xref: /linux/kernel/bpf/hashtab.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include <linux/rcupdate_trace.h>
13 #include "percpu_freelist.h"
14 #include "bpf_lru_list.h"
15 #include "map_in_map.h"
16 
17 #define HTAB_CREATE_FLAG_MASK						\
18 	(BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE |	\
19 	 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
20 
21 #define BATCH_OPS(_name)			\
22 	.map_lookup_batch =			\
23 	_name##_map_lookup_batch,		\
24 	.map_lookup_and_delete_batch =		\
25 	_name##_map_lookup_and_delete_batch,	\
26 	.map_update_batch =			\
27 	generic_map_update_batch,		\
28 	.map_delete_batch =			\
29 	generic_map_delete_batch
30 
31 /*
32  * The bucket lock has two protection scopes:
33  *
34  * 1) Serializing concurrent operations from BPF programs on different
35  *    CPUs
36  *
37  * 2) Serializing concurrent operations from BPF programs and sys_bpf()
38  *
39  * BPF programs can execute in any context including perf, kprobes and
40  * tracing. As there are almost no limits where perf, kprobes and tracing
41  * can be invoked from the lock operations need to be protected against
42  * deadlocks. Deadlocks can be caused by recursion and by an invocation in
43  * the lock held section when functions which acquire this lock are invoked
44  * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
45  * variable bpf_prog_active, which prevents BPF programs attached to perf
46  * events, kprobes and tracing to be invoked before the prior invocation
47  * from one of these contexts completed. sys_bpf() uses the same mechanism
48  * by pinning the task to the current CPU and incrementing the recursion
49  * protection across the map operation.
50  *
51  * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
52  * operations like memory allocations (even with GFP_ATOMIC) from atomic
53  * contexts. This is required because even with GFP_ATOMIC the memory
54  * allocator calls into code paths which acquire locks with long held lock
55  * sections. To ensure the deterministic behaviour these locks are regular
56  * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
57  * true atomic contexts on an RT kernel are the low level hardware
58  * handling, scheduling, low level interrupt handling, NMIs etc. None of
59  * these contexts should ever do memory allocations.
60  *
61  * As regular device interrupt handlers and soft interrupts are forced into
62  * thread context, the existing code which does
63  *   spin_lock*(); alloc(GPF_ATOMIC); spin_unlock*();
64  * just works.
65  *
66  * In theory the BPF locks could be converted to regular spinlocks as well,
67  * but the bucket locks and percpu_freelist locks can be taken from
68  * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
69  * atomic contexts even on RT. These mechanisms require preallocated maps,
70  * so there is no need to invoke memory allocations within the lock held
71  * sections.
72  *
73  * BPF maps which need dynamic allocation are only used from (forced)
74  * thread context on RT and can therefore use regular spinlocks which in
75  * turn allows to invoke memory allocations from the lock held section.
76  *
77  * On a non RT kernel this distinction is neither possible nor required.
78  * spinlock maps to raw_spinlock and the extra code is optimized out by the
79  * compiler.
80  */
81 struct bucket {
82 	struct hlist_nulls_head head;
83 	union {
84 		raw_spinlock_t raw_lock;
85 		spinlock_t     lock;
86 	};
87 };
88 
89 #define HASHTAB_MAP_LOCK_COUNT 8
90 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
91 
92 struct bpf_htab {
93 	struct bpf_map map;
94 	struct bucket *buckets;
95 	void *elems;
96 	union {
97 		struct pcpu_freelist freelist;
98 		struct bpf_lru lru;
99 	};
100 	struct htab_elem *__percpu *extra_elems;
101 	atomic_t count;	/* number of elements in this hashtable */
102 	u32 n_buckets;	/* number of hash buckets */
103 	u32 elem_size;	/* size of each element in bytes */
104 	u32 hashrnd;
105 	struct lock_class_key lockdep_key;
106 	int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
107 };
108 
109 /* each htab element is struct htab_elem + key + value */
110 struct htab_elem {
111 	union {
112 		struct hlist_nulls_node hash_node;
113 		struct {
114 			void *padding;
115 			union {
116 				struct bpf_htab *htab;
117 				struct pcpu_freelist_node fnode;
118 				struct htab_elem *batch_flink;
119 			};
120 		};
121 	};
122 	union {
123 		struct rcu_head rcu;
124 		struct bpf_lru_node lru_node;
125 	};
126 	u32 hash;
127 	char key[] __aligned(8);
128 };
129 
130 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
131 {
132 	return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
133 }
134 
135 static inline bool htab_use_raw_lock(const struct bpf_htab *htab)
136 {
137 	return (!IS_ENABLED(CONFIG_PREEMPT_RT) || htab_is_prealloc(htab));
138 }
139 
140 static void htab_init_buckets(struct bpf_htab *htab)
141 {
142 	unsigned i;
143 
144 	for (i = 0; i < htab->n_buckets; i++) {
145 		INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
146 		if (htab_use_raw_lock(htab)) {
147 			raw_spin_lock_init(&htab->buckets[i].raw_lock);
148 			lockdep_set_class(&htab->buckets[i].raw_lock,
149 					  &htab->lockdep_key);
150 		} else {
151 			spin_lock_init(&htab->buckets[i].lock);
152 			lockdep_set_class(&htab->buckets[i].lock,
153 					  &htab->lockdep_key);
154 		}
155 		cond_resched();
156 	}
157 }
158 
159 static inline int htab_lock_bucket(const struct bpf_htab *htab,
160 				   struct bucket *b, u32 hash,
161 				   unsigned long *pflags)
162 {
163 	unsigned long flags;
164 
165 	hash = hash & HASHTAB_MAP_LOCK_MASK;
166 
167 	migrate_disable();
168 	if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
169 		__this_cpu_dec(*(htab->map_locked[hash]));
170 		migrate_enable();
171 		return -EBUSY;
172 	}
173 
174 	if (htab_use_raw_lock(htab))
175 		raw_spin_lock_irqsave(&b->raw_lock, flags);
176 	else
177 		spin_lock_irqsave(&b->lock, flags);
178 	*pflags = flags;
179 
180 	return 0;
181 }
182 
183 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
184 				      struct bucket *b, u32 hash,
185 				      unsigned long flags)
186 {
187 	hash = hash & HASHTAB_MAP_LOCK_MASK;
188 	if (htab_use_raw_lock(htab))
189 		raw_spin_unlock_irqrestore(&b->raw_lock, flags);
190 	else
191 		spin_unlock_irqrestore(&b->lock, flags);
192 	__this_cpu_dec(*(htab->map_locked[hash]));
193 	migrate_enable();
194 }
195 
196 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
197 
198 static bool htab_is_lru(const struct bpf_htab *htab)
199 {
200 	return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
201 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
202 }
203 
204 static bool htab_is_percpu(const struct bpf_htab *htab)
205 {
206 	return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
207 		htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
208 }
209 
210 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
211 				     void __percpu *pptr)
212 {
213 	*(void __percpu **)(l->key + key_size) = pptr;
214 }
215 
216 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
217 {
218 	return *(void __percpu **)(l->key + key_size);
219 }
220 
221 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
222 {
223 	return *(void **)(l->key + roundup(map->key_size, 8));
224 }
225 
226 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
227 {
228 	return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size);
229 }
230 
231 static bool htab_has_extra_elems(struct bpf_htab *htab)
232 {
233 	return !htab_is_percpu(htab) && !htab_is_lru(htab);
234 }
235 
236 static void htab_free_prealloced_timers(struct bpf_htab *htab)
237 {
238 	u32 num_entries = htab->map.max_entries;
239 	int i;
240 
241 	if (likely(!map_value_has_timer(&htab->map)))
242 		return;
243 	if (htab_has_extra_elems(htab))
244 		num_entries += num_possible_cpus();
245 
246 	for (i = 0; i < num_entries; i++) {
247 		struct htab_elem *elem;
248 
249 		elem = get_htab_elem(htab, i);
250 		bpf_timer_cancel_and_free(elem->key +
251 					  round_up(htab->map.key_size, 8) +
252 					  htab->map.timer_off);
253 		cond_resched();
254 	}
255 }
256 
257 static void htab_free_elems(struct bpf_htab *htab)
258 {
259 	int i;
260 
261 	if (!htab_is_percpu(htab))
262 		goto free_elems;
263 
264 	for (i = 0; i < htab->map.max_entries; i++) {
265 		void __percpu *pptr;
266 
267 		pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
268 					 htab->map.key_size);
269 		free_percpu(pptr);
270 		cond_resched();
271 	}
272 free_elems:
273 	bpf_map_area_free(htab->elems);
274 }
275 
276 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
277  * (bucket_lock). If both locks need to be acquired together, the lock
278  * order is always lru_lock -> bucket_lock and this only happens in
279  * bpf_lru_list.c logic. For example, certain code path of
280  * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
281  * will acquire lru_lock first followed by acquiring bucket_lock.
282  *
283  * In hashtab.c, to avoid deadlock, lock acquisition of
284  * bucket_lock followed by lru_lock is not allowed. In such cases,
285  * bucket_lock needs to be released first before acquiring lru_lock.
