xref: /linux/kernel/auditsc.c (revision 44f57d78)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78 
79 #include "audit.h"
80 
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
85 
86 /* no execve audit message should be longer than this (userspace limits),
87  * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
89 
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
92 
93 /* number of audit rules */
94 int audit_n_rules;
95 
96 /* determines whether we collect data for signals sent */
97 int audit_signals;
98 
99 struct audit_aux_data {
100 	struct audit_aux_data	*next;
101 	int			type;
102 };
103 
104 #define AUDIT_AUX_IPCPERM	0
105 
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS	16
108 
109 struct audit_aux_data_pids {
110 	struct audit_aux_data	d;
111 	pid_t			target_pid[AUDIT_AUX_PIDS];
112 	kuid_t			target_auid[AUDIT_AUX_PIDS];
113 	kuid_t			target_uid[AUDIT_AUX_PIDS];
114 	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
115 	u32			target_sid[AUDIT_AUX_PIDS];
116 	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117 	int			pid_count;
118 };
119 
120 struct audit_aux_data_bprm_fcaps {
121 	struct audit_aux_data	d;
122 	struct audit_cap_data	fcap;
123 	unsigned int		fcap_ver;
124 	struct audit_cap_data	old_pcap;
125 	struct audit_cap_data	new_pcap;
126 };
127 
128 struct audit_tree_refs {
129 	struct audit_tree_refs *next;
130 	struct audit_chunk *c[31];
131 };
132 
133 static int audit_match_perm(struct audit_context *ctx, int mask)
134 {
135 	unsigned n;
136 	if (unlikely(!ctx))
137 		return 0;
138 	n = ctx->major;
139 
140 	switch (audit_classify_syscall(ctx->arch, n)) {
141 	case 0:	/* native */
142 		if ((mask & AUDIT_PERM_WRITE) &&
143 		     audit_match_class(AUDIT_CLASS_WRITE, n))
144 			return 1;
145 		if ((mask & AUDIT_PERM_READ) &&
146 		     audit_match_class(AUDIT_CLASS_READ, n))
147 			return 1;
148 		if ((mask & AUDIT_PERM_ATTR) &&
149 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
150 			return 1;
151 		return 0;
152 	case 1: /* 32bit on biarch */
153 		if ((mask & AUDIT_PERM_WRITE) &&
154 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 			return 1;
156 		if ((mask & AUDIT_PERM_READ) &&
157 		     audit_match_class(AUDIT_CLASS_READ_32, n))
158 			return 1;
159 		if ((mask & AUDIT_PERM_ATTR) &&
160 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 			return 1;
162 		return 0;
163 	case 2: /* open */
164 		return mask & ACC_MODE(ctx->argv[1]);
165 	case 3: /* openat */
166 		return mask & ACC_MODE(ctx->argv[2]);
167 	case 4: /* socketcall */
168 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 	case 5: /* execve */
170 		return mask & AUDIT_PERM_EXEC;
171 	default:
172 		return 0;
173 	}
174 }
175 
176 static int audit_match_filetype(struct audit_context *ctx, int val)
177 {
178 	struct audit_names *n;
179 	umode_t mode = (umode_t)val;
180 
181 	if (unlikely(!ctx))
182 		return 0;
183 
184 	list_for_each_entry(n, &ctx->names_list, list) {
185 		if ((n->ino != AUDIT_INO_UNSET) &&
186 		    ((n->mode & S_IFMT) == mode))
187 			return 1;
188 	}
189 
190 	return 0;
191 }
192 
193 /*
194  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195  * ->first_trees points to its beginning, ->trees - to the current end of data.
196  * ->tree_count is the number of free entries in array pointed to by ->trees.
197  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
199  * it's going to remain 1-element for almost any setup) until we free context itself.
200  * References in it _are_ dropped - at the same time we free/drop aux stuff.
201  */
202 
203 static void audit_set_auditable(struct audit_context *ctx)
204 {
205 	if (!ctx->prio) {
206 		ctx->prio = 1;
207 		ctx->current_state = AUDIT_RECORD_CONTEXT;
208 	}
209 }
210 
211 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
212 {
213 	struct audit_tree_refs *p = ctx->trees;
214 	int left = ctx->tree_count;
215 	if (likely(left)) {
216 		p->c[--left] = chunk;
217 		ctx->tree_count = left;
218 		return 1;
219 	}
220 	if (!p)
221 		return 0;
222 	p = p->next;
223 	if (p) {
224 		p->c[30] = chunk;
225 		ctx->trees = p;
226 		ctx->tree_count = 30;
227 		return 1;
228 	}
229 	return 0;
230 }
231 
232 static int grow_tree_refs(struct audit_context *ctx)
233 {
234 	struct audit_tree_refs *p = ctx->trees;
235 	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
236 	if (!ctx->trees) {
237 		ctx->trees = p;
238 		return 0;
239 	}
240 	if (p)
241 		p->next = ctx->trees;
242 	else
243 		ctx->first_trees = ctx->trees;
244 	ctx->tree_count = 31;
245 	return 1;
246 }
247 
248 static void unroll_tree_refs(struct audit_context *ctx,
249 		      struct audit_tree_refs *p, int count)
250 {
251 	struct audit_tree_refs *q;
252 	int n;
253 	if (!p) {
254 		/* we started with empty chain */
255 		p = ctx->first_trees;
256 		count = 31;
257 		/* if the very first allocation has failed, nothing to do */
258 		if (!p)
259 			return;
260 	}
261 	n = count;
262 	for (q = p; q != ctx->trees; q = q->next, n = 31) {
263 		while (n--) {
264 			audit_put_chunk(q->c[n]);
265 			q->c[n] = NULL;
266 		}
267 	}
268 	while (n-- > ctx->tree_count) {
269 		audit_put_chunk(q->c[n]);
270 		q->c[n] = NULL;
271 	}
272 	ctx->trees = p;
273 	ctx->tree_count = count;
274 }
275 
276 static void free_tree_refs(struct audit_context *ctx)
277 {
278 	struct audit_tree_refs *p, *q;
279 	for (p = ctx->first_trees; p; p = q) {
280 		q = p->next;
281 		kfree(p);
282 	}
283 }
284 
285 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
286 {
287 	struct audit_tree_refs *p;
288 	int n;
289 	if (!tree)
290 		return 0;
291 	/* full ones */
292 	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
293 		for (n = 0; n < 31; n++)
294 			if (audit_tree_match(p->c[n], tree))
295 				return 1;
296 	}
297 	/* partial */
298 	if (p) {
299 		for (n = ctx->tree_count; n < 31; n++)
300 			if (audit_tree_match(p->c[n], tree))
301 				return 1;
302 	}
303 	return 0;
304 }
305 
306 static int audit_compare_uid(kuid_t uid,
307 			     struct audit_names *name,
308 			     struct audit_field *f,
309 			     struct audit_context *ctx)
310 {
311 	struct audit_names *n;
312 	int rc;
313 
314 	if (name) {
315 		rc = audit_uid_comparator(uid, f->op, name->uid);
316 		if (rc)
317 			return rc;
318 	}
319 
320 	if (ctx) {
321 		list_for_each_entry(n, &ctx->names_list, list) {
322 			rc = audit_uid_comparator(uid, f->op, n->uid);
323 			if (rc)
324 				return rc;
325 		}
326 	}
327 	return 0;
328 }
329 
330 static int audit_compare_gid(kgid_t gid,
331 			     struct audit_names *name,
332 			     struct audit_field *f,
333 			     struct audit_context *ctx)
334 {
335 	struct audit_names *n;
336 	int rc;
337 
338 	if (name) {
339 		rc = audit_gid_comparator(gid, f->op, name->gid);
340 		if (rc)
341 			return rc;
342 	}
343 
344 	if (ctx) {
345 		list_for_each_entry(n, &ctx->names_list, list) {
346 			rc = audit_gid_comparator(gid, f->op, n->gid);
347 			if (rc)
348 				return rc;
349 		}
350 	}
351 	return 0;
352 }
353 
354 static int audit_field_compare(struct task_struct *tsk,
355 			       const struct cred *cred,
356 			       struct audit_field *f,
357 			       struct audit_context *ctx,
358 			       struct audit_names *name)
359 {
360 	switch (f->val) {
361 	/* process to file object comparisons */
362 	case AUDIT_COMPARE_UID_TO_OBJ_UID:
363 		return audit_compare_uid(cred->uid, name, f, ctx);
364 	case AUDIT_COMPARE_GID_TO_OBJ_GID:
365 		return audit_compare_gid(cred->gid, name, f, ctx);
366 	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
367 		return audit_compare_uid(cred->euid, name, f, ctx);
368 	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
369 		return audit_compare_gid(cred->egid, name, f, ctx);
370 	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
371 		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
372 	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
373 		return audit_compare_uid(cred->suid, name, f, ctx);
374 	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
375 		return audit_compare_gid(cred->sgid, name, f, ctx);
376 	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
377 		return audit_compare_uid(cred->fsuid, name, f, ctx);
378 	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
379 		return audit_compare_gid(cred->fsgid, name, f, ctx);
380 	/* uid comparisons */
381 	case AUDIT_COMPARE_UID_TO_AUID:
382 		return audit_uid_comparator(cred->uid, f->op,
383 					    audit_get_loginuid(tsk));
384 	case AUDIT_COMPARE_UID_TO_EUID:
385 		return audit_uid_comparator(cred->uid, f->op, cred->euid);
386 	case AUDIT_COMPARE_UID_TO_SUID:
387 		return audit_uid_comparator(cred->uid, f->op, cred->suid);
388 	case AUDIT_COMPARE_UID_TO_FSUID:
389 		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
390 	/* auid comparisons */
391 	case AUDIT_COMPARE_AUID_TO_EUID:
392 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
393 					    cred->euid);
394 	case AUDIT_COMPARE_AUID_TO_SUID:
395 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
396 					    cred->suid);
397 	case AUDIT_COMPARE_AUID_TO_FSUID:
398 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
399 					    cred->fsuid);
400 	/* euid comparisons */
401 	case AUDIT_COMPARE_EUID_TO_SUID:
402 		return audit_uid_comparator(cred->euid, f->op, cred->suid);
403 	case AUDIT_COMPARE_EUID_TO_FSUID:
404 		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
405 	/* suid comparisons */
406 	case AUDIT_COMPARE_SUID_TO_FSUID:
407 		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
408 	/* gid comparisons */
409 	case AUDIT_COMPARE_GID_TO_EGID:
410 		return audit_gid_comparator(cred->gid, f->op, cred->egid);
411 	case AUDIT_COMPARE_GID_TO_SGID:
412 		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
413 	case AUDIT_COMPARE_GID_TO_FSGID:
414 		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
415 	/* egid comparisons */
416 	case AUDIT_COMPARE_EGID_TO_SGID:
417 		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
418 	case AUDIT_COMPARE_EGID_TO_FSGID:
419 		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
420 	/* sgid comparison */
421 	case AUDIT_COMPARE_SGID_TO_FSGID:
422 		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
423 	default:
424 		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
425 		return 0;
426 	}
427 	return 0;
428 }
429 
430 /* Determine if any context name data matches a rule's watch data */
431 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
432  * otherwise.
