638 	int				copied;	/* queued in tcp_connect() */
1639 	struct ubuf_info		*uarg;
1640 };
1641 void tcp_free_fastopen_req(struct tcp_sock *tp);
1642 void tcp_fastopen_destroy_cipher(struct sock *sk);
1643 void tcp_fastopen_ctx_destroy(struct net *net);
1644 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1645 			      void *primary_key, void *backup_key);
1646 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1647 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1648 			      struct request_sock *req,
1649 			      struct tcp_fastopen_cookie *foc,
1650 			      const struct dst_entry *dst);
1651 void tcp_fastopen_init_key_once(struct net *net);
1652 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1653 			     struct tcp_fastopen_cookie *cookie);
1654 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1655 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1656 #define TCP_FASTOPEN_KEY_MAX 2
1657 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1658 	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1659 
1660 /* Fastopen key context */
1661 struct tcp_fastopen_context {
1662 	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1663 	int		num;
1664 	struct rcu_head	rcu;
1665 };
1666 
1667 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1668 void tcp_fastopen_active_disable(struct sock *sk);
1669 bool tcp_fastopen_active_should_disable(struct sock *sk);
1670 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1671 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1672 
1673 /* Caller needs to wrap with rcu_read_(un)lock() */
1674 static inline
1675 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1676 {
1677 	struct tcp_fastopen_context *ctx;
1678 
1679 	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1680 	if (!ctx)
1681 		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1682 	return ctx;
1683 }
1684 
1685 static inline
1686 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1687 			       const struct tcp_fastopen_cookie *orig)
1688 {
1689 	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1690 	    orig->len == foc->len &&
1691 	    !memcmp(orig->val, foc->val, foc->len))
1692 		return true;
1693 	return false;
1694 }
1695 
1696 static inline
1697 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1698 {
1699 	return ctx->num;
1700 }
1701 
1702 /* Latencies incurred by various limits for a sender. They are
1703  * chronograph-like stats that are mutually exclusive.
1704  */
1705 enum tcp_chrono {
1706 	TCP_CHRONO_UNSPEC,
1707 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1708 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1709 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1710 	__TCP_CHRONO_MAX,
1711 };
1712 
1713 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1714 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1715 
1716 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1717  * the same memory storage than skb->destructor/_skb_refdst
1718  */
1719 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1720 {
1721 	skb->destructor = NULL;
1722 	skb->_skb_refdst = 0UL;
1723 }
1724 
1725 #define tcp_skb_tsorted_save(skb) {		\
1726 	unsigned long _save = skb->_skb_refdst;	\
1727 	skb->_skb_refdst = 0UL;
1728 
1729 #define tcp_skb_tsorted_restore(skb)		\
1730 	skb->_skb_refdst = _save;		\
1731 }
1732 
1733 void tcp_write_queue_purge(struct sock *sk);
1734 
1735 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1736 {
1737 	return skb_rb_first(&sk->tcp_rtx_queue);
1738 }
1739 
1740 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1741 {
1742 	return skb_rb_last(&sk->tcp_rtx_queue);
1743 }
1744 
1745 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1746 {
1747 	return skb_peek(&sk->sk_write_queue);
1748 }
1749 
1750 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1751 {
1752 	return skb_peek_tail(&sk->sk_write_queue);
1753 }
1754 
1755 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1756 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1757 
1758 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1759 {
1760 	return skb_peek(&sk->sk_write_queue);
1761 }
1762 
1763 static inline bool tcp_skb_is_last(const struct sock *sk,
1764 				   const struct sk_buff *skb)
1765 {
1766 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1767 }
1768 
1769 /**
1770  * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1771  * @sk: socket
1772  *
1773  * Since the write queue can have a temporary empty skb in it,
1774  * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1775  */
1776 static inline bool tcp_write_queue_empty(const struct sock *sk)
1777 {
1778 	const struct tcp_sock *tp = tcp_sk(sk);
1779 
1780 	return tp->write_seq == tp->snd_nxt;
1781 }
1782 
1783 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1784 {
1785 	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1786 }
1787 
1788 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1789 {
1790 	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1791 }
1792 
1793 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1794 {
1795 	__skb_queue_tail(&sk->sk_write_queue, skb);
1796 
1797 	/* Queue it, remembering where we must start sending. */
1798 	if (sk->sk_write_queue.next == skb)
1799 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1800 }
1801 
1802 /* Insert new before skb on the write queue of sk.  */
1803 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1804 						  struct sk_buff *skb,
1805 						  struct sock *sk)
1806 {
1807 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1808 }
1809 
1810 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1811 {
1812 	tcp_skb_tsorted_anchor_cleanup(skb);
1813 	__skb_unlink(skb, &sk->sk_write_queue);
1814 }
1815 
1816 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1817 
1818 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1819 {
1820 	tcp_skb_tsorted_anchor_cleanup(skb);
1821 	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1822 }
1823 
1824 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1825 {
1826 	list_del(&skb->tcp_tsorted_anchor);
1827 	tcp_rtx_queue_unlink(skb, sk);
1828 	sk_wmem_free_skb(sk, skb);
1829 }
1830 
1831 static inline void tcp_push_pending_frames(struct sock *sk)
1832 {
1833 	if (tcp_send_head(sk)) {
1834 		struct tcp_sock *tp = tcp_sk(sk);
1835 
1836 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1837 	}
1838 }
1839 
1840 /* Start sequence of the skb just after the highest skb with SACKed
1841  * bit, valid only if sacked_out > 0 or when the caller has ensured
1842  * validity by itself.
