xref: /linux/include/uapi/linux/btrfs_tree.h (revision 0be3ff0c)
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 #ifndef _BTRFS_CTREE_H_
3 #define _BTRFS_CTREE_H_
4 
5 #include <linux/btrfs.h>
6 #include <linux/types.h>
7 #ifdef __KERNEL__
8 #include <linux/stddef.h>
9 #else
10 #include <stddef.h>
11 #endif
12 
13 /*
14  * This header contains the structure definitions and constants used
15  * by file system objects that can be retrieved using
16  * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
17  * is needed to describe a leaf node's key or item contents.
18  */
19 
20 /* holds pointers to all of the tree roots */
21 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
22 
23 /* stores information about which extents are in use, and reference counts */
24 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
25 
26 /*
27  * chunk tree stores translations from logical -> physical block numbering
28  * the super block points to the chunk tree
29  */
30 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
31 
32 /*
33  * stores information about which areas of a given device are in use.
34  * one per device.  The tree of tree roots points to the device tree
35  */
36 #define BTRFS_DEV_TREE_OBJECTID 4ULL
37 
38 /* one per subvolume, storing files and directories */
39 #define BTRFS_FS_TREE_OBJECTID 5ULL
40 
41 /* directory objectid inside the root tree */
42 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
43 
44 /* holds checksums of all the data extents */
45 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
46 
47 /* holds quota configuration and tracking */
48 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
49 
50 /* for storing items that use the BTRFS_UUID_KEY* types */
51 #define BTRFS_UUID_TREE_OBJECTID 9ULL
52 
53 /* tracks free space in block groups. */
54 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
55 
56 /* Holds the block group items for extent tree v2. */
57 #define BTRFS_BLOCK_GROUP_TREE_OBJECTID 11ULL
58 
59 /* device stats in the device tree */
60 #define BTRFS_DEV_STATS_OBJECTID 0ULL
61 
62 /* for storing balance parameters in the root tree */
63 #define BTRFS_BALANCE_OBJECTID -4ULL
64 
65 /* orphan objectid for tracking unlinked/truncated files */
66 #define BTRFS_ORPHAN_OBJECTID -5ULL
67 
68 /* does write ahead logging to speed up fsyncs */
69 #define BTRFS_TREE_LOG_OBJECTID -6ULL
70 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
71 
72 /* for space balancing */
73 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
74 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
75 
76 /*
77  * extent checksums all have this objectid
78  * this allows them to share the logging tree
79  * for fsyncs
80  */
81 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
82 
83 /* For storing free space cache */
84 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
85 
86 /*
87  * The inode number assigned to the special inode for storing
88  * free ino cache
89  */
90 #define BTRFS_FREE_INO_OBJECTID -12ULL
91 
92 /* dummy objectid represents multiple objectids */
93 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
94 
95 /*
96  * All files have objectids in this range.
97  */
98 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
99 #define BTRFS_LAST_FREE_OBJECTID -256ULL
100 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
101 
102 
103 /*
104  * the device items go into the chunk tree.  The key is in the form
105  * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
106  */
107 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
108 
109 #define BTRFS_BTREE_INODE_OBJECTID 1
110 
111 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
112 
113 #define BTRFS_DEV_REPLACE_DEVID 0ULL
114 
115 /*
116  * inode items have the data typically returned from stat and store other
117  * info about object characteristics.  There is one for every file and dir in
118  * the FS
119  */
120 #define BTRFS_INODE_ITEM_KEY		1
121 #define BTRFS_INODE_REF_KEY		12
122 #define BTRFS_INODE_EXTREF_KEY		13
123 #define BTRFS_XATTR_ITEM_KEY		24
124 
125 /*
126  * fs verity items are stored under two different key types on disk.
127  * The descriptor items:
128  * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ]
129  *
130  * At offset 0, we store a btrfs_verity_descriptor_item which tracks the size
131  * of the descriptor item and some extra data for encryption.
132  * Starting at offset 1, these hold the generic fs verity descriptor.  The
133  * latter are opaque to btrfs, we just read and write them as a blob for the
134  * higher level verity code.  The most common descriptor size is 256 bytes.
