xref: /linux/kernel/cgroup/cpuset.c (revision 44f57d78)
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/fs_context.h>
43 #include <linux/namei.h>
44 #include <linux/pagemap.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
47 #include <linux/sched.h>
48 #include <linux/sched/mm.h>
49 #include <linux/sched/task.h>
50 #include <linux/seq_file.h>
51 #include <linux/security.h>
52 #include <linux/slab.h>
53 #include <linux/spinlock.h>
54 #include <linux/stat.h>
55 #include <linux/string.h>
56 #include <linux/time.h>
57 #include <linux/time64.h>
58 #include <linux/backing-dev.h>
59 #include <linux/sort.h>
60 #include <linux/oom.h>
61 #include <linux/sched/isolation.h>
62 #include <linux/uaccess.h>
63 #include <linux/atomic.h>
64 #include <linux/mutex.h>
65 #include <linux/cgroup.h>
66 #include <linux/wait.h>
67 
68 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
69 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
70 
71 /* See "Frequency meter" comments, below. */
72 
73 struct fmeter {
74 	int cnt;		/* unprocessed events count */
75 	int val;		/* most recent output value */
76 	time64_t time;		/* clock (secs) when val computed */
77 	spinlock_t lock;	/* guards read or write of above */
78 };
79 
80 struct cpuset {
81 	struct cgroup_subsys_state css;
82 
83 	unsigned long flags;		/* "unsigned long" so bitops work */
84 
85 	/*
86 	 * On default hierarchy:
87 	 *
88 	 * The user-configured masks can only be changed by writing to
89 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
90 	 * parent masks.
91 	 *
92 	 * The effective masks is the real masks that apply to the tasks
93 	 * in the cpuset. They may be changed if the configured masks are
94 	 * changed or hotplug happens.
95 	 *
96 	 * effective_mask == configured_mask & parent's effective_mask,
97 	 * and if it ends up empty, it will inherit the parent's mask.
98 	 *
99 	 *
100 	 * On legacy hierachy:
101 	 *
102 	 * The user-configured masks are always the same with effective masks.
103 	 */
104 
105 	/* user-configured CPUs and Memory Nodes allow to tasks */
106 	cpumask_var_t cpus_allowed;
107 	nodemask_t mems_allowed;
108 
109 	/* effective CPUs and Memory Nodes allow to tasks */
110 	cpumask_var_t effective_cpus;
111 	nodemask_t effective_mems;
112 
113 	/*
114 	 * CPUs allocated to child sub-partitions (default hierarchy only)
115 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
116 	 * - effective_cpus and subparts_cpus are mutually exclusive.
117 	 *
118 	 * effective_cpus contains only onlined CPUs, but subparts_cpus
119 	 * may have offlined ones.
120 	 */
121 	cpumask_var_t subparts_cpus;
122 
123 	/*
124 	 * This is old Memory Nodes tasks took on.
125 	 *
126 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
127 	 * - A new cpuset's old_mems_allowed is initialized when some
128 	 *   task is moved into it.
129 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
130 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
131 	 *   then old_mems_allowed is updated to mems_allowed.
132 	 */
133 	nodemask_t old_mems_allowed;
134 
135 	struct fmeter fmeter;		/* memory_pressure filter */
136 
137 	/*
138 	 * Tasks are being attached to this cpuset.  Used to prevent
139 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
140 	 */
141 	int attach_in_progress;
142 
143 	/* partition number for rebuild_sched_domains() */
144 	int pn;
145 
146 	/* for custom sched domain */
147 	int relax_domain_level;
148 
149 	/* number of CPUs in subparts_cpus */
150 	int nr_subparts_cpus;
151 
152 	/* partition root state */
153 	int partition_root_state;
154 
155 	/*
156 	 * Default hierarchy only:
157 	 * use_parent_ecpus - set if using parent's effective_cpus
158 	 * child_ecpus_count - # of children with use_parent_ecpus set
159 	 */
160 	int use_parent_ecpus;
161 	int child_ecpus_count;
162 };
163 
164 /*
165  * Partition root states:
166  *
167  *   0 - not a partition root
168  *
169  *   1 - partition root
170  *
171  *  -1 - invalid partition root
172  *       None of the cpus in cpus_allowed can be put into the parent's
173  *       subparts_cpus. In this case, the cpuset is not a real partition
174  *       root anymore.  However, the CPU_EXCLUSIVE bit will still be set
175  *       and the cpuset can be restored back to a partition root if the
176  *       parent cpuset can give more CPUs back to this child cpuset.
177  */
178 #define PRS_DISABLED		0
179 #define PRS_ENABLED		1
180 #define PRS_ERROR		-1
181 
182 /*
183  * Temporary cpumasks for working with partitions that are passed among
184  * functions to avoid memory allocation in inner functions.
185  */
186 struct tmpmasks {
187 	cpumask_var_t addmask, delmask;	/* For partition root */
188 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
189 };
190 
191 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
192 {
193 	return css ? container_of(css, struct cpuset, css) : NULL;
194 }
195 
196 /* Retrieve the cpuset for a task */
197 static inline struct cpuset *task_cs(struct task_struct *task)
198 {
199 	return css_cs(task_css(task, cpuset_cgrp_id));
200 }
201 
202 static inline struct cpuset *parent_cs(struct cpuset *cs)
203 {
204 	return css_cs(cs->css.parent);
205 }
206 
207 /* bits in struct cpuset flags field */
208 typedef enum {
209 	CS_ONLINE,
210 	CS_CPU_EXCLUSIVE,
211 	CS_MEM_EXCLUSIVE,
212 	CS_MEM_HARDWALL,
213 	CS_MEMORY_MIGRATE,
214 	CS_SCHED_LOAD_BALANCE,
215 	CS_SPREAD_PAGE,
216 	CS_SPREAD_SLAB,
217 } cpuset_flagbits_t;
218 
219 /* convenient tests for these bits */
220 static inline bool is_cpuset_online(struct cpuset *cs)
221 {
222 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
223 }
224 
225 static inline int is_cpu_exclusive(const struct cpuset *cs)
226 {
227 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
228 }
229 
230 static inline int is_mem_exclusive(const struct cpuset *cs)
231 {
232 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
233 }
234 
235 static inline int is_mem_hardwall(const struct cpuset *cs)
236 {
237 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
238 }
239 
240 static inline int is_sched_load_balance(const struct cpuset *cs)
241 {
242 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
243 }
244 
245 static inline int is_memory_migrate(const struct cpuset *cs)
246 {
247 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
248 }
249 
250 static inline int is_spread_page(const struct cpuset *cs)
251 {
252 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
253 }
254 
255 static inline int is_spread_slab(const struct cpuset *cs)
256 {
257 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
258 }
259 
260 static inline int is_partition_root(const struct cpuset *cs)
261 {
262 	return cs->partition_root_state > 0;
263 }
264 
265 static struct cpuset top_cpuset = {
266 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
267 		  (1 << CS_MEM_EXCLUSIVE)),
268 	.partition_root_state = PRS_ENABLED,
269 };
270 
271 /**
272  * cpuset_for_each_child - traverse online children of a cpuset
273  * @child_cs: loop cursor pointing to the current child
274  * @pos_css: used for iteration
275  * @parent_cs: target cpuset to walk children of
276  *
277  * Walk @child_cs through the online children of @parent_cs.  Must be used
278  * with RCU read locked.
279  */
280 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
281 	css_for_each_child((pos_css), &(parent_cs)->css)		\
282 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
283 
284 /**
285  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
286  * @des_cs: loop cursor pointing to the current descendant
287  * @pos_css: used for iteration
288  * @root_cs: target cpuset to walk ancestor of
289  *
290  * Walk @des_cs through the online descendants of @root_cs.  Must be used
291  * with RCU read locked.  The caller may modify @pos_css by calling
292  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
293  * iteration and the first node to be visited.
294  */
295 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
296 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
297 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
298 
299 /*
300  * There are two global locks guarding cpuset structures - cpuset_mutex and
301  * callback_lock. We also require taking task_lock() when dereferencing a
302  * task's cpuset pointer. See "The task_lock() exception", at the end of this
303  * comment.
304  *
305  * A task must hold both locks to modify cpusets.  If a task holds
306  * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
307  * is the only task able to also acquire callback_lock and be able to
308  * modify cpusets.  It can perform various checks on the cpuset structure
309  * first, knowing nothing will change.  It can also allocate memory while
310  * just holding cpuset_mutex.  While it is performing these checks, various
311  * callback routines can briefly acquire callback_lock to query cpusets.
312  * Once it is ready to make the changes, it takes callback_lock, blocking
313  * everyone else.
314  *
315  * Calls to the kernel memory allocator can not be made while holding
316  * callback_lock, as that would risk double tripping on callback_lock
317  * from one of the callbacks into the cpuset code from within
318  * __alloc_pages().
319  *
320  * If a task is only holding callback_lock, then it has read-only
321  * access to cpusets.
322  *
323  * Now, the task_struct fields mems_allowed and mempolicy may be changed
324  * by other task, we use alloc_lock in the task_struct fields to protect
325  * them.
326  *
327  * The cpuset_common_file_read() handlers only hold callback_lock across
328  * small pieces of code, such as when reading out possibly multi-word
329  * cpumasks and nodemasks.
330  *
331  * Accessing a task's cpuset should be done in accordance with the
332  * guidelines for accessing subsystem state in kernel/cgroup.c
333  */
334 
335 static DEFINE_MUTEX(cpuset_mutex);
336 static DEFINE_SPINLOCK(callback_lock);
337 
338 static struct workqueue_struct *cpuset_migrate_mm_wq;
339 
340 /*
341  * CPU / memory hotplug is handled asynchronously.
342  */
343 static void cpuset_hotplug_workfn(struct work_struct *work);
344 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
345 
346 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
347 
348 /*
349  * Cgroup v2 behavior is used when on default hierarchy or the
350  * cgroup_v2_mode flag is set.
351  */
352 static inline bool is_in_v2_mode(void)
353 {
354 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
355 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
356 }
357 
358 /*
359  * This is ugly, but preserves the userspace API for existing cpuset
360  * users. If someone tries to mount the "cpuset" filesystem, we
361  * silently switch it to mount "cgroup" instead
362  */
363 static int cpuset_get_tree(struct fs_context *fc)
364 {
365 	struct file_system_type *cgroup_fs;
366 	struct fs_context *new_fc;
367 	int ret;
368 
369 	cgroup_fs = get_fs_type("cgroup");
370 	if (!cgroup_fs)
371 		return -ENODEV;
372 
373 	new_fc = fs_context_for_mount(cgroup_fs, fc->sb_flags);
374 	if (IS_ERR(new_fc)) {
375 		ret = PTR_ERR(new_fc);
376 	} else {
377 		static const char agent_path[] = "/sbin/cpuset_release_agent";
378 		ret = vfs_parse_fs_string(new_fc, "cpuset", NULL, 0);
379 		if (!ret)
380 			ret = vfs_parse_fs_string(new_fc, "noprefix", NULL, 0);
381 		if (!ret)
382 			ret = vfs_parse_fs_string(new_fc, "release_agent",
383 					agent_path, sizeof(agent_path) - 1);
384 		if (!ret)
385 			ret = vfs_get_tree(new_fc);
386 		if (!ret) {	/* steal the result */
387 			fc->root = new_fc->root;
388 			new_fc->root = NULL;
389 		}
390 		put_fs_context(new_fc);
391 	}
392 	put_filesystem(cgroup_fs);
393 	return ret;
394 }
395 
396 static const struct fs_context_operations cpuset_fs_context_ops = {
397 	.get_tree	= cpuset_get_tree,
398 };
399 
400 static int cpuset_init_fs_context(struct fs_context *fc)
401 {
402 	fc->ops = &cpuset_fs_context_ops;
403 	return 0;
404 }
405 
406 static struct file_system_type cpuset_fs_type = {
407 	.name			= "cpuset",
408 	.init_fs_context	= cpuset_init_fs_context,
409 };
410 
411 /*
412  * Return in pmask the portion of a cpusets's cpus_allowed that
413  * are online.  If none are online, walk up the cpuset hierarchy
414  * until we find one that does have some online cpus.
415  *
416  * One way or another, we guarantee to return some non-empty subset
417  * of cpu_online_mask.
418  *
419  * Call with callback_lock or cpuset_mutex held.
420  */
421 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
422 {
423 	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
424 		cs = parent_cs(cs);
425 		if (unlikely(!cs)) {
426 			/*
427 			 * The top cpuset doesn't have any online cpu as a
428 			 * consequence of a race between cpuset_hotplug_work
429 			 * and cpu hotplug notifier.  But we know the top
430 			 * cpuset's effective_cpus is on its way to to be
431 			 * identical to cpu_online_mask.
432 			 */
433 			cpumask_copy(pmask, cpu_online_mask);
434 			return;
435 		}
436 	}
437 	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
438 }
439 
440 /*
441  * Return in *pmask the portion of a cpusets's mems_allowed that
442  * are online, with memory.  If none are online with memory, walk
443  * up the cpuset hierarchy until we find one that does have some
444  * online mems.  The top cpuset always has some mems online.
445  *
446  * One way or another, we guarantee to return some non-empty subset
447  * of node_states[N_MEMORY].
448  *
449  * Call with callback_lock or cpuset_mutex held.
450  */
451 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
452 {
453 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
454 		cs = parent_cs(cs);
455 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
456 }
457 
458 /*
459  * update task's spread flag if cpuset's page/slab spread flag is set
460  *
461  * Call with callback_lock or cpuset_mutex held.
462  */
463 static void cpuset_update_task_spread_flag(struct cpuset *cs,
464 					struct task_struct *tsk)
465 {
466 	if (is_spread_page(cs))
467 		task_set_spread_page(tsk);
468 	else
469 		task_clear_spread_page(tsk);
470 
471 	if (is_spread_slab(cs))
472 		task_set_spread_slab(tsk);
473 	else
474 		task_clear_spread_slab(tsk);
475 }
476 
477 /*
478  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
479  *
480  * One cpuset is a subset of another if all its allowed CPUs and
481  * Memory Nodes are a subset of the other, and its exclusive flags
482  * are only set if the other's are set.  Call holding cpuset_mutex.
483  */
484 
485 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
486 {
487 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
488 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
489 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
490 		is_mem_exclusive(p) <= is_mem_exclusive(q);
491 }
492 
493 /**
494  * alloc_cpumasks - allocate three cpumasks for cpuset
495  * @cs:  the cpuset that have cpumasks to be allocated.
496  * @tmp: the tmpmasks structure pointer
497  * Return: 0 if successful, -ENOMEM otherwise.
498  *
499  * Only one of the two input arguments should be non-NULL.