433  *
434  * If task_creation is true, this is an explicit indication that we are
435  * filtering a task rule at task creation time.  This and tsk == current are
436  * the only situations where tsk->cred may be accessed without an rcu read lock.
437  */
438 static int audit_filter_rules(struct task_struct *tsk,
439 			      struct audit_krule *rule,
440 			      struct audit_context *ctx,
441 			      struct audit_names *name,
442 			      enum audit_state *state,
443 			      bool task_creation)
444 {
445 	const struct cred *cred;
446 	int i, need_sid = 1;
447 	u32 sid;
448 	unsigned int sessionid;
449 
450 	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
451 
452 	for (i = 0; i < rule->field_count; i++) {
453 		struct audit_field *f = &rule->fields[i];
454 		struct audit_names *n;
455 		int result = 0;
456 		pid_t pid;
457 
458 		switch (f->type) {
459 		case AUDIT_PID:
460 			pid = task_tgid_nr(tsk);
461 			result = audit_comparator(pid, f->op, f->val);
462 			break;
463 		case AUDIT_PPID:
464 			if (ctx) {
465 				if (!ctx->ppid)
466 					ctx->ppid = task_ppid_nr(tsk);
467 				result = audit_comparator(ctx->ppid, f->op, f->val);
468 			}
469 			break;
470 		case AUDIT_EXE:
471 			result = audit_exe_compare(tsk, rule->exe);
472 			if (f->op == Audit_not_equal)
473 				result = !result;
474 			break;
475 		case AUDIT_UID:
476 			result = audit_uid_comparator(cred->uid, f->op, f->uid);
477 			break;
478 		case AUDIT_EUID:
479 			result = audit_uid_comparator(cred->euid, f->op, f->uid);
480 			break;
481 		case AUDIT_SUID:
482 			result = audit_uid_comparator(cred->suid, f->op, f->uid);
483 			break;
484 		case AUDIT_FSUID:
485 			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
486 			break;
487 		case AUDIT_GID:
488 			result = audit_gid_comparator(cred->gid, f->op, f->gid);
489 			if (f->op == Audit_equal) {
490 				if (!result)
491 					result = groups_search(cred->group_info, f->gid);
492 			} else if (f->op == Audit_not_equal) {
493 				if (result)
494 					result = !groups_search(cred->group_info, f->gid);
495 			}
496 			break;
497 		case AUDIT_EGID:
498 			result = audit_gid_comparator(cred->egid, f->op, f->gid);
499 			if (f->op == Audit_equal) {
500 				if (!result)
501 					result = groups_search(cred->group_info, f->gid);
502 			} else if (f->op == Audit_not_equal) {
503 				if (result)
504 					result = !groups_search(cred->group_info, f->gid);
505 			}
506 			break;
507 		case AUDIT_SGID:
508 			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
509 			break;
510 		case AUDIT_FSGID:
511 			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
512 			break;
513 		case AUDIT_SESSIONID:
514 			sessionid = audit_get_sessionid(tsk);
515 			result = audit_comparator(sessionid, f->op, f->val);
516 			break;
517 		case AUDIT_PERS:
518 			result = audit_comparator(tsk->personality, f->op, f->val);
519 			break;
520 		case AUDIT_ARCH:
521 			if (ctx)
522 				result = audit_comparator(ctx->arch, f->op, f->val);
523 			break;
524 
525 		case AUDIT_EXIT:
526 			if (ctx && ctx->return_valid)
527 				result = audit_comparator(ctx->return_code, f->op, f->val);
528 			break;
529 		case AUDIT_SUCCESS:
530 			if (ctx && ctx->return_valid) {
531 				if (f->val)
532 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
533 				else
534 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
535 			}
536 			break;
537 		case AUDIT_DEVMAJOR:
538 			if (name) {
539 				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
540 				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
541 					++result;
542 			} else if (ctx) {
543 				list_for_each_entry(n, &ctx->names_list, list) {
544 					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
545 					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
546 						++result;
547 						break;
548 					}
549 				}
550 			}
551 			break;
552 		case AUDIT_DEVMINOR:
553 			if (name) {
554 				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
555 				    audit_comparator(MINOR(name->rdev), f->op, f->val))
556 					++result;
557 			} else if (ctx) {
558 				list_for_each_entry(n, &ctx->names_list, list) {
559 					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
560 					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
561 						++result;
562 						break;
563 					}
564 				}
565 			}
566 			break;
567 		case AUDIT_INODE:
568 			if (name)
569 				result = audit_comparator(name->ino, f->op, f->val);
570 			else if (ctx) {
571 				list_for_each_entry(n, &ctx->names_list, list) {
572 					if (audit_comparator(n->ino, f->op, f->val)) {
573 						++result;
574 						break;
575 					}
576 				}
577 			}
578 			break;
579 		case AUDIT_OBJ_UID:
580 			if (name) {
581 				result = audit_uid_comparator(name->uid, f->op, f->uid);
582 			} else if (ctx) {
583 				list_for_each_entry(n, &ctx->names_list, list) {
584 					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
585 						++result;
586 						break;
587 					}
588 				}
589 			}
590 			break;
591 		case AUDIT_OBJ_GID:
592 			if (name) {
593 				result = audit_gid_comparator(name->gid, f->op, f->gid);
594 			} else if (ctx) {
595 				list_for_each_entry(n, &ctx->names_list, list) {
596 					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
597 						++result;
598 						break;
599 					}
600 				}
601 			}
602 			break;
603 		case AUDIT_WATCH:
604 			if (name)
605 				result = audit_watch_compare(rule->watch, name->ino, name->dev);
606 			break;
607 		case AUDIT_DIR:
608 			if (ctx)
609 				result = match_tree_refs(ctx, rule->tree);
610 			break;
611 		case AUDIT_LOGINUID:
612 			result = audit_uid_comparator(audit_get_loginuid(tsk),
613 						      f->op, f->uid);
614 			break;
615 		case AUDIT_LOGINUID_SET:
616 			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
617 			break;
618 		case AUDIT_SUBJ_USER:
619 		case AUDIT_SUBJ_ROLE:
620 		case AUDIT_SUBJ_TYPE:
621 		case AUDIT_SUBJ_SEN:
622 		case AUDIT_SUBJ_CLR:
623 			/* NOTE: this may return negative values indicating
624 			   a temporary error.  We simply treat this as a
625 			   match for now to avoid losing information that
626 			   may be wanted.   An error message will also be
627 			   logged upon error */
628 			if (f->lsm_rule) {
629 				if (need_sid) {
630 					security_task_getsecid(tsk, &sid);
631 					need_sid = 0;
632 				}
633 				result = security_audit_rule_match(sid, f->type,
634 								   f->op,
635 								   f->lsm_rule);
636 			}
637 			break;
638 		case AUDIT_OBJ_USER:
639 		case AUDIT_OBJ_ROLE:
640 		case AUDIT_OBJ_TYPE:
641 		case AUDIT_OBJ_LEV_LOW:
642 		case AUDIT_OBJ_LEV_HIGH:
643 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
644 			   also applies here */
645 			if (f->lsm_rule) {
646 				/* Find files that match */
647 				if (name) {
648 					result = security_audit_rule_match(
649 								name->osid,
650 								f->type,
651 								f->op,
652 								f->lsm_rule);
653 				} else if (ctx) {
654 					list_for_each_entry(n, &ctx->names_list, list) {
655 						if (security_audit_rule_match(
656 								n->osid,
657 								f->type,
658 								f->op,
659 								f->lsm_rule)) {
660 							++result;
661 							break;
662 						}
663 					}
664 				}
665 				/* Find ipc objects that match */
666 				if (!ctx || ctx->type != AUDIT_IPC)
667 					break;
668 				if (security_audit_rule_match(ctx->ipc.osid,
669 							      f->type, f->op,
670 							      f->lsm_rule))
671 					++result;
672 			}
673 			break;
674 		case AUDIT_ARG0:
675 		case AUDIT_ARG1:
676 		case AUDIT_ARG2:
677 		case AUDIT_ARG3:
678 			if (ctx)
679 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
680 			break;
681 		case AUDIT_FILTERKEY:
682 			/* ignore this field for filtering */
683 			result = 1;
684 			break;
685 		case AUDIT_PERM:
686 			result = audit_match_perm(ctx, f->val);
687 			break;
688 		case AUDIT_FILETYPE:
689 			result = audit_match_filetype(ctx, f->val);
690 			break;
691 		case AUDIT_FIELD_COMPARE:
692 			result = audit_field_compare(tsk, cred, f, ctx, name);
693 			break;
694 		}
695 		if (!result)
696 			return 0;
697 	}
698 
699 	if (ctx) {
700 		if (rule->prio <= ctx->prio)
701 			return 0;
702 		if (rule->filterkey) {
703 			kfree(ctx->filterkey);
704 			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
705 		}
706 		ctx->prio = rule->prio;
707 	}
708 	switch (rule->action) {
709 	case AUDIT_NEVER:
710 		*state = AUDIT_DISABLED;
711 		break;
712 	case AUDIT_ALWAYS:
713 		*state = AUDIT_RECORD_CONTEXT;
714 		break;
715 	}
716 	return 1;
717 }
718 
719 /* At process creation time, we can determine if system-call auditing is
720  * completely disabled for this task.  Since we only have the task
721  * structure at this point, we can only check uid and gid.