135  *
136  * The merkle tree items:
137  * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ]
138  *
139  * These also start at offset 0, and correspond to the merkle tree bytes.  When
140  * fsverity asks for page 0 of the merkle tree, we pull up one page starting at
141  * offset 0 for this key type.  These are also opaque to btrfs, we're blindly
142  * storing whatever fsverity sends down.
143  */
144 #define BTRFS_VERITY_DESC_ITEM_KEY	36
145 #define BTRFS_VERITY_MERKLE_ITEM_KEY	37
146 
147 #define BTRFS_ORPHAN_ITEM_KEY		48
148 /* reserve 2-15 close to the inode for later flexibility */
149 
150 /*
151  * dir items are the name -> inode pointers in a directory.  There is one
152  * for every name in a directory.  BTRFS_DIR_LOG_ITEM_KEY is no longer used
153  * but it's still defined here for documentation purposes and to help avoid
154  * having its numerical value reused in the future.
155  */
156 #define BTRFS_DIR_LOG_ITEM_KEY  60
157 #define BTRFS_DIR_LOG_INDEX_KEY 72
158 #define BTRFS_DIR_ITEM_KEY	84
159 #define BTRFS_DIR_INDEX_KEY	96
160 /*
161  * extent data is for file data
162  */
163 #define BTRFS_EXTENT_DATA_KEY	108
164 
165 /*
166  * extent csums are stored in a separate tree and hold csums for
167  * an entire extent on disk.
168  */
169 #define BTRFS_EXTENT_CSUM_KEY	128
170 
171 /*
172  * root items point to tree roots.  They are typically in the root
173  * tree used by the super block to find all the other trees
174  */
175 #define BTRFS_ROOT_ITEM_KEY	132
176 
177 /*
178  * root backrefs tie subvols and snapshots to the directory entries that
179  * reference them
180  */
181 #define BTRFS_ROOT_BACKREF_KEY	144
182 
183 /*
184  * root refs make a fast index for listing all of the snapshots and
185  * subvolumes referenced by a given root.  They point directly to the
186  * directory item in the root that references the subvol
187  */
188 #define BTRFS_ROOT_REF_KEY	156
189 
190 /*
191  * extent items are in the extent map tree.  These record which blocks
192  * are used, and how many references there are to each block
193  */
194 #define BTRFS_EXTENT_ITEM_KEY	168
195 
196 /*
197  * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
198  * the length, so we save the level in key->offset instead of the length.
199  */
200 #define BTRFS_METADATA_ITEM_KEY	169
201 
202 #define BTRFS_TREE_BLOCK_REF_KEY	176
203 
204 #define BTRFS_EXTENT_DATA_REF_KEY	178
205 
206 #define BTRFS_EXTENT_REF_V0_KEY		180
207 
208 #define BTRFS_SHARED_BLOCK_REF_KEY	182
209 
210 #define BTRFS_SHARED_DATA_REF_KEY	184
211 
212 /*
213  * block groups give us hints into the extent allocation trees.  Which
214  * blocks are free etc etc
215  */
216 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
217 
218 /*
219  * Every block group is represented in the free space tree by a free space info
220  * item, which stores some accounting information. It is keyed on
221  * (block_group_start, FREE_SPACE_INFO, block_group_length).
222  */
223 #define BTRFS_FREE_SPACE_INFO_KEY 198
224 
225 /*
226  * A free space extent tracks an extent of space that is free in a block group.
227  * It is keyed on (start, FREE_SPACE_EXTENT, length).
228  */
229 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
230 
231 /*
232  * When a block group becomes very fragmented, we convert it to use bitmaps
233  * instead of extents. A free space bitmap is keyed on
234  * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
235  * (length / sectorsize) bits.
236  */
237 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
238 
239 #define BTRFS_DEV_EXTENT_KEY	204
240 #define BTRFS_DEV_ITEM_KEY	216
241 #define BTRFS_CHUNK_ITEM_KEY	228
242 
243 /*
244  * Records the overall state of the qgroups.
245  * There's only one instance of this key present,
246  * (0, BTRFS_QGROUP_STATUS_KEY, 0)
247  */
248 #define BTRFS_QGROUP_STATUS_KEY         240
249 /*
250  * Records the currently used space of the qgroup.