500  */
501 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
502 {
503 	cpumask_var_t *pmask1, *pmask2, *pmask3;
504 
505 	if (cs) {
506 		pmask1 = &cs->cpus_allowed;
507 		pmask2 = &cs->effective_cpus;
508 		pmask3 = &cs->subparts_cpus;
509 	} else {
510 		pmask1 = &tmp->new_cpus;
511 		pmask2 = &tmp->addmask;
512 		pmask3 = &tmp->delmask;
513 	}
514 
515 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
516 		return -ENOMEM;
517 
518 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
519 		goto free_one;
520 
521 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
522 		goto free_two;
523 
524 	return 0;
525 
526 free_two:
527 	free_cpumask_var(*pmask2);
528 free_one:
529 	free_cpumask_var(*pmask1);
530 	return -ENOMEM;
531 }
532 
533 /**
534  * free_cpumasks - free cpumasks in a tmpmasks structure
535  * @cs:  the cpuset that have cpumasks to be free.
536  * @tmp: the tmpmasks structure pointer
537  */
538 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
539 {
540 	if (cs) {
541 		free_cpumask_var(cs->cpus_allowed);
542 		free_cpumask_var(cs->effective_cpus);
543 		free_cpumask_var(cs->subparts_cpus);
544 	}
545 	if (tmp) {
546 		free_cpumask_var(tmp->new_cpus);
547 		free_cpumask_var(tmp->addmask);
548 		free_cpumask_var(tmp->delmask);
549 	}
550 }
551 
552 /**
553  * alloc_trial_cpuset - allocate a trial cpuset
554  * @cs: the cpuset that the trial cpuset duplicates
555  */
556 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
557 {
558 	struct cpuset *trial;
559 
560 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
561 	if (!trial)
562 		return NULL;
563 
564 	if (alloc_cpumasks(trial, NULL)) {
565 		kfree(trial);
566 		return NULL;
567 	}
568 
569 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
570 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
571 	return trial;
572 }
573 
574 /**
575  * free_cpuset - free the cpuset
576  * @cs: the cpuset to be freed
577  */
578 static inline void free_cpuset(struct cpuset *cs)
579 {
580 	free_cpumasks(cs, NULL);
581 	kfree(cs);
582 }
583 
584 /*
585  * validate_change() - Used to validate that any proposed cpuset change
586  *		       follows the structural rules for cpusets.
587  *
588  * If we replaced the flag and mask values of the current cpuset
589  * (cur) with those values in the trial cpuset (trial), would
590  * our various subset and exclusive rules still be valid?  Presumes
591  * cpuset_mutex held.
592  *
593  * 'cur' is the address of an actual, in-use cpuset.  Operations
594  * such as list traversal that depend on the actual address of the
595  * cpuset in the list must use cur below, not trial.
596  *
597  * 'trial' is the address of bulk structure copy of cur, with
598  * perhaps one or more of the fields cpus_allowed, mems_allowed,
599  * or flags changed to new, trial values.
600  *
601  * Return 0 if valid, -errno if not.
602  */
603 
604 static int validate_change(struct cpuset *cur, struct cpuset *trial)
605 {
606 	struct cgroup_subsys_state *css;
607 	struct cpuset *c, *par;
608 	int ret;
609 
610 	rcu_read_lock();
611 
612 	/* Each of our child cpusets must be a subset of us */
613 	ret = -EBUSY;
614 	cpuset_for_each_child(c, css, cur)
615 		if (!is_cpuset_subset(c, trial))
616 			goto out;
617 
618 	/* Remaining checks don't apply to root cpuset */
619 	ret = 0;
620 	if (cur == &top_cpuset)
621 		goto out;
622 
623 	par = parent_cs(cur);
624 
625 	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
626 	ret = -EACCES;
627 	if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
628 		goto out;
629 
630 	/*
631 	 * If either I or some sibling (!= me) is exclusive, we can't
632 	 * overlap
633 	 */
634 	ret = -EINVAL;
635 	cpuset_for_each_child(c, css, par) {
636 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
637 		    c != cur &&
638 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
639 			goto out;
640 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
641 		    c != cur &&
642 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
643 			goto out;
644 	}
645 
646 	/*
647 	 * Cpusets with tasks - existing or newly being attached - can't
648 	 * be changed to have empty cpus_allowed or mems_allowed.
649 	 */
650 	ret = -ENOSPC;
651 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
652 		if (!cpumask_empty(cur->cpus_allowed) &&
653 		    cpumask_empty(trial->cpus_allowed))
654 			goto out;
655 		if (!nodes_empty(cur->mems_allowed) &&
656 		    nodes_empty(trial->mems_allowed))
657 			goto out;
658 	}
659 
660 	/*
661 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
662 	 * tasks.
663 	 */
664 	ret = -EBUSY;
665 	if (is_cpu_exclusive(cur) &&
666 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
667 				       trial->cpus_allowed))
668 		goto out;
669 
670 	ret = 0;
671 out:
672 	rcu_read_unlock();
673 	return ret;
674 }
675 
676 #ifdef CONFIG_SMP
677 /*
678  * Helper routine for generate_sched_domains().
679  * Do cpusets a, b have overlapping effective cpus_allowed masks?
680  */
681 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
682 {
683 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
684 }
685 
686 static void
687 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
688 {
689 	if (dattr->relax_domain_level < c->relax_domain_level)
690 		dattr->relax_domain_level = c->relax_domain_level;
691 	return;
692 }
693 
694 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
695 				    struct cpuset *root_cs)
696 {
697 	struct cpuset *cp;
698 	struct cgroup_subsys_state *pos_css;
699 
700 	rcu_read_lock();
701 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
702 		/* skip the whole subtree if @cp doesn't have any CPU */
703 		if (cpumask_empty(cp->cpus_allowed)) {
704 			pos_css = css_rightmost_descendant(pos_css);
705 			continue;
706 		}
707 
708 		if (is_sched_load_balance(cp))
709 			update_domain_attr(dattr, cp);
710 	}
711 	rcu_read_unlock();
712 }
713 
714 /* Must be called with cpuset_mutex held.  */
715 static inline int nr_cpusets(void)
716 {
717 	/* jump label reference count + the top-level cpuset */
718 	return static_key_count(&cpusets_enabled_key.key) + 1;
719 }
720 
721 /*
722  * generate_sched_domains()
723  *
724  * This function builds a partial partition of the systems CPUs
725  * A 'partial partition' is a set of non-overlapping subsets whose
726  * union is a subset of that set.
727  * The output of this function needs to be passed to kernel/sched/core.c
728  * partition_sched_domains() routine, which will rebuild the scheduler's
729  * load balancing domains (sched domains) as specified by that partial
730  * partition.
731  *
732  * See "What is sched_load_balance" in Documentation/cgroup-v1/cpusets.txt
733  * for a background explanation of this.
734  *
735  * Does not return errors, on the theory that the callers of this
736  * routine would rather not worry about failures to rebuild sched
737  * domains when operating in the severe memory shortage situations
738  * that could cause allocation failures below.
739  *
740  * Must be called with cpuset_mutex held.
741  *
742  * The three key local variables below are:
743  *    cp - cpuset pointer, used (together with pos_css) to perform a
744  *	   top-down scan of all cpusets. For our purposes, rebuilding
745  *	   the schedulers sched domains, we can ignore !is_sched_load_
746  *	   balance cpusets.
747  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
748  *	   that need to be load balanced, for convenient iterative
749  *	   access by the subsequent code that finds the best partition,
750  *	   i.e the set of domains (subsets) of CPUs such that the
751  *	   cpus_allowed of every cpuset marked is_sched_load_balance
752  *	   is a subset of one of these domains, while there are as
753  *	   many such domains as possible, each as small as possible.
754  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
755  *	   the kernel/sched/core.c routine partition_sched_domains() in a
756  *	   convenient format, that can be easily compared to the prior
757  *	   value to determine what partition elements (sched domains)
758  *	   were changed (added or removed.)
759  *
760  * Finding the best partition (set of domains):
761  *	The triple nested loops below over i, j, k scan over the
762  *	load balanced cpusets (using the array of cpuset pointers in
763  *	csa[]) looking for pairs of cpusets that have overlapping
764  *	cpus_allowed, but which don't have the same 'pn' partition
765  *	number and gives them in the same partition number.  It keeps
766  *	looping on the 'restart' label until it can no longer find
767  *	any such pairs.
768  *
769  *	The union of the cpus_allowed masks from the set of
770  *	all cpusets having the same 'pn' value then form the one
771  *	element of the partition (one sched domain) to be passed to
772  *	partition_sched_domains().
773  */
774 static int generate_sched_domains(cpumask_var_t **domains,
775 			struct sched_domain_attr **attributes)
776 {
777 	struct cpuset *cp;	/* top-down scan of cpusets */
778 	struct cpuset **csa;	/* array of all cpuset ptrs */
779 	int csn;		/* how many cpuset ptrs in csa so far */
780 	int i, j, k;		/* indices for partition finding loops */
781 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
782 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
783 	int ndoms = 0;		/* number of sched domains in result */
784 	int nslot;		/* next empty doms[] struct cpumask slot */
785 	struct cgroup_subsys_state *pos_css;
786 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
787 
788 	doms = NULL;
789 	dattr = NULL;
790 	csa = NULL;
791 
792 	/* Special case for the 99% of systems with one, full, sched domain */
793 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
794 		ndoms = 1;
795 		doms = alloc_sched_domains(ndoms);
796 		if (!doms)
797 			goto done;
798 
799 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
800 		if (dattr) {
801 			*dattr = SD_ATTR_INIT;
802 			update_domain_attr_tree(dattr, &top_cpuset);
803 		}
804 		cpumask_and(doms[0], top_cpuset.effective_cpus,
805 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
806 
807 		goto done;
808 	}
809 
810 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
811 	if (!csa)
812 		goto done;
813 	csn = 0;
814 
815 	rcu_read_lock();
816 	if (root_load_balance)
817 		csa[csn++] = &top_cpuset;
818 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
819 		if (cp == &top_cpuset)
820 			continue;
821 		/*
822 		 * Continue traversing beyond @cp iff @cp has some CPUs and
823 		 * isn't load balancing.  The former is obvious.  The
824 		 * latter: All child cpusets contain a subset of the
825 		 * parent's cpus, so just skip them, and then we call
826 		 * update_domain_attr_tree() to calc relax_domain_level of
827 		 * the corresponding sched domain.
828 		 *
829 		 * If root is load-balancing, we can skip @cp if it
830 		 * is a subset of the root's effective_cpus.
831 		 */
832 		if (!cpumask_empty(cp->cpus_allowed) &&
833 		    !(is_sched_load_balance(cp) &&
834 		      cpumask_intersects(cp->cpus_allowed,
835 					 housekeeping_cpumask(HK_FLAG_DOMAIN))))
836 			continue;
837 
838 		if (root_load_balance &&
839 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
840 			continue;
841 
842 		if (is_sched_load_balance(cp))
843 			csa[csn++] = cp;
844 
845 		/* skip @cp's subtree if not a partition root */
846 		if (!is_partition_root(cp))
847 			pos_css = css_rightmost_descendant(pos_css);
848 	}
849 	rcu_read_unlock();
850 
851 	for (i = 0; i < csn; i++)
852 		csa[i]->pn = i;
853 	ndoms = csn;
854 
855 restart:
856 	/* Find the best partition (set of sched domains) */
857 	for (i = 0; i < csn; i++) {
858 		struct cpuset *a = csa[i];
859 		int apn = a->pn;
860 
861 		for (j = 0; j < csn; j++) {
862 			struct cpuset *b = csa[j];
863 			int bpn = b->pn;
864 
865 			if (apn != bpn && cpusets_overlap(a, b)) {
866 				for (k = 0; k < csn; k++) {
867 					struct cpuset *c = csa[k];
868 
869 					if (c->pn == bpn)
870 						c->pn = apn;
871 				}
872 				ndoms--;	/* one less element */
873 				goto restart;
874 			}
875 		}
876 	}
877 
878 	/*
879 	 * Now we know how many domains to create.
880 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
881 	 */
882 	doms = alloc_sched_domains(ndoms);
883 	if (!doms)
884 		goto done;
885 
886 	/*
887 	 * The rest of the code, including the scheduler, can deal with
888 	 * dattr==NULL case. No need to abort if alloc fails.
889 	 */
890 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
891 			      GFP_KERNEL);
892 
893 	for (nslot = 0, i = 0; i < csn; i++) {
894 		struct cpuset *a = csa[i];
895 		struct cpumask *dp;
896 		int apn = a->pn;
897 
898 		if (apn < 0) {
899 			/* Skip completed partitions */
900 			continue;
901 		}
902 
903 		dp = doms[nslot];
904 
905 		if (nslot == ndoms) {
906 			static int warnings = 10;
907 			if (warnings) {
908 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
909 					nslot, ndoms, csn, i, apn);
910 				warnings--;
911 			}
912 			continue;
913 		}
914 
915 		cpumask_clear(dp);
916 		if (dattr)
917 			*(dattr + nslot) = SD_ATTR_INIT;
918 		for (j = i; j < csn; j++) {
919 			struct cpuset *b = csa[j];
920 
921 			if (apn == b->pn) {
922 				cpumask_or(dp, dp, b->effective_cpus);
923 				cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
924 				if (dattr)
925 					update_domain_attr_tree(dattr + nslot, b);
926 
927 				/* Done with this partition */
928 				b->pn = -1;
929 			}
930 		}
931 		nslot++;
932 	}
933 	BUG_ON(nslot != ndoms);
934 
935 done:
936 	kfree(csa);
937 
938 	/*
939 	 * Fallback to the default domain if kmalloc() failed.
940 	 * See comments in partition_sched_domains().
941 	 */
942 	if (doms == NULL)
943 		ndoms = 1;
944 
945 	*domains    = doms;
946 	*attributes = dattr;
947 	return ndoms;
948 }
949 
950 /*
951  * Rebuild scheduler domains.
952  *
953  * If the flag 'sched_load_balance' of any cpuset with non-empty
954  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
955  * which has that flag enabled, or if any cpuset with a non-empty
956  * 'cpus' is removed, then call this routine to rebuild the
957  * scheduler's dynamic sched domains.
958  *
959  * Call with cpuset_mutex held.  Takes get_online_cpus().
960  */
961 static void rebuild_sched_domains_locked(void)
962 {
963 	struct sched_domain_attr *attr;
964 	cpumask_var_t *doms;
965 	int ndoms;
966 
967 	lockdep_assert_held(&cpuset_mutex);
968 	get_online_cpus();
969 
970 	/*
971 	 * We have raced with CPU hotplug. Don't do anything to avoid
972 	 * passing doms with offlined cpu to partition_sched_domains().