722  */
723 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
724 {
725 	struct audit_entry *e;
726 	enum audit_state   state;
727 
728 	rcu_read_lock();
729 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
730 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
731 				       &state, true)) {
732 			if (state == AUDIT_RECORD_CONTEXT)
733 				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
734 			rcu_read_unlock();
735 			return state;
736 		}
737 	}
738 	rcu_read_unlock();
739 	return AUDIT_BUILD_CONTEXT;
740 }
741 
742 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
743 {
744 	int word, bit;
745 
746 	if (val > 0xffffffff)
747 		return false;
748 
749 	word = AUDIT_WORD(val);
750 	if (word >= AUDIT_BITMASK_SIZE)
751 		return false;
752 
753 	bit = AUDIT_BIT(val);
754 
755 	return rule->mask[word] & bit;
756 }
757 
758 /* At syscall entry and exit time, this filter is called if the
759  * audit_state is not low enough that auditing cannot take place, but is
760  * also not high enough that we already know we have to write an audit
761  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
762  */
763 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
764 					     struct audit_context *ctx,
765 					     struct list_head *list)
766 {
767 	struct audit_entry *e;
768 	enum audit_state state;
769 
770 	if (auditd_test_task(tsk))
771 		return AUDIT_DISABLED;
772 
773 	rcu_read_lock();
774 	list_for_each_entry_rcu(e, list, list) {
775 		if (audit_in_mask(&e->rule, ctx->major) &&
776 		    audit_filter_rules(tsk, &e->rule, ctx, NULL,
777 				       &state, false)) {
778 			rcu_read_unlock();
779 			ctx->current_state = state;
780 			return state;
781 		}
782 	}
783 	rcu_read_unlock();
784 	return AUDIT_BUILD_CONTEXT;
785 }
786 
787 /*
788  * Given an audit_name check the inode hash table to see if they match.
789  * Called holding the rcu read lock to protect the use of audit_inode_hash
790  */
791 static int audit_filter_inode_name(struct task_struct *tsk,
792 				   struct audit_names *n,
793 				   struct audit_context *ctx) {
794 	int h = audit_hash_ino((u32)n->ino);
795 	struct list_head *list = &audit_inode_hash[h];
796 	struct audit_entry *e;
797 	enum audit_state state;
798 
799 	list_for_each_entry_rcu(e, list, list) {
800 		if (audit_in_mask(&e->rule, ctx->major) &&
801 		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
802 			ctx->current_state = state;
803 			return 1;
804 		}
805 	}
806 	return 0;
807 }
808 
809 /* At syscall exit time, this filter is called if any audit_names have been
810  * collected during syscall processing.  We only check rules in sublists at hash
811  * buckets applicable to the inode numbers in audit_names.
812  * Regarding audit_state, same rules apply as for audit_filter_syscall().
813  */
814 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
815 {
816 	struct audit_names *n;
817 
818 	if (auditd_test_task(tsk))
819 		return;
820 
821 	rcu_read_lock();
822 
823 	list_for_each_entry(n, &ctx->names_list, list) {
824 		if (audit_filter_inode_name(tsk, n, ctx))
825 			break;
826 	}
827 	rcu_read_unlock();
828 }
829 
830 static inline void audit_proctitle_free(struct audit_context *context)
831 {
832 	kfree(context->proctitle.value);
833 	context->proctitle.value = NULL;
834 	context->proctitle.len = 0;
835 }
836 
837 static inline void audit_free_module(struct audit_context *context)
838 {
839 	if (context->type == AUDIT_KERN_MODULE) {
840 		kfree(context->module.name);
841 		context->module.name = NULL;
842 	}
843 }
844 static inline void audit_free_names(struct audit_context *context)
845 {
846 	struct audit_names *n, *next;
847 
848 	list_for_each_entry_safe(n, next, &context->names_list, list) {
849 		list_del(&n->list);
850 		if (n->name)
851 			putname(n->name);
852 		if (n->should_free)
853 			kfree(n);
854 	}
855 	context->name_count = 0;
856 	path_put(&context->pwd);
857 	context->pwd.dentry = NULL;
858 	context->pwd.mnt = NULL;
859 }
860 
861 static inline void audit_free_aux(struct audit_context *context)
862 {
863 	struct audit_aux_data *aux;
864 
865 	while ((aux = context->aux)) {
866 		context->aux = aux->next;
867 		kfree(aux);
868 	}
869 	while ((aux = context->aux_pids)) {
870 		context->aux_pids = aux->next;
871 		kfree(aux);
872 	}
873 }
874 
875 static inline struct audit_context *audit_alloc_context(enum audit_state state)
876 {
877 	struct audit_context *context;
878 
879 	context = kzalloc(sizeof(*context), GFP_KERNEL);
880 	if (!context)
881 		return NULL;
882 	context->state = state;
883 	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
884 	INIT_LIST_HEAD(&context->killed_trees);
885 	INIT_LIST_HEAD(&context->names_list);
886 	return context;
887 }
888 
889 /**
890  * audit_alloc - allocate an audit context block for a task
891  * @tsk: task
892  *
893  * Filter on the task information and allocate a per-task audit context
894  * if necessary.  Doing so turns on system call auditing for the
895  * specified task.  This is called from copy_process, so no lock is
896  * needed.
897  */
898 int audit_alloc(struct task_struct *tsk)
899 {
900 	struct audit_context *context;
901 	enum audit_state     state;
902 	char *key = NULL;
903 
904 	if (likely(!audit_ever_enabled))
905 		return 0; /* Return if not auditing. */
906 
907 	state = audit_filter_task(tsk, &key);
908 	if (state == AUDIT_DISABLED) {
909 		clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
910 		return 0;
911 	}
912 
913 	if (!(context = audit_alloc_context(state))) {
914 		kfree(key);
915 		audit_log_lost("out of memory in audit_alloc");
916 		return -ENOMEM;
917 	}
918 	context->filterkey = key;
919 
920 	audit_set_context(tsk, context);
921 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
922 	return 0;
923 }
924 
925 static inline void audit_free_context(struct audit_context *context)
926 {
927 	audit_free_module(context);
928 	audit_free_names(context);
929 	unroll_tree_refs(context, NULL, 0);
930 	free_tree_refs(context);
931 	audit_free_aux(context);
932 	kfree(context->filterkey);
933 	kfree(context->sockaddr);
934 	audit_proctitle_free(context);
935 	kfree(context);
936 }
937 
938 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
939 				 kuid_t auid, kuid_t uid, unsigned int sessionid,
940 				 u32 sid, char *comm)
941 {
942 	struct audit_buffer *ab;
943 	char *ctx = NULL;
944 	u32 len;
945 	int rc = 0;
946 
947 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
948 	if (!ab)
949 		return rc;
950 
951 	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
952 			 from_kuid(&init_user_ns, auid),
953 			 from_kuid(&init_user_ns, uid), sessionid);
954 	if (sid) {
955 		if (security_secid_to_secctx(sid, &ctx, &len)) {
956 			audit_log_format(ab, " obj=(none)");
957 			rc = 1;
958 		} else {
959 			audit_log_format(ab, " obj=%s", ctx);
960 			security_release_secctx(ctx, len);
961 		}
962 	}
963 	audit_log_format(ab, " ocomm=");
964 	audit_log_untrustedstring(ab, comm);
965 	audit_log_end(ab);
966 
967 	return rc;
968 }
969 
970 static void audit_log_execve_info(struct audit_context *context,
971 				  struct audit_buffer **ab)
972 {
973 	long len_max;
974 	long len_rem;
975 	long len_full;
976 	long len_buf;
977 	long len_abuf = 0;
978 	long len_tmp;
979 	bool require_data;
980 	bool encode;
981 	unsigned int iter;
982 	unsigned int arg;
983 	char *buf_head;
984 	char *buf;
985 	const char __user *p = (const char __user *)current->mm->arg_start;
986 
987 	/* NOTE: this buffer needs to be large enough to hold all the non-arg
988 	 *       data we put in the audit record for this argument (see the
989 	 *       code below) ... at this point in time 96 is plenty */
990 	char abuf[96];
991 
992 	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
993 	 *       current value of 7500 is not as important as the fact that it
994 	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
995 	 *       room if we go over a little bit in the logging below */
996 	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
997 	len_max = MAX_EXECVE_AUDIT_LEN;
998 
999 	/* scratch buffer to hold the userspace args */
1000 	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1001 	if (!buf_head) {
1002 		audit_panic("out of memory for argv string");
1003 		return;
1004 	}
1005 	buf = buf_head;
1006 
1007 	audit_log_format(*ab, "argc=%d", context->execve.argc);
1008 
1009 	len_rem = len_max;
1010 	len_buf = 0;
1011 	len_full = 0;
1012 	require_data = true;
1013 	encode = false;
1014 	iter = 0;
1015 	arg = 0;
1016 	do {
1017 		/* NOTE: we don't ever want to trust this value for anything
1018 		 *       serious, but the audit record format insists we
1019 		 *       provide an argument length for really long arguments,
1020 		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1021 		 *       to use strncpy_from_user() to obtain this value for
1022 		 *       recording in the log, although we don't use it
1023 		 *       anywhere here to avoid a double-fetch problem */
1024 		if (len_full == 0)
1025 			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1026 
1027 		/* read more data from userspace */
1028 		if (require_data) {
1029 			/* can we make more room in the buffer? */
1030 			if (buf != buf_head) {
1031 				memmove(buf_head, buf, len_buf);
1032 				buf = buf_head;
1033 			}
1034 
1035 			/* fetch as much as we can of the argument */
1036 			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1037 						    len_max - len_buf);
1038 			if (len_tmp == -EFAULT) {
1039 				/* unable to copy from userspace */
1040 				send_sig(SIGKILL, current, 0);
1041 				goto out;
1042 			} else if (len_tmp == (len_max - len_buf)) {
1043 				/* buffer is not large enough */
1044 				require_data = true;
1045 				/* NOTE: if we are going to span multiple
1046 				 *       buffers force the encoding so we stand
1047 				 *       a chance at a sane len_full value and
1048 				 *       consistent record encoding */
1049 				encode = true;
1050 				len_full = len_full * 2;
1051 				p += len_tmp;
1052 			} else {
1053 				require_data = false;
1054 				if (!encode)
1055 					encode = audit_string_contains_control(
1056 								buf, len_tmp);
1057 				/* try to use a trusted value for len_full */
1058 				if (len_full < len_max)
1059 					len_full = (encode ?
