xref: /linux/kernel/bpf/memalloc.c (revision 822fb26b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
3 #include <linux/mm.h>
4 #include <linux/llist.h>
5 #include <linux/bpf.h>
6 #include <linux/irq_work.h>
7 #include <linux/bpf_mem_alloc.h>
8 #include <linux/memcontrol.h>
9 #include <asm/local.h>
10 
11 /* Any context (including NMI) BPF specific memory allocator.
12  *
13  * Tracing BPF programs can attach to kprobe and fentry. Hence they
14  * run in unknown context where calling plain kmalloc() might not be safe.
15  *
16  * Front-end kmalloc() with per-cpu per-bucket cache of free elements.
17  * Refill this cache asynchronously from irq_work.
18  *
19  * CPU_0 buckets
20  * 16 32 64 96 128 196 256 512 1024 2048 4096
21  * ...
22  * CPU_N buckets
23  * 16 32 64 96 128 196 256 512 1024 2048 4096
24  *
25  * The buckets are prefilled at the start.
26  * BPF programs always run with migration disabled.
27  * It's safe to allocate from cache of the current cpu with irqs disabled.
28  * Free-ing is always done into bucket of the current cpu as well.
29  * irq_work trims extra free elements from buckets with kfree
30  * and refills them with kmalloc, so global kmalloc logic takes care
31  * of freeing objects allocated by one cpu and freed on another.
32  *
33  * Every allocated objected is padded with extra 8 bytes that contains
34  * struct llist_node.
35  */
36 #define LLIST_NODE_SZ sizeof(struct llist_node)
37 
38 /* similar to kmalloc, but sizeof == 8 bucket is gone */
39 static u8 size_index[24] __ro_after_init = {
40 	3,	/* 8 */
41 	3,	/* 16 */
42 	4,	/* 24 */
43 	4,	/* 32 */
44 	5,	/* 40 */
45 	5,	/* 48 */
46 	5,	/* 56 */
47 	5,	/* 64 */
48 	1,	/* 72 */
49 	1,	/* 80 */
50 	1,	/* 88 */
51 	1,	/* 96 */
52 	6,	/* 104 */
53 	6,	/* 112 */
54 	6,	/* 120 */
55 	6,	/* 128 */
56 	2,	/* 136 */
57 	2,	/* 144 */
58 	2,	/* 152 */
59 	2,	/* 160 */
60 	2,	/* 168 */
61 	2,	/* 176 */
62 	2,	/* 184 */
63 	2	/* 192 */
64 };
65 
66 static int bpf_mem_cache_idx(size_t size)
67 {
68 	if (!size || size > 4096)
69 		return -1;
70 
71 	if (size <= 192)
72 		return size_index[(size - 1) / 8] - 1;
73 
74 	return fls(size - 1) - 2;
75 }
76 
77 #define NUM_CACHES 11
78 
79 struct bpf_mem_cache {
80 	/* per-cpu list of free objects of size 'unit_size'.
81 	 * All accesses are done with interrupts disabled and 'active' counter
82 	 * protection with __llist_add() and __llist_del_first().
83 	 */
84 	struct llist_head free_llist;
85 	local_t active;
86 
87 	/* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill
88 	 * are sequenced by per-cpu 'active' counter. But unit_free() cannot
89 	 * fail. When 'active' is busy the unit_free() will add an object to
90 	 * free_llist_extra.