251  * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
252  */
253 #define BTRFS_QGROUP_INFO_KEY           242
254 /*
255  * Contains the user configured limits for the qgroup.
256  * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
257  */
258 #define BTRFS_QGROUP_LIMIT_KEY          244
259 /*
260  * Records the child-parent relationship of qgroups. For
261  * each relation, 2 keys are present:
262  * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
263  * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
264  */
265 #define BTRFS_QGROUP_RELATION_KEY       246
266 
267 /*
268  * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
269  */
270 #define BTRFS_BALANCE_ITEM_KEY	248
271 
272 /*
273  * The key type for tree items that are stored persistently, but do not need to
274  * exist for extended period of time. The items can exist in any tree.
275  *
276  * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
277  *
278  * Existing items:
279  *
280  * - balance status item
281  *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
282  */
283 #define BTRFS_TEMPORARY_ITEM_KEY	248
284 
285 /*
286  * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
287  */
288 #define BTRFS_DEV_STATS_KEY		249
289 
290 /*
291  * The key type for tree items that are stored persistently and usually exist
292  * for a long period, eg. filesystem lifetime. The item kinds can be status
293  * information, stats or preference values. The item can exist in any tree.
294  *
295  * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
296  *
297  * Existing items:
298  *
299  * - device statistics, store IO stats in the device tree, one key for all
300  *   stats
301  *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
302  */
303 #define BTRFS_PERSISTENT_ITEM_KEY	249
304 
305 /*
306  * Persistently stores the device replace state in the device tree.
307  * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
308  */
309 #define BTRFS_DEV_REPLACE_KEY	250
310 
311 /*
312  * Stores items that allow to quickly map UUIDs to something else.
313  * These items are part of the filesystem UUID tree.
314  * The key is built like this:
315  * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
316  */
317 #if BTRFS_UUID_SIZE != 16
318 #error "UUID items require BTRFS_UUID_SIZE == 16!"
319 #endif
320 #define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */
321 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to
322 						 * received subvols */
323 
324 /*
325  * string items are for debugging.  They just store a short string of
326  * data in the FS
327  */
328 #define BTRFS_STRING_ITEM_KEY	253
329 
330 /* Maximum metadata block size (nodesize) */
331 #define BTRFS_MAX_METADATA_BLOCKSIZE			65536
332 
333 /* 32 bytes in various csum fields */
334 #define BTRFS_CSUM_SIZE 32
335 
336 /* csum types */
337 enum btrfs_csum_type {
338 	BTRFS_CSUM_TYPE_CRC32	= 0,
339 	BTRFS_CSUM_TYPE_XXHASH	= 1,
340 	BTRFS_CSUM_TYPE_SHA256	= 2,
341 	BTRFS_CSUM_TYPE_BLAKE2	= 3,
342 };
343 
344 /*
345  * flags definitions for directory entry item type
346  *
347  * Used by:
348  * struct btrfs_dir_item.type
349  *
350  * Values 0..7 must match common file type values in fs_types.h.
351  */
352 #define BTRFS_FT_UNKNOWN	0
353 #define BTRFS_FT_REG_FILE	1
354 #define BTRFS_FT_DIR		2
355 #define BTRFS_FT_CHRDEV		3
356 #define BTRFS_FT_BLKDEV		4
357 #define BTRFS_FT_FIFO		5
358 #define BTRFS_FT_SOCK		6
359 #define BTRFS_FT_SYMLINK	7
360 #define BTRFS_FT_XATTR		8
361 #define BTRFS_FT_MAX		9
362 
363 /*
364  * The key defines the order in the tree, and so it also defines (optimal)
365  * block layout.
366  *
367  * objectid corresponds to the inode number.
368  *
369  * type tells us things about the object, and is a kind of stream selector.
370  * so for a given inode, keys with type of 1 might refer to the inode data,
371  * type of 2 may point to file data in the btree and type == 3 may point to
372  * extents.
373  *
374  * offset is the starting byte offset for this key in the stream.