1060 						    len_tmp * 2 : len_tmp);
1061 				p += len_tmp + 1;
1062 			}
1063 			len_buf += len_tmp;
1064 			buf_head[len_buf] = '\0';
1065 
1066 			/* length of the buffer in the audit record? */
1067 			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1068 		}
1069 
1070 		/* write as much as we can to the audit log */
1071 		if (len_buf >= 0) {
1072 			/* NOTE: some magic numbers here - basically if we
1073 			 *       can't fit a reasonable amount of data into the
1074 			 *       existing audit buffer, flush it and start with
1075 			 *       a new buffer */
1076 			if ((sizeof(abuf) + 8) > len_rem) {
1077 				len_rem = len_max;
1078 				audit_log_end(*ab);
1079 				*ab = audit_log_start(context,
1080 						      GFP_KERNEL, AUDIT_EXECVE);
1081 				if (!*ab)
1082 					goto out;
1083 			}
1084 
1085 			/* create the non-arg portion of the arg record */
1086 			len_tmp = 0;
1087 			if (require_data || (iter > 0) ||
1088 			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1089 				if (iter == 0) {
1090 					len_tmp += snprintf(&abuf[len_tmp],
1091 							sizeof(abuf) - len_tmp,
1092 							" a%d_len=%lu",
1093 							arg, len_full);
1094 				}
1095 				len_tmp += snprintf(&abuf[len_tmp],
1096 						    sizeof(abuf) - len_tmp,
1097 						    " a%d[%d]=", arg, iter++);
1098 			} else
1099 				len_tmp += snprintf(&abuf[len_tmp],
1100 						    sizeof(abuf) - len_tmp,
1101 						    " a%d=", arg);
1102 			WARN_ON(len_tmp >= sizeof(abuf));
1103 			abuf[sizeof(abuf) - 1] = '\0';
1104 
1105 			/* log the arg in the audit record */
1106 			audit_log_format(*ab, "%s", abuf);
1107 			len_rem -= len_tmp;
1108 			len_tmp = len_buf;
1109 			if (encode) {
1110 				if (len_abuf > len_rem)
1111 					len_tmp = len_rem / 2; /* encoding */
1112 				audit_log_n_hex(*ab, buf, len_tmp);
1113 				len_rem -= len_tmp * 2;
1114 				len_abuf -= len_tmp * 2;
1115 			} else {
1116 				if (len_abuf > len_rem)
1117 					len_tmp = len_rem - 2; /* quotes */
1118 				audit_log_n_string(*ab, buf, len_tmp);
1119 				len_rem -= len_tmp + 2;
1120 				/* don't subtract the "2" because we still need
1121 				 * to add quotes to the remaining string */
1122 				len_abuf -= len_tmp;
1123 			}
1124 			len_buf -= len_tmp;
1125 			buf += len_tmp;
1126 		}
1127 
1128 		/* ready to move to the next argument? */
1129 		if ((len_buf == 0) && !require_data) {
1130 			arg++;
1131 			iter = 0;
1132 			len_full = 0;
1133 			require_data = true;
1134 			encode = false;
1135 		}
1136 	} while (arg < context->execve.argc);
1137 
1138 	/* NOTE: the caller handles the final audit_log_end() call */
1139 
1140 out:
1141 	kfree(buf_head);
1142 }
1143 
1144 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1145 			  kernel_cap_t *cap)
1146 {
1147 	int i;
1148 
1149 	if (cap_isclear(*cap)) {
1150 		audit_log_format(ab, " %s=0", prefix);
1151 		return;
1152 	}
1153 	audit_log_format(ab, " %s=", prefix);
1154 	CAP_FOR_EACH_U32(i)
1155 		audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1156 }
1157 
1158 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1159 {
1160 	if (name->fcap_ver == -1) {
1161 		audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1162 		return;
1163 	}
1164 	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1165 	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1166 	audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1167 			 name->fcap.fE, name->fcap_ver,
1168 			 from_kuid(&init_user_ns, name->fcap.rootid));
1169 }
1170 
1171 static void show_special(struct audit_context *context, int *call_panic)
1172 {
1173 	struct audit_buffer *ab;
1174 	int i;
1175 
1176 	ab = audit_log_start(context, GFP_KERNEL, context->type);
1177 	if (!ab)
1178 		return;
1179 
1180 	switch (context->type) {
1181 	case AUDIT_SOCKETCALL: {
1182 		int nargs = context->socketcall.nargs;
1183 		audit_log_format(ab, "nargs=%d", nargs);
1184 		for (i = 0; i < nargs; i++)
1185 			audit_log_format(ab, " a%d=%lx", i,
1186 				context->socketcall.args[i]);
1187 		break; }
1188 	case AUDIT_IPC: {
1189 		u32 osid = context->ipc.osid;
1190 
1191 		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1192 				 from_kuid(&init_user_ns, context->ipc.uid),
1193 				 from_kgid(&init_user_ns, context->ipc.gid),
1194 				 context->ipc.mode);
1195 		if (osid) {
1196 			char *ctx = NULL;
1197 			u32 len;
1198 			if (security_secid_to_secctx(osid, &ctx, &len)) {
1199 				audit_log_format(ab, " osid=%u", osid);
1200 				*call_panic = 1;
1201 			} else {
1202 				audit_log_format(ab, " obj=%s", ctx);
1203 				security_release_secctx(ctx, len);
1204 			}
1205 		}
1206 		if (context->ipc.has_perm) {
1207 			audit_log_end(ab);
1208 			ab = audit_log_start(context, GFP_KERNEL,
1209 					     AUDIT_IPC_SET_PERM);
1210 			if (unlikely(!ab))
1211 				return;
1212 			audit_log_format(ab,
1213 				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1214 				context->ipc.qbytes,
1215 				context->ipc.perm_uid,
1216 				context->ipc.perm_gid,
1217 				context->ipc.perm_mode);
1218 		}
1219 		break; }
1220 	case AUDIT_MQ_OPEN:
1221 		audit_log_format(ab,
1222 			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1223 			"mq_msgsize=%ld mq_curmsgs=%ld",
1224 			context->mq_open.oflag, context->mq_open.mode,
1225 			context->mq_open.attr.mq_flags,
1226 			context->mq_open.attr.mq_maxmsg,
1227 			context->mq_open.attr.mq_msgsize,
1228 			context->mq_open.attr.mq_curmsgs);
1229 		break;
1230 	case AUDIT_MQ_SENDRECV:
1231 		audit_log_format(ab,
1232 			"mqdes=%d msg_len=%zd msg_prio=%u "
1233 			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1234 			context->mq_sendrecv.mqdes,
1235 			context->mq_sendrecv.msg_len,
1236 			context->mq_sendrecv.msg_prio,
1237 			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1238 			context->mq_sendrecv.abs_timeout.tv_nsec);
1239 		break;
1240 	case AUDIT_MQ_NOTIFY:
1241 		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1242 				context->mq_notify.mqdes,
1243 				context->mq_notify.sigev_signo);
1244 		break;
1245 	case AUDIT_MQ_GETSETATTR: {
1246 		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1247 		audit_log_format(ab,
1248 			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1249 			"mq_curmsgs=%ld ",
1250 			context->mq_getsetattr.mqdes,
1251 			attr->mq_flags, attr->mq_maxmsg,
1252 			attr->mq_msgsize, attr->mq_curmsgs);
1253 		break; }
1254 	case AUDIT_CAPSET:
1255 		audit_log_format(ab, "pid=%d", context->capset.pid);
1256 		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1257 		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1258 		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1259 		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1260 		break;
1261 	case AUDIT_MMAP:
1262 		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1263 				 context->mmap.flags);
1264 		break;
1265 	case AUDIT_EXECVE:
1266 		audit_log_execve_info(context, &ab);
1267 		break;
1268 	case AUDIT_KERN_MODULE:
1269 		audit_log_format(ab, "name=");
1270 		if (context->module.name) {
1271 			audit_log_untrustedstring(ab, context->module.name);
1272 		} else
1273 			audit_log_format(ab, "(null)");
1274 
1275 		break;
1276 	}
1277 	audit_log_end(ab);
1278 }
1279 
1280 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1281 {
1282 	char *end = proctitle + len - 1;
1283 	while (end > proctitle && !isprint(*end))
1284 		end--;
1285 
1286 	/* catch the case where proctitle is only 1 non-print character */
1287 	len = end - proctitle + 1;
1288 	len -= isprint(proctitle[len-1]) == 0;
1289 	return len;
1290 }
1291 
1292 /*
1293  * audit_log_name - produce AUDIT_PATH record from struct audit_names
1294  * @context: audit_context for the task
1295  * @n: audit_names structure with reportable details
1296  * @path: optional path to report instead of audit_names->name
1297  * @record_num: record number to report when handling a list of names
1298  * @call_panic: optional pointer to int that will be updated if secid fails
1299  */
1300 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1301 		    const struct path *path, int record_num, int *call_panic)
1302 {
1303 	struct audit_buffer *ab;
1304 
1305 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1306 	if (!ab)
1307 		return;
1308 
1309 	audit_log_format(ab, "item=%d", record_num);
1310 
1311 	if (path)
1312 		audit_log_d_path(ab, " name=", path);
1313 	else if (n->name) {
1314 		switch (n->name_len) {
1315 		case AUDIT_NAME_FULL:
1316 			/* log the full path */
1317 			audit_log_format(ab, " name=");
1318 			audit_log_untrustedstring(ab, n->name->name);
1319 			break;
1320 		case 0:
1321 			/* name was specified as a relative path and the
1322 			 * directory component is the cwd
1323 			 */
1324 			audit_log_d_path(ab, " name=", &context->pwd);
1325 			break;
1326 		default:
1327 			/* log the name's directory component */
1328 			audit_log_format(ab, " name=");
1329 			audit_log_n_untrustedstring(ab, n->name->name,
1330 						    n->name_len);
1331 		}
1332 	} else
1333 		audit_log_format(ab, " name=(null)");
1334 
1335 	if (n->ino != AUDIT_INO_UNSET)
1336 		audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1337 				 n->ino,
1338 				 MAJOR(n->dev),
1339 				 MINOR(n->dev),
1340 				 n->mode,
1341 				 from_kuid(&init_user_ns, n->uid),
1342 				 from_kgid(&init_user_ns, n->gid),
1343 				 MAJOR(n->rdev),
1344 				 MINOR(n->rdev));
1345 	if (n->osid != 0) {
1346 		char *ctx = NULL;
1347 		u32 len;
1348 
1349 		if (security_secid_to_secctx(
1350 			n->osid, &ctx, &len)) {
1351 			audit_log_format(ab, " osid=%u", n->osid);
1352 			if (call_panic)
1353 				*call_panic = 2;
1354 		} else {
1355 			audit_log_format(ab, " obj=%s", ctx);
1356 			security_release_secctx(ctx, len);
