xref: /linux/kernel/bpf/memalloc.c (revision 04fabf00)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
3 #include <linux/mm.h>
4 #include <linux/llist.h>
5 #include <linux/bpf.h>
6 #include <linux/irq_work.h>
7 #include <linux/bpf_mem_alloc.h>
8 #include <linux/memcontrol.h>
9 #include <asm/local.h>
10 
11 /* Any context (including NMI) BPF specific memory allocator.
12  *
13  * Tracing BPF programs can attach to kprobe and fentry. Hence they
14  * run in unknown context where calling plain kmalloc() might not be safe.
15  *
16  * Front-end kmalloc() with per-cpu per-bucket cache of free elements.
17  * Refill this cache asynchronously from irq_work.
18  *
19  * CPU_0 buckets
20  * 16 32 64 96 128 196 256 512 1024 2048 4096
21  * ...
22  * CPU_N buckets
23  * 16 32 64 96 128 196 256 512 1024 2048 4096
24  *
25  * The buckets are prefilled at the start.
26  * BPF programs always run with migration disabled.
27  * It's safe to allocate from cache of the current cpu with irqs disabled.
28  * Free-ing is always done into bucket of the current cpu as well.
29  * irq_work trims extra free elements from buckets with kfree
30  * and refills them with kmalloc, so global kmalloc logic takes care
31  * of freeing objects allocated by one cpu and freed on another.
32  *
33  * Every allocated objected is padded with extra 8 bytes that contains
34  * struct llist_node.
35  */
36 #define LLIST_NODE_SZ sizeof(struct llist_node)
37 
38 /* similar to kmalloc, but sizeof == 8 bucket is gone */
39 static u8 size_index[24] __ro_after_init = {
40 	3,	/* 8 */
41 	3,	/* 16 */
42 	4,	/* 24 */
43 	4,	/* 32 */
44 	5,	/* 40 */
45 	5,	/* 48 */
46 	5,	/* 56 */
47 	5,	/* 64 */
48 	1,	/* 72 */
49 	1,	/* 80 */
50 	1,	/* 88 */
51 	1,	/* 96 */
52 	6,	/* 104 */
53 	6,	/* 112 */
54 	6,	/* 120 */
55 	6,	/* 128 */
56 	2,	/* 136 */
57 	2,	/* 144 */
58 	2,	/* 152 */
59 	2,	/* 160 */
60 	2,	/* 168 */
61 	2,	/* 176 */
62 	2,	/* 184 */
63 	2	/* 192 */
64 };
65 
66 static int bpf_mem_cache_idx(size_t size)
67 {
68 	if (!size || size > 4096)
69 		return -1;
70 
71 	if (size <= 192)
72 		return size_index[(size - 1) / 8] - 1;
73 
74 	return fls(size - 1) - 2;
75 }
76 
77 #define NUM_CACHES 11
78 
79 struct bpf_mem_cache {
80 	/* per-cpu list of free objects of size 'unit_size'.
81 	 * All accesses are done with interrupts disabled and 'active' counter
82 	 * protection with __llist_add() and __llist_del_first().
83 	 */
84 	struct llist_head free_llist;
85 	local_t active;
86 
87 	/* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill
88 	 * are sequenced by per-cpu 'active' counter. But unit_free() cannot
89 	 * fail. When 'active' is busy the unit_free() will add an object to
90 	 * free_llist_extra.