973 	 * Anyways, hotplug work item will rebuild sched domains.
974 	 */
975 	if (!top_cpuset.nr_subparts_cpus &&
976 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
977 		goto out;
978 
979 	if (top_cpuset.nr_subparts_cpus &&
980 	   !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask))
981 		goto out;
982 
983 	/* Generate domain masks and attrs */
984 	ndoms = generate_sched_domains(&doms, &attr);
985 
986 	/* Have scheduler rebuild the domains */
987 	partition_sched_domains(ndoms, doms, attr);
988 out:
989 	put_online_cpus();
990 }
991 #else /* !CONFIG_SMP */
992 static void rebuild_sched_domains_locked(void)
993 {
994 }
995 #endif /* CONFIG_SMP */
996 
997 void rebuild_sched_domains(void)
998 {
999 	mutex_lock(&cpuset_mutex);
1000 	rebuild_sched_domains_locked();
1001 	mutex_unlock(&cpuset_mutex);
1002 }
1003 
1004 /**
1005  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1006  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1007  *
1008  * Iterate through each task of @cs updating its cpus_allowed to the
1009  * effective cpuset's.  As this function is called with cpuset_mutex held,
1010  * cpuset membership stays stable.
1011  */
1012 static void update_tasks_cpumask(struct cpuset *cs)
1013 {
1014 	struct css_task_iter it;
1015 	struct task_struct *task;
1016 
1017 	css_task_iter_start(&cs->css, 0, &it);
1018 	while ((task = css_task_iter_next(&it)))
1019 		set_cpus_allowed_ptr(task, cs->effective_cpus);
1020 	css_task_iter_end(&it);
1021 }
1022 
1023 /**
1024  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1025  * @new_cpus: the temp variable for the new effective_cpus mask
1026  * @cs: the cpuset the need to recompute the new effective_cpus mask
1027  * @parent: the parent cpuset
1028  *
1029  * If the parent has subpartition CPUs, include them in the list of
1030  * allowable CPUs in computing the new effective_cpus mask. Since offlined
1031  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1032  * to mask those out.
1033  */
1034 static void compute_effective_cpumask(struct cpumask *new_cpus,
1035 				      struct cpuset *cs, struct cpuset *parent)
1036 {
1037 	if (parent->nr_subparts_cpus) {
1038 		cpumask_or(new_cpus, parent->effective_cpus,
1039 			   parent->subparts_cpus);
1040 		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1041 		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1042 	} else {
1043 		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1044 	}
1045 }
1046 
1047 /*
1048  * Commands for update_parent_subparts_cpumask
1049  */
1050 enum subparts_cmd {
1051 	partcmd_enable,		/* Enable partition root	 */
1052 	partcmd_disable,	/* Disable partition root	 */
1053 	partcmd_update,		/* Update parent's subparts_cpus */
1054 };
1055 
1056 /**
1057  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1058  * @cpuset:  The cpuset that requests change in partition root state
1059  * @cmd:     Partition root state change command
1060  * @newmask: Optional new cpumask for partcmd_update
1061  * @tmp:     Temporary addmask and delmask
1062  * Return:   0, 1 or an error code
1063  *
1064  * For partcmd_enable, the cpuset is being transformed from a non-partition
1065  * root to a partition root. The cpus_allowed mask of the given cpuset will
1066  * be put into parent's subparts_cpus and taken away from parent's
1067  * effective_cpus. The function will return 0 if all the CPUs listed in
1068  * cpus_allowed can be granted or an error code will be returned.
1069  *
1070  * For partcmd_disable, the cpuset is being transofrmed from a partition
1071  * root back to a non-partition root. any CPUs in cpus_allowed that are in
1072  * parent's subparts_cpus will be taken away from that cpumask and put back
1073  * into parent's effective_cpus. 0 should always be returned.
1074  *
1075  * For partcmd_update, if the optional newmask is specified, the cpu
1076  * list is to be changed from cpus_allowed to newmask. Otherwise,
1077  * cpus_allowed is assumed to remain the same. The cpuset should either
1078  * be a partition root or an invalid partition root. The partition root
1079  * state may change if newmask is NULL and none of the requested CPUs can
1080  * be granted by the parent. The function will return 1 if changes to
1081  * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1082  * Error code should only be returned when newmask is non-NULL.
1083  *
1084  * The partcmd_enable and partcmd_disable commands are used by
1085  * update_prstate(). The partcmd_update command is used by
1086  * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1087  * newmask set.
1088  *
1089  * The checking is more strict when enabling partition root than the
1090  * other two commands.
1091  *
1092  * Because of the implicit cpu exclusive nature of a partition root,
1093  * cpumask changes that violates the cpu exclusivity rule will not be
1094  * permitted when checked by validate_change(). The validate_change()
1095  * function will also prevent any changes to the cpu list if it is not
1096  * a superset of children's cpu lists.
1097  */
1098 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1099 					  struct cpumask *newmask,
1100 					  struct tmpmasks *tmp)
1101 {
1102 	struct cpuset *parent = parent_cs(cpuset);
1103 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1104 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1105 	bool part_error = false;	/* Partition error? */
1106 
1107 	lockdep_assert_held(&cpuset_mutex);
1108 
1109 	/*
1110 	 * The parent must be a partition root.
1111 	 * The new cpumask, if present, or the current cpus_allowed must
1112 	 * not be empty.
1113 	 */
1114 	if (!is_partition_root(parent) ||
1115 	   (newmask && cpumask_empty(newmask)) ||
1116 	   (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1117 		return -EINVAL;
1118 
1119 	/*
1120 	 * Enabling/disabling partition root is not allowed if there are
1121 	 * online children.
1122 	 */
1123 	if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1124 		return -EBUSY;
1125 
1126 	/*
1127 	 * Enabling partition root is not allowed if not all the CPUs
1128 	 * can be granted from parent's effective_cpus or at least one
1129 	 * CPU will be left after that.
1130 	 */
1131 	if ((cmd == partcmd_enable) &&
1132 	   (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1133 	     cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1134 		return -EINVAL;
1135 
1136 	/*
1137 	 * A cpumask update cannot make parent's effective_cpus become empty.
1138 	 */
1139 	adding = deleting = false;
1140 	if (cmd == partcmd_enable) {
1141 		cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1142 		adding = true;
1143 	} else if (cmd == partcmd_disable) {
1144 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1145 				       parent->subparts_cpus);
1146 	} else if (newmask) {
1147 		/*
1148 		 * partcmd_update with newmask:
1149 		 *
1150 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1151 		 * addmask = newmask & parent->effective_cpus
1152 		 *		     & ~parent->subparts_cpus
1153 		 */
1154 		cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1155 		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1156 				       parent->subparts_cpus);
1157 
1158 		cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1159 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1160 					parent->subparts_cpus);
1161 		/*
1162 		 * Return error if the new effective_cpus could become empty.
1163 		 */
1164 		if (adding &&
1165 		    cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1166 			if (!deleting)
1167 				return -EINVAL;
1168 			/*
1169 			 * As some of the CPUs in subparts_cpus might have
1170 			 * been offlined, we need to compute the real delmask
1171 			 * to confirm that.
1172 			 */
1173 			if (!cpumask_and(tmp->addmask, tmp->delmask,
1174 					 cpu_active_mask))
1175 				return -EINVAL;
1176 			cpumask_copy(tmp->addmask, parent->effective_cpus);
1177 		}
1178 	} else {
1179 		/*
1180 		 * partcmd_update w/o newmask:
1181 		 *
1182 		 * addmask = cpus_allowed & parent->effectiveb_cpus
1183 		 *
1184 		 * Note that parent's subparts_cpus may have been
1185 		 * pre-shrunk in case there is a change in the cpu list.
1186 		 * So no deletion is needed.
1187 		 */
1188 		adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1189 				     parent->effective_cpus);
1190 		part_error = cpumask_equal(tmp->addmask,
1191 					   parent->effective_cpus);
1192 	}
1193 
1194 	if (cmd == partcmd_update) {
1195 		int prev_prs = cpuset->partition_root_state;
1196 
1197 		/*
1198 		 * Check for possible transition between PRS_ENABLED
1199 		 * and PRS_ERROR.
1200 		 */
1201 		switch (cpuset->partition_root_state) {
1202 		case PRS_ENABLED:
1203 			if (part_error)
1204 				cpuset->partition_root_state = PRS_ERROR;
1205 			break;
1206 		case PRS_ERROR:
1207 			if (!part_error)
1208 				cpuset->partition_root_state = PRS_ENABLED;
1209 			break;
1210 		}
1211 		/*
1212 		 * Set part_error if previously in invalid state.
1213 		 */
1214 		part_error = (prev_prs == PRS_ERROR);
1215 	}
1216 
1217 	if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
1218 		return 0;	/* Nothing need to be done */
1219 
1220 	if (cpuset->partition_root_state == PRS_ERROR) {
1221 		/*
1222 		 * Remove all its cpus from parent's subparts_cpus.
1223 		 */
1224 		adding = false;
1225 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1226 				       parent->subparts_cpus);
1227 	}
1228 
1229 	if (!adding && !deleting)
1230 		return 0;
1231 
1232 	/*
1233 	 * Change the parent's subparts_cpus.
1234 	 * Newly added CPUs will be removed from effective_cpus and
1235 	 * newly deleted ones will be added back to effective_cpus.
1236 	 */
1237 	spin_lock_irq(&callback_lock);
1238 	if (adding) {
1239 		cpumask_or(parent->subparts_cpus,
1240 			   parent->subparts_cpus, tmp->addmask);
1241 		cpumask_andnot(parent->effective_cpus,
1242 			       parent->effective_cpus, tmp->addmask);
1243 	}
1244 	if (deleting) {
1245 		cpumask_andnot(parent->subparts_cpus,
1246 			       parent->subparts_cpus, tmp->delmask);
1247 		/*
1248 		 * Some of the CPUs in subparts_cpus might have been offlined.
1249 		 */
1250 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1251 		cpumask_or(parent->effective_cpus,
1252 			   parent->effective_cpus, tmp->delmask);
1253 	}
1254 
1255 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1256 	spin_unlock_irq(&callback_lock);
1257 
1258 	return cmd == partcmd_update;
1259 }
1260 
1261 /*
1262  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1263  * @cs:  the cpuset to consider
1264  * @tmp: temp variables for calculating effective_cpus & partition setup
1265  *
1266  * When congifured cpumask is changed, the effective cpumasks of this cpuset
1267  * and all its descendants need to be updated.
1268  *
1269  * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1270  *
1271  * Called with cpuset_mutex held
1272  */
1273 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1274 {
1275 	struct cpuset *cp;
1276 	struct cgroup_subsys_state *pos_css;
1277 	bool need_rebuild_sched_domains = false;
1278 
1279 	rcu_read_lock();
1280 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1281 		struct cpuset *parent = parent_cs(cp);
1282 
1283 		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1284 
1285 		/*
1286 		 * If it becomes empty, inherit the effective mask of the
1287 		 * parent, which is guaranteed to have some CPUs.
1288 		 */
1289 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1290 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1291 			if (!cp->use_parent_ecpus) {
1292 				cp->use_parent_ecpus = true;
1293 				parent->child_ecpus_count++;
1294 			}
1295 		} else if (cp->use_parent_ecpus) {
1296 			cp->use_parent_ecpus = false;
1297 			WARN_ON_ONCE(!parent->child_ecpus_count);
1298 			parent->child_ecpus_count--;
1299 		}
1300 
1301 		/*
1302 		 * Skip the whole subtree if the cpumask remains the same
1303 		 * and has no partition root state.
1304 		 */
1305 		if (!cp->partition_root_state &&
1306 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1307 			pos_css = css_rightmost_descendant(pos_css);
1308 			continue;
1309 		}
1310 
1311 		/*
1312 		 * update_parent_subparts_cpumask() should have been called
1313 		 * for cs already in update_cpumask(). We should also call
1314 		 * update_tasks_cpumask() again for tasks in the parent
1315 		 * cpuset if the parent's subparts_cpus changes.
1316 		 */
1317 		if ((cp != cs) && cp->partition_root_state) {
1318 			switch (parent->partition_root_state) {
1319 			case PRS_DISABLED:
1320 				/*
1321 				 * If parent is not a partition root or an
1322 				 * invalid partition root, clear the state
1323 				 * state and the CS_CPU_EXCLUSIVE flag.
1324 				 */
1325 				WARN_ON_ONCE(cp->partition_root_state
1326 					     != PRS_ERROR);
1327 				cp->partition_root_state = 0;
1328 
1329 				/*
1330 				 * clear_bit() is an atomic operation and
1331 				 * readers aren't interested in the state
1332 				 * of CS_CPU_EXCLUSIVE anyway. So we can
1333 				 * just update the flag without holding
1334 				 * the callback_lock.
1335 				 */
1336 				clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1337 				break;
1338 
1339 			case PRS_ENABLED:
1340 				if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1341 					update_tasks_cpumask(parent);
1342 				break;
1343 
1344 			case PRS_ERROR:
1345 				/*
1346 				 * When parent is invalid, it has to be too.
1347 				 */
1348 				cp->partition_root_state = PRS_ERROR;
1349 				if (cp->nr_subparts_cpus) {
1350 					cp->nr_subparts_cpus = 0;
1351 					cpumask_clear(cp->subparts_cpus);
1352 				}
1353 				break;
1354 			}
1355 		}
1356 
1357 		if (!css_tryget_online(&cp->css))
1358 			continue;
1359 		rcu_read_unlock();
1360 
1361 		spin_lock_irq(&callback_lock);
1362 
1363 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1364 		if (cp->nr_subparts_cpus &&
1365 		   (cp->partition_root_state != PRS_ENABLED)) {
1366 			cp->nr_subparts_cpus = 0;
1367 			cpumask_clear(cp->subparts_cpus);
1368 		} else if (cp->nr_subparts_cpus) {
1369 			/*
1370 			 * Make sure that effective_cpus & subparts_cpus
1371 			 * are mutually exclusive.
1372 			 *
1373 			 * In the unlikely event that effective_cpus
1374 			 * becomes empty. we clear cp->nr_subparts_cpus and
1375 			 * let its child partition roots to compete for
1376 			 * CPUs again.