1357 		}
1358 	}
1359 
1360 	/* log the audit_names record type */
1361 	switch (n->type) {
1362 	case AUDIT_TYPE_NORMAL:
1363 		audit_log_format(ab, " nametype=NORMAL");
1364 		break;
1365 	case AUDIT_TYPE_PARENT:
1366 		audit_log_format(ab, " nametype=PARENT");
1367 		break;
1368 	case AUDIT_TYPE_CHILD_DELETE:
1369 		audit_log_format(ab, " nametype=DELETE");
1370 		break;
1371 	case AUDIT_TYPE_CHILD_CREATE:
1372 		audit_log_format(ab, " nametype=CREATE");
1373 		break;
1374 	default:
1375 		audit_log_format(ab, " nametype=UNKNOWN");
1376 		break;
1377 	}
1378 
1379 	audit_log_fcaps(ab, n);
1380 	audit_log_end(ab);
1381 }
1382 
1383 static void audit_log_proctitle(void)
1384 {
1385 	int res;
1386 	char *buf;
1387 	char *msg = "(null)";
1388 	int len = strlen(msg);
1389 	struct audit_context *context = audit_context();
1390 	struct audit_buffer *ab;
1391 
1392 	if (!context || context->dummy)
1393 		return;
1394 
1395 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1396 	if (!ab)
1397 		return;	/* audit_panic or being filtered */
1398 
1399 	audit_log_format(ab, "proctitle=");
1400 
1401 	/* Not  cached */
1402 	if (!context->proctitle.value) {
1403 		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1404 		if (!buf)
1405 			goto out;
1406 		/* Historically called this from procfs naming */
1407 		res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1408 		if (res == 0) {
1409 			kfree(buf);
1410 			goto out;
1411 		}
1412 		res = audit_proctitle_rtrim(buf, res);
1413 		if (res == 0) {
1414 			kfree(buf);
1415 			goto out;
1416 		}
1417 		context->proctitle.value = buf;
1418 		context->proctitle.len = res;
1419 	}
1420 	msg = context->proctitle.value;
1421 	len = context->proctitle.len;
1422 out:
1423 	audit_log_n_untrustedstring(ab, msg, len);
1424 	audit_log_end(ab);
1425 }
1426 
1427 static void audit_log_exit(void)
1428 {
1429 	int i, call_panic = 0;
1430 	struct audit_context *context = audit_context();
1431 	struct audit_buffer *ab;
1432 	struct audit_aux_data *aux;
1433 	struct audit_names *n;
1434 
1435 	context->personality = current->personality;
1436 
1437 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1438 	if (!ab)
1439 		return;		/* audit_panic has been called */
1440 	audit_log_format(ab, "arch=%x syscall=%d",
1441 			 context->arch, context->major);
1442 	if (context->personality != PER_LINUX)
1443 		audit_log_format(ab, " per=%lx", context->personality);
1444 	if (context->return_valid)
1445 		audit_log_format(ab, " success=%s exit=%ld",
1446 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1447 				 context->return_code);
1448 
1449 	audit_log_format(ab,
1450 			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1451 			 context->argv[0],
1452 			 context->argv[1],
1453 			 context->argv[2],
1454 			 context->argv[3],
1455 			 context->name_count);
1456 
1457 	audit_log_task_info(ab);
1458 	audit_log_key(ab, context->filterkey);
1459 	audit_log_end(ab);
1460 
1461 	for (aux = context->aux; aux; aux = aux->next) {
1462 
1463 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1464 		if (!ab)
1465 			continue; /* audit_panic has been called */
1466 
1467 		switch (aux->type) {
1468 
1469 		case AUDIT_BPRM_FCAPS: {
1470 			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1471 			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1472 			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1473 			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1474 			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1475 			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1476 			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1477 			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1478 			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1479 			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1480 			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1481 			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1482 			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1483 			audit_log_format(ab, " frootid=%d",
1484 					 from_kuid(&init_user_ns,
1485 						   axs->fcap.rootid));
1486 			break; }
1487 
1488 		}
1489 		audit_log_end(ab);
1490 	}
1491 
1492 	if (context->type)
1493 		show_special(context, &call_panic);
1494 
1495 	if (context->fds[0] >= 0) {
1496 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1497 		if (ab) {
1498 			audit_log_format(ab, "fd0=%d fd1=%d",
1499 					context->fds[0], context->fds[1]);
1500 			audit_log_end(ab);
1501 		}
1502 	}
1503 
1504 	if (context->sockaddr_len) {
1505 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1506 		if (ab) {
1507 			audit_log_format(ab, "saddr=");
1508 			audit_log_n_hex(ab, (void *)context->sockaddr,
1509 					context->sockaddr_len);
1510 			audit_log_end(ab);
1511 		}
1512 	}
1513 
1514 	for (aux = context->aux_pids; aux; aux = aux->next) {
1515 		struct audit_aux_data_pids *axs = (void *)aux;
1516 
1517 		for (i = 0; i < axs->pid_count; i++)
1518 			if (audit_log_pid_context(context, axs->target_pid[i],
1519 						  axs->target_auid[i],
1520 						  axs->target_uid[i],
1521 						  axs->target_sessionid[i],
1522 						  axs->target_sid[i],
1523 						  axs->target_comm[i]))
1524 				call_panic = 1;
1525 	}
1526 
1527 	if (context->target_pid &&
1528 	    audit_log_pid_context(context, context->target_pid,
1529 				  context->target_auid, context->target_uid,
1530 				  context->target_sessionid,
1531 				  context->target_sid, context->target_comm))
1532 			call_panic = 1;
1533 
1534 	if (context->pwd.dentry && context->pwd.mnt) {
1535 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1536 		if (ab) {
1537 			audit_log_d_path(ab, "cwd=", &context->pwd);
1538 			audit_log_end(ab);
1539 		}
1540 	}
1541 
1542 	i = 0;
1543 	list_for_each_entry(n, &context->names_list, list) {
1544 		if (n->hidden)
1545 			continue;
1546 		audit_log_name(context, n, NULL, i++, &call_panic);
1547 	}
1548 
1549 	audit_log_proctitle();
1550 
1551 	/* Send end of event record to help user space know we are finished */
1552 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1553 	if (ab)
1554 		audit_log_end(ab);
1555 	if (call_panic)
1556 		audit_panic("error converting sid to string");
1557 }
1558 
1559 /**
1560  * __audit_free - free a per-task audit context
1561  * @tsk: task whose audit context block to free
1562  *
1563  * Called from copy_process and do_exit
1564  */
1565 void __audit_free(struct task_struct *tsk)
1566 {
1567 	struct audit_context *context = tsk->audit_context;
1568 
1569 	if (!context)
1570 		return;
1571 
1572 	if (!list_empty(&context->killed_trees))
1573 		audit_kill_trees(context);
1574 
1575 	/* We are called either by do_exit() or the fork() error handling code;
1576 	 * in the former case tsk == current and in the latter tsk is a
1577 	 * random task_struct that doesn't doesn't have any meaningful data we
1578 	 * need to log via audit_log_exit().
1579 	 */
1580 	if (tsk == current && !context->dummy && context->in_syscall) {
1581 		context->return_valid = 0;
1582 		context->return_code = 0;
1583 
1584 		audit_filter_syscall(tsk, context,
1585 				     &audit_filter_list[AUDIT_FILTER_EXIT]);
1586 		audit_filter_inodes(tsk, context);
1587 		if (context->current_state == AUDIT_RECORD_CONTEXT)
1588 			audit_log_exit();
1589 	}
1590 
1591 	audit_set_context(tsk, NULL);
1592 	audit_free_context(context);
1593 }
1594 
1595 /**
1596  * __audit_syscall_entry - fill in an audit record at syscall entry
1597  * @major: major syscall type (function)
1598  * @a1: additional syscall register 1
1599  * @a2: additional syscall register 2
1600  * @a3: additional syscall register 3
1601  * @a4: additional syscall register 4
1602  *
1603  * Fill in audit context at syscall entry.  This only happens if the
1604  * audit context was created when the task was created and the state or
1605  * filters demand the audit context be built.  If the state from the
1606  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1607  * then the record will be written at syscall exit time (otherwise, it
1608  * will only be written if another part of the kernel requests that it
1609  * be written).
1610  */
1611 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1612 			   unsigned long a3, unsigned long a4)
1613 {
1614 	struct audit_context *context = audit_context();
1615 	enum audit_state     state;
1616 
1617 	if (!audit_enabled || !context)
1618 		return;
1619 
1620 	BUG_ON(context->in_syscall || context->name_count);
1621 
1622 	state = context->state;
1623 	if (state == AUDIT_DISABLED)
1624 		return;
1625 
1626 	context->dummy = !audit_n_rules;
1627 	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1628 		context->prio = 0;
1629 		if (auditd_test_task(current))
1630 			return;
1631 	}
1632 
1633 	context->arch	    = syscall_get_arch(current);
1634 	context->major      = major;
1635 	context->argv[0]    = a1;
1636 	context->argv[1]    = a2;
1637 	context->argv[2]    = a3;
1638 	context->argv[3]    = a4;
1639 	context->serial     = 0;
1640 	context->in_syscall = 1;
1641 	context->current_state  = state;
1642 	context->ppid       = 0;
1643 	ktime_get_coarse_real_ts64(&context->ctime);
1644 }
1645 
1646 /**
1647  * __audit_syscall_exit - deallocate audit context after a system call
1648  * @success: success value of the syscall
1649  * @return_code: return value of the syscall
1650  *
1651  * Tear down after system call.  If the audit context has been marked as
1652  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1653  * filtering, or because some other part of the kernel wrote an audit
1654  * message), then write out the syscall information.  In call cases,
1655  * free the names stored from getname().