91 	 */
92 	struct llist_head free_llist_extra;
93 
94 	struct irq_work refill_work;
95 	struct obj_cgroup *objcg;
96 	int unit_size;
97 	/* count of objects in free_llist */
98 	int free_cnt;
99 	int low_watermark, high_watermark, batch;
100 	int percpu_size;
101 	bool draining;
102 	struct bpf_mem_cache *tgt;
103 
104 	/* list of objects to be freed after RCU tasks trace GP */
105 	struct llist_head free_by_rcu_ttrace;
106 	struct llist_head waiting_for_gp_ttrace;
107 	struct rcu_head rcu_ttrace;
108 	atomic_t call_rcu_ttrace_in_progress;
109 };
110 
111 struct bpf_mem_caches {
112 	struct bpf_mem_cache cache[NUM_CACHES];
113 };
114 
115 static struct llist_node notrace *__llist_del_first(struct llist_head *head)
116 {
117 	struct llist_node *entry, *next;
118 
119 	entry = head->first;
120 	if (!entry)
121 		return NULL;
122 	next = entry->next;
123 	head->first = next;
124 	return entry;
125 }
126 
127 static void *__alloc(struct bpf_mem_cache *c, int node, gfp_t flags)
128 {
129 	if (c->percpu_size) {
130 		void **obj = kmalloc_node(c->percpu_size, flags, node);
131 		void *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags);
132 
133 		if (!obj || !pptr) {
134 			free_percpu(pptr);
135 			kfree(obj);
136 			return NULL;
137 		}
138 		obj[1] = pptr;
139 		return obj;
140 	}
141 
142 	return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node);
143 }
144 
145 static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c)
146 {
147 #ifdef CONFIG_MEMCG_KMEM
148 	if (c->objcg)
149 		return get_mem_cgroup_from_objcg(c->objcg);
150 #endif
151 
152 #ifdef CONFIG_MEMCG
153 	return root_mem_cgroup;
154 #else
155 	return NULL;
156 #endif
157 }
158 
159 static void inc_active(struct bpf_mem_cache *c, unsigned long *flags)
160 {
161 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
162 		/* In RT irq_work runs in per-cpu kthread, so disable
163 		 * interrupts to avoid preemption and interrupts and
164 		 * reduce the chance of bpf prog executing on this cpu
165 		 * when active counter is busy.
166 		 */
167 		local_irq_save(*flags);
168 	/* alloc_bulk runs from irq_work which will not preempt a bpf
169 	 * program that does unit_alloc/unit_free since IRQs are
170 	 * disabled there. There is no race to increment 'active'
171 	 * counter. It protects free_llist from corruption in case NMI
172 	 * bpf prog preempted this loop.
173 	 */
174 	WARN_ON_ONCE(local_inc_return(&c->active) != 1);
175 }
176 
177 static void dec_active(struct bpf_mem_cache *c, unsigned long flags)
178 {
179 	local_dec(&c->active);
180 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
181 		local_irq_restore(flags);
182 }
183 
184 static void add_obj_to_free_list(struct bpf_mem_cache *c, void *obj)
185 {
186 	unsigned long flags;
187 
188 	inc_active(c, &flags);
189 	__llist_add(obj, &c->free_llist);
190 	c->free_cnt++;
191 	dec_active(c, flags);
192 }
193 
194 /* Mostly runs from irq_work except __init phase. */
195 static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node)
196 {
197 	struct mem_cgroup *memcg = NULL, *old_memcg;
198 	void *obj;
199 	int i;
200 
201 	for (i = 0; i < cnt; i++) {
202 		/*
203 		 * For every 'c' llist_del_first(&c->free_by_rcu_ttrace); is
204 		 * done only by one CPU == current CPU. Other CPUs might
205 		 * llist_add() and llist_del_all() in parallel.
206 		 */
207 		obj = llist_del_first(&c->free_by_rcu_ttrace);
208 		if (!obj)
209 			break;
210 		add_obj_to_free_list(c, obj);
211 	}
212 	if (i >= cnt)
213 		return;
214 
215 	for (; i < cnt; i++) {
216 		obj = llist_del_first(&c->waiting_for_gp_ttrace);
217 		if (!obj)
218 			break;
219 		add_obj_to_free_list(c, obj);
220 	}
221 	if (i >= cnt)
222 		return;
223 
224 	memcg = get_memcg(c);
225 	old_memcg = set_active_memcg(memcg);
226 	for (; i < cnt; i++) {
227 		/* Allocate, but don't deplete atomic reserves that typical
228 		 * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc
229 		 * will allocate from the current numa node which is what we
230 		 * want here.
231 		 */
232 		obj = __alloc(c, node, GFP_NOWAIT | __GFP_NOWARN | __GFP_ACCOUNT);
233 		if (!obj)
234 			break;
235 		add_obj_to_free_list(c, obj);
236 	}
237 	set_active_memcg(old_memcg);
238 	mem_cgroup_put(memcg);
239 }
240 
241 static void free_one(void *obj, bool percpu)
242 {
243 	if (percpu) {
244 		free_percpu(((void **)obj)[1]);
245 		kfree(obj);
246 		return;
247 	}
248 
249 	kfree(obj);
250 }
251 
252 static int free_all(struct llist_node *llnode, bool percpu)
253 {
254 	struct llist_node *pos, *t;
255 	int cnt = 0;
256 
257 	llist_for_each_safe(pos, t, llnode) {
258 		free_one(pos, percpu);
259 		cnt++;
260 	}
261 	return cnt;
262 }
263 
264 static void __free_rcu(struct rcu_head *head)
265 {
266 	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu_ttrace);
267 
268 	free_all(llist_del_all(&c->waiting_for_gp_ttrace), !!c->percpu_size);
269 	atomic_set(&c->call_rcu_ttrace_in_progress, 0);
270 }
271 
272 static void __free_rcu_tasks_trace(struct rcu_head *head)
273 {
274 	/* If RCU Tasks Trace grace period implies RCU grace period,
275 	 * there is no need to invoke call_rcu().