91 	 */
92 	struct llist_head free_llist_extra;
93 
94 	struct irq_work refill_work;
95 	struct obj_cgroup *objcg;
96 	int unit_size;
97 	/* count of objects in free_llist */
98 	int free_cnt;
99 	int low_watermark, high_watermark, batch;
100 	int percpu_size;
101 	bool draining;
102 	struct bpf_mem_cache *tgt;
103 
104 	/* list of objects to be freed after RCU tasks trace GP */
105 	struct llist_head free_by_rcu_ttrace;
106 	struct llist_head waiting_for_gp_ttrace;
107 	struct rcu_head rcu_ttrace;
108 	atomic_t call_rcu_ttrace_in_progress;
109 };
110 
111 struct bpf_mem_caches {
112 	struct bpf_mem_cache cache[NUM_CACHES];
113 };
114 
115 static struct llist_node notrace *__llist_del_first(struct llist_head *head)
116 {
117 	struct llist_node *entry, *next;
118 
119 	entry = head->first;
120 	if (!entry)
121 		return NULL;
122 	next = entry->next;
123 	head->first = next;
124 	return entry;
125 }
126 
127 static void *__alloc(struct bpf_mem_cache *c, int node, gfp_t flags)
128 {
129 	if (c->percpu_size) {
130 		void **obj = kmalloc_node(c->percpu_size, flags, node);
131 		void *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags);
132 
133 		if (!obj || !pptr) {
134 			free_percpu(pptr);
135 			kfree(obj);
136 			return NULL;
137 		}
138 		obj[1] = pptr;
139 		return obj;
140 	}
141 
142 	return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node);
143 }
144 
145 static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c)
146 {
147 #ifdef CONFIG_MEMCG_KMEM
148 	if (c->objcg)
149 		return get_mem_cgroup_from_objcg(c->objcg);
150 #endif
151 
152 #ifdef CONFIG_MEMCG
153 	return root_mem_cgroup;
154 #else
155 	return NULL;
156 #endif
157 }
158 
159 static void inc_active(struct bpf_mem_cache *c, unsigned long *flags)
160 {
161 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
162 		/* In RT irq_work runs in per-cpu kthread, so disable
163 		 * interrupts to avoid preemption and interrupts and
164 		 * reduce the chance of bpf prog executing on this cpu
165 		 * when active counter is busy.
166 		 */
167 		local_irq_save(*flags);
168 	/* alloc_bulk runs from irq_work which will not preempt a bpf
169 	 * program that does unit_alloc/unit_free since IRQs are
170 	 * disabled there. There is no race to increment 'active'
171 	 * counter. It protects free_llist from corruption in case NMI
172 	 * bpf prog preempted this loop.
173 	 */
174 	WARN_ON_ONCE(local_inc_return(&c->active) != 1);
175 }
176 
177 static void dec_active(struct bpf_mem_cache *c, unsigned long flags)
178 {
179 	local_dec(&c->active);
180 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
181 		local_irq_restore(flags);
182 }
183 
184 static void add_obj_to_free_list(struct bpf_mem_cache *c, void *obj)
185 {
186 	unsigned long flags;
187 
188 	inc_active(c, &flags);
189 	__llist_add(obj, &c->free_llist);
190 	c->free_cnt++;
191 	dec_active(c, flags);
192 }
193 
194 /* Mostly runs from irq_work except __init phase. */
195 static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node)
196 {
197 	struct mem_cgroup *memcg = NULL, *old_memcg;
198 	void *obj;
199 	int i;
200 
201 	for (i = 0; i < cnt; i++) {
202 		/*
203 		 * For every 'c' llist_del_first(&c->free_by_rcu_ttrace); is
204 		 * done only by one CPU == current CPU. Other CPUs might
205 		 * llist_add() and llist_del_all() in parallel.
206 		 */
207 		obj = llist_del_first(&c->free_by_rcu_ttrace);
208 		if (!obj)
209 			break;
210 		add_obj_to_free_list(c, obj);
211 	}
212 	if (i >= cnt)
213 		return;
214 
215 	memcg = get_memcg(c);
216 	old_memcg = set_active_memcg(memcg);
217 	for (; i < cnt; i++) {
218 		/* Allocate, but don't deplete atomic reserves that typical
219 		 * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc
220 		 * will allocate from the current numa node which is what we
221 		 * want here.
222 		 */
223 		obj = __alloc(c, node, GFP_NOWAIT | __GFP_NOWARN | __GFP_ACCOUNT);
224 		if (!obj)
225 			break;
226 		add_obj_to_free_list(c, obj);
227 	}
228 	set_active_memcg(old_memcg);
229 	mem_cgroup_put(memcg);
230 }
231 
232 static void free_one(void *obj, bool percpu)
233 {
234 	if (percpu) {
235 		free_percpu(((void **)obj)[1]);
236 		kfree(obj);
237 		return;
238 	}
239 
240 	kfree(obj);
241 }
242 
243 static int free_all(struct llist_node *llnode, bool percpu)
244 {
245 	struct llist_node *pos, *t;
246 	int cnt = 0;
247 
248 	llist_for_each_safe(pos, t, llnode) {
249 		free_one(pos, percpu);
250 		cnt++;
251 	}
252 	return cnt;
253 }
254 
255 static void __free_rcu(struct rcu_head *head)
256 {
257 	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu_ttrace);
258 
259 	free_all(llist_del_all(&c->waiting_for_gp_ttrace), !!c->percpu_size);
260 	atomic_set(&c->call_rcu_ttrace_in_progress, 0);
261 }
262 
263 static void __free_rcu_tasks_trace(struct rcu_head *head)
264 {
265 	/* If RCU Tasks Trace grace period implies RCU grace period,
266 	 * there is no need to invoke call_rcu().