286  */
287 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
288 					  u32 hash)
289 {
290 	struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
291 	struct htab_elem *l;
292 
293 	if (node) {
294 		u32 key_size = htab->map.key_size;
295 
296 		l = container_of(node, struct htab_elem, lru_node);
297 		memcpy(l->key, key, key_size);
298 		check_and_init_map_value(&htab->map,
299 					 l->key + round_up(key_size, 8));
300 		return l;
301 	}
302 
303 	return NULL;
304 }
305 
306 static int prealloc_init(struct bpf_htab *htab)
307 {
308 	u32 num_entries = htab->map.max_entries;
309 	int err = -ENOMEM, i;
310 
311 	if (htab_has_extra_elems(htab))
312 		num_entries += num_possible_cpus();
313 
314 	htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries,
315 					 htab->map.numa_node);
316 	if (!htab->elems)
317 		return -ENOMEM;
318 
319 	if (!htab_is_percpu(htab))
320 		goto skip_percpu_elems;
321 
322 	for (i = 0; i < num_entries; i++) {
323 		u32 size = round_up(htab->map.value_size, 8);
324 		void __percpu *pptr;
325 
326 		pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
327 					    GFP_USER | __GFP_NOWARN);
328 		if (!pptr)
329 			goto free_elems;
330 		htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
331 				  pptr);
332 		cond_resched();
333 	}
334 
335 skip_percpu_elems:
336 	if (htab_is_lru(htab))
337 		err = bpf_lru_init(&htab->lru,
338 				   htab->map.map_flags & BPF_F_NO_COMMON_LRU,
339 				   offsetof(struct htab_elem, hash) -
340 				   offsetof(struct htab_elem, lru_node),
341 				   htab_lru_map_delete_node,
342 				   htab);
343 	else
344 		err = pcpu_freelist_init(&htab->freelist);
345 
346 	if (err)
347 		goto free_elems;
348 
349 	if (htab_is_lru(htab))
350 		bpf_lru_populate(&htab->lru, htab->elems,
351 				 offsetof(struct htab_elem, lru_node),
352 				 htab->elem_size, num_entries);
353 	else
354 		pcpu_freelist_populate(&htab->freelist,
355 				       htab->elems + offsetof(struct htab_elem, fnode),
356 				       htab->elem_size, num_entries);
357 
358 	return 0;
359 
360 free_elems:
361 	htab_free_elems(htab);
362 	return err;
363 }
364 
365 static void prealloc_destroy(struct bpf_htab *htab)
366 {
367 	htab_free_elems(htab);
368 
369 	if (htab_is_lru(htab))
370 		bpf_lru_destroy(&htab->lru);
371 	else
372 		pcpu_freelist_destroy(&htab->freelist);
373 }
374 
375 static int alloc_extra_elems(struct bpf_htab *htab)
376 {
377 	struct htab_elem *__percpu *pptr, *l_new;
378 	struct pcpu_freelist_node *l;
379 	int cpu;
380 
381 	pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8,
382 				    GFP_USER | __GFP_NOWARN);
383 	if (!pptr)
384 		return -ENOMEM;
385 
386 	for_each_possible_cpu(cpu) {
387 		l = pcpu_freelist_pop(&htab->freelist);
388 		/* pop will succeed, since prealloc_init()
389 		 * preallocated extra num_possible_cpus elements
390 		 */
391 		l_new = container_of(l, struct htab_elem, fnode);
392 		*per_cpu_ptr(pptr, cpu) = l_new;
393 	}
394 	htab->extra_elems = pptr;
395 	return 0;
396 }
397 
398 /* Called from syscall */
399 static int htab_map_alloc_check(union bpf_attr *attr)
400 {
401 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
402 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
403 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
404 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
405 	/* percpu_lru means each cpu has its own LRU list.
406 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
407 	 * the map's value itself is percpu.  percpu_lru has
408 	 * nothing to do with the map's value.
409 	 */
410 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
411 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
412 	bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
413 	int numa_node = bpf_map_attr_numa_node(attr);
414 
415 	BUILD_BUG_ON(offsetof(struct htab_elem, htab) !=
416 		     offsetof(struct htab_elem, hash_node.pprev));
417 	BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
418 		     offsetof(struct htab_elem, hash_node.pprev));
419 
420 	if (lru && !bpf_capable())
421 		/* LRU implementation is much complicated than other
422 		 * maps.  Hence, limit to CAP_BPF.
423 		 */
424 		return -EPERM;
425 
426 	if (zero_seed && !capable(CAP_SYS_ADMIN))
427 		/* Guard against local DoS, and discourage production use. */
428 		return -EPERM;
429 
430 	if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
431 	    !bpf_map_flags_access_ok(attr->map_flags))
432 		return -EINVAL;
433 
434 	if (!lru && percpu_lru)
435 		return -EINVAL;
436 
437 	if (lru && !prealloc)
438 		return -ENOTSUPP;
439 
440 	if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
441 		return -EINVAL;
442 
443 	/* check sanity of attributes.
444 	 * value_size == 0 may be allowed in the future to use map as a set
445 	 */
446 	if (attr->max_entries == 0 || attr->key_size == 0 ||
447 	    attr->value_size == 0)
448 		return -EINVAL;
449 
450 	if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
451 	   sizeof(struct htab_elem))
452 		/* if key_size + value_size is bigger, the user space won't be
453 		 * able to access the elements via bpf syscall. This check
454 		 * also makes sure that the elem_size doesn't overflow and it's
455 		 * kmalloc-able later in htab_map_update_elem()
456 		 */
457 		return -E2BIG;
458 
459 	return 0;
460 }
461 
462 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
463 {
464 	bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
465 		       attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
466 	bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
467 		    attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
468 	/* percpu_lru means each cpu has its own LRU list.
469 	 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
470 	 * the map's value itself is percpu.  percpu_lru has
471 	 * nothing to do with the map's value.
472 	 */
473 	bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
474 	bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
475 	struct bpf_htab *htab;
476 	int err, i;
477 
478 	htab = kzalloc(sizeof(*htab), GFP_USER | __GFP_ACCOUNT);
479 	if (!htab)
480 		return ERR_PTR(-ENOMEM);
481 
482 	lockdep_register_key(&htab->lockdep_key);
483 
484 	bpf_map_init_from_attr(&htab->map, attr);
485 
486 	if (percpu_lru) {
487 		/* ensure each CPU's lru list has >=1 elements.
488 		 * since we are at it, make each lru list has the same
489 		 * number of elements.
490 		 */
491 		htab->map.max_entries = roundup(attr->max_entries,
492 						num_possible_cpus());
493 		if (htab->map.max_entries < attr->max_entries)
494 			htab->map.max_entries = rounddown(attr->max_entries,
495 							  num_possible_cpus());
496 	}
497 
498 	/* hash table size must be power of 2 */
499 	htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
500 
501 	htab->elem_size = sizeof(struct htab_elem) +
502 			  round_up(htab->map.key_size, 8);
503 	if (percpu)
504 		htab->elem_size += sizeof(void *);
505 	else
506 		htab->elem_size += round_up(htab->map.value_size, 8);
507 
508 	err = -E2BIG;
509 	/* prevent zero size kmalloc and check for u32 overflow */
510 	if (htab->n_buckets == 0 ||
511 	    htab->n_buckets > U32_MAX / sizeof(struct bucket))
512 		goto free_htab;
513 
514 	err = -ENOMEM;
515 	htab->buckets = bpf_map_area_alloc(htab->n_buckets *
516 					   sizeof(struct bucket),
517 					   htab->map.numa_node);
518 	if (!htab->buckets)
519 		goto free_htab;
520 
521 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
522 		htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map,
523 							   sizeof(int),
524 							   sizeof(int),
525 							   GFP_USER);
526 		if (!htab->map_locked[i])
527 			goto free_map_locked;
528 	}
529 
530 	if (htab->map.map_flags & BPF_F_ZERO_SEED)
531 		htab->hashrnd = 0;
532 	else
533 		htab->hashrnd = get_random_int();
534 
535 	htab_init_buckets(htab);
536 
537 	if (prealloc) {
538 		err = prealloc_init(htab);
539 		if (err)
540 			goto free_map_locked;
541 
542 		if (!percpu && !lru) {
543 			/* lru itself can remove the least used element, so
544 			 * there is no need for an extra elem during map_update.
545 			 */
546 			err = alloc_extra_elems(htab);
547 			if (err)
548 				goto free_prealloc;
549 		}
550 	}
551 
552 	return &htab->map;
553 
554 free_prealloc:
555 	prealloc_destroy(htab);
556 free_map_locked:
557 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
558 		free_percpu(htab->map_locked[i]);
559 	bpf_map_area_free(htab->buckets);
560 free_htab:
561 	lockdep_unregister_key(&htab->lockdep_key);
562 	kfree(htab);
563 	return ERR_PTR(err);
564 }
565 
566 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
567 {
568 	return jhash(key, key_len, hashrnd);
569 }
570 
571 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
572 {
573 	return &htab->buckets[hash & (htab->n_buckets - 1)];
574 }
575 
576 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
577 {
578 	return &__select_bucket(htab, hash)->head;
579 }
580 
581 /* this lookup function can only be called with bucket lock taken */
582 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
583 					 void *key, u32 key_size)
584 {
585 	struct hlist_nulls_node *n;
586 	struct htab_elem *l;
587 
588 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
589 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
590 			return l;
591 
592 	return NULL;
593 }
594 
595 /* can be called without bucket lock. it will repeat the loop in
596  * the unlikely event when elements moved from one bucket into another
597  * while link list is being walked
598  */
599 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
600 					       u32 hash, void *key,
601 					       u32 key_size, u32 n_buckets)
602 {
603 	struct hlist_nulls_node *n;
604 	struct htab_elem *l;
605 
606 again:
607 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
608 		if (l->hash == hash && !memcmp(&l->key, key, key_size))
609 			return l;
610 
611 	if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
612 		goto again;
613 
614 	return NULL;
615 }
616 
617 /* Called from syscall or from eBPF program directly, so
618  * arguments have to match bpf_map_lookup_elem() exactly.