276 	 */
277 	if (rcu_trace_implies_rcu_gp())
278 		__free_rcu(head);
279 	else
280 		call_rcu(head, __free_rcu);
281 }
282 
283 static void enque_to_free(struct bpf_mem_cache *c, void *obj)
284 {
285 	struct llist_node *llnode = obj;
286 
287 	/* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work.
288 	 * Nothing races to add to free_by_rcu_ttrace list.
289 	 */
290 	llist_add(llnode, &c->free_by_rcu_ttrace);
291 }
292 
293 static void do_call_rcu_ttrace(struct bpf_mem_cache *c)
294 {
295 	struct llist_node *llnode, *t;
296 
297 	if (atomic_xchg(&c->call_rcu_ttrace_in_progress, 1)) {
298 		if (unlikely(READ_ONCE(c->draining))) {
299 			llnode = llist_del_all(&c->free_by_rcu_ttrace);
300 			free_all(llnode, !!c->percpu_size);
301 		}
302 		return;
303 	}
304 
305 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
306 	llist_for_each_safe(llnode, t, llist_del_all(&c->free_by_rcu_ttrace))
307 		llist_add(llnode, &c->waiting_for_gp_ttrace);
308 
309 	if (unlikely(READ_ONCE(c->draining))) {
310 		__free_rcu(&c->rcu_ttrace);
311 		return;
312 	}
313 
314 	/* Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
315 	 * If RCU Tasks Trace grace period implies RCU grace period, free
316 	 * these elements directly, else use call_rcu() to wait for normal
317 	 * progs to finish and finally do free_one() on each element.
318 	 */
319 	call_rcu_tasks_trace(&c->rcu_ttrace, __free_rcu_tasks_trace);
320 }
321 
322 static void free_bulk(struct bpf_mem_cache *c)
323 {
324 	struct bpf_mem_cache *tgt = c->tgt;
325 	struct llist_node *llnode, *t;
326 	unsigned long flags;
327 	int cnt;
328 
329 	WARN_ON_ONCE(tgt->unit_size != c->unit_size);
330 
331 	do {
332 		inc_active(c, &flags);
333 		llnode = __llist_del_first(&c->free_llist);
334 		if (llnode)
335 			cnt = --c->free_cnt;
336 		else
337 			cnt = 0;
338 		dec_active(c, flags);
339 		if (llnode)
340 			enque_to_free(tgt, llnode);
341 	} while (cnt > (c->high_watermark + c->low_watermark) / 2);
342 
343 	/* and drain free_llist_extra */
344 	llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra))
345 		enque_to_free(tgt, llnode);
346 	do_call_rcu_ttrace(tgt);
347 }
348 
349 static void bpf_mem_refill(struct irq_work *work)
350 {
351 	struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work);
352 	int cnt;
353 
354 	/* Racy access to free_cnt. It doesn't need to be 100% accurate */
355 	cnt = c->free_cnt;
356 	if (cnt < c->low_watermark)
357 		/* irq_work runs on this cpu and kmalloc will allocate
358 		 * from the current numa node which is what we want here.
359 		 */
360 		alloc_bulk(c, c->batch, NUMA_NO_NODE);
361 	else if (cnt > c->high_watermark)
362 		free_bulk(c);
363 }
364 
365 static void notrace irq_work_raise(struct bpf_mem_cache *c)
366 {
367 	irq_work_queue(&c->refill_work);
368 }
369 
370 /* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket
371  * the freelist cache will be elem_size * 64 (or less) on each cpu.
372  *
373  * For bpf programs that don't have statically known allocation sizes and
374  * assuming (low_mark + high_mark) / 2 as an average number of elements per
375  * bucket and all buckets are used the total amount of memory in freelists
376  * on each cpu will be:
377  * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096
378  * == ~ 116 Kbyte using below heuristic.
379  * Initialized, but unused bpf allocator (not bpf map specific one) will
380  * consume ~ 11 Kbyte per cpu.
381  * Typical case will be between 11K and 116K closer to 11K.
382  * bpf progs can and should share bpf_mem_cache when possible.