1377 			 */
1378 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1379 				       cp->subparts_cpus);
1380 			if (cpumask_empty(cp->effective_cpus)) {
1381 				cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1382 				cpumask_clear(cp->subparts_cpus);
1383 				cp->nr_subparts_cpus = 0;
1384 			} else if (!cpumask_subset(cp->subparts_cpus,
1385 						   tmp->new_cpus)) {
1386 				cpumask_andnot(cp->subparts_cpus,
1387 					cp->subparts_cpus, tmp->new_cpus);
1388 				cp->nr_subparts_cpus
1389 					= cpumask_weight(cp->subparts_cpus);
1390 			}
1391 		}
1392 		spin_unlock_irq(&callback_lock);
1393 
1394 		WARN_ON(!is_in_v2_mode() &&
1395 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1396 
1397 		update_tasks_cpumask(cp);
1398 
1399 		/*
1400 		 * On legacy hierarchy, if the effective cpumask of any non-
1401 		 * empty cpuset is changed, we need to rebuild sched domains.
1402 		 * On default hierarchy, the cpuset needs to be a partition
1403 		 * root as well.
1404 		 */
1405 		if (!cpumask_empty(cp->cpus_allowed) &&
1406 		    is_sched_load_balance(cp) &&
1407 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1408 		    is_partition_root(cp)))
1409 			need_rebuild_sched_domains = true;
1410 
1411 		rcu_read_lock();
1412 		css_put(&cp->css);
1413 	}
1414 	rcu_read_unlock();
1415 
1416 	if (need_rebuild_sched_domains)
1417 		rebuild_sched_domains_locked();
1418 }
1419 
1420 /**
1421  * update_sibling_cpumasks - Update siblings cpumasks
1422  * @parent:  Parent cpuset
1423  * @cs:      Current cpuset
1424  * @tmp:     Temp variables
1425  */
1426 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1427 				    struct tmpmasks *tmp)
1428 {
1429 	struct cpuset *sibling;
1430 	struct cgroup_subsys_state *pos_css;
1431 
1432 	/*
1433 	 * Check all its siblings and call update_cpumasks_hier()
1434 	 * if their use_parent_ecpus flag is set in order for them
1435 	 * to use the right effective_cpus value.
1436 	 */
1437 	rcu_read_lock();
1438 	cpuset_for_each_child(sibling, pos_css, parent) {
1439 		if (sibling == cs)
1440 			continue;
1441 		if (!sibling->use_parent_ecpus)
1442 			continue;
1443 
1444 		update_cpumasks_hier(sibling, tmp);
1445 	}
1446 	rcu_read_unlock();
1447 }
1448 
1449 /**
1450  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1451  * @cs: the cpuset to consider
1452  * @trialcs: trial cpuset
1453  * @buf: buffer of cpu numbers written to this cpuset
1454  */
1455 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1456 			  const char *buf)
1457 {
1458 	int retval;
1459 	struct tmpmasks tmp;
1460 
1461 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1462 	if (cs == &top_cpuset)
1463 		return -EACCES;
1464 
1465 	/*
1466 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1467 	 * Since cpulist_parse() fails on an empty mask, we special case
1468 	 * that parsing.  The validate_change() call ensures that cpusets
1469 	 * with tasks have cpus.
1470 	 */
1471 	if (!*buf) {
1472 		cpumask_clear(trialcs->cpus_allowed);
1473 	} else {
1474 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
1475 		if (retval < 0)
1476 			return retval;
1477 
1478 		if (!cpumask_subset(trialcs->cpus_allowed,
1479 				    top_cpuset.cpus_allowed))
1480 			return -EINVAL;
1481 	}
1482 
1483 	/* Nothing to do if the cpus didn't change */
1484 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1485 		return 0;
1486 
1487 	retval = validate_change(cs, trialcs);
1488 	if (retval < 0)
1489 		return retval;
1490 
1491 #ifdef CONFIG_CPUMASK_OFFSTACK
1492 	/*
1493 	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1494 	 * to allocated cpumasks.
1495 	 */
1496 	tmp.addmask  = trialcs->subparts_cpus;
1497 	tmp.delmask  = trialcs->effective_cpus;
1498 	tmp.new_cpus = trialcs->cpus_allowed;
1499 #endif
1500 
1501 	if (cs->partition_root_state) {
1502 		/* Cpumask of a partition root cannot be empty */
1503 		if (cpumask_empty(trialcs->cpus_allowed))
1504 			return -EINVAL;
1505 		if (update_parent_subparts_cpumask(cs, partcmd_update,
1506 					trialcs->cpus_allowed, &tmp) < 0)
1507 			return -EINVAL;
1508 	}
1509 
1510 	spin_lock_irq(&callback_lock);
1511 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1512 
1513 	/*
1514 	 * Make sure that subparts_cpus is a subset of cpus_allowed.
1515 	 */
1516 	if (cs->nr_subparts_cpus) {
1517 		cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
1518 			       cs->cpus_allowed);
1519 		cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1520 	}
1521 	spin_unlock_irq(&callback_lock);
1522 
1523 	update_cpumasks_hier(cs, &tmp);
1524 
1525 	if (cs->partition_root_state) {
1526 		struct cpuset *parent = parent_cs(cs);
1527 
1528 		/*
1529 		 * For partition root, update the cpumasks of sibling
1530 		 * cpusets if they use parent's effective_cpus.
1531 		 */
1532 		if (parent->child_ecpus_count)
1533 			update_sibling_cpumasks(parent, cs, &tmp);
1534 	}
1535 	return 0;
1536 }
1537 
1538 /*
1539  * Migrate memory region from one set of nodes to another.  This is
1540  * performed asynchronously as it can be called from process migration path
1541  * holding locks involved in process management.  All mm migrations are
1542  * performed in the queued order and can be waited for by flushing
1543  * cpuset_migrate_mm_wq.
1544  */
1545 
1546 struct cpuset_migrate_mm_work {
1547 	struct work_struct	work;
1548 	struct mm_struct	*mm;
1549 	nodemask_t		from;
1550 	nodemask_t		to;
1551 };
1552 
1553 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1554 {
1555 	struct cpuset_migrate_mm_work *mwork =
1556 		container_of(work, struct cpuset_migrate_mm_work, work);
1557 
1558 	/* on a wq worker, no need to worry about %current's mems_allowed */
1559 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1560 	mmput(mwork->mm);
1561 	kfree(mwork);
1562 }
1563 
1564 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1565 							const nodemask_t *to)
1566 {
1567 	struct cpuset_migrate_mm_work *mwork;
1568 
1569 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1570 	if (mwork) {
1571 		mwork->mm = mm;
1572 		mwork->from = *from;
1573 		mwork->to = *to;
1574 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1575 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1576 	} else {
1577 		mmput(mm);
1578 	}
1579 }
1580 
1581 static void cpuset_post_attach(void)
1582 {
1583 	flush_workqueue(cpuset_migrate_mm_wq);
1584 }
1585 
1586 /*
1587  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1588  * @tsk: the task to change
1589  * @newmems: new nodes that the task will be set
1590  *
1591  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1592  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1593  * parallel, it might temporarily see an empty intersection, which results in
1594  * a seqlock check and retry before OOM or allocation failure.
1595  */
1596 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1597 					nodemask_t *newmems)
1598 {
1599 	task_lock(tsk);
1600 
1601 	local_irq_disable();
1602 	write_seqcount_begin(&tsk->mems_allowed_seq);
1603 
1604 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1605 	mpol_rebind_task(tsk, newmems);
1606 	tsk->mems_allowed = *newmems;
1607 
1608 	write_seqcount_end(&tsk->mems_allowed_seq);
1609 	local_irq_enable();
1610 
1611 	task_unlock(tsk);
1612 }
1613 
1614 static void *cpuset_being_rebound;
1615 
1616 /**
1617  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1618  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1619  *
1620  * Iterate through each task of @cs updating its mems_allowed to the
1621  * effective cpuset's.  As this function is called with cpuset_mutex held,
1622  * cpuset membership stays stable.
1623  */
1624 static void update_tasks_nodemask(struct cpuset *cs)
1625 {
1626 	static nodemask_t newmems;	/* protected by cpuset_mutex */
1627 	struct css_task_iter it;
1628 	struct task_struct *task;
1629 
1630 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1631 
1632 	guarantee_online_mems(cs, &newmems);
1633 
1634 	/*
1635 	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1636 	 * take while holding tasklist_lock.  Forks can happen - the
1637 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1638 	 * and rebind their vma mempolicies too.  Because we still hold
1639 	 * the global cpuset_mutex, we know that no other rebind effort
1640 	 * will be contending for the global variable cpuset_being_rebound.
1641 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1642 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1643 	 */
1644 	css_task_iter_start(&cs->css, 0, &it);
1645 	while ((task = css_task_iter_next(&it))) {
1646 		struct mm_struct *mm;
1647 		bool migrate;
1648 
1649 		cpuset_change_task_nodemask(task, &newmems);
1650 
1651 		mm = get_task_mm(task);
1652 		if (!mm)
1653 			continue;
1654 
1655 		migrate = is_memory_migrate(cs);
1656 
1657 		mpol_rebind_mm(mm, &cs->mems_allowed);
1658 		if (migrate)
1659 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1660 		else
1661 			mmput(mm);
1662 	}
1663 	css_task_iter_end(&it);
1664 
1665 	/*
1666 	 * All the tasks' nodemasks have been updated, update
1667 	 * cs->old_mems_allowed.
1668 	 */
1669 	cs->old_mems_allowed = newmems;
1670 
1671 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1672 	cpuset_being_rebound = NULL;
1673 }
1674 
1675 /*
1676  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1677  * @cs: the cpuset to consider
1678  * @new_mems: a temp variable for calculating new effective_mems
1679  *
1680  * When configured nodemask is changed, the effective nodemasks of this cpuset
1681  * and all its descendants need to be updated.
1682  *
1683  * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1684  *
1685  * Called with cpuset_mutex held
1686  */
1687 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1688 {
1689 	struct cpuset *cp;
1690 	struct cgroup_subsys_state *pos_css;
1691 
1692 	rcu_read_lock();
1693 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1694 		struct cpuset *parent = parent_cs(cp);
1695 
1696 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1697 
1698 		/*
1699 		 * If it becomes empty, inherit the effective mask of the
1700 		 * parent, which is guaranteed to have some MEMs.
1701 		 */
1702 		if (is_in_v2_mode() && nodes_empty(*new_mems))
1703 			*new_mems = parent->effective_mems;
1704 
1705 		/* Skip the whole subtree if the nodemask remains the same. */
1706 		if (nodes_equal(*new_mems, cp->effective_mems)) {
1707 			pos_css = css_rightmost_descendant(pos_css);
1708 			continue;
1709 		}
1710 
1711 		if (!css_tryget_online(&cp->css))
1712 			continue;
1713 		rcu_read_unlock();
1714 
1715 		spin_lock_irq(&callback_lock);
1716 		cp->effective_mems = *new_mems;
1717 		spin_unlock_irq(&callback_lock);
1718 
1719 		WARN_ON(!is_in_v2_mode() &&
1720 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1721 
1722 		update_tasks_nodemask(cp);
1723 
1724 		rcu_read_lock();
1725 		css_put(&cp->css);
1726 	}
1727 	rcu_read_unlock();
1728 }
1729 
1730 /*
1731  * Handle user request to change the 'mems' memory placement
1732  * of a cpuset.  Needs to validate the request, update the
1733  * cpusets mems_allowed, and for each task in the cpuset,
1734  * update mems_allowed and rebind task's mempolicy and any vma
1735  * mempolicies and if the cpuset is marked 'memory_migrate',
1736  * migrate the tasks pages to the new memory.
1737  *
1738  * Call with cpuset_mutex held. May take callback_lock during call.
1739  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1740  * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1741  * their mempolicies to the cpusets new mems_allowed.
1742  */
1743 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1744 			   const char *buf)
1745 {
1746 	int retval;
1747 
1748 	/*
1749 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1750 	 * it's read-only
1751 	 */
1752 	if (cs == &top_cpuset) {
1753 		retval = -EACCES;
1754 		goto done;
1755 	}
1756 
1757 	/*
1758 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1759 	 * Since nodelist_parse() fails on an empty mask, we special case
1760 	 * that parsing.  The validate_change() call ensures that cpusets
1761 	 * with tasks have memory.
1762 	 */
1763 	if (!*buf) {
1764 		nodes_clear(trialcs->mems_allowed);
1765 	} else {
1766 		retval = nodelist_parse(buf, trialcs->mems_allowed);
1767 		if (retval < 0)
1768 			goto done;
1769 
1770 		if (!nodes_subset(trialcs->mems_allowed,
1771 				  top_cpuset.mems_allowed)) {
1772 			retval = -EINVAL;
1773 			goto done;
1774 		}
1775 	}
1776 
1777 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1778 		retval = 0;		/* Too easy - nothing to do */
1779 		goto done;
1780 	}
1781 	retval = validate_change(cs, trialcs);
1782 	if (retval < 0)
1783 		goto done;
1784 
1785 	spin_lock_irq(&callback_lock);
1786 	cs->mems_allowed = trialcs->mems_allowed;
1787 	spin_unlock_irq(&callback_lock);
1788 
1789 	/* use trialcs->mems_allowed as a temp variable */
1790 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1791 done:
1792 	return retval;
1793 }
1794 
1795 bool current_cpuset_is_being_rebound(void)
1796 {
1797 	bool ret;
1798 
1799 	rcu_read_lock();
1800 	ret = task_cs(current) == cpuset_being_rebound;
1801 	rcu_read_unlock();
1802 
1803 	return ret;
1804 }
1805 
1806 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1807 {
1808 #ifdef CONFIG_SMP
1809 	if (val < -1 || val >= sched_domain_level_max)
1810 		return -EINVAL;
1811 #endif
1812 
1813 	if (val != cs->relax_domain_level) {
1814 		cs->relax_domain_level = val;
1815 		if (!cpumask_empty(cs->cpus_allowed) &&
1816 		    is_sched_load_balance(cs))
1817 			rebuild_sched_domains_locked();
1818 	}
1819 
1820 	return 0;
1821 }
1822 
1823 /**
1824  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1825  * @cs: the cpuset in which each task's spread flags needs to be changed
1826  *
1827  * Iterate through each task of @cs updating its spread flags.  As this
1828  * function is called with cpuset_mutex held, cpuset membership stays
1829  * stable.
1830  */
1831 static void update_tasks_flags(struct cpuset *cs)
1832 {
1833 	struct css_task_iter it;
1834 	struct task_struct *task;
1835 
1836 	css_task_iter_start(&cs->css, 0, &it);
1837 	while ((task = css_task_iter_next(&it)))
1838 		cpuset_update_task_spread_flag(cs, task);
1839 	css_task_iter_end(&it);
1840 }
1841 
1842 /*
1843  * update_flag - read a 0 or a 1 in a file and update associated flag
1844  * bit:		the bit to update (see cpuset_flagbits_t)
1845  * cs:		the cpuset to update
1846  * turning_on: 	whether the flag is being set or cleared
1847  *
1848  * Call with cpuset_mutex held.