375  *
376  * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
377  * in cpu native order.  Otherwise they are identical and their sizes
378  * should be the same (ie both packed)
379  */
380 struct btrfs_disk_key {
381 	__le64 objectid;
382 	__u8 type;
383 	__le64 offset;
384 } __attribute__ ((__packed__));
385 
386 struct btrfs_key {
387 	__u64 objectid;
388 	__u8 type;
389 	__u64 offset;
390 } __attribute__ ((__packed__));
391 
392 struct btrfs_dev_item {
393 	/* the internal btrfs device id */
394 	__le64 devid;
395 
396 	/* size of the device */
397 	__le64 total_bytes;
398 
399 	/* bytes used */
400 	__le64 bytes_used;
401 
402 	/* optimal io alignment for this device */
403 	__le32 io_align;
404 
405 	/* optimal io width for this device */
406 	__le32 io_width;
407 
408 	/* minimal io size for this device */
409 	__le32 sector_size;
410 
411 	/* type and info about this device */
412 	__le64 type;
413 
414 	/* expected generation for this device */
415 	__le64 generation;
416 
417 	/*
418 	 * starting byte of this partition on the device,
419 	 * to allow for stripe alignment in the future
420 	 */
421 	__le64 start_offset;
422 
423 	/* grouping information for allocation decisions */
424 	__le32 dev_group;
425 
426 	/* seek speed 0-100 where 100 is fastest */
427 	__u8 seek_speed;
428 
429 	/* bandwidth 0-100 where 100 is fastest */
430 	__u8 bandwidth;
431 
432 	/* btrfs generated uuid for this device */
433 	__u8 uuid[BTRFS_UUID_SIZE];
434 
435 	/* uuid of FS who owns this device */
436 	__u8 fsid[BTRFS_UUID_SIZE];
437 } __attribute__ ((__packed__));
438 
439 struct btrfs_stripe {
440 	__le64 devid;
441 	__le64 offset;
442 	__u8 dev_uuid[BTRFS_UUID_SIZE];
443 } __attribute__ ((__packed__));
444 
445 struct btrfs_chunk {
446 	/* size of this chunk in bytes */
447 	__le64 length;
448 
449 	/* objectid of the root referencing this chunk */
450 	__le64 owner;
451 
452 	__le64 stripe_len;
453 	__le64 type;
454 
455 	/* optimal io alignment for this chunk */
456 	__le32 io_align;
457 
458 	/* optimal io width for this chunk */
459 	__le32 io_width;
460 
461 	/* minimal io size for this chunk */
462 	__le32 sector_size;
463 
464 	/* 2^16 stripes is quite a lot, a second limit is the size of a single
465 	 * item in the btree
466 	 */
467 	__le16 num_stripes;
468 
469 	/* sub stripes only matter for raid10 */
470 	__le16 sub_stripes;
471 	struct btrfs_stripe stripe;
472 	/* additional stripes go here */
473 } __attribute__ ((__packed__));
474 
475 #define BTRFS_FREE_SPACE_EXTENT	1
476 #define BTRFS_FREE_SPACE_BITMAP	2
477 
478 struct btrfs_free_space_entry {
479 	__le64 offset;
480 	__le64 bytes;
481 	__u8 type;
482 } __attribute__ ((__packed__));
483 
484 struct btrfs_free_space_header {
485 	struct btrfs_disk_key location;
486 	__le64 generation;
487 	__le64 num_entries;
488 	__le64 num_bitmaps;
489 } __attribute__ ((__packed__));
490 
491 #define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
492 #define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)
493 
494 /* Super block flags */
495 /* Errors detected */
496 #define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)
497 
498 #define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
499 #define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
500 #define BTRFS_SUPER_FLAG_METADUMP_V2	(1ULL << 34)
501 #define BTRFS_SUPER_FLAG_CHANGING_FSID	(1ULL << 35)
502 #define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
503 
504 
505 /*
506  * items in the extent btree are used to record the objectid of the
507  * owner of the block and the number of references
508  */
509 
510 struct btrfs_extent_item {
511 	__le64 refs;
512 	__le64 generation;
513 	__le64 flags;
514 } __attribute__ ((__packed__));
515 
516 struct btrfs_extent_item_v0 {
517 	__le32 refs;
518 } __attribute__ ((__packed__));
519 
520 
521 #define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
522 #define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)