619  * The return value is adjusted by BPF instructions
620  * in htab_map_gen_lookup().
621  */
622 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
623 {
624 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
625 	struct hlist_nulls_head *head;
626 	struct htab_elem *l;
627 	u32 hash, key_size;
628 
629 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
630 		     !rcu_read_lock_bh_held());
631 
632 	key_size = map->key_size;
633 
634 	hash = htab_map_hash(key, key_size, htab->hashrnd);
635 
636 	head = select_bucket(htab, hash);
637 
638 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
639 
640 	return l;
641 }
642 
643 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
644 {
645 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
646 
647 	if (l)
648 		return l->key + round_up(map->key_size, 8);
649 
650 	return NULL;
651 }
652 
653 /* inline bpf_map_lookup_elem() call.
654  * Instead of:
655  * bpf_prog
656  *   bpf_map_lookup_elem
657  *     map->ops->map_lookup_elem
658  *       htab_map_lookup_elem
659  *         __htab_map_lookup_elem
660  * do:
661  * bpf_prog
662  *   __htab_map_lookup_elem
663  */
664 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
665 {
666 	struct bpf_insn *insn = insn_buf;
667 	const int ret = BPF_REG_0;
668 
669 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
670 		     (void *(*)(struct bpf_map *map, void *key))NULL));
671 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
672 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
673 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
674 				offsetof(struct htab_elem, key) +
675 				round_up(map->key_size, 8));
676 	return insn - insn_buf;
677 }
678 
679 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
680 							void *key, const bool mark)
681 {
682 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
683 
684 	if (l) {
685 		if (mark)
686 			bpf_lru_node_set_ref(&l->lru_node);
687 		return l->key + round_up(map->key_size, 8);
688 	}
689 
690 	return NULL;
691 }
692 
693 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
694 {
695 	return __htab_lru_map_lookup_elem(map, key, true);
696 }
697 
698 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
699 {
700 	return __htab_lru_map_lookup_elem(map, key, false);
701 }
702 
703 static int htab_lru_map_gen_lookup(struct bpf_map *map,
704 				   struct bpf_insn *insn_buf)
705 {
706 	struct bpf_insn *insn = insn_buf;
707 	const int ret = BPF_REG_0;
708 	const int ref_reg = BPF_REG_1;
709 
710 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
711 		     (void *(*)(struct bpf_map *map, void *key))NULL));
712 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
713 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
714 	*insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
715 			      offsetof(struct htab_elem, lru_node) +
716 			      offsetof(struct bpf_lru_node, ref));
717 	*insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
718 	*insn++ = BPF_ST_MEM(BPF_B, ret,
719 			     offsetof(struct htab_elem, lru_node) +
720 			     offsetof(struct bpf_lru_node, ref),
721 			     1);
722 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
723 				offsetof(struct htab_elem, key) +
724 				round_up(map->key_size, 8));
725 	return insn - insn_buf;
726 }
727 
728 static void check_and_free_timer(struct bpf_htab *htab, struct htab_elem *elem)
729 {
730 	if (unlikely(map_value_has_timer(&htab->map)))
731 		bpf_timer_cancel_and_free(elem->key +
732 					  round_up(htab->map.key_size, 8) +
733 					  htab->map.timer_off);
734 }
735 
736 /* It is called from the bpf_lru_list when the LRU needs to delete
737  * older elements from the htab.
738  */
739 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
740 {
741 	struct bpf_htab *htab = (struct bpf_htab *)arg;
742 	struct htab_elem *l = NULL, *tgt_l;
743 	struct hlist_nulls_head *head;
744 	struct hlist_nulls_node *n;
745 	unsigned long flags;
746 	struct bucket *b;
747 	int ret;
748 
749 	tgt_l = container_of(node, struct htab_elem, lru_node);
750 	b = __select_bucket(htab, tgt_l->hash);
751 	head = &b->head;
752 
753 	ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags);
754 	if (ret)
755 		return false;
756 
757 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
758 		if (l == tgt_l) {
759 			hlist_nulls_del_rcu(&l->hash_node);
760 			check_and_free_timer(htab, l);
761 			break;
762 		}
763 
764 	htab_unlock_bucket(htab, b, tgt_l->hash, flags);
765 
766 	return l == tgt_l;
767 }
768 
769 /* Called from syscall */
770 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
771 {
772 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
773 	struct hlist_nulls_head *head;
774 	struct htab_elem *l, *next_l;
775 	u32 hash, key_size;
776 	int i = 0;
777 
778 	WARN_ON_ONCE(!rcu_read_lock_held());
779 
780 	key_size = map->key_size;
781 
782 	if (!key)
783 		goto find_first_elem;
784 
785 	hash = htab_map_hash(key, key_size, htab->hashrnd);
786 
787 	head = select_bucket(htab, hash);
788 
789 	/* lookup the key */
790 	l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
791 
792 	if (!l)
793 		goto find_first_elem;
794 
795 	/* key was found, get next key in the same bucket */
796 	next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
797 				  struct htab_elem, hash_node);
798 
799 	if (next_l) {
800 		/* if next elem in this hash list is non-zero, just return it */
801 		memcpy(next_key, next_l->key, key_size);
802 		return 0;
803 	}
804 
805 	/* no more elements in this hash list, go to the next bucket */
806 	i = hash & (htab->n_buckets - 1);
807 	i++;
808 
809 find_first_elem:
810 	/* iterate over buckets */
811 	for (; i < htab->n_buckets; i++) {
812 		head = select_bucket(htab, i);
813 
814 		/* pick first element in the bucket */
815 		next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
816 					  struct htab_elem, hash_node);
817 		if (next_l) {
818 			/* if it's not empty, just return it */
819 			memcpy(next_key, next_l->key, key_size);
820 			return 0;
821 		}
822 	}
823 
824 	/* iterated over all buckets and all elements */
825 	return -ENOENT;
826 }
827 
828 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
829 {
830 	if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
831 		free_percpu(htab_elem_get_ptr(l, htab->map.key_size));
832 	check_and_free_timer(htab, l);
833 	kfree(l);
834 }
835 
836 static void htab_elem_free_rcu(struct rcu_head *head)
837 {
838 	struct htab_elem *l = container_of(head, struct htab_elem, rcu);
839 	struct bpf_htab *htab = l->htab;
840 
841 	htab_elem_free(htab, l);
842 }
843 
844 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
845 {
846 	struct bpf_map *map = &htab->map;
847 	void *ptr;
848 
849 	if (map->ops->map_fd_put_ptr) {
850 		ptr = fd_htab_map_get_ptr(map, l);
851 		map->ops->map_fd_put_ptr(ptr);
852 	}
853 }
854 
855 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
856 {
857 	htab_put_fd_value(htab, l);
858 
859 	if (htab_is_prealloc(htab)) {
860 		check_and_free_timer(htab, l);
861 		__pcpu_freelist_push(&htab->freelist, &l->fnode);
862 	} else {
863 		atomic_dec(&htab->count);
864 		l->htab = htab;
865 		call_rcu(&l->rcu, htab_elem_free_rcu);
866 	}
867 }
868 
869 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
870 			    void *value, bool onallcpus)
871 {
872 	if (!onallcpus) {
873 		/* copy true value_size bytes */
874 		memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
875 	} else {
876 		u32 size = round_up(htab->map.value_size, 8);
877 		int off = 0, cpu;
878 
879 		for_each_possible_cpu(cpu) {
880 			bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
881 					value + off, size);
882 			off += size;
883 		}
884 	}
885 }
886 
887 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
888 			    void *value, bool onallcpus)
889 {
890 	/* When using prealloc and not setting the initial value on all cpus,
891 	 * zero-fill element values for other cpus (just as what happens when
892 	 * not using prealloc). Otherwise, bpf program has no way to ensure
893 	 * known initial values for cpus other than current one
894 	 * (onallcpus=false always when coming from bpf prog).
895 	 */
896 	if (htab_is_prealloc(htab) && !onallcpus) {
897 		u32 size = round_up(htab->map.value_size, 8);
898 		int current_cpu = raw_smp_processor_id();
899 		int cpu;
900 
901 		for_each_possible_cpu(cpu) {
902 			if (cpu == current_cpu)
903 				bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value,
904 						size);
905 			else
906 				memset(per_cpu_ptr(pptr, cpu), 0, size);
907 		}
908 	} else {
909 		pcpu_copy_value(htab, pptr, value, onallcpus);
910 	}
911 }
912 
913 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
914 {
915 	return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
916 	       BITS_PER_LONG == 64;
917 }
918 
919 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
920 					 void *value, u32 key_size, u32 hash,
921 					 bool percpu, bool onallcpus,
922 					 struct htab_elem *old_elem)
923 {
924 	u32 size = htab->map.value_size;
925 	bool prealloc = htab_is_prealloc(htab);
926 	struct htab_elem *l_new, **pl_new;
927 	void __percpu *pptr;
928 
929 	if (prealloc) {
930 		if (old_elem) {
931 			/* if we're updating the existing element,
932 			 * use per-cpu extra elems to avoid freelist_pop/push
933 			 */
934 			pl_new = this_cpu_ptr(htab->extra_elems);
935 			l_new = *pl_new;
936 			htab_put_fd_value(htab, old_elem);
937 			*pl_new = old_elem;
938 		} else {
939 			struct pcpu_freelist_node *l;
940 
941 			l = __pcpu_freelist_pop(&htab->freelist);
942 			if (!l)
943 				return ERR_PTR(-E2BIG);
944 			l_new = container_of(l, struct htab_elem, fnode);
945 		}
946 	} else {
947 		if (atomic_inc_return(&htab->count) > htab->map.max_entries)
948 			if (!old_elem) {
949 				/* when map is full and update() is replacing
950 				 * old element, it's ok to allocate, since
951 				 * old element will be freed immediately.