1849  */
1850 
1851 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1852 		       int turning_on)
1853 {
1854 	struct cpuset *trialcs;
1855 	int balance_flag_changed;
1856 	int spread_flag_changed;
1857 	int err;
1858 
1859 	trialcs = alloc_trial_cpuset(cs);
1860 	if (!trialcs)
1861 		return -ENOMEM;
1862 
1863 	if (turning_on)
1864 		set_bit(bit, &trialcs->flags);
1865 	else
1866 		clear_bit(bit, &trialcs->flags);
1867 
1868 	err = validate_change(cs, trialcs);
1869 	if (err < 0)
1870 		goto out;
1871 
1872 	balance_flag_changed = (is_sched_load_balance(cs) !=
1873 				is_sched_load_balance(trialcs));
1874 
1875 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1876 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1877 
1878 	spin_lock_irq(&callback_lock);
1879 	cs->flags = trialcs->flags;
1880 	spin_unlock_irq(&callback_lock);
1881 
1882 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1883 		rebuild_sched_domains_locked();
1884 
1885 	if (spread_flag_changed)
1886 		update_tasks_flags(cs);
1887 out:
1888 	free_cpuset(trialcs);
1889 	return err;
1890 }
1891 
1892 /*
1893  * update_prstate - update partititon_root_state
1894  * cs:	the cpuset to update
1895  * val: 0 - disabled, 1 - enabled
1896  *
1897  * Call with cpuset_mutex held.
1898  */
1899 static int update_prstate(struct cpuset *cs, int val)
1900 {
1901 	int err;
1902 	struct cpuset *parent = parent_cs(cs);
1903 	struct tmpmasks tmp;
1904 
1905 	if ((val != 0) && (val != 1))
1906 		return -EINVAL;
1907 	if (val == cs->partition_root_state)
1908 		return 0;
1909 
1910 	/*
1911 	 * Cannot force a partial or invalid partition root to a full
1912 	 * partition root.
1913 	 */
1914 	if (val && cs->partition_root_state)
1915 		return -EINVAL;
1916 
1917 	if (alloc_cpumasks(NULL, &tmp))
1918 		return -ENOMEM;
1919 
1920 	err = -EINVAL;
1921 	if (!cs->partition_root_state) {
1922 		/*
1923 		 * Turning on partition root requires setting the
1924 		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1925 		 * cannot be NULL.
1926 		 */
1927 		if (cpumask_empty(cs->cpus_allowed))
1928 			goto out;
1929 
1930 		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1931 		if (err)
1932 			goto out;
1933 
1934 		err = update_parent_subparts_cpumask(cs, partcmd_enable,
1935 						     NULL, &tmp);
1936 		if (err) {
1937 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1938 			goto out;
1939 		}
1940 		cs->partition_root_state = PRS_ENABLED;
1941 	} else {
1942 		/*
1943 		 * Turning off partition root will clear the
1944 		 * CS_CPU_EXCLUSIVE bit.
1945 		 */
1946 		if (cs->partition_root_state == PRS_ERROR) {
1947 			cs->partition_root_state = 0;
1948 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1949 			err = 0;
1950 			goto out;
1951 		}
1952 
1953 		err = update_parent_subparts_cpumask(cs, partcmd_disable,
1954 						     NULL, &tmp);
1955 		if (err)
1956 			goto out;
1957 
1958 		cs->partition_root_state = 0;
1959 
1960 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
1961 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1962 	}
1963 
1964 	/*
1965 	 * Update cpumask of parent's tasks except when it is the top
1966 	 * cpuset as some system daemons cannot be mapped to other CPUs.
1967 	 */
1968 	if (parent != &top_cpuset)
1969 		update_tasks_cpumask(parent);
1970 
1971 	if (parent->child_ecpus_count)
1972 		update_sibling_cpumasks(parent, cs, &tmp);
1973 
1974 	rebuild_sched_domains_locked();
1975 out:
1976 	free_cpumasks(NULL, &tmp);
1977 	return err;
1978 }
1979 
1980 /*
1981  * Frequency meter - How fast is some event occurring?
1982  *
1983  * These routines manage a digitally filtered, constant time based,
1984  * event frequency meter.  There are four routines:
1985  *   fmeter_init() - initialize a frequency meter.
1986  *   fmeter_markevent() - called each time the event happens.
1987  *   fmeter_getrate() - returns the recent rate of such events.
1988  *   fmeter_update() - internal routine used to update fmeter.
1989  *
1990  * A common data structure is passed to each of these routines,
1991  * which is used to keep track of the state required to manage the
1992  * frequency meter and its digital filter.
1993  *
1994  * The filter works on the number of events marked per unit time.
1995  * The filter is single-pole low-pass recursive (IIR).  The time unit
1996  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
1997  * simulate 3 decimal digits of precision (multiplied by 1000).
1998  *
1999  * With an FM_COEF of 933, and a time base of 1 second, the filter
2000  * has a half-life of 10 seconds, meaning that if the events quit
2001  * happening, then the rate returned from the fmeter_getrate()
2002  * will be cut in half each 10 seconds, until it converges to zero.
2003  *
2004  * It is not worth doing a real infinitely recursive filter.  If more
2005  * than FM_MAXTICKS ticks have elapsed since the last filter event,
2006  * just compute FM_MAXTICKS ticks worth, by which point the level
2007  * will be stable.
2008  *
2009  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2010  * arithmetic overflow in the fmeter_update() routine.
2011  *
2012  * Given the simple 32 bit integer arithmetic used, this meter works
2013  * best for reporting rates between one per millisecond (msec) and
2014  * one per 32 (approx) seconds.  At constant rates faster than one
2015  * per msec it maxes out at values just under 1,000,000.  At constant
2016  * rates between one per msec, and one per second it will stabilize
2017  * to a value N*1000, where N is the rate of events per second.
2018  * At constant rates between one per second and one per 32 seconds,
2019  * it will be choppy, moving up on the seconds that have an event,
2020  * and then decaying until the next event.  At rates slower than
2021  * about one in 32 seconds, it decays all the way back to zero between
2022  * each event.
2023  */
2024 
2025 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
2026 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2027 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
2028 #define FM_SCALE 1000		/* faux fixed point scale */
2029 
2030 /* Initialize a frequency meter */
2031 static void fmeter_init(struct fmeter *fmp)
2032 {
2033 	fmp->cnt = 0;
2034 	fmp->val = 0;
2035 	fmp->time = 0;
2036 	spin_lock_init(&fmp->lock);
2037 }
2038 
2039 /* Internal meter update - process cnt events and update value */
2040 static void fmeter_update(struct fmeter *fmp)
2041 {
2042 	time64_t now;
2043 	u32 ticks;
2044 
2045 	now = ktime_get_seconds();
2046 	ticks = now - fmp->time;
2047 
2048 	if (ticks == 0)
2049 		return;
2050 
2051 	ticks = min(FM_MAXTICKS, ticks);
2052 	while (ticks-- > 0)
2053 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2054 	fmp->time = now;
2055 
2056 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2057 	fmp->cnt = 0;
2058 }
2059 
2060 /* Process any previous ticks, then bump cnt by one (times scale). */
2061 static void fmeter_markevent(struct fmeter *fmp)
2062 {
2063 	spin_lock(&fmp->lock);
2064 	fmeter_update(fmp);
2065 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2066 	spin_unlock(&fmp->lock);
2067 }
2068 
2069 /* Process any previous ticks, then return current value. */
2070 static int fmeter_getrate(struct fmeter *fmp)
2071 {
2072 	int val;
2073 
2074 	spin_lock(&fmp->lock);
2075 	fmeter_update(fmp);
2076 	val = fmp->val;
2077 	spin_unlock(&fmp->lock);
2078 	return val;
2079 }
2080 
2081 static struct cpuset *cpuset_attach_old_cs;
2082 
2083 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2084 static int cpuset_can_attach(struct cgroup_taskset *tset)
2085 {
2086 	struct cgroup_subsys_state *css;
2087 	struct cpuset *cs;
2088 	struct task_struct *task;
2089 	int ret;
2090 
2091 	/* used later by cpuset_attach() */
2092 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2093 	cs = css_cs(css);
2094 
2095 	mutex_lock(&cpuset_mutex);
2096 
2097 	/* allow moving tasks into an empty cpuset if on default hierarchy */
2098 	ret = -ENOSPC;
2099 	if (!is_in_v2_mode() &&
2100 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2101 		goto out_unlock;
2102 
2103 	cgroup_taskset_for_each(task, css, tset) {
2104 		ret = task_can_attach(task, cs->cpus_allowed);
2105 		if (ret)
2106 			goto out_unlock;
2107 		ret = security_task_setscheduler(task);
2108 		if (ret)
2109 			goto out_unlock;
2110 	}
2111 
2112 	/*
2113 	 * Mark attach is in progress.  This makes validate_change() fail
2114 	 * changes which zero cpus/mems_allowed.
2115 	 */
2116 	cs->attach_in_progress++;
2117 	ret = 0;
2118 out_unlock:
2119 	mutex_unlock(&cpuset_mutex);
2120 	return ret;
2121 }
2122 
2123 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2124 {
2125 	struct cgroup_subsys_state *css;
2126 
2127 	cgroup_taskset_first(tset, &css);
2128 
2129 	mutex_lock(&cpuset_mutex);
2130 	css_cs(css)->attach_in_progress--;
2131 	mutex_unlock(&cpuset_mutex);
2132 }
2133 
2134 /*
2135  * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
2136  * but we can't allocate it dynamically there.  Define it global and
2137  * allocate from cpuset_init().
2138  */
2139 static cpumask_var_t cpus_attach;
2140 
2141 static void cpuset_attach(struct cgroup_taskset *tset)
2142 {
2143 	/* static buf protected by cpuset_mutex */
2144 	static nodemask_t cpuset_attach_nodemask_to;
2145 	struct task_struct *task;
2146 	struct task_struct *leader;
2147 	struct cgroup_subsys_state *css;
2148 	struct cpuset *cs;
2149 	struct cpuset *oldcs = cpuset_attach_old_cs;
2150 
2151 	cgroup_taskset_first(tset, &css);
2152 	cs = css_cs(css);
2153 
2154 	mutex_lock(&cpuset_mutex);
2155 
2156 	/* prepare for attach */
2157 	if (cs == &top_cpuset)
2158 		cpumask_copy(cpus_attach, cpu_possible_mask);
2159 	else
2160 		guarantee_online_cpus(cs, cpus_attach);
2161 
2162 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2163 
2164 	cgroup_taskset_for_each(task, css, tset) {
2165 		/*
2166 		 * can_attach beforehand should guarantee that this doesn't
2167 		 * fail.  TODO: have a better way to handle failure here
2168 		 */
2169 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2170 
2171 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2172 		cpuset_update_task_spread_flag(cs, task);
2173 	}
2174 
2175 	/*
2176 	 * Change mm for all threadgroup leaders. This is expensive and may
2177 	 * sleep and should be moved outside migration path proper.
2178 	 */
2179 	cpuset_attach_nodemask_to = cs->effective_mems;
2180 	cgroup_taskset_for_each_leader(leader, css, tset) {
2181 		struct mm_struct *mm = get_task_mm(leader);
2182 
2183 		if (mm) {
2184 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2185 
2186 			/*
2187 			 * old_mems_allowed is the same with mems_allowed
2188 			 * here, except if this task is being moved
2189 			 * automatically due to hotplug.  In that case
2190 			 * @mems_allowed has been updated and is empty, so
2191 			 * @old_mems_allowed is the right nodesets that we
2192 			 * migrate mm from.
2193 			 */
2194 			if (is_memory_migrate(cs))
2195 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2196 						  &cpuset_attach_nodemask_to);
2197 			else
2198 				mmput(mm);
2199 		}
2200 	}
2201 
2202 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2203 
2204 	cs->attach_in_progress--;
2205 	if (!cs->attach_in_progress)
2206 		wake_up(&cpuset_attach_wq);
2207 
2208 	mutex_unlock(&cpuset_mutex);
2209 }
2210 
2211 /* The various types of files and directories in a cpuset file system */
2212 
2213 typedef enum {
2214 	FILE_MEMORY_MIGRATE,
2215 	FILE_CPULIST,
2216 	FILE_MEMLIST,
2217 	FILE_EFFECTIVE_CPULIST,
2218 	FILE_EFFECTIVE_MEMLIST,
2219 	FILE_SUBPARTS_CPULIST,
2220 	FILE_CPU_EXCLUSIVE,
2221 	FILE_MEM_EXCLUSIVE,
2222 	FILE_MEM_HARDWALL,
2223 	FILE_SCHED_LOAD_BALANCE,
2224 	FILE_PARTITION_ROOT,
2225 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2226 	FILE_MEMORY_PRESSURE_ENABLED,
2227 	FILE_MEMORY_PRESSURE,
2228 	FILE_SPREAD_PAGE,
2229 	FILE_SPREAD_SLAB,
2230 } cpuset_filetype_t;
2231 
2232 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2233 			    u64 val)
2234 {
2235 	struct cpuset *cs = css_cs(css);
2236 	cpuset_filetype_t type = cft->private;
2237 	int retval = 0;
2238 
2239 	mutex_lock(&cpuset_mutex);
2240 	if (!is_cpuset_online(cs)) {
2241 		retval = -ENODEV;
2242 		goto out_unlock;
2243 	}
2244 
2245 	switch (type) {
2246 	case FILE_CPU_EXCLUSIVE:
2247 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2248 		break;
2249 	case FILE_MEM_EXCLUSIVE:
2250 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2251 		break;
2252 	case FILE_MEM_HARDWALL:
2253 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2254 		break;
2255 	case FILE_SCHED_LOAD_BALANCE:
2256 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2257 		break;
2258 	case FILE_MEMORY_MIGRATE:
2259 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2260 		break;
2261 	case FILE_MEMORY_PRESSURE_ENABLED:
2262 		cpuset_memory_pressure_enabled = !!val;
2263 		break;
2264 	case FILE_SPREAD_PAGE:
2265 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2266 		break;
2267 	case FILE_SPREAD_SLAB:
2268 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2269 		break;
2270 	default:
2271 		retval = -EINVAL;
2272 		break;
2273 	}
2274 out_unlock:
2275 	mutex_unlock(&cpuset_mutex);
2276 	return retval;
2277 }
2278 
2279 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2280 			    s64 val)
2281 {
2282 	struct cpuset *cs = css_cs(css);
2283 	cpuset_filetype_t type = cft->private;
2284 	int retval = -ENODEV;
2285 
2286 	mutex_lock(&cpuset_mutex);
2287 	if (!is_cpuset_online(cs))
2288 		goto out_unlock;
2289 
2290 	switch (type) {
2291 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2292 		retval = update_relax_domain_level(cs, val);
2293 		break;
2294 	default:
2295 		retval = -EINVAL;
2296 		break;
2297 	}
2298 out_unlock:
2299 	mutex_unlock(&cpuset_mutex);
2300 	return retval;
2301 }
2302 
2303 /*
2304  * Common handling for a write to a "cpus" or "mems" file.