523 
524 /* following flags only apply to tree blocks */
525 
526 /* use full backrefs for extent pointers in the block */
527 #define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)
528 
529 /*
530  * this flag is only used internally by scrub and may be changed at any time
531  * it is only declared here to avoid collisions
532  */
533 #define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)
534 
535 struct btrfs_tree_block_info {
536 	struct btrfs_disk_key key;
537 	__u8 level;
538 } __attribute__ ((__packed__));
539 
540 struct btrfs_extent_data_ref {
541 	__le64 root;
542 	__le64 objectid;
543 	__le64 offset;
544 	__le32 count;
545 } __attribute__ ((__packed__));
546 
547 struct btrfs_shared_data_ref {
548 	__le32 count;
549 } __attribute__ ((__packed__));
550 
551 struct btrfs_extent_inline_ref {
552 	__u8 type;
553 	__le64 offset;
554 } __attribute__ ((__packed__));
555 
556 /* dev extents record free space on individual devices.  The owner
557  * field points back to the chunk allocation mapping tree that allocated
558  * the extent.  The chunk tree uuid field is a way to double check the owner
559  */
560 struct btrfs_dev_extent {
561 	__le64 chunk_tree;
562 	__le64 chunk_objectid;
563 	__le64 chunk_offset;
564 	__le64 length;
565 	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
566 } __attribute__ ((__packed__));
567 
568 struct btrfs_inode_ref {
569 	__le64 index;
570 	__le16 name_len;
571 	/* name goes here */
572 } __attribute__ ((__packed__));
573 
574 struct btrfs_inode_extref {
575 	__le64 parent_objectid;
576 	__le64 index;
577 	__le16 name_len;
578 	__u8   name[0];
579 	/* name goes here */
580 } __attribute__ ((__packed__));
581 
582 struct btrfs_timespec {
583 	__le64 sec;
584 	__le32 nsec;
585 } __attribute__ ((__packed__));
586 
587 struct btrfs_inode_item {
588 	/* nfs style generation number */
589 	__le64 generation;
590 	/* transid that last touched this inode */
591 	__le64 transid;
592 	__le64 size;
593 	__le64 nbytes;
594 	__le64 block_group;
595 	__le32 nlink;
596 	__le32 uid;
597 	__le32 gid;
598 	__le32 mode;
599 	__le64 rdev;
600 	__le64 flags;
601 
602 	/* modification sequence number for NFS */
603 	__le64 sequence;
604 
605 	/*
606 	 * a little future expansion, for more than this we can
607 	 * just grow the inode item and version it
608 	 */
609 	__le64 reserved[4];
610 	struct btrfs_timespec atime;
611 	struct btrfs_timespec ctime;
612 	struct btrfs_timespec mtime;
613 	struct btrfs_timespec otime;
614 } __attribute__ ((__packed__));
615 
616 struct btrfs_dir_log_item {
617 	__le64 end;
618 } __attribute__ ((__packed__));
619 
620 struct btrfs_dir_item {
621 	struct btrfs_disk_key location;
622 	__le64 transid;
623 	__le16 data_len;
624 	__le16 name_len;
625 	__u8 type;
626 } __attribute__ ((__packed__));
627 
628 #define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)
629 
630 /*
631  * Internal in-memory flag that a subvolume has been marked for deletion but
632  * still visible as a directory
633  */
634 #define BTRFS_ROOT_SUBVOL_DEAD		(1ULL << 48)
635 
636 struct btrfs_root_item {
637 	struct btrfs_inode_item inode;
638 	__le64 generation;
639 	__le64 root_dirid;
640 	__le64 bytenr;
641 	__le64 byte_limit;
642 	__le64 bytes_used;
643 	__le64 last_snapshot;
644 	__le64 flags;
645 	__le32 refs;
646 	struct btrfs_disk_key drop_progress;
647 	__u8 drop_level;
648 	__u8 level;
649 
650 	/*
651 	 * The following fields appear after subvol_uuids+subvol_times
652 	 * were introduced.
653 	 */
654 
655 	/*
656 	 * This generation number is used to test if the new fields are valid
657 	 * and up to date while reading the root item. Every time the root item
658 	 * is written out, the "generation" field is copied into this field. If
659 	 * anyone ever mounted the fs with an older kernel, we will have
660 	 * mismatching generation values here and thus must invalidate the
661 	 * new fields. See btrfs_update_root and btrfs_find_last_root for
662 	 * details.