1656  */
1657 void __audit_syscall_exit(int success, long return_code)
1658 {
1659 	struct audit_context *context;
1660 
1661 	context = audit_context();
1662 	if (!context)
1663 		return;
1664 
1665 	if (!list_empty(&context->killed_trees))
1666 		audit_kill_trees(context);
1667 
1668 	if (!context->dummy && context->in_syscall) {
1669 		if (success)
1670 			context->return_valid = AUDITSC_SUCCESS;
1671 		else
1672 			context->return_valid = AUDITSC_FAILURE;
1673 
1674 		/*
1675 		 * we need to fix up the return code in the audit logs if the
1676 		 * actual return codes are later going to be fixed up by the
1677 		 * arch specific signal handlers
1678 		 *
1679 		 * This is actually a test for:
1680 		 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1681 		 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1682 		 *
1683 		 * but is faster than a bunch of ||
1684 		 */
1685 		if (unlikely(return_code <= -ERESTARTSYS) &&
1686 		    (return_code >= -ERESTART_RESTARTBLOCK) &&
1687 		    (return_code != -ENOIOCTLCMD))
1688 			context->return_code = -EINTR;
1689 		else
1690 			context->return_code  = return_code;
1691 
1692 		audit_filter_syscall(current, context,
1693 				     &audit_filter_list[AUDIT_FILTER_EXIT]);
1694 		audit_filter_inodes(current, context);
1695 		if (context->current_state == AUDIT_RECORD_CONTEXT)
1696 			audit_log_exit();
1697 	}
1698 
1699 	context->in_syscall = 0;
1700 	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1701 
1702 	audit_free_module(context);
1703 	audit_free_names(context);
1704 	unroll_tree_refs(context, NULL, 0);
1705 	audit_free_aux(context);
1706 	context->aux = NULL;
1707 	context->aux_pids = NULL;
1708 	context->target_pid = 0;
1709 	context->target_sid = 0;
1710 	context->sockaddr_len = 0;
1711 	context->type = 0;
1712 	context->fds[0] = -1;
1713 	if (context->state != AUDIT_RECORD_CONTEXT) {
1714 		kfree(context->filterkey);
1715 		context->filterkey = NULL;
1716 	}
1717 }
1718 
1719 static inline void handle_one(const struct inode *inode)
1720 {
1721 	struct audit_context *context;
1722 	struct audit_tree_refs *p;
1723 	struct audit_chunk *chunk;
1724 	int count;
1725 	if (likely(!inode->i_fsnotify_marks))
1726 		return;
1727 	context = audit_context();
1728 	p = context->trees;
1729 	count = context->tree_count;
1730 	rcu_read_lock();
1731 	chunk = audit_tree_lookup(inode);
1732 	rcu_read_unlock();
1733 	if (!chunk)
1734 		return;
1735 	if (likely(put_tree_ref(context, chunk)))
1736 		return;
1737 	if (unlikely(!grow_tree_refs(context))) {
1738 		pr_warn("out of memory, audit has lost a tree reference\n");
1739 		audit_set_auditable(context);
1740 		audit_put_chunk(chunk);
1741 		unroll_tree_refs(context, p, count);
1742 		return;
1743 	}
1744 	put_tree_ref(context, chunk);
1745 }
1746 
1747 static void handle_path(const struct dentry *dentry)
1748 {
1749 	struct audit_context *context;
1750 	struct audit_tree_refs *p;
1751 	const struct dentry *d, *parent;
1752 	struct audit_chunk *drop;
1753 	unsigned long seq;
1754 	int count;
1755 
1756 	context = audit_context();
1757 	p = context->trees;
1758 	count = context->tree_count;
1759 retry:
1760 	drop = NULL;
1761 	d = dentry;
1762 	rcu_read_lock();
1763 	seq = read_seqbegin(&rename_lock);
1764 	for(;;) {
1765 		struct inode *inode = d_backing_inode(d);
1766 		if (inode && unlikely(inode->i_fsnotify_marks)) {
1767 			struct audit_chunk *chunk;
1768 			chunk = audit_tree_lookup(inode);
1769 			if (chunk) {
1770 				if (unlikely(!put_tree_ref(context, chunk))) {
1771 					drop = chunk;
1772 					break;
1773 				}
1774 			}
1775 		}
1776 		parent = d->d_parent;
1777 		if (parent == d)
1778 			break;
1779 		d = parent;
1780 	}
1781 	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1782 		rcu_read_unlock();
1783 		if (!drop) {
1784 			/* just a race with rename */
1785 			unroll_tree_refs(context, p, count);
1786 			goto retry;
1787 		}
1788 		audit_put_chunk(drop);
1789 		if (grow_tree_refs(context)) {
1790 			/* OK, got more space */
1791 			unroll_tree_refs(context, p, count);
1792 			goto retry;
1793 		}
1794 		/* too bad */
1795 		pr_warn("out of memory, audit has lost a tree reference\n");
1796 		unroll_tree_refs(context, p, count);
1797 		audit_set_auditable(context);
1798 		return;
1799 	}
1800 	rcu_read_unlock();
1801 }
1802 
1803 static struct audit_names *audit_alloc_name(struct audit_context *context,
1804 						unsigned char type)
1805 {
1806 	struct audit_names *aname;
1807 
1808 	if (context->name_count < AUDIT_NAMES) {
1809 		aname = &context->preallocated_names[context->name_count];
1810 		memset(aname, 0, sizeof(*aname));
1811 	} else {
1812 		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1813 		if (!aname)
1814 			return NULL;
1815 		aname->should_free = true;
1816 	}
1817 
1818 	aname->ino = AUDIT_INO_UNSET;
1819 	aname->type = type;
1820 	list_add_tail(&aname->list, &context->names_list);
1821 
1822 	context->name_count++;
1823 	return aname;
1824 }
1825 
1826 /**
1827  * __audit_reusename - fill out filename with info from existing entry
1828  * @uptr: userland ptr to pathname
1829  *
1830  * Search the audit_names list for the current audit context. If there is an
1831  * existing entry with a matching "uptr" then return the filename
1832  * associated with that audit_name. If not, return NULL.
1833  */
1834 struct filename *
1835 __audit_reusename(const __user char *uptr)
1836 {
1837 	struct audit_context *context = audit_context();
1838 	struct audit_names *n;
1839 
1840 	list_for_each_entry(n, &context->names_list, list) {
1841 		if (!n->name)
1842 			continue;
1843 		if (n->name->uptr == uptr) {
1844 			n->name->refcnt++;
1845 			return n->name;
1846 		}
1847 	}
1848 	return NULL;
1849 }
1850 
1851 /**
1852  * __audit_getname - add a name to the list
1853  * @name: name to add
1854  *
1855  * Add a name to the list of audit names for this context.
1856  * Called from fs/namei.c:getname().
1857  */
1858 void __audit_getname(struct filename *name)
1859 {
1860 	struct audit_context *context = audit_context();
1861 	struct audit_names *n;
1862 
1863 	if (!context->in_syscall)
1864 		return;
1865 
1866 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1867 	if (!n)
1868 		return;
1869 
1870 	n->name = name;
1871 	n->name_len = AUDIT_NAME_FULL;
1872 	name->aname = n;
1873 	name->refcnt++;
1874 
1875 	if (!context->pwd.dentry)
1876 		get_fs_pwd(current->fs, &context->pwd);
1877 }
1878 
1879 static inline int audit_copy_fcaps(struct audit_names *name,
1880 				   const struct dentry *dentry)
1881 {
1882 	struct cpu_vfs_cap_data caps;
1883 	int rc;
1884 
1885 	if (!dentry)
1886 		return 0;
1887 
1888 	rc = get_vfs_caps_from_disk(dentry, &caps);
1889 	if (rc)
1890 		return rc;
1891 
1892 	name->fcap.permitted = caps.permitted;
1893 	name->fcap.inheritable = caps.inheritable;
1894 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1895 	name->fcap.rootid = caps.rootid;
1896 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1897 				VFS_CAP_REVISION_SHIFT;
1898 
1899 	return 0;
1900 }
1901 
1902 /* Copy inode data into an audit_names. */
1903 static void audit_copy_inode(struct audit_names *name,
1904 			     const struct dentry *dentry,
1905 			     struct inode *inode, unsigned int flags)
1906 {
1907 	name->ino   = inode->i_ino;
1908 	name->dev   = inode->i_sb->s_dev;
1909 	name->mode  = inode->i_mode;
1910 	name->uid   = inode->i_uid;
1911 	name->gid   = inode->i_gid;
1912 	name->rdev  = inode->i_rdev;
1913 	security_inode_getsecid(inode, &name->osid);
1914 	if (flags & AUDIT_INODE_NOEVAL) {
1915 		name->fcap_ver = -1;
1916 		return;
1917 	}
1918 	audit_copy_fcaps(name, dentry);
1919 }
1920 
1921 /**
1922  * __audit_inode - store the inode and device from a lookup
1923  * @name: name being audited
1924  * @dentry: dentry being audited
1925  * @flags: attributes for this particular entry
1926  */
1927 void __audit_inode(struct filename *name, const struct dentry *dentry,
1928 		   unsigned int flags)
1929 {
1930 	struct audit_context *context = audit_context();
1931 	struct inode *inode = d_backing_inode(dentry);
1932 	struct audit_names *n;
1933 	bool parent = flags & AUDIT_INODE_PARENT;
1934 	struct audit_entry *e;
1935 	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1936 	int i;
1937 
1938 	if (!context->in_syscall)
1939 		return;
1940 
1941 	rcu_read_lock();
1942 	list_for_each_entry_rcu(e, list, list) {
1943 		for (i = 0; i < e->rule.field_count; i++) {
1944 			struct audit_field *f = &e->rule.fields[i];
1945 
1946 			if (f->type == AUDIT_FSTYPE
1947 			    && audit_comparator(inode->i_sb->s_magic,
1948 						f->op, f->val)
1949 			    && e->rule.action == AUDIT_NEVER) {
1950 				rcu_read_unlock();
1951 				return;
1952 			}
1953 		}
1954 	}
1955 	rcu_read_unlock();
1956 
1957 	if (!name)
1958 		goto out_alloc;
1959 
1960 	/*
1961 	 * If we have a pointer to an audit_names entry already, then we can
1962 	 * just use it directly if the type is correct.
1963 	 */
1964 	n = name->aname;
1965 	if (n) {
1966 		if (parent) {
1967 			if (n->type == AUDIT_TYPE_PARENT ||
1968 			    n->type == AUDIT_TYPE_UNKNOWN)
1969 				goto out;
1970 		} else {
1971 			if (n->type != AUDIT_TYPE_PARENT)
1972 				goto out;
1973 		}
1974 	}
1975 
1976 	list_for_each_entry_reverse(n, &context->names_list, list) {
1977 		if (n->ino) {
1978 			/* valid inode number, use that for the comparison */
1979 			if (n->ino != inode->i_ino ||
1980 			    n->dev != inode->i_sb->s_dev)
1981 				continue;
1982 		} else if (n->name) {
1983 			/* inode number has not been set, check the name */
1984 			if (strcmp(n->name->name, name->name))
1985 				continue;
1986 		} else
1987 			/* no inode and no name (?!) ... this is odd ... */
1988 			continue;
1989 
1990 		/* match the correct record type */
1991 		if (parent) {
1992 			if (n->type == AUDIT_TYPE_PARENT ||
1993 			    n->type == AUDIT_TYPE_UNKNOWN)
1994 				goto out;
1995 		} else {
1996 			if (n->type != AUDIT_TYPE_PARENT)
1997 				goto out;
1998 		}
1999 	}
2000 
2001 out_alloc:
2002 	/* unable to find an entry with both a matching name and type */
2003 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2004 	if (!n)
2005 		return;
2006 	if (name) {
2007 		n->name = name;
2008 		name->refcnt++;
2009 	}
2010 
2011 out:
2012 	if (parent) {
2013 		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2014 		n->type = AUDIT_TYPE_PARENT;
2015 		if (flags & AUDIT_INODE_HIDDEN)
2016 			n->hidden = true;
2017 	} else {
2018 		n->name_len = AUDIT_NAME_FULL;
2019 		n->type = AUDIT_TYPE_NORMAL;
2020 	}
2021 	handle_path(dentry);
2022 	audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2023 }
2024 
2025 void __audit_file(const struct file *file)
2026 {
2027 	__audit_inode(NULL, file->f_path.dentry, 0);
2028 }
2029 
2030 /**
2031  * __audit_inode_child - collect inode info for created/removed objects
2032  * @parent: inode of dentry parent
2033  * @dentry: dentry being audited
2034  * @type:   AUDIT_TYPE_* value that we're looking for
2035  *
2036  * For syscalls that create or remove filesystem objects, audit_inode
2037  * can only collect information for the filesystem object's parent.