2305  */
2306 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2307 				    char *buf, size_t nbytes, loff_t off)
2308 {
2309 	struct cpuset *cs = css_cs(of_css(of));
2310 	struct cpuset *trialcs;
2311 	int retval = -ENODEV;
2312 
2313 	buf = strstrip(buf);
2314 
2315 	/*
2316 	 * CPU or memory hotunplug may leave @cs w/o any execution
2317 	 * resources, in which case the hotplug code asynchronously updates
2318 	 * configuration and transfers all tasks to the nearest ancestor
2319 	 * which can execute.
2320 	 *
2321 	 * As writes to "cpus" or "mems" may restore @cs's execution
2322 	 * resources, wait for the previously scheduled operations before
2323 	 * proceeding, so that we don't end up keep removing tasks added
2324 	 * after execution capability is restored.
2325 	 *
2326 	 * cpuset_hotplug_work calls back into cgroup core via
2327 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2328 	 * operation like this one can lead to a deadlock through kernfs
2329 	 * active_ref protection.  Let's break the protection.  Losing the
2330 	 * protection is okay as we check whether @cs is online after
2331 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
2332 	 * hierarchies.
2333 	 */
2334 	css_get(&cs->css);
2335 	kernfs_break_active_protection(of->kn);
2336 	flush_work(&cpuset_hotplug_work);
2337 
2338 	mutex_lock(&cpuset_mutex);
2339 	if (!is_cpuset_online(cs))
2340 		goto out_unlock;
2341 
2342 	trialcs = alloc_trial_cpuset(cs);
2343 	if (!trialcs) {
2344 		retval = -ENOMEM;
2345 		goto out_unlock;
2346 	}
2347 
2348 	switch (of_cft(of)->private) {
2349 	case FILE_CPULIST:
2350 		retval = update_cpumask(cs, trialcs, buf);
2351 		break;
2352 	case FILE_MEMLIST:
2353 		retval = update_nodemask(cs, trialcs, buf);
2354 		break;
2355 	default:
2356 		retval = -EINVAL;
2357 		break;
2358 	}
2359 
2360 	free_cpuset(trialcs);
2361 out_unlock:
2362 	mutex_unlock(&cpuset_mutex);
2363 	kernfs_unbreak_active_protection(of->kn);
2364 	css_put(&cs->css);
2365 	flush_workqueue(cpuset_migrate_mm_wq);
2366 	return retval ?: nbytes;
2367 }
2368 
2369 /*
2370  * These ascii lists should be read in a single call, by using a user
2371  * buffer large enough to hold the entire map.  If read in smaller
2372  * chunks, there is no guarantee of atomicity.  Since the display format
2373  * used, list of ranges of sequential numbers, is variable length,
2374  * and since these maps can change value dynamically, one could read
2375  * gibberish by doing partial reads while a list was changing.
2376  */
2377 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2378 {
2379 	struct cpuset *cs = css_cs(seq_css(sf));
2380 	cpuset_filetype_t type = seq_cft(sf)->private;
2381 	int ret = 0;
2382 
2383 	spin_lock_irq(&callback_lock);
2384 
2385 	switch (type) {
2386 	case FILE_CPULIST:
2387 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2388 		break;
2389 	case FILE_MEMLIST:
2390 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2391 		break;
2392 	case FILE_EFFECTIVE_CPULIST:
2393 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2394 		break;
2395 	case FILE_EFFECTIVE_MEMLIST:
2396 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2397 		break;
2398 	case FILE_SUBPARTS_CPULIST:
2399 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2400 		break;
2401 	default:
2402 		ret = -EINVAL;
2403 	}
2404 
2405 	spin_unlock_irq(&callback_lock);
2406 	return ret;
2407 }
2408 
2409 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2410 {
2411 	struct cpuset *cs = css_cs(css);
2412 	cpuset_filetype_t type = cft->private;
2413 	switch (type) {
2414 	case FILE_CPU_EXCLUSIVE:
2415 		return is_cpu_exclusive(cs);
2416 	case FILE_MEM_EXCLUSIVE:
2417 		return is_mem_exclusive(cs);
2418 	case FILE_MEM_HARDWALL:
2419 		return is_mem_hardwall(cs);
2420 	case FILE_SCHED_LOAD_BALANCE:
2421 		return is_sched_load_balance(cs);
2422 	case FILE_MEMORY_MIGRATE:
2423 		return is_memory_migrate(cs);
2424 	case FILE_MEMORY_PRESSURE_ENABLED:
2425 		return cpuset_memory_pressure_enabled;
2426 	case FILE_MEMORY_PRESSURE:
2427 		return fmeter_getrate(&cs->fmeter);
2428 	case FILE_SPREAD_PAGE:
2429 		return is_spread_page(cs);
2430 	case FILE_SPREAD_SLAB:
2431 		return is_spread_slab(cs);
2432 	default:
2433 		BUG();
2434 	}
2435 
2436 	/* Unreachable but makes gcc happy */
2437 	return 0;
2438 }
2439 
2440 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2441 {
2442 	struct cpuset *cs = css_cs(css);
2443 	cpuset_filetype_t type = cft->private;
2444 	switch (type) {
2445 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2446 		return cs->relax_domain_level;
2447 	default:
2448 		BUG();
2449 	}
2450 
2451 	/* Unrechable but makes gcc happy */
2452 	return 0;
2453 }
2454 
2455 static int sched_partition_show(struct seq_file *seq, void *v)
2456 {
2457 	struct cpuset *cs = css_cs(seq_css(seq));
2458 
2459 	switch (cs->partition_root_state) {
2460 	case PRS_ENABLED:
2461 		seq_puts(seq, "root\n");
2462 		break;
2463 	case PRS_DISABLED:
2464 		seq_puts(seq, "member\n");
2465 		break;
2466 	case PRS_ERROR:
2467 		seq_puts(seq, "root invalid\n");
2468 		break;
2469 	}
2470 	return 0;
2471 }
2472 
2473 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2474 				     size_t nbytes, loff_t off)
2475 {
2476 	struct cpuset *cs = css_cs(of_css(of));
2477 	int val;
2478 	int retval = -ENODEV;
2479 
2480 	buf = strstrip(buf);
2481 
2482 	/*
2483 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2484 	 */
2485 	if (!strcmp(buf, "root"))
2486 		val = PRS_ENABLED;
2487 	else if (!strcmp(buf, "member"))
2488 		val = PRS_DISABLED;
2489 	else
2490 		return -EINVAL;
2491 
2492 	css_get(&cs->css);
2493 	mutex_lock(&cpuset_mutex);
2494 	if (!is_cpuset_online(cs))
2495 		goto out_unlock;
2496 
2497 	retval = update_prstate(cs, val);
2498 out_unlock:
2499 	mutex_unlock(&cpuset_mutex);
2500 	css_put(&cs->css);
2501 	return retval ?: nbytes;
2502 }
2503 
2504 /*
2505  * for the common functions, 'private' gives the type of file
2506  */
2507 
2508 static struct cftype legacy_files[] = {
2509 	{
2510 		.name = "cpus",
2511 		.seq_show = cpuset_common_seq_show,
2512 		.write = cpuset_write_resmask,
2513 		.max_write_len = (100U + 6 * NR_CPUS),
2514 		.private = FILE_CPULIST,
2515 	},
2516 
2517 	{
2518 		.name = "mems",
2519 		.seq_show = cpuset_common_seq_show,
2520 		.write = cpuset_write_resmask,
2521 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2522 		.private = FILE_MEMLIST,
2523 	},
2524 
2525 	{
2526 		.name = "effective_cpus",
2527 		.seq_show = cpuset_common_seq_show,
2528 		.private = FILE_EFFECTIVE_CPULIST,
2529 	},
2530 
2531 	{
2532 		.name = "effective_mems",
2533 		.seq_show = cpuset_common_seq_show,
2534 		.private = FILE_EFFECTIVE_MEMLIST,
2535 	},
2536 
2537 	{
2538 		.name = "cpu_exclusive",
2539 		.read_u64 = cpuset_read_u64,
2540 		.write_u64 = cpuset_write_u64,
2541 		.private = FILE_CPU_EXCLUSIVE,
2542 	},
2543 
2544 	{
2545 		.name = "mem_exclusive",
2546 		.read_u64 = cpuset_read_u64,
2547 		.write_u64 = cpuset_write_u64,
2548 		.private = FILE_MEM_EXCLUSIVE,
2549 	},
2550 
2551 	{
2552 		.name = "mem_hardwall",
2553 		.read_u64 = cpuset_read_u64,
2554 		.write_u64 = cpuset_write_u64,
2555 		.private = FILE_MEM_HARDWALL,
2556 	},
2557 
2558 	{
2559 		.name = "sched_load_balance",
2560 		.read_u64 = cpuset_read_u64,
2561 		.write_u64 = cpuset_write_u64,
2562 		.private = FILE_SCHED_LOAD_BALANCE,
2563 	},
2564 
2565 	{
2566 		.name = "sched_relax_domain_level",
2567 		.read_s64 = cpuset_read_s64,
2568 		.write_s64 = cpuset_write_s64,
2569 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2570 	},
2571 
2572 	{
2573 		.name = "memory_migrate",
2574 		.read_u64 = cpuset_read_u64,
2575 		.write_u64 = cpuset_write_u64,
2576 		.private = FILE_MEMORY_MIGRATE,
2577 	},
2578 
2579 	{
2580 		.name = "memory_pressure",
2581 		.read_u64 = cpuset_read_u64,
2582 		.private = FILE_MEMORY_PRESSURE,
2583 	},
2584 
2585 	{
2586 		.name = "memory_spread_page",
2587 		.read_u64 = cpuset_read_u64,
2588 		.write_u64 = cpuset_write_u64,
2589 		.private = FILE_SPREAD_PAGE,
2590 	},
2591 
2592 	{
2593 		.name = "memory_spread_slab",
2594 		.read_u64 = cpuset_read_u64,
2595 		.write_u64 = cpuset_write_u64,
2596 		.private = FILE_SPREAD_SLAB,
2597 	},
2598 
2599 	{
2600 		.name = "memory_pressure_enabled",
2601 		.flags = CFTYPE_ONLY_ON_ROOT,
2602 		.read_u64 = cpuset_read_u64,
2603 		.write_u64 = cpuset_write_u64,
2604 		.private = FILE_MEMORY_PRESSURE_ENABLED,
2605 	},
2606 
2607 	{ }	/* terminate */
2608 };
2609 
2610 /*
2611  * This is currently a minimal set for the default hierarchy. It can be
2612  * expanded later on by migrating more features and control files from v1.
2613  */
2614 static struct cftype dfl_files[] = {
2615 	{
2616 		.name = "cpus",
2617 		.seq_show = cpuset_common_seq_show,
2618 		.write = cpuset_write_resmask,
2619 		.max_write_len = (100U + 6 * NR_CPUS),
2620 		.private = FILE_CPULIST,
2621 		.flags = CFTYPE_NOT_ON_ROOT,
2622 	},
2623 
2624 	{
2625 		.name = "mems",
2626 		.seq_show = cpuset_common_seq_show,
2627 		.write = cpuset_write_resmask,
2628 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2629 		.private = FILE_MEMLIST,
2630 		.flags = CFTYPE_NOT_ON_ROOT,
2631 	},
2632 
2633 	{
2634 		.name = "cpus.effective",
2635 		.seq_show = cpuset_common_seq_show,
2636 		.private = FILE_EFFECTIVE_CPULIST,
2637 	},
2638 
2639 	{
2640 		.name = "mems.effective",
2641 		.seq_show = cpuset_common_seq_show,
2642 		.private = FILE_EFFECTIVE_MEMLIST,
2643 	},
2644 
2645 	{
2646 		.name = "cpus.partition",
2647 		.seq_show = sched_partition_show,
2648 		.write = sched_partition_write,
2649 		.private = FILE_PARTITION_ROOT,
2650 		.flags = CFTYPE_NOT_ON_ROOT,
2651 	},
2652 
2653 	{
2654 		.name = "cpus.subpartitions",
2655 		.seq_show = cpuset_common_seq_show,
2656 		.private = FILE_SUBPARTS_CPULIST,
2657 		.flags = CFTYPE_DEBUG,
2658 	},
2659 
2660 	{ }	/* terminate */
2661 };
2662 
2663 
2664 /*
2665  *	cpuset_css_alloc - allocate a cpuset css
2666  *	cgrp:	control group that the new cpuset will be part of
2667  */
2668 
2669 static struct cgroup_subsys_state *
2670 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2671 {
2672 	struct cpuset *cs;
2673 
2674 	if (!parent_css)
2675 		return &top_cpuset.css;
2676 
2677 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2678 	if (!cs)
2679 		return ERR_PTR(-ENOMEM);
2680 
2681 	if (alloc_cpumasks(cs, NULL)) {
2682 		kfree(cs);
2683 		return ERR_PTR(-ENOMEM);
2684 	}
2685 
2686 	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2687 	nodes_clear(cs->mems_allowed);
2688 	nodes_clear(cs->effective_mems);
2689 	fmeter_init(&cs->fmeter);
2690 	cs->relax_domain_level = -1;
2691 
2692 	return &cs->css;
2693 }
2694 
2695 static int cpuset_css_online(struct cgroup_subsys_state *css)
2696 {
2697 	struct cpuset *cs = css_cs(css);
2698 	struct cpuset *parent = parent_cs(cs);
2699 	struct cpuset *tmp_cs;
2700 	struct cgroup_subsys_state *pos_css;
2701 
2702 	if (!parent)
2703 		return 0;
2704 
2705 	mutex_lock(&cpuset_mutex);
2706 
2707 	set_bit(CS_ONLINE, &cs->flags);
2708 	if (is_spread_page(parent))
2709 		set_bit(CS_SPREAD_PAGE, &cs->flags);
2710 	if (is_spread_slab(parent))
2711 		set_bit(CS_SPREAD_SLAB, &cs->flags);
2712 
2713 	cpuset_inc();
2714 
2715 	spin_lock_irq(&callback_lock);
2716 	if (is_in_v2_mode()) {
2717 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2718 		cs->effective_mems = parent->effective_mems;
2719 		cs->use_parent_ecpus = true;
2720 		parent->child_ecpus_count++;
2721 	}
2722 	spin_unlock_irq(&callback_lock);
2723 
2724 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2725 		goto out_unlock;
2726 
2727 	/*
2728 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2729 	 * set.  This flag handling is implemented in cgroup core for
2730 	 * histrical reasons - the flag may be specified during mount.