952 				 * Otherwise return an error
953 				 */
954 				l_new = ERR_PTR(-E2BIG);
955 				goto dec_count;
956 			}
957 		l_new = bpf_map_kmalloc_node(&htab->map, htab->elem_size,
958 					     GFP_ATOMIC | __GFP_NOWARN,
959 					     htab->map.numa_node);
960 		if (!l_new) {
961 			l_new = ERR_PTR(-ENOMEM);
962 			goto dec_count;
963 		}
964 		check_and_init_map_value(&htab->map,
965 					 l_new->key + round_up(key_size, 8));
966 	}
967 
968 	memcpy(l_new->key, key, key_size);
969 	if (percpu) {
970 		size = round_up(size, 8);
971 		if (prealloc) {
972 			pptr = htab_elem_get_ptr(l_new, key_size);
973 		} else {
974 			/* alloc_percpu zero-fills */
975 			pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
976 						    GFP_ATOMIC | __GFP_NOWARN);
977 			if (!pptr) {
978 				kfree(l_new);
979 				l_new = ERR_PTR(-ENOMEM);
980 				goto dec_count;
981 			}
982 		}
983 
984 		pcpu_init_value(htab, pptr, value, onallcpus);
985 
986 		if (!prealloc)
987 			htab_elem_set_ptr(l_new, key_size, pptr);
988 	} else if (fd_htab_map_needs_adjust(htab)) {
989 		size = round_up(size, 8);
990 		memcpy(l_new->key + round_up(key_size, 8), value, size);
991 	} else {
992 		copy_map_value(&htab->map,
993 			       l_new->key + round_up(key_size, 8),
994 			       value);
995 	}
996 
997 	l_new->hash = hash;
998 	return l_new;
999 dec_count:
1000 	atomic_dec(&htab->count);
1001 	return l_new;
1002 }
1003 
1004 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
1005 		       u64 map_flags)
1006 {
1007 	if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
1008 		/* elem already exists */
1009 		return -EEXIST;
1010 
1011 	if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
1012 		/* elem doesn't exist, cannot update it */
1013 		return -ENOENT;
1014 
1015 	return 0;
1016 }
1017 
1018 /* Called from syscall or from eBPF program */
1019 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
1020 				u64 map_flags)
1021 {
1022 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1023 	struct htab_elem *l_new = NULL, *l_old;
1024 	struct hlist_nulls_head *head;
1025 	unsigned long flags;
1026 	struct bucket *b;
1027 	u32 key_size, hash;
1028 	int ret;
1029 
1030 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
1031 		/* unknown flags */
1032 		return -EINVAL;
1033 
1034 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1035 		     !rcu_read_lock_bh_held());
1036 
1037 	key_size = map->key_size;
1038 
1039 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1040 
1041 	b = __select_bucket(htab, hash);
1042 	head = &b->head;
1043 
1044 	if (unlikely(map_flags & BPF_F_LOCK)) {
1045 		if (unlikely(!map_value_has_spin_lock(map)))
1046 			return -EINVAL;
1047 		/* find an element without taking the bucket lock */
1048 		l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
1049 					      htab->n_buckets);
1050 		ret = check_flags(htab, l_old, map_flags);
1051 		if (ret)
1052 			return ret;
1053 		if (l_old) {
1054 			/* grab the element lock and update value in place */
1055 			copy_map_value_locked(map,
1056 					      l_old->key + round_up(key_size, 8),
1057 					      value, false);
1058 			return 0;
1059 		}
1060 		/* fall through, grab the bucket lock and lookup again.
1061 		 * 99.9% chance that the element won't be found,
1062 		 * but second lookup under lock has to be done.
1063 		 */
1064 	}
1065 
1066 	ret = htab_lock_bucket(htab, b, hash, &flags);
1067 	if (ret)
1068 		return ret;
1069 
1070 	l_old = lookup_elem_raw(head, hash, key, key_size);
1071 
1072 	ret = check_flags(htab, l_old, map_flags);
1073 	if (ret)
1074 		goto err;
1075 
1076 	if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1077 		/* first lookup without the bucket lock didn't find the element,
1078 		 * but second lookup with the bucket lock found it.
1079 		 * This case is highly unlikely, but has to be dealt with:
1080 		 * grab the element lock in addition to the bucket lock
1081 		 * and update element in place
1082 		 */
1083 		copy_map_value_locked(map,
1084 				      l_old->key + round_up(key_size, 8),
1085 				      value, false);
1086 		ret = 0;
1087 		goto err;
1088 	}
1089 
1090 	l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
1091 				l_old);
1092 	if (IS_ERR(l_new)) {
1093 		/* all pre-allocated elements are in use or memory exhausted */
1094 		ret = PTR_ERR(l_new);
1095 		goto err;
1096 	}
1097 
1098 	/* add new element to the head of the list, so that
1099 	 * concurrent search will find it before old elem
1100 	 */
1101 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1102 	if (l_old) {
1103 		hlist_nulls_del_rcu(&l_old->hash_node);
1104 		if (!htab_is_prealloc(htab))
1105 			free_htab_elem(htab, l_old);
1106 		else
1107 			check_and_free_timer(htab, l_old);
1108 	}
1109 	ret = 0;
1110 err:
1111 	htab_unlock_bucket(htab, b, hash, flags);
1112 	return ret;
1113 }
1114 
1115 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem)
1116 {
1117 	check_and_free_timer(htab, elem);
1118 	bpf_lru_push_free(&htab->lru, &elem->lru_node);
1119 }
1120 
1121 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1122 				    u64 map_flags)
1123 {
1124 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1125 	struct htab_elem *l_new, *l_old = NULL;
1126 	struct hlist_nulls_head *head;
1127 	unsigned long flags;
1128 	struct bucket *b;
1129 	u32 key_size, hash;
1130 	int ret;
1131 
1132 	if (unlikely(map_flags > BPF_EXIST))
1133 		/* unknown flags */
1134 		return -EINVAL;
1135 
1136 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1137 		     !rcu_read_lock_bh_held());
1138 
1139 	key_size = map->key_size;
1140 
1141 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1142 
1143 	b = __select_bucket(htab, hash);
1144 	head = &b->head;
1145 
1146 	/* For LRU, we need to alloc before taking bucket's
1147 	 * spinlock because getting free nodes from LRU may need
1148 	 * to remove older elements from htab and this removal
1149 	 * operation will need a bucket lock.
1150 	 */
1151 	l_new = prealloc_lru_pop(htab, key, hash);
1152 	if (!l_new)
1153 		return -ENOMEM;
1154 	copy_map_value(&htab->map,
1155 		       l_new->key + round_up(map->key_size, 8), value);
1156 
1157 	ret = htab_lock_bucket(htab, b, hash, &flags);
1158 	if (ret)
1159 		return ret;
1160 
1161 	l_old = lookup_elem_raw(head, hash, key, key_size);
1162 
1163 	ret = check_flags(htab, l_old, map_flags);
1164 	if (ret)
1165 		goto err;
1166 
1167 	/* add new element to the head of the list, so that
1168 	 * concurrent search will find it before old elem
1169 	 */
1170 	hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1171 	if (l_old) {
1172 		bpf_lru_node_set_ref(&l_new->lru_node);
1173 		hlist_nulls_del_rcu(&l_old->hash_node);
1174 	}
1175 	ret = 0;
1176 
1177 err:
1178 	htab_unlock_bucket(htab, b, hash, flags);
1179 
1180 	if (ret)
1181 		htab_lru_push_free(htab, l_new);
1182 	else if (l_old)
1183 		htab_lru_push_free(htab, l_old);
1184 
1185 	return ret;
1186 }
1187 
1188 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1189 					 void *value, u64 map_flags,
1190 					 bool onallcpus)
1191 {
1192 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1193 	struct htab_elem *l_new = NULL, *l_old;
1194 	struct hlist_nulls_head *head;
1195 	unsigned long flags;
1196 	struct bucket *b;
1197 	u32 key_size, hash;
1198 	int ret;
1199 
1200 	if (unlikely(map_flags > BPF_EXIST))
1201 		/* unknown flags */
1202 		return -EINVAL;
1203 
1204 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1205 		     !rcu_read_lock_bh_held());
1206 
1207 	key_size = map->key_size;
1208 
1209 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1210 
1211 	b = __select_bucket(htab, hash);
1212 	head = &b->head;
1213 
1214 	ret = htab_lock_bucket(htab, b, hash, &flags);
1215 	if (ret)
1216 		return ret;
1217 
1218 	l_old = lookup_elem_raw(head, hash, key, key_size);
1219 
1220 	ret = check_flags(htab, l_old, map_flags);
1221 	if (ret)
1222 		goto err;
1223 
1224 	if (l_old) {
1225 		/* per-cpu hash map can update value in-place */
1226 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1227 				value, onallcpus);
1228 	} else {
1229 		l_new = alloc_htab_elem(htab, key, value, key_size,
1230 					hash, true, onallcpus, NULL);
1231 		if (IS_ERR(l_new)) {
1232 			ret = PTR_ERR(l_new);
1233 			goto err;
1234 		}
1235 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1236 	}
1237 	ret = 0;
1238 err:
1239 	htab_unlock_bucket(htab, b, hash, flags);
1240 	return ret;
1241 }
1242 
1243 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1244 					     void *value, u64 map_flags,
1245 					     bool onallcpus)
1246 {
1247 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1248 	struct htab_elem *l_new = NULL, *l_old;
1249 	struct hlist_nulls_head *head;
1250 	unsigned long flags;
1251 	struct bucket *b;
1252 	u32 key_size, hash;
1253 	int ret;
1254 
1255 	if (unlikely(map_flags > BPF_EXIST))
1256 		/* unknown flags */
1257 		return -EINVAL;
1258 
1259 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1260 		     !rcu_read_lock_bh_held());
1261 
1262 	key_size = map->key_size;
1263 
1264 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1265 
1266 	b = __select_bucket(htab, hash);
1267 	head = &b->head;
1268 
1269 	/* For LRU, we need to alloc before taking bucket's
1270 	 * spinlock because LRU's elem alloc may need
1271 	 * to remove older elem from htab and this removal
1272 	 * operation will need a bucket lock.