663 	 * the offset of generation_v2 is also used as the start for the memset
664 	 * when invalidating the fields.
665 	 */
666 	__le64 generation_v2;
667 	__u8 uuid[BTRFS_UUID_SIZE];
668 	__u8 parent_uuid[BTRFS_UUID_SIZE];
669 	__u8 received_uuid[BTRFS_UUID_SIZE];
670 	__le64 ctransid; /* updated when an inode changes */
671 	__le64 otransid; /* trans when created */
672 	__le64 stransid; /* trans when sent. non-zero for received subvol */
673 	__le64 rtransid; /* trans when received. non-zero for received subvol */
674 	struct btrfs_timespec ctime;
675 	struct btrfs_timespec otime;
676 	struct btrfs_timespec stime;
677 	struct btrfs_timespec rtime;
678 	__le64 reserved[8]; /* for future */
679 } __attribute__ ((__packed__));
680 
681 /*
682  * Btrfs root item used to be smaller than current size.  The old format ends
683  * at where member generation_v2 is.
684  */
685 static inline __u32 btrfs_legacy_root_item_size(void)
686 {
687 	return offsetof(struct btrfs_root_item, generation_v2);
688 }
689 
690 /*
691  * this is used for both forward and backward root refs
692  */
693 struct btrfs_root_ref {
694 	__le64 dirid;
695 	__le64 sequence;
696 	__le16 name_len;
697 } __attribute__ ((__packed__));
698 
699 struct btrfs_disk_balance_args {
700 	/*
701 	 * profiles to operate on, single is denoted by
702 	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
703 	 */
704 	__le64 profiles;
705 
706 	/*
707 	 * usage filter
708 	 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
709 	 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
710 	 */
711 	union {
712 		__le64 usage;
713 		struct {
714 			__le32 usage_min;
715 			__le32 usage_max;
716 		};
717 	};
718 
719 	/* devid filter */
720 	__le64 devid;
721 
722 	/* devid subset filter [pstart..pend) */
723 	__le64 pstart;
724 	__le64 pend;
725 
726 	/* btrfs virtual address space subset filter [vstart..vend) */
727 	__le64 vstart;
728 	__le64 vend;
729 
730 	/*
731 	 * profile to convert to, single is denoted by
732 	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
733 	 */
734 	__le64 target;
735 
736 	/* BTRFS_BALANCE_ARGS_* */
737 	__le64 flags;
738 
739 	/*
740 	 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
741 	 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
742 	 * and maximum
743 	 */
744 	union {
745 		__le64 limit;
746 		struct {
747 			__le32 limit_min;
748 			__le32 limit_max;
749 		};
750 	};
751 
752 	/*
753 	 * Process chunks that cross stripes_min..stripes_max devices,
754 	 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
755 	 */
756 	__le32 stripes_min;
757 	__le32 stripes_max;
758 
759 	__le64 unused[6];
760 } __attribute__ ((__packed__));
761 
762 /*
763  * store balance parameters to disk so that balance can be properly
764  * resumed after crash or unmount
765  */
766 struct btrfs_balance_item {
767 	/* BTRFS_BALANCE_* */
768 	__le64 flags;
769 
770 	struct btrfs_disk_balance_args data;
771 	struct btrfs_disk_balance_args meta;
772 	struct btrfs_disk_balance_args sys;
773 
774 	__le64 unused[4];
775 } __attribute__ ((__packed__));
776 
777 enum {
778 	BTRFS_FILE_EXTENT_INLINE   = 0,
779 	BTRFS_FILE_EXTENT_REG      = 1,
780 	BTRFS_FILE_EXTENT_PREALLOC = 2,
781 	BTRFS_NR_FILE_EXTENT_TYPES = 3,
782 };
783 
784 struct btrfs_file_extent_item {
785 	/*
786 	 * transaction id that created this extent
787 	 */
788 	__le64 generation;
789 	/*
790 	 * max number of bytes to hold this extent in ram
791 	 * when we split a compressed extent we can't know how big
792 	 * each of the resulting pieces will be.  So, this is
793 	 * an upper limit on the size of the extent in ram instead of
794 	 * an exact limit.