267 	 */
268 	if (rcu_trace_implies_rcu_gp())
269 		__free_rcu(head);
270 	else
271 		call_rcu(head, __free_rcu);
272 }
273 
274 static void enque_to_free(struct bpf_mem_cache *c, void *obj)
275 {
276 	struct llist_node *llnode = obj;
277 
278 	/* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work.
279 	 * Nothing races to add to free_by_rcu_ttrace list.
280 	 */
281 	llist_add(llnode, &c->free_by_rcu_ttrace);
282 }
283 
284 static void do_call_rcu_ttrace(struct bpf_mem_cache *c)
285 {
286 	struct llist_node *llnode, *t;
287 
288 	if (atomic_xchg(&c->call_rcu_ttrace_in_progress, 1)) {
289 		if (unlikely(READ_ONCE(c->draining))) {
290 			llnode = llist_del_all(&c->free_by_rcu_ttrace);
291 			free_all(llnode, !!c->percpu_size);
292 		}
293 		return;
294 	}
295 
296 	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
297 	llist_for_each_safe(llnode, t, llist_del_all(&c->free_by_rcu_ttrace))
298 		/* There is no concurrent __llist_add(waiting_for_gp_ttrace) access.
299 		 * It doesn't race with llist_del_all either.
300 		 * But there could be two concurrent llist_del_all(waiting_for_gp_ttrace):
301 		 * from __free_rcu() and from drain_mem_cache().
302 		 */
303 		__llist_add(llnode, &c->waiting_for_gp_ttrace);
304 
305 	if (unlikely(READ_ONCE(c->draining))) {
306 		__free_rcu(&c->rcu_ttrace);
307 		return;
308 	}
309 
310 	/* Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
311 	 * If RCU Tasks Trace grace period implies RCU grace period, free
312 	 * these elements directly, else use call_rcu() to wait for normal
313 	 * progs to finish and finally do free_one() on each element.
314 	 */
315 	call_rcu_tasks_trace(&c->rcu_ttrace, __free_rcu_tasks_trace);
316 }
317 
318 static void free_bulk(struct bpf_mem_cache *c)
319 {
320 	struct bpf_mem_cache *tgt = c->tgt;
321 	struct llist_node *llnode, *t;
322 	unsigned long flags;
323 	int cnt;
324 
325 	WARN_ON_ONCE(tgt->unit_size != c->unit_size);
326 
327 	do {
328 		inc_active(c, &flags);
329 		llnode = __llist_del_first(&c->free_llist);
330 		if (llnode)
331 			cnt = --c->free_cnt;
332 		else
333 			cnt = 0;
334 		dec_active(c, flags);
335 		if (llnode)
336 			enque_to_free(tgt, llnode);
337 	} while (cnt > (c->high_watermark + c->low_watermark) / 2);
338 
339 	/* and drain free_llist_extra */
340 	llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra))
341 		enque_to_free(tgt, llnode);
342 	do_call_rcu_ttrace(tgt);
343 }
344 
345 static void bpf_mem_refill(struct irq_work *work)
346 {
347 	struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work);
348 	int cnt;
349 
350 	/* Racy access to free_cnt. It doesn't need to be 100% accurate */
351 	cnt = c->free_cnt;
352 	if (cnt < c->low_watermark)
353 		/* irq_work runs on this cpu and kmalloc will allocate
354 		 * from the current numa node which is what we want here.
355 		 */
356 		alloc_bulk(c, c->batch, NUMA_NO_NODE);
357 	else if (cnt > c->high_watermark)
358 		free_bulk(c);
359 }
360 
361 static void notrace irq_work_raise(struct bpf_mem_cache *c)
362 {
363 	irq_work_queue(&c->refill_work);
364 }
365 
366 /* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket
367  * the freelist cache will be elem_size * 64 (or less) on each cpu.
368  *
369  * For bpf programs that don't have statically known allocation sizes and
370  * assuming (low_mark + high_mark) / 2 as an average number of elements per
371  * bucket and all buckets are used the total amount of memory in freelists
372  * on each cpu will be:
373  * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096
374  * == ~ 116 Kbyte using below heuristic.
375  * Initialized, but unused bpf allocator (not bpf map specific one) will
376  * consume ~ 11 Kbyte per cpu.
377  * Typical case will be between 11K and 116K closer to 11K.
378  * bpf progs can and should share bpf_mem_cache when possible.