383  */
384 
385 static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu)
386 {
387 	init_irq_work(&c->refill_work, bpf_mem_refill);
388 	if (c->unit_size <= 256) {
389 		c->low_watermark = 32;
390 		c->high_watermark = 96;
391 	} else {
392 		/* When page_size == 4k, order-0 cache will have low_mark == 2
393 		 * and high_mark == 6 with batch alloc of 3 individual pages at
394 		 * a time.
395 		 * 8k allocs and above low == 1, high == 3, batch == 1.
396 		 */
397 		c->low_watermark = max(32 * 256 / c->unit_size, 1);
398 		c->high_watermark = max(96 * 256 / c->unit_size, 3);
399 	}
400 	c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1);
401 
402 	/* To avoid consuming memory assume that 1st run of bpf
403 	 * prog won't be doing more than 4 map_update_elem from
404 	 * irq disabled region
405 	 */
406 	alloc_bulk(c, c->unit_size <= 256 ? 4 : 1, cpu_to_node(cpu));
407 }
408 
409 /* When size != 0 bpf_mem_cache for each cpu.
410  * This is typical bpf hash map use case when all elements have equal size.
411  *
412  * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on
413  * kmalloc/kfree. Max allocation size is 4096 in this case.
414  * This is bpf_dynptr and bpf_kptr use case.
415  */
416 int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu)
417 {
418 	static u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096};
419 	struct bpf_mem_caches *cc, __percpu *pcc;
420 	struct bpf_mem_cache *c, __percpu *pc;
421 	struct obj_cgroup *objcg = NULL;
422 	int cpu, i, unit_size, percpu_size = 0;
423 
424 	if (size) {
425 		pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL);
426 		if (!pc)
427 			return -ENOMEM;
428 
429 		if (percpu)
430 			/* room for llist_node and per-cpu pointer */
431 			percpu_size = LLIST_NODE_SZ + sizeof(void *);
432 		else
433 			size += LLIST_NODE_SZ; /* room for llist_node */
434 		unit_size = size;
435 
436 #ifdef CONFIG_MEMCG_KMEM
437 		if (memcg_bpf_enabled())
438 			objcg = get_obj_cgroup_from_current();
439 #endif
440 		for_each_possible_cpu(cpu) {
441 			c = per_cpu_ptr(pc, cpu);
442 			c->unit_size = unit_size;
443 			c->objcg = objcg;
444 			c->percpu_size = percpu_size;
445 			c->tgt = c;
446 			prefill_mem_cache(c, cpu);
447 		}
448 		ma->cache = pc;
449 		return 0;
450 	}
451 
452 	/* size == 0 && percpu is an invalid combination */
453 	if (WARN_ON_ONCE(percpu))
454 		return -EINVAL;
455 
456 	pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL);
457 	if (!pcc)
458 		return -ENOMEM;
459 #ifdef CONFIG_MEMCG_KMEM
460 	objcg = get_obj_cgroup_from_current();
461 #endif
462 	for_each_possible_cpu(cpu) {
463 		cc = per_cpu_ptr(pcc, cpu);
464 		for (i = 0; i < NUM_CACHES; i++) {
465 			c = &cc->cache[i];
466 			c->unit_size = sizes[i];
467 			c->objcg = objcg;
468 			c->tgt = c;
469 			prefill_mem_cache(c, cpu);
470 		}
471 	}
472 	ma->caches = pcc;
473 	return 0;
474 }
475 
476 static void drain_mem_cache(struct bpf_mem_cache *c)
477 {
478 	bool percpu = !!c->percpu_size;
479 
480 	/* No progs are using this bpf_mem_cache, but htab_map_free() called
481 	 * bpf_mem_cache_free() for all remaining elements and they can be in
482 	 * free_by_rcu_ttrace or in waiting_for_gp_ttrace lists, so drain those lists now.
483 	 *
484 	 * Except for waiting_for_gp_ttrace list, there are no concurrent operations
485 	 * on these lists, so it is safe to use __llist_del_all().
486 	 */
487 	free_all(llist_del_all(&c->free_by_rcu_ttrace), percpu);
488 	free_all(llist_del_all(&c->waiting_for_gp_ttrace), percpu);
489 	free_all(__llist_del_all(&c->free_llist), percpu);
490 	free_all(__llist_del_all(&c->free_llist_extra), percpu);
491 }
492 
493 static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma)
494 {
495 	free_percpu(ma->cache);
496 	free_percpu(ma->caches);
497 	ma->cache = NULL;
498 	ma->caches = NULL;
499 }
500 
501 static void free_mem_alloc(struct bpf_mem_alloc *ma)
502 {
503 	/* waiting_for_gp_ttrace lists was drained, but __free_rcu might
504 	 * still execute. Wait for it now before we freeing percpu caches.