1273 	 */
1274 	if (map_flags != BPF_EXIST) {
1275 		l_new = prealloc_lru_pop(htab, key, hash);
1276 		if (!l_new)
1277 			return -ENOMEM;
1278 	}
1279 
1280 	ret = htab_lock_bucket(htab, b, hash, &flags);
1281 	if (ret)
1282 		return ret;
1283 
1284 	l_old = lookup_elem_raw(head, hash, key, key_size);
1285 
1286 	ret = check_flags(htab, l_old, map_flags);
1287 	if (ret)
1288 		goto err;
1289 
1290 	if (l_old) {
1291 		bpf_lru_node_set_ref(&l_old->lru_node);
1292 
1293 		/* per-cpu hash map can update value in-place */
1294 		pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1295 				value, onallcpus);
1296 	} else {
1297 		pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
1298 				value, onallcpus);
1299 		hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1300 		l_new = NULL;
1301 	}
1302 	ret = 0;
1303 err:
1304 	htab_unlock_bucket(htab, b, hash, flags);
1305 	if (l_new)
1306 		bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1307 	return ret;
1308 }
1309 
1310 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1311 				       void *value, u64 map_flags)
1312 {
1313 	return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1314 }
1315 
1316 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1317 					   void *value, u64 map_flags)
1318 {
1319 	return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1320 						 false);
1321 }
1322 
1323 /* Called from syscall or from eBPF program */
1324 static int htab_map_delete_elem(struct bpf_map *map, void *key)
1325 {
1326 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1327 	struct hlist_nulls_head *head;
1328 	struct bucket *b;
1329 	struct htab_elem *l;
1330 	unsigned long flags;
1331 	u32 hash, key_size;
1332 	int ret;
1333 
1334 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1335 		     !rcu_read_lock_bh_held());
1336 
1337 	key_size = map->key_size;
1338 
1339 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1340 	b = __select_bucket(htab, hash);
1341 	head = &b->head;
1342 
1343 	ret = htab_lock_bucket(htab, b, hash, &flags);
1344 	if (ret)
1345 		return ret;
1346 
1347 	l = lookup_elem_raw(head, hash, key, key_size);
1348 
1349 	if (l) {
1350 		hlist_nulls_del_rcu(&l->hash_node);
1351 		free_htab_elem(htab, l);
1352 	} else {
1353 		ret = -ENOENT;
1354 	}
1355 
1356 	htab_unlock_bucket(htab, b, hash, flags);
1357 	return ret;
1358 }
1359 
1360 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1361 {
1362 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1363 	struct hlist_nulls_head *head;
1364 	struct bucket *b;
1365 	struct htab_elem *l;
1366 	unsigned long flags;
1367 	u32 hash, key_size;
1368 	int ret;
1369 
1370 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1371 		     !rcu_read_lock_bh_held());
1372 
1373 	key_size = map->key_size;
1374 
1375 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1376 	b = __select_bucket(htab, hash);
1377 	head = &b->head;
1378 
1379 	ret = htab_lock_bucket(htab, b, hash, &flags);
1380 	if (ret)
1381 		return ret;
1382 
1383 	l = lookup_elem_raw(head, hash, key, key_size);
1384 
1385 	if (l)
1386 		hlist_nulls_del_rcu(&l->hash_node);
1387 	else
1388 		ret = -ENOENT;
1389 
1390 	htab_unlock_bucket(htab, b, hash, flags);
1391 	if (l)
1392 		htab_lru_push_free(htab, l);
1393 	return ret;
1394 }
1395 
1396 static void delete_all_elements(struct bpf_htab *htab)
1397 {
1398 	int i;
1399 
1400 	for (i = 0; i < htab->n_buckets; i++) {
1401 		struct hlist_nulls_head *head = select_bucket(htab, i);
1402 		struct hlist_nulls_node *n;
1403 		struct htab_elem *l;
1404 
1405 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1406 			hlist_nulls_del_rcu(&l->hash_node);
1407 			htab_elem_free(htab, l);
1408 		}
1409 	}
1410 }
1411 
1412 static void htab_free_malloced_timers(struct bpf_htab *htab)
1413 {
1414 	int i;
1415 
1416 	rcu_read_lock();
1417 	for (i = 0; i < htab->n_buckets; i++) {
1418 		struct hlist_nulls_head *head = select_bucket(htab, i);
1419 		struct hlist_nulls_node *n;
1420 		struct htab_elem *l;
1421 
1422 		hlist_nulls_for_each_entry(l, n, head, hash_node)
1423 			check_and_free_timer(htab, l);
1424 		cond_resched_rcu();
1425 	}
1426 	rcu_read_unlock();
1427 }
1428 
1429 static void htab_map_free_timers(struct bpf_map *map)
1430 {
1431 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1432 
1433 	if (likely(!map_value_has_timer(&htab->map)))
1434 		return;
1435 	if (!htab_is_prealloc(htab))
1436 		htab_free_malloced_timers(htab);
1437 	else
1438 		htab_free_prealloced_timers(htab);
1439 }
1440 
1441 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1442 static void htab_map_free(struct bpf_map *map)
1443 {
1444 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1445 	int i;
1446 
1447 	/* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1448 	 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1449 	 * There is no need to synchronize_rcu() here to protect map elements.
1450 	 */
1451 
1452 	/* some of free_htab_elem() callbacks for elements of this map may
1453 	 * not have executed. Wait for them.
1454 	 */
1455 	rcu_barrier();
1456 	if (!htab_is_prealloc(htab))
1457 		delete_all_elements(htab);
1458 	else
1459 		prealloc_destroy(htab);
1460 
1461 	free_percpu(htab->extra_elems);
1462 	bpf_map_area_free(htab->buckets);
1463 	for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
1464 		free_percpu(htab->map_locked[i]);
1465 	lockdep_unregister_key(&htab->lockdep_key);
1466 	kfree(htab);
1467 }
1468 
1469 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1470 				   struct seq_file *m)
1471 {
1472 	void *value;
1473 
1474 	rcu_read_lock();
1475 
1476 	value = htab_map_lookup_elem(map, key);
1477 	if (!value) {
1478 		rcu_read_unlock();
1479 		return;
1480 	}
1481 
1482 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1483 	seq_puts(m, ": ");
1484 	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1485 	seq_puts(m, "\n");
1486 
1487 	rcu_read_unlock();
1488 }
1489 
1490 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1491 					     void *value, bool is_lru_map,
1492 					     bool is_percpu, u64 flags)
1493 {
1494 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1495 	struct hlist_nulls_head *head;
1496 	unsigned long bflags;
1497 	struct htab_elem *l;
1498 	u32 hash, key_size;
1499 	struct bucket *b;
1500 	int ret;
1501 
1502 	key_size = map->key_size;
1503 
1504 	hash = htab_map_hash(key, key_size, htab->hashrnd);
1505 	b = __select_bucket(htab, hash);
1506 	head = &b->head;
1507 
1508 	ret = htab_lock_bucket(htab, b, hash, &bflags);
1509 	if (ret)
1510 		return ret;
1511 
1512 	l = lookup_elem_raw(head, hash, key, key_size);
1513 	if (!l) {
1514 		ret = -ENOENT;
1515 	} else {
1516 		if (is_percpu) {
1517 			u32 roundup_value_size = round_up(map->value_size, 8);
1518 			void __percpu *pptr;
1519 			int off = 0, cpu;
1520 
1521 			pptr = htab_elem_get_ptr(l, key_size);
1522 			for_each_possible_cpu(cpu) {
1523 				bpf_long_memcpy(value + off,
1524 						per_cpu_ptr(pptr, cpu),
1525 						roundup_value_size);
1526 				off += roundup_value_size;
1527 			}
1528 		} else {
1529 			u32 roundup_key_size = round_up(map->key_size, 8);
1530 
1531 			if (flags & BPF_F_LOCK)
1532 				copy_map_value_locked(map, value, l->key +
1533 						      roundup_key_size,
1534 						      true);
1535 			else
1536 				copy_map_value(map, value, l->key +
1537 					       roundup_key_size);
1538 			check_and_init_map_value(map, value);
1539 		}
1540 
1541 		hlist_nulls_del_rcu(&l->hash_node);
1542 		if (!is_lru_map)
1543 			free_htab_elem(htab, l);
1544 	}
1545 
1546 	htab_unlock_bucket(htab, b, hash, bflags);
1547 
1548 	if (is_lru_map && l)
1549 		htab_lru_push_free(htab, l);
1550 
1551 	return ret;
1552 }
1553 
1554 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1555 					   void *value, u64 flags)
1556 {
1557 	return __htab_map_lookup_and_delete_elem(map, key, value, false, false,
1558 						 flags);
1559 }
1560 
1561 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1562 						  void *key, void *value,
1563 						  u64 flags)
1564 {
1565 	return __htab_map_lookup_and_delete_elem(map, key, value, false, true,
1566 						 flags);
1567 }
1568 
1569 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1570 					       void *value, u64 flags)
1571 {
1572 	return __htab_map_lookup_and_delete_elem(map, key, value, true, false,
1573 						 flags);
1574 }
1575 
1576 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1577 						      void *key, void *value,
1578 						      u64 flags)
1579 {
1580 	return __htab_map_lookup_and_delete_elem(map, key, value, true, true,
1581 						 flags);
1582 }
1583 
1584 static int
1585 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1586 				   const union bpf_attr *attr,
1587 				   union bpf_attr __user *uattr,
1588 				   bool do_delete, bool is_lru_map,
1589 				   bool is_percpu)
1590 {
1591 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1592 	u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1593 	void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1594 	void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1595 	void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1596 	void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1597 	u32 batch, max_count, size, bucket_size;
1598 	struct htab_elem *node_to_free = NULL;
1599 	u64 elem_map_flags, map_flags;
1600 	struct hlist_nulls_head *head;
1601 	struct hlist_nulls_node *n;
1602 	unsigned long flags = 0;
1603 	bool locked = false;
1604 	struct htab_elem *l;
1605 	struct bucket *b;
1606 	int ret = 0;
1607 
1608 	elem_map_flags = attr->batch.elem_flags;
1609 	if ((elem_map_flags & ~BPF_F_LOCK) ||
1610 	    ((elem_map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
1611 		return -EINVAL;
1612 
1613 	map_flags = attr->batch.flags;
1614 	if (map_flags)
1615 		return -EINVAL;
1616 
1617 	max_count = attr->batch.count;
1618 	if (!max_count)
1619 		return 0;
1620 
1621 	if (put_user(0, &uattr->batch.count))
1622 		return -EFAULT;
1623 
1624 	batch = 0;
1625 	if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1626 		return -EFAULT;
1627 
1628 	if (batch >= htab->n_buckets)
1629 		return -ENOENT;
1630 
1631 	key_size = htab->map.key_size;
1632 	roundup_key_size = round_up(htab->map.key_size, 8);
1633 	value_size = htab->map.value_size;
1634 	size = round_up(value_size, 8);
1635 	if (is_percpu)
1636 		value_size = size * num_possible_cpus();
1637 	total = 0;
1638 	/* while experimenting with hash tables with sizes ranging from 10 to
1639 	 * 1000, it was observed that a bucket can have up to 5 entries.