379  */
380 
381 static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu)
382 {
383 	init_irq_work(&c->refill_work, bpf_mem_refill);
384 	if (c->unit_size <= 256) {
385 		c->low_watermark = 32;
386 		c->high_watermark = 96;
387 	} else {
388 		/* When page_size == 4k, order-0 cache will have low_mark == 2
389 		 * and high_mark == 6 with batch alloc of 3 individual pages at
390 		 * a time.
391 		 * 8k allocs and above low == 1, high == 3, batch == 1.
392 		 */
393 		c->low_watermark = max(32 * 256 / c->unit_size, 1);
394 		c->high_watermark = max(96 * 256 / c->unit_size, 3);
395 	}
396 	c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1);
397 
398 	/* To avoid consuming memory assume that 1st run of bpf
399 	 * prog won't be doing more than 4 map_update_elem from
400 	 * irq disabled region
401 	 */
402 	alloc_bulk(c, c->unit_size <= 256 ? 4 : 1, cpu_to_node(cpu));
403 }
404 
405 /* When size != 0 bpf_mem_cache for each cpu.
406  * This is typical bpf hash map use case when all elements have equal size.
407  *
408  * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on
409  * kmalloc/kfree. Max allocation size is 4096 in this case.
410  * This is bpf_dynptr and bpf_kptr use case.
411  */
412 int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu)
413 {
414 	static u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096};
415 	struct bpf_mem_caches *cc, __percpu *pcc;
416 	struct bpf_mem_cache *c, __percpu *pc;
417 	struct obj_cgroup *objcg = NULL;
418 	int cpu, i, unit_size, percpu_size = 0;
419 
420 	if (size) {
421 		pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL);
422 		if (!pc)
423 			return -ENOMEM;
424 
425 		if (percpu)
426 			/* room for llist_node and per-cpu pointer */
427 			percpu_size = LLIST_NODE_SZ + sizeof(void *);
428 		else
429 			size += LLIST_NODE_SZ; /* room for llist_node */
430 		unit_size = size;
431 
432 #ifdef CONFIG_MEMCG_KMEM
433 		if (memcg_bpf_enabled())
434 			objcg = get_obj_cgroup_from_current();
435 #endif
436 		for_each_possible_cpu(cpu) {
437 			c = per_cpu_ptr(pc, cpu);
438 			c->unit_size = unit_size;
439 			c->objcg = objcg;
440 			c->percpu_size = percpu_size;
441 			c->tgt = c;
442 			prefill_mem_cache(c, cpu);
443 		}
444 		ma->cache = pc;
445 		return 0;
446 	}
447 
448 	/* size == 0 && percpu is an invalid combination */
449 	if (WARN_ON_ONCE(percpu))
450 		return -EINVAL;
451 
452 	pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL);
453 	if (!pcc)
454 		return -ENOMEM;
455 #ifdef CONFIG_MEMCG_KMEM
456 	objcg = get_obj_cgroup_from_current();
457 #endif
458 	for_each_possible_cpu(cpu) {
459 		cc = per_cpu_ptr(pcc, cpu);
460 		for (i = 0; i < NUM_CACHES; i++) {
461 			c = &cc->cache[i];
462 			c->unit_size = sizes[i];
463 			c->objcg = objcg;
464 			c->tgt = c;
465 			prefill_mem_cache(c, cpu);
466 		}
467 	}
468 	ma->caches = pcc;
469 	return 0;
470 }
471 
472 static void drain_mem_cache(struct bpf_mem_cache *c)
473 {
474 	bool percpu = !!c->percpu_size;
475 
476 	/* No progs are using this bpf_mem_cache, but htab_map_free() called
477 	 * bpf_mem_cache_free() for all remaining elements and they can be in
478 	 * free_by_rcu_ttrace or in waiting_for_gp_ttrace lists, so drain those lists now.
479 	 *
480 	 * Except for waiting_for_gp_ttrace list, there are no concurrent operations
481 	 * on these lists, so it is safe to use __llist_del_all().
482 	 */
483 	free_all(llist_del_all(&c->free_by_rcu_ttrace), percpu);
484 	free_all(llist_del_all(&c->waiting_for_gp_ttrace), percpu);
485 	free_all(__llist_del_all(&c->free_llist), percpu);
486 	free_all(__llist_del_all(&c->free_llist_extra), percpu);
487 }
488 
489 static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma)
490 {
491 	free_percpu(ma->cache);
492 	free_percpu(ma->caches);
493 	ma->cache = NULL;
494 	ma->caches = NULL;
495 }
496 
497 static void free_mem_alloc(struct bpf_mem_alloc *ma)
498 {
499 	/* waiting_for_gp_ttrace lists was drained, but __free_rcu might
500 	 * still execute. Wait for it now before we freeing percpu caches.