2731 	 *
2732 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2733 	 * refuse to clone the configuration - thereby refusing the task to
2734 	 * be entered, and as a result refusing the sys_unshare() or
2735 	 * clone() which initiated it.  If this becomes a problem for some
2736 	 * users who wish to allow that scenario, then this could be
2737 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2738 	 * (and likewise for mems) to the new cgroup.
2739 	 */
2740 	rcu_read_lock();
2741 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2742 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2743 			rcu_read_unlock();
2744 			goto out_unlock;
2745 		}
2746 	}
2747 	rcu_read_unlock();
2748 
2749 	spin_lock_irq(&callback_lock);
2750 	cs->mems_allowed = parent->mems_allowed;
2751 	cs->effective_mems = parent->mems_allowed;
2752 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2753 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2754 	spin_unlock_irq(&callback_lock);
2755 out_unlock:
2756 	mutex_unlock(&cpuset_mutex);
2757 	return 0;
2758 }
2759 
2760 /*
2761  * If the cpuset being removed has its flag 'sched_load_balance'
2762  * enabled, then simulate turning sched_load_balance off, which
2763  * will call rebuild_sched_domains_locked(). That is not needed
2764  * in the default hierarchy where only changes in partition
2765  * will cause repartitioning.
2766  *
2767  * If the cpuset has the 'sched.partition' flag enabled, simulate
2768  * turning 'sched.partition" off.
2769  */
2770 
2771 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2772 {
2773 	struct cpuset *cs = css_cs(css);
2774 
2775 	mutex_lock(&cpuset_mutex);
2776 
2777 	if (is_partition_root(cs))
2778 		update_prstate(cs, 0);
2779 
2780 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2781 	    is_sched_load_balance(cs))
2782 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2783 
2784 	if (cs->use_parent_ecpus) {
2785 		struct cpuset *parent = parent_cs(cs);
2786 
2787 		cs->use_parent_ecpus = false;
2788 		parent->child_ecpus_count--;
2789 	}
2790 
2791 	cpuset_dec();
2792 	clear_bit(CS_ONLINE, &cs->flags);
2793 
2794 	mutex_unlock(&cpuset_mutex);
2795 }
2796 
2797 static void cpuset_css_free(struct cgroup_subsys_state *css)
2798 {
2799 	struct cpuset *cs = css_cs(css);
2800 
2801 	free_cpuset(cs);
2802 }
2803 
2804 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2805 {
2806 	mutex_lock(&cpuset_mutex);
2807 	spin_lock_irq(&callback_lock);
2808 
2809 	if (is_in_v2_mode()) {
2810 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2811 		top_cpuset.mems_allowed = node_possible_map;
2812 	} else {
2813 		cpumask_copy(top_cpuset.cpus_allowed,
2814 			     top_cpuset.effective_cpus);
2815 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2816 	}
2817 
2818 	spin_unlock_irq(&callback_lock);
2819 	mutex_unlock(&cpuset_mutex);
2820 }
2821 
2822 /*
2823  * Make sure the new task conform to the current state of its parent,
2824  * which could have been changed by cpuset just after it inherits the
2825  * state from the parent and before it sits on the cgroup's task list.
2826  */
2827 static void cpuset_fork(struct task_struct *task)
2828 {
2829 	if (task_css_is_root(task, cpuset_cgrp_id))
2830 		return;
2831 
2832 	set_cpus_allowed_ptr(task, &current->cpus_allowed);
2833 	task->mems_allowed = current->mems_allowed;
2834 }
2835 
2836 struct cgroup_subsys cpuset_cgrp_subsys = {
2837 	.css_alloc	= cpuset_css_alloc,
2838 	.css_online	= cpuset_css_online,
2839 	.css_offline	= cpuset_css_offline,
2840 	.css_free	= cpuset_css_free,
2841 	.can_attach	= cpuset_can_attach,
2842 	.cancel_attach	= cpuset_cancel_attach,
2843 	.attach		= cpuset_attach,
2844 	.post_attach	= cpuset_post_attach,
2845 	.bind		= cpuset_bind,
2846 	.fork		= cpuset_fork,
2847 	.legacy_cftypes	= legacy_files,
2848 	.dfl_cftypes	= dfl_files,
2849 	.early_init	= true,
2850 	.threaded	= true,
2851 };
2852 
2853 /**
2854  * cpuset_init - initialize cpusets at system boot
2855  *
2856  * Description: Initialize top_cpuset and the cpuset internal file system,
2857  **/
2858 
2859 int __init cpuset_init(void)
2860 {
2861 	int err = 0;
2862 
2863 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2864 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2865 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2866 
2867 	cpumask_setall(top_cpuset.cpus_allowed);
2868 	nodes_setall(top_cpuset.mems_allowed);
2869 	cpumask_setall(top_cpuset.effective_cpus);
2870 	nodes_setall(top_cpuset.effective_mems);
2871 
2872 	fmeter_init(&top_cpuset.fmeter);
2873 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2874 	top_cpuset.relax_domain_level = -1;
2875 
2876 	err = register_filesystem(&cpuset_fs_type);
2877 	if (err < 0)
2878 		return err;
2879 
2880 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2881 
2882 	return 0;
2883 }
2884 
2885 /*
2886  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2887  * or memory nodes, we need to walk over the cpuset hierarchy,
2888  * removing that CPU or node from all cpusets.  If this removes the
2889  * last CPU or node from a cpuset, then move the tasks in the empty
2890  * cpuset to its next-highest non-empty parent.
2891  */
2892 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2893 {
2894 	struct cpuset *parent;
2895 
2896 	/*
2897 	 * Find its next-highest non-empty parent, (top cpuset
2898 	 * has online cpus, so can't be empty).
2899 	 */
2900 	parent = parent_cs(cs);
2901 	while (cpumask_empty(parent->cpus_allowed) ||
2902 			nodes_empty(parent->mems_allowed))
2903 		parent = parent_cs(parent);
2904 
2905 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2906 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2907 		pr_cont_cgroup_name(cs->css.cgroup);
2908 		pr_cont("\n");
2909 	}
2910 }
2911 
2912 static void
2913 hotplug_update_tasks_legacy(struct cpuset *cs,
2914 			    struct cpumask *new_cpus, nodemask_t *new_mems,
2915 			    bool cpus_updated, bool mems_updated)
2916 {
2917 	bool is_empty;
2918 
2919 	spin_lock_irq(&callback_lock);
2920 	cpumask_copy(cs->cpus_allowed, new_cpus);
2921 	cpumask_copy(cs->effective_cpus, new_cpus);
2922 	cs->mems_allowed = *new_mems;
2923 	cs->effective_mems = *new_mems;
2924 	spin_unlock_irq(&callback_lock);
2925 
2926 	/*
2927 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2928 	 * as the tasks will be migratecd to an ancestor.
2929 	 */
2930 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2931 		update_tasks_cpumask(cs);
2932 	if (mems_updated && !nodes_empty(cs->mems_allowed))
2933 		update_tasks_nodemask(cs);
2934 
2935 	is_empty = cpumask_empty(cs->cpus_allowed) ||
2936 		   nodes_empty(cs->mems_allowed);
2937 
2938 	mutex_unlock(&cpuset_mutex);
2939 
2940 	/*
2941 	 * Move tasks to the nearest ancestor with execution resources,
2942 	 * This is full cgroup operation which will also call back into
2943 	 * cpuset. Should be done outside any lock.
2944 	 */
2945 	if (is_empty)
2946 		remove_tasks_in_empty_cpuset(cs);
2947 
2948 	mutex_lock(&cpuset_mutex);
2949 }
2950 
2951 static void
2952 hotplug_update_tasks(struct cpuset *cs,
2953 		     struct cpumask *new_cpus, nodemask_t *new_mems,
2954 		     bool cpus_updated, bool mems_updated)
2955 {
2956 	if (cpumask_empty(new_cpus))
2957 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2958 	if (nodes_empty(*new_mems))
2959 		*new_mems = parent_cs(cs)->effective_mems;
2960 
2961 	spin_lock_irq(&callback_lock);
2962 	cpumask_copy(cs->effective_cpus, new_cpus);
2963 	cs->effective_mems = *new_mems;
2964 	spin_unlock_irq(&callback_lock);
2965 
2966 	if (cpus_updated)
2967 		update_tasks_cpumask(cs);
2968 	if (mems_updated)
2969 		update_tasks_nodemask(cs);
2970 }
2971 
2972 static bool force_rebuild;
2973 
2974 void cpuset_force_rebuild(void)
2975 {
2976 	force_rebuild = true;
2977 }
2978 
2979 /**
2980  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2981  * @cs: cpuset in interest
2982  * @tmp: the tmpmasks structure pointer
2983  *
2984  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2985  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
2986  * all its tasks are moved to the nearest ancestor with both resources.
2987  */
2988 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
2989 {
2990 	static cpumask_t new_cpus;
2991 	static nodemask_t new_mems;
2992 	bool cpus_updated;
2993 	bool mems_updated;
2994 	struct cpuset *parent;
2995 retry:
2996 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2997 
2998 	mutex_lock(&cpuset_mutex);
2999 
3000 	/*
3001 	 * We have raced with task attaching. We wait until attaching
3002 	 * is finished, so we won't attach a task to an empty cpuset.
3003 	 */
3004 	if (cs->attach_in_progress) {
3005 		mutex_unlock(&cpuset_mutex);
3006 		goto retry;
3007 	}
3008 
3009 	parent =  parent_cs(cs);
3010 	compute_effective_cpumask(&new_cpus, cs, parent);
3011 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3012 
3013 	if (cs->nr_subparts_cpus)
3014 		/*
3015 		 * Make sure that CPUs allocated to child partitions
3016 		 * do not show up in effective_cpus.
3017 		 */
3018 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3019 
3020 	if (!tmp || !cs->partition_root_state)
3021 		goto update_tasks;
3022 
3023 	/*
3024 	 * In the unlikely event that a partition root has empty
3025 	 * effective_cpus or its parent becomes erroneous, we have to
3026 	 * transition it to the erroneous state.
3027 	 */
3028 	if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3029 	   (parent->partition_root_state == PRS_ERROR))) {
3030 		if (cs->nr_subparts_cpus) {
3031 			cs->nr_subparts_cpus = 0;
3032 			cpumask_clear(cs->subparts_cpus);
3033 			compute_effective_cpumask(&new_cpus, cs, parent);
3034 		}
3035 
3036 		/*
3037 		 * If the effective_cpus is empty because the child
3038 		 * partitions take away all the CPUs, we can keep
3039 		 * the current partition and let the child partitions
3040 		 * fight for available CPUs.
3041 		 */
3042 		if ((parent->partition_root_state == PRS_ERROR) ||
3043 		     cpumask_empty(&new_cpus)) {
3044 			update_parent_subparts_cpumask(cs, partcmd_disable,
3045 						       NULL, tmp);
3046 			cs->partition_root_state = PRS_ERROR;
3047 		}
3048 		cpuset_force_rebuild();
3049 	}
3050 
3051 	/*
3052 	 * On the other hand, an erroneous partition root may be transitioned
3053 	 * back to a regular one or a partition root with no CPU allocated
3054 	 * from the parent may change to erroneous.
3055 	 */
3056 	if (is_partition_root(parent) &&
3057 	   ((cs->partition_root_state == PRS_ERROR) ||
3058 	    !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3059 	     update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3060 		cpuset_force_rebuild();
3061 
3062 update_tasks:
3063 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3064 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3065 
3066 	if (is_in_v2_mode())
3067 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3068 				     cpus_updated, mems_updated);
3069 	else
3070 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3071 					    cpus_updated, mems_updated);
3072 
3073 	mutex_unlock(&cpuset_mutex);
3074 }
3075 
3076 /**
3077  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3078  *
3079  * This function is called after either CPU or memory configuration has
3080  * changed and updates cpuset accordingly.  The top_cpuset is always
3081  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3082  * order to make cpusets transparent (of no affect) on systems that are
3083  * actively using CPU hotplug but making no active use of cpusets.
3084  *
3085  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3086  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3087  * all descendants.
3088  *
3089  * Note that CPU offlining during suspend is ignored.  We don't modify
3090  * cpusets across suspend/resume cycles at all.
3091  */
3092 static void cpuset_hotplug_workfn(struct work_struct *work)
3093 {
3094 	static cpumask_t new_cpus;
3095 	static nodemask_t new_mems;
3096 	bool cpus_updated, mems_updated;
3097 	bool on_dfl = is_in_v2_mode();
3098 	struct tmpmasks tmp, *ptmp = NULL;
3099 
3100 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3101 		ptmp = &tmp;
3102 
3103 	mutex_lock(&cpuset_mutex);
3104 
3105 	/* fetch the available cpus/mems and find out which changed how */
3106 	cpumask_copy(&new_cpus, cpu_active_mask);
3107 	new_mems = node_states[N_MEMORY];
3108 
3109 	/*
3110 	 * If subparts_cpus is populated, it is likely that the check below
3111 	 * will produce a false positive on cpus_updated when the cpu list
3112 	 * isn't changed. It is extra work, but it is better to be safe.
3113 	 */
3114 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3115 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3116 
3117 	/* synchronize cpus_allowed to cpu_active_mask */
3118 	if (cpus_updated) {
3119 		spin_lock_irq(&callback_lock);
3120 		if (!on_dfl)
3121 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3122 		/*
3123 		 * Make sure that CPUs allocated to child partitions
3124 		 * do not show up in effective_cpus. If no CPU is left,
3125 		 * we clear the subparts_cpus & let the child partitions
3126 		 * fight for the CPUs again.