1640 	 */
1641 	bucket_size = 5;
1642 
1643 alloc:
1644 	/* We cannot do copy_from_user or copy_to_user inside
1645 	 * the rcu_read_lock. Allocate enough space here.
1646 	 */
1647 	keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN);
1648 	values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN);
1649 	if (!keys || !values) {
1650 		ret = -ENOMEM;
1651 		goto after_loop;
1652 	}
1653 
1654 again:
1655 	bpf_disable_instrumentation();
1656 	rcu_read_lock();
1657 again_nocopy:
1658 	dst_key = keys;
1659 	dst_val = values;
1660 	b = &htab->buckets[batch];
1661 	head = &b->head;
1662 	/* do not grab the lock unless need it (bucket_cnt > 0). */
1663 	if (locked) {
1664 		ret = htab_lock_bucket(htab, b, batch, &flags);
1665 		if (ret)
1666 			goto next_batch;
1667 	}
1668 
1669 	bucket_cnt = 0;
1670 	hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1671 		bucket_cnt++;
1672 
1673 	if (bucket_cnt && !locked) {
1674 		locked = true;
1675 		goto again_nocopy;
1676 	}
1677 
1678 	if (bucket_cnt > (max_count - total)) {
1679 		if (total == 0)
1680 			ret = -ENOSPC;
1681 		/* Note that since bucket_cnt > 0 here, it is implicit
1682 		 * that the locked was grabbed, so release it.
1683 		 */
1684 		htab_unlock_bucket(htab, b, batch, flags);
1685 		rcu_read_unlock();
1686 		bpf_enable_instrumentation();
1687 		goto after_loop;
1688 	}
1689 
1690 	if (bucket_cnt > bucket_size) {
1691 		bucket_size = bucket_cnt;
1692 		/* Note that since bucket_cnt > 0 here, it is implicit
1693 		 * that the locked was grabbed, so release it.
1694 		 */
1695 		htab_unlock_bucket(htab, b, batch, flags);
1696 		rcu_read_unlock();
1697 		bpf_enable_instrumentation();
1698 		kvfree(keys);
1699 		kvfree(values);
1700 		goto alloc;
1701 	}
1702 
1703 	/* Next block is only safe to run if you have grabbed the lock */
1704 	if (!locked)
1705 		goto next_batch;
1706 
1707 	hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1708 		memcpy(dst_key, l->key, key_size);
1709 
1710 		if (is_percpu) {
1711 			int off = 0, cpu;
1712 			void __percpu *pptr;
1713 
1714 			pptr = htab_elem_get_ptr(l, map->key_size);
1715 			for_each_possible_cpu(cpu) {
1716 				bpf_long_memcpy(dst_val + off,
1717 						per_cpu_ptr(pptr, cpu), size);
1718 				off += size;
1719 			}
1720 		} else {
1721 			value = l->key + roundup_key_size;
1722 			if (elem_map_flags & BPF_F_LOCK)
1723 				copy_map_value_locked(map, dst_val, value,
1724 						      true);
1725 			else
1726 				copy_map_value(map, dst_val, value);
1727 			check_and_init_map_value(map, dst_val);
1728 		}
1729 		if (do_delete) {
1730 			hlist_nulls_del_rcu(&l->hash_node);
1731 
1732 			/* bpf_lru_push_free() will acquire lru_lock, which
1733 			 * may cause deadlock. See comments in function
1734 			 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1735 			 * after releasing the bucket lock.
1736 			 */
1737 			if (is_lru_map) {
1738 				l->batch_flink = node_to_free;
1739 				node_to_free = l;
1740 			} else {
1741 				free_htab_elem(htab, l);
1742 			}
1743 		}
1744 		dst_key += key_size;
1745 		dst_val += value_size;
1746 	}
1747 
1748 	htab_unlock_bucket(htab, b, batch, flags);
1749 	locked = false;
1750 
1751 	while (node_to_free) {
1752 		l = node_to_free;
1753 		node_to_free = node_to_free->batch_flink;
1754 		htab_lru_push_free(htab, l);
1755 	}
1756 
1757 next_batch:
1758 	/* If we are not copying data, we can go to next bucket and avoid
1759 	 * unlocking the rcu.
1760 	 */
1761 	if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1762 		batch++;
1763 		goto again_nocopy;
1764 	}
1765 
1766 	rcu_read_unlock();
1767 	bpf_enable_instrumentation();
1768 	if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1769 	    key_size * bucket_cnt) ||
1770 	    copy_to_user(uvalues + total * value_size, values,
1771 	    value_size * bucket_cnt))) {
1772 		ret = -EFAULT;
1773 		goto after_loop;
1774 	}
1775 
1776 	total += bucket_cnt;
1777 	batch++;
1778 	if (batch >= htab->n_buckets) {
1779 		ret = -ENOENT;
1780 		goto after_loop;
1781 	}
1782 	goto again;
1783 
1784 after_loop:
1785 	if (ret == -EFAULT)
1786 		goto out;
1787 
1788 	/* copy # of entries and next batch */
1789 	ubatch = u64_to_user_ptr(attr->batch.out_batch);
1790 	if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1791 	    put_user(total, &uattr->batch.count))
1792 		ret = -EFAULT;
1793 
1794 out:
1795 	kvfree(keys);
1796 	kvfree(values);
1797 	return ret;
1798 }
1799 
1800 static int
1801 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1802 			     union bpf_attr __user *uattr)
1803 {
1804 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1805 						  false, true);
1806 }
1807 
1808 static int
1809 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1810 					const union bpf_attr *attr,
1811 					union bpf_attr __user *uattr)
1812 {
1813 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1814 						  false, true);
1815 }
1816 
1817 static int
1818 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1819 		      union bpf_attr __user *uattr)
1820 {
1821 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1822 						  false, false);
1823 }
1824 
1825 static int
1826 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1827 				 const union bpf_attr *attr,
1828 				 union bpf_attr __user *uattr)
1829 {
1830 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1831 						  false, false);
1832 }
1833 
1834 static int
1835 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1836 				 const union bpf_attr *attr,
1837 				 union bpf_attr __user *uattr)
1838 {
1839 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1840 						  true, true);
1841 }
1842 
1843 static int
1844 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1845 					    const union bpf_attr *attr,
1846 					    union bpf_attr __user *uattr)
1847 {
1848 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1849 						  true, true);
1850 }
1851 
1852 static int
1853 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1854 			  union bpf_attr __user *uattr)
1855 {
1856 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1857 						  true, false);
1858 }
1859 
1860 static int
1861 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1862 				     const union bpf_attr *attr,
1863 				     union bpf_attr __user *uattr)
1864 {
1865 	return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1866 						  true, false);
1867 }
1868 
1869 struct bpf_iter_seq_hash_map_info {
1870 	struct bpf_map *map;
1871 	struct bpf_htab *htab;
1872 	void *percpu_value_buf; // non-zero means percpu hash
1873 	u32 bucket_id;
1874 	u32 skip_elems;
1875 };
1876 
1877 static struct htab_elem *
1878 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1879 			   struct htab_elem *prev_elem)
1880 {
1881 	const struct bpf_htab *htab = info->htab;
1882 	u32 skip_elems = info->skip_elems;
1883 	u32 bucket_id = info->bucket_id;
1884 	struct hlist_nulls_head *head;
1885 	struct hlist_nulls_node *n;
1886 	struct htab_elem *elem;
1887 	struct bucket *b;
1888 	u32 i, count;
1889 
1890 	if (bucket_id >= htab->n_buckets)
1891 		return NULL;
1892 
1893 	/* try to find next elem in the same bucket */
1894 	if (prev_elem) {
1895 		/* no update/deletion on this bucket, prev_elem should be still valid
1896 		 * and we won't skip elements.