795 	 */
796 	__le64 ram_bytes;
797 
798 	/*
799 	 * 32 bits for the various ways we might encode the data,
800 	 * including compression and encryption.  If any of these
801 	 * are set to something a given disk format doesn't understand
802 	 * it is treated like an incompat flag for reading and writing,
803 	 * but not for stat.
804 	 */
805 	__u8 compression;
806 	__u8 encryption;
807 	__le16 other_encoding; /* spare for later use */
808 
809 	/* are we inline data or a real extent? */
810 	__u8 type;
811 
812 	/*
813 	 * disk space consumed by the extent, checksum blocks are included
814 	 * in these numbers
815 	 *
816 	 * At this offset in the structure, the inline extent data start.
817 	 */
818 	__le64 disk_bytenr;
819 	__le64 disk_num_bytes;
820 	/*
821 	 * the logical offset in file blocks (no csums)
822 	 * this extent record is for.  This allows a file extent to point
823 	 * into the middle of an existing extent on disk, sharing it
824 	 * between two snapshots (useful if some bytes in the middle of the
825 	 * extent have changed
826 	 */
827 	__le64 offset;
828 	/*
829 	 * the logical number of file blocks (no csums included).  This
830 	 * always reflects the size uncompressed and without encoding.
831 	 */
832 	__le64 num_bytes;
833 
834 } __attribute__ ((__packed__));
835 
836 struct btrfs_csum_item {
837 	__u8 csum;
838 } __attribute__ ((__packed__));
839 
840 struct btrfs_dev_stats_item {
841 	/*
842 	 * grow this item struct at the end for future enhancements and keep
843 	 * the existing values unchanged
844 	 */
845 	__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
846 } __attribute__ ((__packed__));
847 
848 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS	0
849 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID	1
850 
851 struct btrfs_dev_replace_item {
852 	/*
853 	 * grow this item struct at the end for future enhancements and keep
854 	 * the existing values unchanged
855 	 */
856 	__le64 src_devid;
857 	__le64 cursor_left;
858 	__le64 cursor_right;
859 	__le64 cont_reading_from_srcdev_mode;
860 
861 	__le64 replace_state;
862 	__le64 time_started;
863 	__le64 time_stopped;
864 	__le64 num_write_errors;
865 	__le64 num_uncorrectable_read_errors;
866 } __attribute__ ((__packed__));
867 
868 /* different types of block groups (and chunks) */
869 #define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)
870 #define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)
871 #define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)
872 #define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)
873 #define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)
874 #define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)
875 #define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)
876 #define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
877 #define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
878 #define BTRFS_BLOCK_GROUP_RAID1C3       (1ULL << 9)
879 #define BTRFS_BLOCK_GROUP_RAID1C4       (1ULL << 10)
880 #define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
881 					 BTRFS_SPACE_INFO_GLOBAL_RSV)
882 
883 enum btrfs_raid_types {
884 	BTRFS_RAID_RAID10,
885 	BTRFS_RAID_RAID1,
886 	BTRFS_RAID_DUP,
887 	BTRFS_RAID_RAID0,
888 	BTRFS_RAID_SINGLE,
889 	BTRFS_RAID_RAID5,
890 	BTRFS_RAID_RAID6,
891 	BTRFS_RAID_RAID1C3,
892 	BTRFS_RAID_RAID1C4,
893 	BTRFS_NR_RAID_TYPES
894 };
895 
896 #define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
897 					 BTRFS_BLOCK_GROUP_SYSTEM |  \
898 					 BTRFS_BLOCK_GROUP_METADATA)
899 
900 #define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
901 					 BTRFS_BLOCK_GROUP_RAID1 |   \
902 					 BTRFS_BLOCK_GROUP_RAID1C3 | \
903 					 BTRFS_BLOCK_GROUP_RAID1C4 | \
904 					 BTRFS_BLOCK_GROUP_RAID5 |   \
905 					 BTRFS_BLOCK_GROUP_RAID6 |   \
906 					 BTRFS_BLOCK_GROUP_DUP |     \
907 					 BTRFS_BLOCK_GROUP_RAID10)
908 #define BTRFS_BLOCK_GROUP_RAID56_MASK	(BTRFS_BLOCK_GROUP_RAID5 |   \
909 					 BTRFS_BLOCK_GROUP_RAID6)
910 
911 #define BTRFS_BLOCK_GROUP_RAID1_MASK	(BTRFS_BLOCK_GROUP_RAID1 |   \
912 					 BTRFS_BLOCK_GROUP_RAID1C3 | \
913 					 BTRFS_BLOCK_GROUP_RAID1C4)
914 
915 /*
916  * We need a bit for restriper to be able to tell when chunks of type
917  * SINGLE are available.  This "extended" profile format is used in
918  * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
919  * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
920  * to avoid remappings between two formats in future.