1843  */
1844 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1845 {
1846 	if (!tp->sacked_out)
1847 		return tp->snd_una;
1848 
1849 	if (tp->highest_sack == NULL)
1850 		return tp->snd_nxt;
1851 
1852 	return TCP_SKB_CB(tp->highest_sack)->seq;
1853 }
1854 
1855 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1856 {
1857 	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1858 }
1859 
1860 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1861 {
1862 	return tcp_sk(sk)->highest_sack;
1863 }
1864 
1865 static inline void tcp_highest_sack_reset(struct sock *sk)
1866 {
1867 	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1868 }
1869 
1870 /* Called when old skb is about to be deleted and replaced by new skb */
1871 static inline void tcp_highest_sack_replace(struct sock *sk,
1872 					    struct sk_buff *old,
1873 					    struct sk_buff *new)
1874 {
1875 	if (old == tcp_highest_sack(sk))
1876 		tcp_sk(sk)->highest_sack = new;
1877 }
1878 
1879 /* This helper checks if socket has IP_TRANSPARENT set */
1880 static inline bool inet_sk_transparent(const struct sock *sk)
1881 {
1882 	switch (sk->sk_state) {
1883 	case TCP_TIME_WAIT:
1884 		return inet_twsk(sk)->tw_transparent;
1885 	case TCP_NEW_SYN_RECV:
1886 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1887 	}
1888 	return inet_sk(sk)->transparent;
1889 }
1890 
1891 /* Determines whether this is a thin stream (which may suffer from
1892  * increased latency). Used to trigger latency-reducing mechanisms.
1893  */
1894 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1895 {
1896 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1897 }
1898 
1899 /* /proc */
1900 enum tcp_seq_states {
1901 	TCP_SEQ_STATE_LISTENING,
1902 	TCP_SEQ_STATE_ESTABLISHED,
1903 };
1904 
1905 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1906 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1907 void tcp_seq_stop(struct seq_file *seq, void *v);
1908 
1909 struct tcp_seq_afinfo {
1910 	sa_family_t			family;
1911 };
1912 
1913 struct tcp_iter_state {
1914 	struct seq_net_private	p;
1915 	enum tcp_seq_states	state;
1916 	struct sock		*syn_wait_sk;
1917 	int			bucket, offset, sbucket, num;
1918 	loff_t			last_pos;
1919 };
1920 
1921 extern struct request_sock_ops tcp_request_sock_ops;
1922 extern struct request_sock_ops tcp6_request_sock_ops;
1923 
1924 void tcp_v4_destroy_sock(struct sock *sk);
1925 
1926 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1927 				netdev_features_t features);
1928 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1929 int tcp_gro_complete(struct sk_buff *skb);
1930 
1931 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1932 
1933 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1934 {
1935 	struct net *net = sock_net((struct sock *)tp);
1936 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1937 }
1938 
1939 /* @wake is one when sk_stream_write_space() calls us.
1940  * This sends EPOLLOUT only if notsent_bytes is half the limit.
1941  * This mimics the strategy used in sock_def_write_space().