1897 		 */
1898 		n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1899 		elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1900 		if (elem)
1901 			return elem;
1902 
1903 		/* not found, unlock and go to the next bucket */
1904 		b = &htab->buckets[bucket_id++];
1905 		rcu_read_unlock();
1906 		skip_elems = 0;
1907 	}
1908 
1909 	for (i = bucket_id; i < htab->n_buckets; i++) {
1910 		b = &htab->buckets[i];
1911 		rcu_read_lock();
1912 
1913 		count = 0;
1914 		head = &b->head;
1915 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1916 			if (count >= skip_elems) {
1917 				info->bucket_id = i;
1918 				info->skip_elems = count;
1919 				return elem;
1920 			}
1921 			count++;
1922 		}
1923 
1924 		rcu_read_unlock();
1925 		skip_elems = 0;
1926 	}
1927 
1928 	info->bucket_id = i;
1929 	info->skip_elems = 0;
1930 	return NULL;
1931 }
1932 
1933 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
1934 {
1935 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1936 	struct htab_elem *elem;
1937 
1938 	elem = bpf_hash_map_seq_find_next(info, NULL);
1939 	if (!elem)
1940 		return NULL;
1941 
1942 	if (*pos == 0)
1943 		++*pos;
1944 	return elem;
1945 }
1946 
1947 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1948 {
1949 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1950 
1951 	++*pos;
1952 	++info->skip_elems;
1953 	return bpf_hash_map_seq_find_next(info, v);
1954 }
1955 
1956 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
1957 {
1958 	struct bpf_iter_seq_hash_map_info *info = seq->private;
1959 	u32 roundup_key_size, roundup_value_size;
1960 	struct bpf_iter__bpf_map_elem ctx = {};
1961 	struct bpf_map *map = info->map;
1962 	struct bpf_iter_meta meta;
1963 	int ret = 0, off = 0, cpu;
1964 	struct bpf_prog *prog;
1965 	void __percpu *pptr;
1966 
1967 	meta.seq = seq;
1968 	prog = bpf_iter_get_info(&meta, elem == NULL);
1969 	if (prog) {
1970 		ctx.meta = &meta;
1971 		ctx.map = info->map;
1972 		if (elem) {
1973 			roundup_key_size = round_up(map->key_size, 8);
1974 			ctx.key = elem->key;
1975 			if (!info->percpu_value_buf) {
1976 				ctx.value = elem->key + roundup_key_size;
1977 			} else {
1978 				roundup_value_size = round_up(map->value_size, 8);
1979 				pptr = htab_elem_get_ptr(elem, map->key_size);
1980 				for_each_possible_cpu(cpu) {
1981 					bpf_long_memcpy(info->percpu_value_buf + off,
1982 							per_cpu_ptr(pptr, cpu),
1983 							roundup_value_size);
1984 					off += roundup_value_size;
1985 				}
1986 				ctx.value = info->percpu_value_buf;
1987 			}
1988 		}
1989 		ret = bpf_iter_run_prog(prog, &ctx);
1990 	}
1991 
1992 	return ret;
1993 }
1994 
1995 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
1996 {
1997 	return __bpf_hash_map_seq_show(seq, v);
1998 }
1999 
2000 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
2001 {
2002 	if (!v)
2003 		(void)__bpf_hash_map_seq_show(seq, NULL);
2004 	else
2005 		rcu_read_unlock();
2006 }
2007 
2008 static int bpf_iter_init_hash_map(void *priv_data,
2009 				  struct bpf_iter_aux_info *aux)
2010 {
2011 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2012 	struct bpf_map *map = aux->map;
2013 	void *value_buf;
2014 	u32 buf_size;
2015 
2016 	if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
2017 	    map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
2018 		buf_size = round_up(map->value_size, 8) * num_possible_cpus();
2019 		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
2020 		if (!value_buf)
2021 			return -ENOMEM;
2022 
2023 		seq_info->percpu_value_buf = value_buf;
2024 	}
2025 
2026 	seq_info->map = map;
2027 	seq_info->htab = container_of(map, struct bpf_htab, map);
2028 	return 0;
2029 }
2030 
2031 static void bpf_iter_fini_hash_map(void *priv_data)
2032 {
2033 	struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2034 
2035 	kfree(seq_info->percpu_value_buf);
2036 }
2037 
2038 static const struct seq_operations bpf_hash_map_seq_ops = {
2039 	.start	= bpf_hash_map_seq_start,
2040 	.next	= bpf_hash_map_seq_next,
2041 	.stop	= bpf_hash_map_seq_stop,
2042 	.show	= bpf_hash_map_seq_show,
2043 };
2044 
2045 static const struct bpf_iter_seq_info iter_seq_info = {
2046 	.seq_ops		= &bpf_hash_map_seq_ops,
2047 	.init_seq_private	= bpf_iter_init_hash_map,
2048 	.fini_seq_private	= bpf_iter_fini_hash_map,
2049 	.seq_priv_size		= sizeof(struct bpf_iter_seq_hash_map_info),
2050 };
2051 
2052 static int bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn,
2053 				  void *callback_ctx, u64 flags)
2054 {
2055 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2056 	struct hlist_nulls_head *head;
2057 	struct hlist_nulls_node *n;
2058 	struct htab_elem *elem;
2059 	u32 roundup_key_size;
2060 	int i, num_elems = 0;
2061 	void __percpu *pptr;
2062 	struct bucket *b;
2063 	void *key, *val;
2064 	bool is_percpu;
2065 	u64 ret = 0;
2066 
2067 	if (flags != 0)
2068 		return -EINVAL;
2069 
2070 	is_percpu = htab_is_percpu(htab);
2071 
2072 	roundup_key_size = round_up(map->key_size, 8);
2073 	/* disable migration so percpu value prepared here will be the
2074 	 * same as the one seen by the bpf program with bpf_map_lookup_elem().
2075 	 */
2076 	if (is_percpu)
2077 		migrate_disable();
2078 	for (i = 0; i < htab->n_buckets; i++) {
2079 		b = &htab->buckets[i];
2080 		rcu_read_lock();
2081 		head = &b->head;
2082 		hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
2083 			key = elem->key;
2084 			if (is_percpu) {
2085 				/* current cpu value for percpu map */
2086 				pptr = htab_elem_get_ptr(elem, map->key_size);
2087 				val = this_cpu_ptr(pptr);
2088 			} else {
2089 				val = elem->key + roundup_key_size;
2090 			}
2091 			num_elems++;
2092 			ret = callback_fn((u64)(long)map, (u64)(long)key,
2093 					  (u64)(long)val, (u64)(long)callback_ctx, 0);
2094 			/* return value: 0 - continue, 1 - stop and return */
2095 			if (ret) {
2096 				rcu_read_unlock();
2097 				goto out;
2098 			}
2099 		}
2100 		rcu_read_unlock();
2101 	}
2102 out:
2103 	if (is_percpu)
2104 		migrate_enable();
2105 	return num_elems;
2106 }
2107 
2108 static int htab_map_btf_id;
2109 const struct bpf_map_ops htab_map_ops = {
2110 	.map_meta_equal = bpf_map_meta_equal,
2111 	.map_alloc_check = htab_map_alloc_check,
2112 	.map_alloc = htab_map_alloc,
2113 	.map_free = htab_map_free,
2114 	.map_get_next_key = htab_map_get_next_key,
2115 	.map_release_uref = htab_map_free_timers,
2116 	.map_lookup_elem = htab_map_lookup_elem,
2117 	.map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem,
2118 	.map_update_elem = htab_map_update_elem,
2119 	.map_delete_elem = htab_map_delete_elem,
2120 	.map_gen_lookup = htab_map_gen_lookup,
2121 	.map_seq_show_elem = htab_map_seq_show_elem,
2122 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2123 	.map_for_each_callback = bpf_for_each_hash_elem,
2124 	BATCH_OPS(htab),
2125 	.map_btf_name = "bpf_htab",
2126 	.map_btf_id = &htab_map_btf_id,
2127 	.iter_seq_info = &iter_seq_info,
2128 };
2129 
2130 static int htab_lru_map_btf_id;
2131 const struct bpf_map_ops htab_lru_map_ops = {
2132 	.map_meta_equal = bpf_map_meta_equal,
2133 	.map_alloc_check = htab_map_alloc_check,
2134 	.map_alloc = htab_map_alloc,
2135 	.map_free = htab_map_free,
2136 	.map_get_next_key = htab_map_get_next_key,
2137 	.map_release_uref = htab_map_free_timers,
2138 	.map_lookup_elem = htab_lru_map_lookup_elem,
2139 	.map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem,
2140 	.map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
2141 	.map_update_elem = htab_lru_map_update_elem,
2142 	.map_delete_elem = htab_lru_map_delete_elem,
2143 	.map_gen_lookup = htab_lru_map_gen_lookup,
2144 	.map_seq_show_elem = htab_map_seq_show_elem,
2145 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2146 	.map_for_each_callback = bpf_for_each_hash_elem,
2147 	BATCH_OPS(htab_lru),
2148 	.map_btf_name = "bpf_htab",
2149 	.map_btf_id = &htab_lru_map_btf_id,
2150 	.iter_seq_info = &iter_seq_info,
2151 };
2152 
2153 /* Called from eBPF program */
2154 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2155 {
2156 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
2157 
2158 	if (l)
2159 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2160 	else
2161 		return NULL;
2162 }
2163 
2164 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2165 {
2166 	struct htab_elem *l = __htab_map_lookup_elem(map, key);
2167 
2168 	if (l) {
2169 		bpf_lru_node_set_ref(&l->lru_node);
2170 		return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2171 	}
2172 
2173 	return NULL;
2174 }
2175 
2176 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
2177 {
2178 	struct htab_elem *l;
2179 	void __percpu *pptr;
2180 	int ret = -ENOENT;
2181 	int cpu, off = 0;
2182 	u32 size;
2183 
2184 	/* per_cpu areas are zero-filled and bpf programs can only
2185 	 * access 'value_size' of them, so copying rounded areas
2186 	 * will not leak any kernel data
2187 	 */
2188 	size = round_up(map->value_size, 8);
2189 	rcu_read_lock();
2190 	l = __htab_map_lookup_elem(map, key);
2191 	if (!l)
2192 		goto out;
2193 	/* We do not mark LRU map element here in order to not mess up
2194 	 * eviction heuristics when user space does a map walk.