2038  * This call updates the audit context with the child's information.
2039  * Syscalls that create a new filesystem object must be hooked after
2040  * the object is created.  Syscalls that remove a filesystem object
2041  * must be hooked prior, in order to capture the target inode during
2042  * unsuccessful attempts.
2043  */
2044 void __audit_inode_child(struct inode *parent,
2045 			 const struct dentry *dentry,
2046 			 const unsigned char type)
2047 {
2048 	struct audit_context *context = audit_context();
2049 	struct inode *inode = d_backing_inode(dentry);
2050 	const struct qstr *dname = &dentry->d_name;
2051 	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2052 	struct audit_entry *e;
2053 	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2054 	int i;
2055 
2056 	if (!context->in_syscall)
2057 		return;
2058 
2059 	rcu_read_lock();
2060 	list_for_each_entry_rcu(e, list, list) {
2061 		for (i = 0; i < e->rule.field_count; i++) {
2062 			struct audit_field *f = &e->rule.fields[i];
2063 
2064 			if (f->type == AUDIT_FSTYPE
2065 			    && audit_comparator(parent->i_sb->s_magic,
2066 						f->op, f->val)
2067 			    && e->rule.action == AUDIT_NEVER) {
2068 				rcu_read_unlock();
2069 				return;
2070 			}
2071 		}
2072 	}
2073 	rcu_read_unlock();
2074 
2075 	if (inode)
2076 		handle_one(inode);
2077 
2078 	/* look for a parent entry first */
2079 	list_for_each_entry(n, &context->names_list, list) {
2080 		if (!n->name ||
2081 		    (n->type != AUDIT_TYPE_PARENT &&
2082 		     n->type != AUDIT_TYPE_UNKNOWN))
2083 			continue;
2084 
2085 		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2086 		    !audit_compare_dname_path(dname,
2087 					      n->name->name, n->name_len)) {
2088 			if (n->type == AUDIT_TYPE_UNKNOWN)
2089 				n->type = AUDIT_TYPE_PARENT;
2090 			found_parent = n;
2091 			break;
2092 		}
2093 	}
2094 
2095 	/* is there a matching child entry? */
2096 	list_for_each_entry(n, &context->names_list, list) {
2097 		/* can only match entries that have a name */
2098 		if (!n->name ||
2099 		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2100 			continue;
2101 
2102 		if (!strcmp(dname->name, n->name->name) ||
2103 		    !audit_compare_dname_path(dname, n->name->name,
2104 						found_parent ?
2105 						found_parent->name_len :
2106 						AUDIT_NAME_FULL)) {
2107 			if (n->type == AUDIT_TYPE_UNKNOWN)
2108 				n->type = type;
2109 			found_child = n;
2110 			break;
2111 		}
2112 	}
2113 
2114 	if (!found_parent) {
2115 		/* create a new, "anonymous" parent record */
2116 		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2117 		if (!n)
2118 			return;
2119 		audit_copy_inode(n, NULL, parent, 0);
2120 	}
2121 
2122 	if (!found_child) {
2123 		found_child = audit_alloc_name(context, type);
2124 		if (!found_child)
2125 			return;
2126 
2127 		/* Re-use the name belonging to the slot for a matching parent
2128 		 * directory. All names for this context are relinquished in
2129 		 * audit_free_names() */
2130 		if (found_parent) {
2131 			found_child->name = found_parent->name;
2132 			found_child->name_len = AUDIT_NAME_FULL;
2133 			found_child->name->refcnt++;
2134 		}
2135 	}
2136 
2137 	if (inode)
2138 		audit_copy_inode(found_child, dentry, inode, 0);
2139 	else
2140 		found_child->ino = AUDIT_INO_UNSET;
2141 }
2142 EXPORT_SYMBOL_GPL(__audit_inode_child);
2143 
2144 /**
2145  * auditsc_get_stamp - get local copies of audit_context values
2146  * @ctx: audit_context for the task
2147  * @t: timespec64 to store time recorded in the audit_context
2148  * @serial: serial value that is recorded in the audit_context
2149  *
2150  * Also sets the context as auditable.
2151  */
2152 int auditsc_get_stamp(struct audit_context *ctx,
2153 		       struct timespec64 *t, unsigned int *serial)
2154 {
2155 	if (!ctx->in_syscall)
2156 		return 0;
2157 	if (!ctx->serial)
2158 		ctx->serial = audit_serial();
2159 	t->tv_sec  = ctx->ctime.tv_sec;
2160 	t->tv_nsec = ctx->ctime.tv_nsec;
2161 	*serial    = ctx->serial;
2162 	if (!ctx->prio) {
2163 		ctx->prio = 1;
2164 		ctx->current_state = AUDIT_RECORD_CONTEXT;
2165 	}
2166 	return 1;
2167 }
2168 
2169 /**
2170  * __audit_mq_open - record audit data for a POSIX MQ open
2171  * @oflag: open flag
2172  * @mode: mode bits
2173  * @attr: queue attributes
2174  *
2175  */
2176 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2177 {
2178 	struct audit_context *context = audit_context();
2179 
2180 	if (attr)
2181 		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2182 	else
2183 		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2184 
2185 	context->mq_open.oflag = oflag;
2186 	context->mq_open.mode = mode;
2187 
2188 	context->type = AUDIT_MQ_OPEN;
2189 }
2190 
2191 /**
2192  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2193  * @mqdes: MQ descriptor
2194  * @msg_len: Message length
2195  * @msg_prio: Message priority
2196  * @abs_timeout: Message timeout in absolute time
2197  *
2198  */
2199 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2200 			const struct timespec64 *abs_timeout)
2201 {
2202 	struct audit_context *context = audit_context();
2203 	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2204 
2205 	if (abs_timeout)
2206 		memcpy(p, abs_timeout, sizeof(*p));
2207 	else
2208 		memset(p, 0, sizeof(*p));
2209 
2210 	context->mq_sendrecv.mqdes = mqdes;
2211 	context->mq_sendrecv.msg_len = msg_len;
2212 	context->mq_sendrecv.msg_prio = msg_prio;
2213 
2214 	context->type = AUDIT_MQ_SENDRECV;
2215 }
2216 
2217 /**
2218  * __audit_mq_notify - record audit data for a POSIX MQ notify
2219  * @mqdes: MQ descriptor
2220  * @notification: Notification event
2221  *
2222  */
2223 
2224 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2225 {
2226 	struct audit_context *context = audit_context();
2227 
2228 	if (notification)
2229 		context->mq_notify.sigev_signo = notification->sigev_signo;
2230 	else
2231 		context->mq_notify.sigev_signo = 0;
2232 
2233 	context->mq_notify.mqdes = mqdes;
2234 	context->type = AUDIT_MQ_NOTIFY;
2235 }
2236 
2237 /**
2238  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2239  * @mqdes: MQ descriptor
2240  * @mqstat: MQ flags
2241  *
2242  */
2243 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2244 {
2245 	struct audit_context *context = audit_context();
2246 	context->mq_getsetattr.mqdes = mqdes;
2247 	context->mq_getsetattr.mqstat = *mqstat;
2248 	context->type = AUDIT_MQ_GETSETATTR;
2249 }
2250 
2251 /**
2252  * __audit_ipc_obj - record audit data for ipc object
2253  * @ipcp: ipc permissions
2254  *
2255  */
2256 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2257 {
2258 	struct audit_context *context = audit_context();
2259 	context->ipc.uid = ipcp->uid;
2260 	context->ipc.gid = ipcp->gid;
2261 	context->ipc.mode = ipcp->mode;
2262 	context->ipc.has_perm = 0;
2263 	security_ipc_getsecid(ipcp, &context->ipc.osid);
2264 	context->type = AUDIT_IPC;
2265 }
2266 
2267 /**
2268  * __audit_ipc_set_perm - record audit data for new ipc permissions
2269  * @qbytes: msgq bytes
2270  * @uid: msgq user id
2271  * @gid: msgq group id
2272  * @mode: msgq mode (permissions)
2273  *
2274  * Called only after audit_ipc_obj().
2275  */
2276 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2277 {
2278 	struct audit_context *context = audit_context();
2279 
2280 	context->ipc.qbytes = qbytes;
2281 	context->ipc.perm_uid = uid;
2282 	context->ipc.perm_gid = gid;
2283 	context->ipc.perm_mode = mode;
2284 	context->ipc.has_perm = 1;
2285 }
2286 
2287 void __audit_bprm(struct linux_binprm *bprm)
2288 {
2289 	struct audit_context *context = audit_context();
2290 
2291 	context->type = AUDIT_EXECVE;
2292 	context->execve.argc = bprm->argc;
2293 }
2294 
2295 
2296 /**
2297  * __audit_socketcall - record audit data for sys_socketcall
2298  * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2299  * @args: args array
2300  *
2301  */
2302 int __audit_socketcall(int nargs, unsigned long *args)
2303 {
2304 	struct audit_context *context = audit_context();
2305 
2306 	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2307 		return -EINVAL;
2308 	context->type = AUDIT_SOCKETCALL;
2309 	context->socketcall.nargs = nargs;
2310 	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2311 	return 0;
2312 }
2313 
2314 /**
2315  * __audit_fd_pair - record audit data for pipe and socketpair
2316  * @fd1: the first file descriptor
2317  * @fd2: the second file descriptor
2318  *
2319  */
2320 void __audit_fd_pair(int fd1, int fd2)
2321 {
2322 	struct audit_context *context = audit_context();
2323 	context->fds[0] = fd1;
2324 	context->fds[1] = fd2;
2325 }
2326 
2327 /**
2328  * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2329  * @len: data length in user space
2330  * @a: data address in kernel space
2331  *
2332  * Returns 0 for success or NULL context or < 0 on error.