1942  */
1943 static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1944 {
1945 	const struct tcp_sock *tp = tcp_sk(sk);
1946 	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1947 			    READ_ONCE(tp->snd_nxt);
1948 
1949 	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1950 }
1951 
1952 #ifdef CONFIG_PROC_FS
1953 int tcp4_proc_init(void);
1954 void tcp4_proc_exit(void);
1955 #endif
1956 
1957 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1958 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1959 		     const struct tcp_request_sock_ops *af_ops,
1960 		     struct sock *sk, struct sk_buff *skb);
1961 
1962 /* TCP af-specific functions */
1963 struct tcp_sock_af_ops {
1964 #ifdef CONFIG_TCP_MD5SIG
1965 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1966 						const struct sock *addr_sk);
1967 	int		(*calc_md5_hash)(char *location,
1968 					 const struct tcp_md5sig_key *md5,
1969 					 const struct sock *sk,
1970 					 const struct sk_buff *skb);
1971 	int		(*md5_parse)(struct sock *sk,
1972 				     int optname,
1973 				     char __user *optval,
1974 				     int optlen);
1975 #endif
1976 };
1977 
1978 struct tcp_request_sock_ops {
1979 	u16 mss_clamp;
1980 #ifdef CONFIG_TCP_MD5SIG
1981 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1982 						 const struct sock *addr_sk);
1983 	int		(*calc_md5_hash) (char *location,
1984 					  const struct tcp_md5sig_key *md5,
1985 					  const struct sock *sk,
1986 					  const struct sk_buff *skb);
1987 #endif
1988 	void (*init_req)(struct request_sock *req,
1989 			 const struct sock *sk_listener,
1990 			 struct sk_buff *skb);
1991 #ifdef CONFIG_SYN_COOKIES
1992 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1993 				 __u16 *mss);
1994 #endif
1995 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1996 				       const struct request_sock *req);
1997 	u32 (*init_seq)(const struct sk_buff *skb);
1998 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1999 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2000 			   struct flowi *fl, struct request_sock *req,
2001 			   struct tcp_fastopen_cookie *foc,
2002 			   enum tcp_synack_type synack_type);
2003 };
2004 
2005 #ifdef CONFIG_SYN_COOKIES
2006 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2007 					 const struct sock *sk, struct sk_buff *skb,
2008 					 __u16 *mss)
2009 {
2010 	tcp_synq_overflow(sk);
2011 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2012 	return ops->cookie_init_seq(skb, mss);
2013 }
2014 #else
2015 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2016 					 const struct sock *sk, struct sk_buff *skb,
2017 					 __u16 *mss)
2018 {
2019 	return 0;
2020 }
2021 #endif
2022 
2023 int tcpv4_offload_init(void);
2024 
2025 void tcp_v4_init(void);
2026 void tcp_init(void);
2027 
2028 /* tcp_recovery.c */
2029 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2030 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2031 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2032 				u32 reo_wnd);
2033 extern void tcp_rack_mark_lost(struct sock *sk);
2034 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2035 			     u64 xmit_time);
2036 extern void tcp_rack_reo_timeout(struct sock *sk);
2037 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2038 
2039 /* At how many usecs into the future should the RTO fire? */
2040 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2041 {
2042 	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2043 	u32 rto = inet_csk(sk)->icsk_rto;
2044 	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2045 
2046 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2047 }
2048 
2049 /*
2050  * Save and compile IPv4 options, return a pointer to it
2051  */
2052 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2053 							 struct sk_buff *skb)
2054 {
2055 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2056 	struct ip_options_rcu *dopt = NULL;
2057 
2058 	if (opt->optlen) {
2059 		int opt_size = sizeof(*dopt) + opt->optlen;
2060 
2061 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2062 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2063 			kfree(dopt);
2064 			dopt = NULL;
2065 		}
2066 	}
2067 	return dopt;
2068 }
2069 
2070 /* locally generated TCP pure ACKs have skb->truesize == 2
2071  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2072  * This is much faster than dissecting the packet to find out.
2073  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2074  */
2075 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2076 {
2077 	return skb->truesize == 2;
2078 }
2079 
2080 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2081 {
2082 	skb->truesize = 2;
2083 }
2084 
2085 static inline int tcp_inq(struct sock *sk)
2086 {
2087 	struct tcp_sock *tp = tcp_sk(sk);
2088 	int answ;
2089 
2090 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2091 		answ = 0;
2092 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2093 		   !tp->urg_data ||
2094 		   before(tp->urg_seq, tp->copied_seq) ||
2095 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2096 
2097 		answ = tp->rcv_nxt - tp->copied_seq;
2098 
2099 		/* Subtract 1, if FIN was received */
2100 		if (answ && sock_flag(sk, SOCK_DONE))
2101 			answ--;
2102 	} else {
2103 		answ = tp->urg_seq - tp->copied_seq;
2104 	}
2105 
2106 	return answ;
2107 }
2108 
2109 int tcp_peek_len(struct socket *sock);
2110 
2111 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2112 {
2113 	u16 segs_in;
2114 
2115 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2116 	tp->segs_in += segs_in;
2117 	if (skb->len > tcp_hdrlen(skb))
2118 		tp->data_segs_in += segs_in;
2119 }
2120 
2121 /*
2122  * TCP listen path runs lockless.
2123  * We forced "struct sock" to be const qualified to make sure
2124  * we don't modify one of its field by mistake.
2125  * Here, we increment sk_drops which is an atomic_t, so we can safely
2126  * make sock writable again.