3127 		 */
3128 		if (top_cpuset.nr_subparts_cpus) {
3129 			if (cpumask_subset(&new_cpus,
3130 					   top_cpuset.subparts_cpus)) {
3131 				top_cpuset.nr_subparts_cpus = 0;
3132 				cpumask_clear(top_cpuset.subparts_cpus);
3133 			} else {
3134 				cpumask_andnot(&new_cpus, &new_cpus,
3135 					       top_cpuset.subparts_cpus);
3136 			}
3137 		}
3138 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3139 		spin_unlock_irq(&callback_lock);
3140 		/* we don't mess with cpumasks of tasks in top_cpuset */
3141 	}
3142 
3143 	/* synchronize mems_allowed to N_MEMORY */
3144 	if (mems_updated) {
3145 		spin_lock_irq(&callback_lock);
3146 		if (!on_dfl)
3147 			top_cpuset.mems_allowed = new_mems;
3148 		top_cpuset.effective_mems = new_mems;
3149 		spin_unlock_irq(&callback_lock);
3150 		update_tasks_nodemask(&top_cpuset);
3151 	}
3152 
3153 	mutex_unlock(&cpuset_mutex);
3154 
3155 	/* if cpus or mems changed, we need to propagate to descendants */
3156 	if (cpus_updated || mems_updated) {
3157 		struct cpuset *cs;
3158 		struct cgroup_subsys_state *pos_css;
3159 
3160 		rcu_read_lock();
3161 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3162 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3163 				continue;
3164 			rcu_read_unlock();
3165 
3166 			cpuset_hotplug_update_tasks(cs, ptmp);
3167 
3168 			rcu_read_lock();
3169 			css_put(&cs->css);
3170 		}
3171 		rcu_read_unlock();
3172 	}
3173 
3174 	/* rebuild sched domains if cpus_allowed has changed */
3175 	if (cpus_updated || force_rebuild) {
3176 		force_rebuild = false;
3177 		rebuild_sched_domains();
3178 	}
3179 
3180 	free_cpumasks(NULL, ptmp);
3181 }
3182 
3183 void cpuset_update_active_cpus(void)
3184 {
3185 	/*
3186 	 * We're inside cpu hotplug critical region which usually nests
3187 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3188 	 * to a work item to avoid reverse locking order.
3189 	 */
3190 	schedule_work(&cpuset_hotplug_work);
3191 }
3192 
3193 void cpuset_wait_for_hotplug(void)
3194 {
3195 	flush_work(&cpuset_hotplug_work);
3196 }
3197 
3198 /*
3199  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3200  * Call this routine anytime after node_states[N_MEMORY] changes.
3201  * See cpuset_update_active_cpus() for CPU hotplug handling.
3202  */
3203 static int cpuset_track_online_nodes(struct notifier_block *self,
3204 				unsigned long action, void *arg)
3205 {
3206 	schedule_work(&cpuset_hotplug_work);
3207 	return NOTIFY_OK;
3208 }
3209 
3210 static struct notifier_block cpuset_track_online_nodes_nb = {
3211 	.notifier_call = cpuset_track_online_nodes,
3212 	.priority = 10,		/* ??! */
3213 };
3214 
3215 /**
3216  * cpuset_init_smp - initialize cpus_allowed
3217  *
3218  * Description: Finish top cpuset after cpu, node maps are initialized
3219  */
3220 void __init cpuset_init_smp(void)
3221 {
3222 	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3223 	top_cpuset.mems_allowed = node_states[N_MEMORY];
3224 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3225 
3226 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3227 	top_cpuset.effective_mems = node_states[N_MEMORY];
3228 
3229 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3230 
3231 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3232 	BUG_ON(!cpuset_migrate_mm_wq);
3233 }
3234 
3235 /**
3236  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3237  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3238  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3239  *
3240  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3241  * attached to the specified @tsk.  Guaranteed to return some non-empty
3242  * subset of cpu_online_mask, even if this means going outside the
3243  * tasks cpuset.
3244  **/
3245 
3246 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3247 {
3248 	unsigned long flags;
3249 
3250 	spin_lock_irqsave(&callback_lock, flags);
3251 	rcu_read_lock();
3252 	guarantee_online_cpus(task_cs(tsk), pmask);
3253 	rcu_read_unlock();
3254 	spin_unlock_irqrestore(&callback_lock, flags);
3255 }
3256 
3257 /**
3258  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3259  * @tsk: pointer to task_struct with which the scheduler is struggling
3260  *
3261  * Description: In the case that the scheduler cannot find an allowed cpu in
3262  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3263  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3264  * which will not contain a sane cpumask during cases such as cpu hotplugging.
3265  * This is the absolute last resort for the scheduler and it is only used if
3266  * _every_ other avenue has been traveled.
3267  **/
3268 
3269 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3270 {
3271 	rcu_read_lock();
3272 	do_set_cpus_allowed(tsk, is_in_v2_mode() ?
3273 		task_cs(tsk)->cpus_allowed : cpu_possible_mask);
3274 	rcu_read_unlock();
3275 
3276 	/*
3277 	 * We own tsk->cpus_allowed, nobody can change it under us.
3278 	 *
3279 	 * But we used cs && cs->cpus_allowed lockless and thus can
3280 	 * race with cgroup_attach_task() or update_cpumask() and get
3281 	 * the wrong tsk->cpus_allowed. However, both cases imply the
3282 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3283 	 * which takes task_rq_lock().
3284 	 *
3285 	 * If we are called after it dropped the lock we must see all
3286 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3287 	 * set any mask even if it is not right from task_cs() pov,
3288 	 * the pending set_cpus_allowed_ptr() will fix things.
3289 	 *
3290 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3291 	 * if required.
3292 	 */
3293 }
3294 
3295 void __init cpuset_init_current_mems_allowed(void)
3296 {
3297 	nodes_setall(current->mems_allowed);
3298 }
3299 
3300 /**
3301  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3302  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3303  *
3304  * Description: Returns the nodemask_t mems_allowed of the cpuset
3305  * attached to the specified @tsk.  Guaranteed to return some non-empty
3306  * subset of node_states[N_MEMORY], even if this means going outside the
3307  * tasks cpuset.
3308  **/
3309 
3310 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3311 {
3312 	nodemask_t mask;
3313 	unsigned long flags;
3314 
3315 	spin_lock_irqsave(&callback_lock, flags);
3316 	rcu_read_lock();
3317 	guarantee_online_mems(task_cs(tsk), &mask);
3318 	rcu_read_unlock();
3319 	spin_unlock_irqrestore(&callback_lock, flags);
3320 
3321 	return mask;
3322 }
3323 
3324 /**
3325  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3326  * @nodemask: the nodemask to be checked
3327  *
3328  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3329  */
3330 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3331 {
3332 	return nodes_intersects(*nodemask, current->mems_allowed);
3333 }
3334 
3335 /*
3336  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3337  * mem_hardwall ancestor to the specified cpuset.  Call holding
3338  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3339  * (an unusual configuration), then returns the root cpuset.
3340  */
3341 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3342 {
3343 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3344 		cs = parent_cs(cs);
3345 	return cs;
3346 }
3347 
3348 /**
3349  * cpuset_node_allowed - Can we allocate on a memory node?
3350  * @node: is this an allowed node?
3351  * @gfp_mask: memory allocation flags
3352  *
3353  * If we're in interrupt, yes, we can always allocate.  If @node is set in
3354  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3355  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3356  * yes.  If current has access to memory reserves as an oom victim, yes.
3357  * Otherwise, no.
3358  *
3359  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3360  * and do not allow allocations outside the current tasks cpuset
3361  * unless the task has been OOM killed.
3362  * GFP_KERNEL allocations are not so marked, so can escape to the
3363  * nearest enclosing hardwalled ancestor cpuset.
3364  *
3365  * Scanning up parent cpusets requires callback_lock.  The
3366  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3367  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3368  * current tasks mems_allowed came up empty on the first pass over
3369  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3370  * cpuset are short of memory, might require taking the callback_lock.
3371  *
3372  * The first call here from mm/page_alloc:get_page_from_freelist()
3373  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3374  * so no allocation on a node outside the cpuset is allowed (unless
3375  * in interrupt, of course).
3376  *
3377  * The second pass through get_page_from_freelist() doesn't even call
3378  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3379  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3380  * in alloc_flags.  That logic and the checks below have the combined
3381  * affect that:
3382  *	in_interrupt - any node ok (current task context irrelevant)
3383  *	GFP_ATOMIC   - any node ok
3384  *	tsk_is_oom_victim   - any node ok
3385  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3386  *	GFP_USER     - only nodes in current tasks mems allowed ok.
3387  */
3388 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3389 {
3390 	struct cpuset *cs;		/* current cpuset ancestors */
3391 	int allowed;			/* is allocation in zone z allowed? */
3392 	unsigned long flags;
3393 
3394 	if (in_interrupt())
3395 		return true;
3396 	if (node_isset(node, current->mems_allowed))
3397 		return true;
3398 	/*
3399 	 * Allow tasks that have access to memory reserves because they have
3400 	 * been OOM killed to get memory anywhere.
3401 	 */
3402 	if (unlikely(tsk_is_oom_victim(current)))
3403 		return true;
3404 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
3405 		return false;
3406 
3407 	if (current->flags & PF_EXITING) /* Let dying task have memory */
3408 		return true;
3409 
3410 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
3411 	spin_lock_irqsave(&callback_lock, flags);
3412 
3413 	rcu_read_lock();
3414 	cs = nearest_hardwall_ancestor(task_cs(current));
3415 	allowed = node_isset(node, cs->mems_allowed);
3416 	rcu_read_unlock();
3417 
3418 	spin_unlock_irqrestore(&callback_lock, flags);
3419 	return allowed;
3420 }
3421 
3422 /**
3423  * cpuset_mem_spread_node() - On which node to begin search for a file page
3424  * cpuset_slab_spread_node() - On which node to begin search for a slab page
3425  *
3426  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3427  * tasks in a cpuset with is_spread_page or is_spread_slab set),
3428  * and if the memory allocation used cpuset_mem_spread_node()
3429  * to determine on which node to start looking, as it will for
3430  * certain page cache or slab cache pages such as used for file
3431  * system buffers and inode caches, then instead of starting on the
3432  * local node to look for a free page, rather spread the starting
3433  * node around the tasks mems_allowed nodes.
3434  *
3435  * We don't have to worry about the returned node being offline
3436  * because "it can't happen", and even if it did, it would be ok.
3437  *
3438  * The routines calling guarantee_online_mems() are careful to
3439  * only set nodes in task->mems_allowed that are online.  So it
3440  * should not be possible for the following code to return an
3441  * offline node.  But if it did, that would be ok, as this routine
3442  * is not returning the node where the allocation must be, only
3443  * the node where the search should start.  The zonelist passed to
3444  * __alloc_pages() will include all nodes.  If the slab allocator
3445  * is passed an offline node, it will fall back to the local node.
3446  * See kmem_cache_alloc_node().
3447  */
3448 
3449 static int cpuset_spread_node(int *rotor)
3450 {
3451 	return *rotor = next_node_in(*rotor, current->mems_allowed);
3452 }
3453 
3454 int cpuset_mem_spread_node(void)
3455 {
3456 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3457 		current->cpuset_mem_spread_rotor =
3458 			node_random(&current->mems_allowed);
3459 
3460 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3461 }
3462 
3463 int cpuset_slab_spread_node(void)
3464 {
3465 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3466 		current->cpuset_slab_spread_rotor =
3467 			node_random(&current->mems_allowed);
3468 
3469 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3470 }
3471 
3472 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3473 
3474 /**
3475  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3476  * @tsk1: pointer to task_struct of some task.
3477  * @tsk2: pointer to task_struct of some other task.
3478  *
3479  * Description: Return true if @tsk1's mems_allowed intersects the
3480  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3481  * one of the task's memory usage might impact the memory available
3482  * to the other.
3483  **/
3484 
3485 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3486 				   const struct task_struct *tsk2)
3487 {
3488 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3489 }
3490 
3491 /**
3492  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3493  *
3494  * Description: Prints current's name, cpuset name, and cached copy of its
3495  * mems_allowed to the kernel log.
3496  */
3497 void cpuset_print_current_mems_allowed(void)
3498 {
3499 	struct cgroup *cgrp;
3500 
3501 	rcu_read_lock();
3502 
3503 	cgrp = task_cs(current)->css.cgroup;
3504 	pr_cont(",cpuset=");
3505 	pr_cont_cgroup_name(cgrp);
3506 	pr_cont(",mems_allowed=%*pbl",
3507 		nodemask_pr_args(&current->mems_allowed));
3508 
3509 	rcu_read_unlock();
3510 }
3511 
3512 /*
3513  * Collection of memory_pressure is suppressed unless
3514  * this flag is enabled by writing "1" to the special
3515  * cpuset file 'memory_pressure_enabled' in the root cpuset.
3516  */
3517 
3518 int cpuset_memory_pressure_enabled __read_mostly;
3519 
3520 /**
3521  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3522  *
3523  * Keep a running average of the rate of synchronous (direct)
3524  * page reclaim efforts initiated by tasks in each cpuset.
3525  *
3526  * This represents the rate at which some task in the cpuset
3527  * ran low on memory on all nodes it was allowed to use, and
3528  * had to enter the kernels page reclaim code in an effort to
3529  * create more free memory by tossing clean pages or swapping
3530  * or writing dirty pages.
3531  *
3532  * Display to user space in the per-cpuset read-only file
3533  * "memory_pressure".  Value displayed is an integer
3534  * representing the recent rate of entry into the synchronous
3535  * (direct) page reclaim by any task attached to the cpuset.
3536  **/
3537 
3538 void __cpuset_memory_pressure_bump(void)
3539 {
3540 	rcu_read_lock();
3541 	fmeter_markevent(&task_cs(current)->fmeter);
3542 	rcu_read_unlock();
3543 }
3544 
3545 #ifdef CONFIG_PROC_PID_CPUSET
3546 /*
3547  * proc_cpuset_show()
3548  *  - Print tasks cpuset path into seq_file.
3549  *  - Used for /proc/<pid>/cpuset.
3550  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3551  *    doesn't really matter if tsk->cpuset changes after we read it,
3552  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
3553  *    anyway.
3554  */
3555 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3556 		     struct pid *pid, struct task_struct *tsk)
3557 {
3558 	char *buf;
3559 	struct cgroup_subsys_state *css;
3560 	int retval;
3561 
3562 	retval = -ENOMEM;
3563 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
3564 	if (!buf)
3565 		goto out;
3566 
3567 	css = task_get_css(tsk, cpuset_cgrp_id);
3568 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3569 				current->nsproxy->cgroup_ns);
3570 	css_put(css);
3571 	if (retval >= PATH_MAX)
3572 		retval = -ENAMETOOLONG;
3573 	if (retval < 0)
3574 		goto out_free;
3575 	seq_puts(m, buf);
3576 	seq_putc(m, '\n');
3577 	retval = 0;
3578 out_free:
3579 	kfree(buf);
3580 out:
3581 	return retval;
3582 }
3583 #endif /* CONFIG_PROC_PID_CPUSET */
3584 
3585 /* Display task mems_allowed in /proc/<pid>/status file. */
3586 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3587 {
3588 	seq_printf(m, "Mems_allowed:\t%*pb\n",
3589 		   nodemask_pr_args(&task->mems_allowed));
3590 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3591 		   nodemask_pr_args(&task->mems_allowed));
3592 }
3593