921  */
922 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)
923 
924 /*
925  * A fake block group type that is used to communicate global block reserve
926  * size to userspace via the SPACE_INFO ioctl.
927  */
928 #define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49)
929 
930 #define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
931 					 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
932 
933 static inline __u64 chunk_to_extended(__u64 flags)
934 {
935 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
936 		flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
937 
938 	return flags;
939 }
940 static inline __u64 extended_to_chunk(__u64 flags)
941 {
942 	return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
943 }
944 
945 struct btrfs_block_group_item {
946 	__le64 used;
947 	__le64 chunk_objectid;
948 	__le64 flags;
949 } __attribute__ ((__packed__));
950 
951 struct btrfs_free_space_info {
952 	__le32 extent_count;
953 	__le32 flags;
954 } __attribute__ ((__packed__));
955 
956 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
957 
958 #define BTRFS_QGROUP_LEVEL_SHIFT		48
959 static inline __u16 btrfs_qgroup_level(__u64 qgroupid)
960 {
961 	return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT);
962 }
963 
964 /*
965  * is subvolume quota turned on?
966  */
967 #define BTRFS_QGROUP_STATUS_FLAG_ON		(1ULL << 0)
968 /*
969  * RESCAN is set during the initialization phase
970  */
971 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN		(1ULL << 1)
972 /*
973  * Some qgroup entries are known to be out of date,
974  * either because the configuration has changed in a way that
975  * makes a rescan necessary, or because the fs has been mounted
976  * with a non-qgroup-aware version.
977  * Turning qouta off and on again makes it inconsistent, too.
978  */
979 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT	(1ULL << 2)
980 
981 #define BTRFS_QGROUP_STATUS_VERSION        1
982 
983 struct btrfs_qgroup_status_item {
984 	__le64 version;
985 	/*
986 	 * the generation is updated during every commit. As older
987 	 * versions of btrfs are not aware of qgroups, it will be
988 	 * possible to detect inconsistencies by checking the
989 	 * generation on mount time
990 	 */
991 	__le64 generation;
992 
993 	/* flag definitions see above */
994 	__le64 flags;
995 
996 	/*
997 	 * only used during scanning to record the progress
998 	 * of the scan. It contains a logical address
999 	 */
1000 	__le64 rescan;
1001 } __attribute__ ((__packed__));
1002 
1003 struct btrfs_qgroup_info_item {
1004 	__le64 generation;
1005 	__le64 rfer;
1006 	__le64 rfer_cmpr;
1007 	__le64 excl;
1008 	__le64 excl_cmpr;
1009 } __attribute__ ((__packed__));
1010 
1011 struct btrfs_qgroup_limit_item {
1012 	/*
1013 	 * only updated when any of the other values change
1014 	 */
1015 	__le64 flags;
1016 	__le64 max_rfer;
1017 	__le64 max_excl;
1018 	__le64 rsv_rfer;
1019 	__le64 rsv_excl;
1020 } __attribute__ ((__packed__));
1021 
1022 struct btrfs_verity_descriptor_item {
1023 	/* Size of the verity descriptor in bytes */
1024 	__le64 size;
1025 	/*
1026 	 * When we implement support for fscrypt, we will need to encrypt the
1027 	 * Merkle tree for encrypted verity files. These 128 bits are for the
1028 	 * eventual storage of an fscrypt initialization vector.
1029 	 */
1030 	__le64 reserved[2];
1031 	__u8 encryption;
1032 } __attribute__ ((__packed__));
1033 
1034 #endif /* _BTRFS_CTREE_H_ */
1035