2127  */
2128 static inline void tcp_listendrop(const struct sock *sk)
2129 {
2130 	atomic_inc(&((struct sock *)sk)->sk_drops);
2131 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2132 }
2133 
2134 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2135 
2136 /*
2137  * Interface for adding Upper Level Protocols over TCP
2138  */
2139 
2140 #define TCP_ULP_NAME_MAX	16
2141 #define TCP_ULP_MAX		128
2142 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2143 
2144 struct tcp_ulp_ops {
2145 	struct list_head	list;
2146 
2147 	/* initialize ulp */
2148 	int (*init)(struct sock *sk);
2149 	/* update ulp */
2150 	void (*update)(struct sock *sk, struct proto *p);
2151 	/* cleanup ulp */
2152 	void (*release)(struct sock *sk);
2153 	/* diagnostic */
2154 	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2155 	size_t (*get_info_size)(const struct sock *sk);
2156 
2157 	char		name[TCP_ULP_NAME_MAX];
2158 	struct module	*owner;
2159 };
2160 int tcp_register_ulp(struct tcp_ulp_ops *type);
2161 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2162 int tcp_set_ulp(struct sock *sk, const char *name);
2163 void tcp_get_available_ulp(char *buf, size_t len);
2164 void tcp_cleanup_ulp(struct sock *sk);
2165 void tcp_update_ulp(struct sock *sk, struct proto *p);
2166 
2167 #define MODULE_ALIAS_TCP_ULP(name)				\
2168 	__MODULE_INFO(alias, alias_userspace, name);		\
2169 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2170 
2171 struct sk_msg;
2172 struct sk_psock;
2173 
2174 int tcp_bpf_init(struct sock *sk);
2175 void tcp_bpf_reinit(struct sock *sk);
2176 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2177 			  int flags);
2178 int tcp_bpf_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2179 		    int nonblock, int flags, int *addr_len);
2180 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2181 		      struct msghdr *msg, int len, int flags);
2182 
2183 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2184  * is < 0, then the BPF op failed (for example if the loaded BPF
2185  * program does not support the chosen operation or there is no BPF
2186  * program loaded).
2187  */
2188 #ifdef CONFIG_BPF
2189 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2190 {
2191 	struct bpf_sock_ops_kern sock_ops;
2192 	int ret;
2193 
2194 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2195 	if (sk_fullsock(sk)) {
2196 		sock_ops.is_fullsock = 1;
2197 		sock_owned_by_me(sk);
2198 	}
2199 
2200 	sock_ops.sk = sk;
2201 	sock_ops.op = op;
2202 	if (nargs > 0)
2203 		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2204 
2205 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2206 	if (ret == 0)
2207 		ret = sock_ops.reply;
2208 	else
2209 		ret = -1;
2210 	return ret;
2211 }
2212 
2213 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2214 {
2215 	u32 args[2] = {arg1, arg2};
2216 
2217 	return tcp_call_bpf(sk, op, 2, args);
2218 }
2219 
2220 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2221 				    u32 arg3)
2222 {
2223 	u32 args[3] = {arg1, arg2, arg3};
2224 
2225 	return tcp_call_bpf(sk, op, 3, args);
2226 }
2227 
2228 #else
2229 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2230 {
2231 	return -EPERM;
2232 }
2233 
2234 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2235 {
2236 	return -EPERM;
2237 }
2238 
2239 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2240 				    u32 arg3)
2241 {
2242 	return -EPERM;
2243 }
2244 
2245 #endif
2246 
2247 static inline u32 tcp_timeout_init(struct sock *sk)
2248 {
2249 	int timeout;
2250 
2251 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2252 
2253 	if (timeout <= 0)
2254 		timeout = TCP_TIMEOUT_INIT;
2255 	return timeout;
2256 }
2257 
2258 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2259 {
2260 	int rwnd;
2261 
2262 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2263 
2264 	if (rwnd < 0)
2265 		rwnd = 0;
2266 	return rwnd;
2267 }
2268 
2269 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2270 {
2271 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2272 }
2273 
2274 static inline void tcp_bpf_rtt(struct sock *sk)
2275 {
2276 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2277 		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2278 }
2279 
2280 #if IS_ENABLED(CONFIG_SMC)
2281 extern struct static_key_false tcp_have_smc;
2282 #endif
2283 
2284 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2285 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2286 			     void (*cad)(struct sock *sk, u32 ack_seq));
2287 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2288 void clean_acked_data_flush(void);
2289 #endif
2290 
2291 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2292 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2293 				    const struct tcp_sock *tp)
2294 {
2295 	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2296 		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2297 }
2298 
2299 /* Compute Earliest Departure Time for some control packets
2300  * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2301  */
2302 static inline u64 tcp_transmit_time(const struct sock *sk)
2303 {
2304 	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2305 		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2306 			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2307 
2308 		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2309 	}
2310 	return 0;
2311 }
2312 
2313 #endif	/* _TCP_H */
2314