2195 	 */
2196 	pptr = htab_elem_get_ptr(l, map->key_size);
2197 	for_each_possible_cpu(cpu) {
2198 		bpf_long_memcpy(value + off,
2199 				per_cpu_ptr(pptr, cpu), size);
2200 		off += size;
2201 	}
2202 	ret = 0;
2203 out:
2204 	rcu_read_unlock();
2205 	return ret;
2206 }
2207 
2208 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2209 			   u64 map_flags)
2210 {
2211 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2212 	int ret;
2213 
2214 	rcu_read_lock();
2215 	if (htab_is_lru(htab))
2216 		ret = __htab_lru_percpu_map_update_elem(map, key, value,
2217 							map_flags, true);
2218 	else
2219 		ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
2220 						    true);
2221 	rcu_read_unlock();
2222 
2223 	return ret;
2224 }
2225 
2226 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
2227 					  struct seq_file *m)
2228 {
2229 	struct htab_elem *l;
2230 	void __percpu *pptr;
2231 	int cpu;
2232 
2233 	rcu_read_lock();
2234 
2235 	l = __htab_map_lookup_elem(map, key);
2236 	if (!l) {
2237 		rcu_read_unlock();
2238 		return;
2239 	}
2240 
2241 	btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
2242 	seq_puts(m, ": {\n");
2243 	pptr = htab_elem_get_ptr(l, map->key_size);
2244 	for_each_possible_cpu(cpu) {
2245 		seq_printf(m, "\tcpu%d: ", cpu);
2246 		btf_type_seq_show(map->btf, map->btf_value_type_id,
2247 				  per_cpu_ptr(pptr, cpu), m);
2248 		seq_puts(m, "\n");
2249 	}
2250 	seq_puts(m, "}\n");
2251 
2252 	rcu_read_unlock();
2253 }
2254 
2255 static int htab_percpu_map_btf_id;
2256 const struct bpf_map_ops htab_percpu_map_ops = {
2257 	.map_meta_equal = bpf_map_meta_equal,
2258 	.map_alloc_check = htab_map_alloc_check,
2259 	.map_alloc = htab_map_alloc,
2260 	.map_free = htab_map_free,
2261 	.map_get_next_key = htab_map_get_next_key,
2262 	.map_lookup_elem = htab_percpu_map_lookup_elem,
2263 	.map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem,
2264 	.map_update_elem = htab_percpu_map_update_elem,
2265 	.map_delete_elem = htab_map_delete_elem,
2266 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2267 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2268 	.map_for_each_callback = bpf_for_each_hash_elem,
2269 	BATCH_OPS(htab_percpu),
2270 	.map_btf_name = "bpf_htab",
2271 	.map_btf_id = &htab_percpu_map_btf_id,
2272 	.iter_seq_info = &iter_seq_info,
2273 };
2274 
2275 static int htab_lru_percpu_map_btf_id;
2276 const struct bpf_map_ops htab_lru_percpu_map_ops = {
2277 	.map_meta_equal = bpf_map_meta_equal,
2278 	.map_alloc_check = htab_map_alloc_check,
2279 	.map_alloc = htab_map_alloc,
2280 	.map_free = htab_map_free,
2281 	.map_get_next_key = htab_map_get_next_key,
2282 	.map_lookup_elem = htab_lru_percpu_map_lookup_elem,
2283 	.map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem,
2284 	.map_update_elem = htab_lru_percpu_map_update_elem,
2285 	.map_delete_elem = htab_lru_map_delete_elem,
2286 	.map_seq_show_elem = htab_percpu_map_seq_show_elem,
2287 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
2288 	.map_for_each_callback = bpf_for_each_hash_elem,
2289 	BATCH_OPS(htab_lru_percpu),
2290 	.map_btf_name = "bpf_htab",
2291 	.map_btf_id = &htab_lru_percpu_map_btf_id,
2292 	.iter_seq_info = &iter_seq_info,
2293 };
2294 
2295 static int fd_htab_map_alloc_check(union bpf_attr *attr)
2296 {
2297 	if (attr->value_size != sizeof(u32))
2298 		return -EINVAL;
2299 	return htab_map_alloc_check(attr);
2300 }
2301 
2302 static void fd_htab_map_free(struct bpf_map *map)
2303 {
2304 	struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2305 	struct hlist_nulls_node *n;
2306 	struct hlist_nulls_head *head;
2307 	struct htab_elem *l;
2308 	int i;
2309 
2310 	for (i = 0; i < htab->n_buckets; i++) {
2311 		head = select_bucket(htab, i);
2312 
2313 		hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2314 			void *ptr = fd_htab_map_get_ptr(map, l);
2315 
2316 			map->ops->map_fd_put_ptr(ptr);
2317 		}
2318 	}
2319 
2320 	htab_map_free(map);
2321 }
2322 
2323 /* only called from syscall */
2324 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2325 {
2326 	void **ptr;
2327 	int ret = 0;
2328 
2329 	if (!map->ops->map_fd_sys_lookup_elem)
2330 		return -ENOTSUPP;
2331 
2332 	rcu_read_lock();
2333 	ptr = htab_map_lookup_elem(map, key);
2334 	if (ptr)
2335 		*value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2336 	else
2337 		ret = -ENOENT;
2338 	rcu_read_unlock();
2339 
2340 	return ret;
2341 }
2342 
2343 /* only called from syscall */
2344 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2345 				void *key, void *value, u64 map_flags)
2346 {
2347 	void *ptr;
2348 	int ret;
2349 	u32 ufd = *(u32 *)value;
2350 
2351 	ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2352 	if (IS_ERR(ptr))
2353 		return PTR_ERR(ptr);
2354 
2355 	ret = htab_map_update_elem(map, key, &ptr, map_flags);
2356 	if (ret)
2357 		map->ops->map_fd_put_ptr(ptr);
2358 
2359 	return ret;
2360 }
2361 
2362 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2363 {
2364 	struct bpf_map *map, *inner_map_meta;
2365 
2366 	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2367 	if (IS_ERR(inner_map_meta))
2368 		return inner_map_meta;
2369 
2370 	map = htab_map_alloc(attr);
2371 	if (IS_ERR(map)) {
2372 		bpf_map_meta_free(inner_map_meta);
2373 		return map;
2374 	}
2375 
2376 	map->inner_map_meta = inner_map_meta;
2377 
2378 	return map;
2379 }
2380 
2381 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2382 {
2383 	struct bpf_map **inner_map  = htab_map_lookup_elem(map, key);
2384 
2385 	if (!inner_map)
2386 		return NULL;
2387 
2388 	return READ_ONCE(*inner_map);
2389 }
2390 
2391 static int htab_of_map_gen_lookup(struct bpf_map *map,
2392 				  struct bpf_insn *insn_buf)
2393 {
2394 	struct bpf_insn *insn = insn_buf;
2395 	const int ret = BPF_REG_0;
2396 
2397 	BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2398 		     (void *(*)(struct bpf_map *map, void *key))NULL));
2399 	*insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
2400 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2401 	*insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2402 				offsetof(struct htab_elem, key) +
2403 				round_up(map->key_size, 8));
2404 	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2405 
2406 	return insn - insn_buf;
2407 }
2408 
2409 static void htab_of_map_free(struct bpf_map *map)
2410 {
2411 	bpf_map_meta_free(map->inner_map_meta);
2412 	fd_htab_map_free(map);
2413 }
2414 
2415 static int htab_of_maps_map_btf_id;
2416 const struct bpf_map_ops htab_of_maps_map_ops = {
2417 	.map_alloc_check = fd_htab_map_alloc_check,
2418 	.map_alloc = htab_of_map_alloc,
2419 	.map_free = htab_of_map_free,
2420 	.map_get_next_key = htab_map_get_next_key,
2421 	.map_lookup_elem = htab_of_map_lookup_elem,
2422 	.map_delete_elem = htab_map_delete_elem,
2423 	.map_fd_get_ptr = bpf_map_fd_get_ptr,
2424 	.map_fd_put_ptr = bpf_map_fd_put_ptr,
2425 	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2426 	.map_gen_lookup = htab_of_map_gen_lookup,
2427 	.map_check_btf = map_check_no_btf,
2428 	.map_btf_name = "bpf_htab",
2429 	.map_btf_id = &htab_of_maps_map_btf_id,
2430 };
2431