501 	 *
502 	 * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(),
503 	 * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used
504 	 * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(),
505 	 * so if call_rcu(head, __free_rcu) is skipped due to
506 	 * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by
507 	 * using rcu_trace_implies_rcu_gp() as well.
508 	 */
509 	rcu_barrier_tasks_trace();
510 	if (!rcu_trace_implies_rcu_gp())
511 		rcu_barrier();
512 	free_mem_alloc_no_barrier(ma);
513 }
514 
515 static void free_mem_alloc_deferred(struct work_struct *work)
516 {
517 	struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work);
518 
519 	free_mem_alloc(ma);
520 	kfree(ma);
521 }
522 
523 static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress)
524 {
525 	struct bpf_mem_alloc *copy;
526 
527 	if (!rcu_in_progress) {
528 		/* Fast path. No callbacks are pending, hence no need to do
529 		 * rcu_barrier-s.
530 		 */
531 		free_mem_alloc_no_barrier(ma);
532 		return;
533 	}
534 
535 	copy = kmemdup(ma, sizeof(*ma), GFP_KERNEL);
536 	if (!copy) {
537 		/* Slow path with inline barrier-s */
538 		free_mem_alloc(ma);
539 		return;
540 	}
541 
542 	/* Defer barriers into worker to let the rest of map memory to be freed */
543 	memset(ma, 0, sizeof(*ma));
544 	INIT_WORK(&copy->work, free_mem_alloc_deferred);
545 	queue_work(system_unbound_wq, &copy->work);
546 }
547 
548 void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma)
549 {
550 	struct bpf_mem_caches *cc;
551 	struct bpf_mem_cache *c;
552 	int cpu, i, rcu_in_progress;
553 
554 	if (ma->cache) {
555 		rcu_in_progress = 0;
556 		for_each_possible_cpu(cpu) {
557 			c = per_cpu_ptr(ma->cache, cpu);
558 			WRITE_ONCE(c->draining, true);
559 			irq_work_sync(&c->refill_work);
560 			drain_mem_cache(c);
561 			rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
562 		}
563 		/* objcg is the same across cpus */
564 		if (c->objcg)
565 			obj_cgroup_put(c->objcg);
566 		destroy_mem_alloc(ma, rcu_in_progress);
567 	}
568 	if (ma->caches) {
569 		rcu_in_progress = 0;
570 		for_each_possible_cpu(cpu) {
571 			cc = per_cpu_ptr(ma->caches, cpu);
572 			for (i = 0; i < NUM_CACHES; i++) {
573 				c = &cc->cache[i];
574 				WRITE_ONCE(c->draining, true);
575 				irq_work_sync(&c->refill_work);
576 				drain_mem_cache(c);
577 				rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
578 			}
579 		}
580 		if (c->objcg)
581 			obj_cgroup_put(c->objcg);
582 		destroy_mem_alloc(ma, rcu_in_progress);
583 	}
584 }
585 
586 /* notrace is necessary here and in other functions to make sure
587  * bpf programs cannot attach to them and cause llist corruptions.
588  */
589 static void notrace *unit_alloc(struct bpf_mem_cache *c)
590 {
591 	struct llist_node *llnode = NULL;
592 	unsigned long flags;
593 	int cnt = 0;
594 
595 	/* Disable irqs to prevent the following race for majority of prog types:
596 	 * prog_A
597 	 *   bpf_mem_alloc
598 	 *      preemption or irq -> prog_B
599 	 *        bpf_mem_alloc
600 	 *
601 	 * but prog_B could be a perf_event NMI prog.
602 	 * Use per-cpu 'active' counter to order free_list access between
603 	 * unit_alloc/unit_free/bpf_mem_refill.
604 	 */
605 	local_irq_save(flags);
606 	if (local_inc_return(&c->active) == 1) {
607 		llnode = __llist_del_first(&c->free_llist);
608 		if (llnode) {
609 			cnt = --c->free_cnt;
610 			*(struct bpf_mem_cache **)llnode = c;
611 		}
612 	}
613 	local_dec(&c->active);
614 	local_irq_restore(flags);
615 
616 	WARN_ON(cnt < 0);
617 
618 	if (cnt < c->low_watermark)
619 		irq_work_raise(c);
620 	return llnode;
621 }
622 
623 /* Though 'ptr' object could have been allocated on a different cpu
624  * add it to the free_llist of the current cpu.