505 	 *
506 	 * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(),
507 	 * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used
508 	 * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(),
509 	 * so if call_rcu(head, __free_rcu) is skipped due to
510 	 * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by
511 	 * using rcu_trace_implies_rcu_gp() as well.
512 	 */
513 	rcu_barrier_tasks_trace();
514 	if (!rcu_trace_implies_rcu_gp())
515 		rcu_barrier();
516 	free_mem_alloc_no_barrier(ma);
517 }
518 
519 static void free_mem_alloc_deferred(struct work_struct *work)
520 {
521 	struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work);
522 
523 	free_mem_alloc(ma);
524 	kfree(ma);
525 }
526 
527 static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress)
528 {
529 	struct bpf_mem_alloc *copy;
530 
531 	if (!rcu_in_progress) {
532 		/* Fast path. No callbacks are pending, hence no need to do
533 		 * rcu_barrier-s.
534 		 */
535 		free_mem_alloc_no_barrier(ma);
536 		return;
537 	}
538 
539 	copy = kmemdup(ma, sizeof(*ma), GFP_KERNEL);
540 	if (!copy) {
541 		/* Slow path with inline barrier-s */
542 		free_mem_alloc(ma);
543 		return;
544 	}
545 
546 	/* Defer barriers into worker to let the rest of map memory to be freed */
547 	memset(ma, 0, sizeof(*ma));
548 	INIT_WORK(&copy->work, free_mem_alloc_deferred);
549 	queue_work(system_unbound_wq, &copy->work);
550 }
551 
552 void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma)
553 {
554 	struct bpf_mem_caches *cc;
555 	struct bpf_mem_cache *c;
556 	int cpu, i, rcu_in_progress;
557 
558 	if (ma->cache) {
559 		rcu_in_progress = 0;
560 		for_each_possible_cpu(cpu) {
561 			c = per_cpu_ptr(ma->cache, cpu);
562 			WRITE_ONCE(c->draining, true);
563 			irq_work_sync(&c->refill_work);
564 			drain_mem_cache(c);
565 			rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
566 		}
567 		/* objcg is the same across cpus */
568 		if (c->objcg)
569 			obj_cgroup_put(c->objcg);
570 		destroy_mem_alloc(ma, rcu_in_progress);
571 	}
572 	if (ma->caches) {
573 		rcu_in_progress = 0;
574 		for_each_possible_cpu(cpu) {
575 			cc = per_cpu_ptr(ma->caches, cpu);
576 			for (i = 0; i < NUM_CACHES; i++) {
577 				c = &cc->cache[i];
578 				WRITE_ONCE(c->draining, true);
579 				irq_work_sync(&c->refill_work);
580 				drain_mem_cache(c);
581 				rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
582 			}
583 		}
584 		if (c->objcg)
585 			obj_cgroup_put(c->objcg);
586 		destroy_mem_alloc(ma, rcu_in_progress);
587 	}
588 }
589 
590 /* notrace is necessary here and in other functions to make sure
591  * bpf programs cannot attach to them and cause llist corruptions.
592  */
593 static void notrace *unit_alloc(struct bpf_mem_cache *c)
594 {
595 	struct llist_node *llnode = NULL;
596 	unsigned long flags;
597 	int cnt = 0;
598 
599 	/* Disable irqs to prevent the following race for majority of prog types:
600 	 * prog_A
601 	 *   bpf_mem_alloc
602 	 *      preemption or irq -> prog_B
603 	 *        bpf_mem_alloc
604 	 *
605 	 * but prog_B could be a perf_event NMI prog.
606 	 * Use per-cpu 'active' counter to order free_list access between
607 	 * unit_alloc/unit_free/bpf_mem_refill.
608 	 */
609 	local_irq_save(flags);
610 	if (local_inc_return(&c->active) == 1) {
611 		llnode = __llist_del_first(&c->free_llist);
612 		if (llnode) {
613 			cnt = --c->free_cnt;
614 			*(struct bpf_mem_cache **)llnode = c;
615 		}
616 	}
617 	local_dec(&c->active);
618 	local_irq_restore(flags);
619 
620 	WARN_ON(cnt < 0);
621 
622 	if (cnt < c->low_watermark)
623 		irq_work_raise(c);
624 	return llnode;
625 }
626 
627 /* Though 'ptr' object could have been allocated on a different cpu
628  * add it to the free_llist of the current cpu.