2333  */
2334 int __audit_sockaddr(int len, void *a)
2335 {
2336 	struct audit_context *context = audit_context();
2337 
2338 	if (!context->sockaddr) {
2339 		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2340 		if (!p)
2341 			return -ENOMEM;
2342 		context->sockaddr = p;
2343 	}
2344 
2345 	context->sockaddr_len = len;
2346 	memcpy(context->sockaddr, a, len);
2347 	return 0;
2348 }
2349 
2350 void __audit_ptrace(struct task_struct *t)
2351 {
2352 	struct audit_context *context = audit_context();
2353 
2354 	context->target_pid = task_tgid_nr(t);
2355 	context->target_auid = audit_get_loginuid(t);
2356 	context->target_uid = task_uid(t);
2357 	context->target_sessionid = audit_get_sessionid(t);
2358 	security_task_getsecid(t, &context->target_sid);
2359 	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2360 }
2361 
2362 /**
2363  * audit_signal_info - record signal info for shutting down audit subsystem
2364  * @sig: signal value
2365  * @t: task being signaled
2366  *
2367  * If the audit subsystem is being terminated, record the task (pid)
2368  * and uid that is doing that.
2369  */
2370 int audit_signal_info(int sig, struct task_struct *t)
2371 {
2372 	struct audit_aux_data_pids *axp;
2373 	struct audit_context *ctx = audit_context();
2374 	kuid_t uid = current_uid(), auid, t_uid = task_uid(t);
2375 
2376 	if (auditd_test_task(t) &&
2377 	    (sig == SIGTERM || sig == SIGHUP ||
2378 	     sig == SIGUSR1 || sig == SIGUSR2)) {
2379 		audit_sig_pid = task_tgid_nr(current);
2380 		auid = audit_get_loginuid(current);
2381 		if (uid_valid(auid))
2382 			audit_sig_uid = auid;
2383 		else
2384 			audit_sig_uid = uid;
2385 		security_task_getsecid(current, &audit_sig_sid);
2386 	}
2387 
2388 	if (!audit_signals || audit_dummy_context())
2389 		return 0;
2390 
2391 	/* optimize the common case by putting first signal recipient directly
2392 	 * in audit_context */
2393 	if (!ctx->target_pid) {
2394 		ctx->target_pid = task_tgid_nr(t);
2395 		ctx->target_auid = audit_get_loginuid(t);
2396 		ctx->target_uid = t_uid;
2397 		ctx->target_sessionid = audit_get_sessionid(t);
2398 		security_task_getsecid(t, &ctx->target_sid);
2399 		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2400 		return 0;
2401 	}
2402 
2403 	axp = (void *)ctx->aux_pids;
2404 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2405 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2406 		if (!axp)
2407 			return -ENOMEM;
2408 
2409 		axp->d.type = AUDIT_OBJ_PID;
2410 		axp->d.next = ctx->aux_pids;
2411 		ctx->aux_pids = (void *)axp;
2412 	}
2413 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2414 
2415 	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2416 	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2417 	axp->target_uid[axp->pid_count] = t_uid;
2418 	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2419 	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2420 	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2421 	axp->pid_count++;
2422 
2423 	return 0;
2424 }
2425 
2426 /**
2427  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2428  * @bprm: pointer to the bprm being processed
2429  * @new: the proposed new credentials
2430  * @old: the old credentials
2431  *
2432  * Simply check if the proc already has the caps given by the file and if not
2433  * store the priv escalation info for later auditing at the end of the syscall
2434  *
2435  * -Eric
2436  */
2437 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2438 			   const struct cred *new, const struct cred *old)
2439 {
2440 	struct audit_aux_data_bprm_fcaps *ax;
2441 	struct audit_context *context = audit_context();
2442 	struct cpu_vfs_cap_data vcaps;
2443 
2444 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2445 	if (!ax)
2446 		return -ENOMEM;
2447 
2448 	ax->d.type = AUDIT_BPRM_FCAPS;
2449 	ax->d.next = context->aux;
2450 	context->aux = (void *)ax;
2451 
2452 	get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2453 
2454 	ax->fcap.permitted = vcaps.permitted;
2455 	ax->fcap.inheritable = vcaps.inheritable;
2456 	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2457 	ax->fcap.rootid = vcaps.rootid;
2458 	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2459 
2460 	ax->old_pcap.permitted   = old->cap_permitted;
2461 	ax->old_pcap.inheritable = old->cap_inheritable;
2462 	ax->old_pcap.effective   = old->cap_effective;
2463 	ax->old_pcap.ambient     = old->cap_ambient;
2464 
2465 	ax->new_pcap.permitted   = new->cap_permitted;
2466 	ax->new_pcap.inheritable = new->cap_inheritable;
2467 	ax->new_pcap.effective   = new->cap_effective;
2468 	ax->new_pcap.ambient     = new->cap_ambient;
2469 	return 0;
2470 }
2471 
2472 /**
2473  * __audit_log_capset - store information about the arguments to the capset syscall
2474  * @new: the new credentials
2475  * @old: the old (current) credentials
2476  *
2477  * Record the arguments userspace sent to sys_capset for later printing by the
2478  * audit system if applicable
2479  */
2480 void __audit_log_capset(const struct cred *new, const struct cred *old)
2481 {
2482 	struct audit_context *context = audit_context();
2483 	context->capset.pid = task_tgid_nr(current);
2484 	context->capset.cap.effective   = new->cap_effective;
2485 	context->capset.cap.inheritable = new->cap_effective;
2486 	context->capset.cap.permitted   = new->cap_permitted;
2487 	context->capset.cap.ambient     = new->cap_ambient;
2488 	context->type = AUDIT_CAPSET;
2489 }
2490 
2491 void __audit_mmap_fd(int fd, int flags)
2492 {
2493 	struct audit_context *context = audit_context();
2494 	context->mmap.fd = fd;
2495 	context->mmap.flags = flags;
2496 	context->type = AUDIT_MMAP;
2497 }
2498 
2499 void __audit_log_kern_module(char *name)
2500 {
2501 	struct audit_context *context = audit_context();
2502 
2503 	context->module.name = kstrdup(name, GFP_KERNEL);
2504 	if (!context->module.name)
2505 		audit_log_lost("out of memory in __audit_log_kern_module");
2506 	context->type = AUDIT_KERN_MODULE;
2507 }
2508 
2509 void __audit_fanotify(unsigned int response)
2510 {
2511 	audit_log(audit_context(), GFP_KERNEL,
2512 		AUDIT_FANOTIFY,	"resp=%u", response);
2513 }
2514 
2515 void __audit_tk_injoffset(struct timespec64 offset)
2516 {
2517 	audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2518 		  "sec=%lli nsec=%li",
2519 		  (long long)offset.tv_sec, offset.tv_nsec);
2520 }
2521 
2522 static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2523 			      const char *op, enum audit_ntp_type type)
2524 {
2525 	const struct audit_ntp_val *val = &ad->vals[type];
2526 
2527 	if (val->newval == val->oldval)
2528 		return;
2529 
2530 	audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2531 		  "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2532 }
2533 
2534 void __audit_ntp_log(const struct audit_ntp_data *ad)
2535 {
2536 	audit_log_ntp_val(ad, "offset",	AUDIT_NTP_OFFSET);
2537 	audit_log_ntp_val(ad, "freq",	AUDIT_NTP_FREQ);
2538 	audit_log_ntp_val(ad, "status",	AUDIT_NTP_STATUS);
2539 	audit_log_ntp_val(ad, "tai",	AUDIT_NTP_TAI);
2540 	audit_log_ntp_val(ad, "tick",	AUDIT_NTP_TICK);
2541 	audit_log_ntp_val(ad, "adjust",	AUDIT_NTP_ADJUST);
2542 }
2543 
2544 static void audit_log_task(struct audit_buffer *ab)
2545 {
2546 	kuid_t auid, uid;
2547 	kgid_t gid;
2548 	unsigned int sessionid;
2549 	char comm[sizeof(current->comm)];
2550 
2551 	auid = audit_get_loginuid(current);
2552 	sessionid = audit_get_sessionid(current);
2553 	current_uid_gid(&uid, &gid);
2554 
2555 	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2556 			 from_kuid(&init_user_ns, auid),
2557 			 from_kuid(&init_user_ns, uid),
2558 			 from_kgid(&init_user_ns, gid),
2559 			 sessionid);
2560 	audit_log_task_context(ab);
2561 	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2562 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2563 	audit_log_d_path_exe(ab, current->mm);
2564 }
2565 
2566 /**
2567  * audit_core_dumps - record information about processes that end abnormally
2568  * @signr: signal value
2569  *
2570  * If a process ends with a core dump, something fishy is going on and we
2571  * should record the event for investigation.
2572  */
2573 void audit_core_dumps(long signr)
2574 {
2575 	struct audit_buffer *ab;
2576 
2577 	if (!audit_enabled)
2578 		return;
2579 
2580 	if (signr == SIGQUIT)	/* don't care for those */
2581 		return;
2582 
2583 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2584 	if (unlikely(!ab))
2585 		return;
2586 	audit_log_task(ab);
2587 	audit_log_format(ab, " sig=%ld res=1", signr);
2588 	audit_log_end(ab);
2589 }
2590 
2591 /**
2592  * audit_seccomp - record information about a seccomp action
2593  * @syscall: syscall number
2594  * @signr: signal value
2595  * @code: the seccomp action
2596  *
2597  * Record the information associated with a seccomp action. Event filtering for
2598  * seccomp actions that are not to be logged is done in seccomp_log().
2599  * Therefore, this function forces auditing independent of the audit_enabled
2600  * and dummy context state because seccomp actions should be logged even when
2601  * audit is not in use.
2602  */
2603 void audit_seccomp(unsigned long syscall, long signr, int code)
2604 {
2605 	struct audit_buffer *ab;
2606 
2607 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2608 	if (unlikely(!ab))
2609 		return;
2610 	audit_log_task(ab);
2611 	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2612 			 signr, syscall_get_arch(current), syscall,
2613 			 in_compat_syscall(), KSTK_EIP(current), code);
2614 	audit_log_end(ab);
2615 }
2616 
2617 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2618 				  int res)
2619 {
2620 	struct audit_buffer *ab;
2621 
2622 	if (!audit_enabled)
2623 		return;
2624 
2625 	ab = audit_log_start(audit_context(), GFP_KERNEL,
2626 			     AUDIT_CONFIG_CHANGE);
2627 	if (unlikely(!ab))
2628 		return;
2629 
2630 	audit_log_format(ab,
2631 			 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2632 			 names, old_names, res);
2633 	audit_log_end(ab);
2634 }
2635 
2636 struct list_head *audit_killed_trees(void)
2637 {
2638 	struct audit_context *ctx = audit_context();
2639 	if (likely(!ctx || !ctx->in_syscall))
2640 		return NULL;
2641 	return &ctx->killed_trees;
2642 }
2643