625  * Let kfree() logic deal with it when it's later called from irq_work.
626  */
627 static void notrace unit_free(struct bpf_mem_cache *c, void *ptr)
628 {
629 	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
630 	unsigned long flags;
631 	int cnt = 0;
632 
633 	BUILD_BUG_ON(LLIST_NODE_SZ > 8);
634 
635 	/*
636 	 * Remember bpf_mem_cache that allocated this object.
637 	 * The hint is not accurate.
638 	 */
639 	c->tgt = *(struct bpf_mem_cache **)llnode;
640 
641 	local_irq_save(flags);
642 	if (local_inc_return(&c->active) == 1) {
643 		__llist_add(llnode, &c->free_llist);
644 		cnt = ++c->free_cnt;
645 	} else {
646 		/* unit_free() cannot fail. Therefore add an object to atomic
647 		 * llist. free_bulk() will drain it. Though free_llist_extra is
648 		 * a per-cpu list we have to use atomic llist_add here, since
649 		 * it also can be interrupted by bpf nmi prog that does another
650 		 * unit_free() into the same free_llist_extra.
651 		 */
652 		llist_add(llnode, &c->free_llist_extra);
653 	}
654 	local_dec(&c->active);
655 	local_irq_restore(flags);
656 
657 	if (cnt > c->high_watermark)
658 		/* free few objects from current cpu into global kmalloc pool */
659 		irq_work_raise(c);
660 }
661 
662 /* Called from BPF program or from sys_bpf syscall.
663  * In both cases migration is disabled.
664  */
665 void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size)
666 {
667 	int idx;
668 	void *ret;
669 
670 	if (!size)
671 		return ZERO_SIZE_PTR;
672 
673 	idx = bpf_mem_cache_idx(size + LLIST_NODE_SZ);
674 	if (idx < 0)
675 		return NULL;
676 
677 	ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx);
678 	return !ret ? NULL : ret + LLIST_NODE_SZ;
679 }
680 
681 void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr)
682 {
683 	int idx;
684 
685 	if (!ptr)
686 		return;
687 
688 	idx = bpf_mem_cache_idx(ksize(ptr - LLIST_NODE_SZ));
689 	if (idx < 0)
690 		return;
691 
692 	unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr);
693 }
694 
695 void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma)
696 {
697 	void *ret;
698 
699 	ret = unit_alloc(this_cpu_ptr(ma->cache));
700 	return !ret ? NULL : ret + LLIST_NODE_SZ;
701 }
702 
703 void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr)
704 {
705 	if (!ptr)
706 		return;
707 
708 	unit_free(this_cpu_ptr(ma->cache), ptr);
709 }
710 
711 /* Directly does a kfree() without putting 'ptr' back to the free_llist
712  * for reuse and without waiting for a rcu_tasks_trace gp.
713  * The caller must first go through the rcu_tasks_trace gp for 'ptr'
714  * before calling bpf_mem_cache_raw_free().
715  * It could be used when the rcu_tasks_trace callback does not have
716  * a hold on the original bpf_mem_alloc object that allocated the
717  * 'ptr'. This should only be used in the uncommon code path.
718  * Otherwise, the bpf_mem_alloc's free_llist cannot be refilled
719  * and may affect performance.
720  */
721 void bpf_mem_cache_raw_free(void *ptr)
722 {
723 	if (!ptr)
724 		return;
725 
726 	kfree(ptr - LLIST_NODE_SZ);
727 }
728 
729 /* When flags == GFP_KERNEL, it signals that the caller will not cause
730  * deadlock when using kmalloc. bpf_mem_cache_alloc_flags() will use
731  * kmalloc if the free_llist is empty.
732  */
733 void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags)
734 {
735 	struct bpf_mem_cache *c;
736 	void *ret;
737 
738 	c = this_cpu_ptr(ma->cache);
739 
740 	ret = unit_alloc(c);
741 	if (!ret && flags == GFP_KERNEL) {
742 		struct mem_cgroup *memcg, *old_memcg;
743 
744 		memcg = get_memcg(c);
745 		old_memcg = set_active_memcg(memcg);
746 		ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT);
747 		set_active_memcg(old_memcg);
748 		mem_cgroup_put(memcg);
749 	}
750 
751 	return !ret ? NULL : ret + LLIST_NODE_SZ;
752 }
753