629  * Let kfree() logic deal with it when it's later called from irq_work.
630  */
631 static void notrace unit_free(struct bpf_mem_cache *c, void *ptr)
632 {
633 	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
634 	unsigned long flags;
635 	int cnt = 0;
636 
637 	BUILD_BUG_ON(LLIST_NODE_SZ > 8);
638 
639 	/*
640 	 * Remember bpf_mem_cache that allocated this object.
641 	 * The hint is not accurate.
642 	 */
643 	c->tgt = *(struct bpf_mem_cache **)llnode;
644 
645 	local_irq_save(flags);
646 	if (local_inc_return(&c->active) == 1) {
647 		__llist_add(llnode, &c->free_llist);
648 		cnt = ++c->free_cnt;
649 	} else {
650 		/* unit_free() cannot fail. Therefore add an object to atomic
651 		 * llist. free_bulk() will drain it. Though free_llist_extra is
652 		 * a per-cpu list we have to use atomic llist_add here, since
653 		 * it also can be interrupted by bpf nmi prog that does another
654 		 * unit_free() into the same free_llist_extra.
655 		 */
656 		llist_add(llnode, &c->free_llist_extra);
657 	}
658 	local_dec(&c->active);
659 	local_irq_restore(flags);
660 
661 	if (cnt > c->high_watermark)
662 		/* free few objects from current cpu into global kmalloc pool */
663 		irq_work_raise(c);
664 }
665 
666 /* Called from BPF program or from sys_bpf syscall.
667  * In both cases migration is disabled.
668  */
669 void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size)
670 {
671 	int idx;
672 	void *ret;
673 
674 	if (!size)
675 		return ZERO_SIZE_PTR;
676 
677 	idx = bpf_mem_cache_idx(size + LLIST_NODE_SZ);
678 	if (idx < 0)
679 		return NULL;
680 
681 	ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx);
682 	return !ret ? NULL : ret + LLIST_NODE_SZ;
683 }
684 
685 void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr)
686 {
687 	int idx;
688 
689 	if (!ptr)
690 		return;
691 
692 	idx = bpf_mem_cache_idx(ksize(ptr - LLIST_NODE_SZ));
693 	if (idx < 0)
694 		return;
695 
696 	unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr);
697 }
698 
699 void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma)
700 {
701 	void *ret;
702 
703 	ret = unit_alloc(this_cpu_ptr(ma->cache));
704 	return !ret ? NULL : ret + LLIST_NODE_SZ;
705 }
706 
707 void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr)
708 {
709 	if (!ptr)
710 		return;
711 
712 	unit_free(this_cpu_ptr(ma->cache), ptr);
713 }
714 
715 /* Directly does a kfree() without putting 'ptr' back to the free_llist
716  * for reuse and without waiting for a rcu_tasks_trace gp.
717  * The caller must first go through the rcu_tasks_trace gp for 'ptr'
718  * before calling bpf_mem_cache_raw_free().
719  * It could be used when the rcu_tasks_trace callback does not have
720  * a hold on the original bpf_mem_alloc object that allocated the
721  * 'ptr'. This should only be used in the uncommon code path.
722  * Otherwise, the bpf_mem_alloc's free_llist cannot be refilled
723  * and may affect performance.
724  */
725 void bpf_mem_cache_raw_free(void *ptr)
726 {
727 	if (!ptr)
728 		return;
729 
730 	kfree(ptr - LLIST_NODE_SZ);
731 }
732 
733 /* When flags == GFP_KERNEL, it signals that the caller will not cause
734  * deadlock when using kmalloc. bpf_mem_cache_alloc_flags() will use
735  * kmalloc if the free_llist is empty.
736  */
737 void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags)
738 {
739 	struct bpf_mem_cache *c;
740 	void *ret;
741 
742 	c = this_cpu_ptr(ma->cache);
743 
744 	ret = unit_alloc(c);
745 	if (!ret && flags == GFP_KERNEL) {
746 		struct mem_cgroup *memcg, *old_memcg;
747 
748 		memcg = get_memcg(c);
749 		old_memcg = set_active_memcg(memcg);
750 		ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT);
751 		set_active_memcg(old_memcg);
752 		mem_cgroup_put(memcg);
753 	}
754 
755 	return !ret ? NULL : ret + LLIST_NODE_SZ;
756 }
757