xref: /linux/kernel/debug/debug_core.c (revision 44f57d78)
1 /*
2  * Kernel Debug Core
3  *
4  * Maintainer: Jason Wessel <jason.wessel@windriver.com>
5  *
6  * Copyright (C) 2000-2001 VERITAS Software Corporation.
7  * Copyright (C) 2002-2004 Timesys Corporation
8  * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
9  * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz>
10  * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
11  * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
12  * Copyright (C) 2005-2009 Wind River Systems, Inc.
13  * Copyright (C) 2007 MontaVista Software, Inc.
14  * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
15  *
16  * Contributors at various stages not listed above:
17  *  Jason Wessel ( jason.wessel@windriver.com )
18  *  George Anzinger <george@mvista.com>
19  *  Anurekh Saxena (anurekh.saxena@timesys.com)
20  *  Lake Stevens Instrument Division (Glenn Engel)
21  *  Jim Kingdon, Cygnus Support.
22  *
23  * Original KGDB stub: David Grothe <dave@gcom.com>,
24  * Tigran Aivazian <tigran@sco.com>
25  *
26  * This file is licensed under the terms of the GNU General Public License
27  * version 2. This program is licensed "as is" without any warranty of any
28  * kind, whether express or implied.
29  */
30 
31 #define pr_fmt(fmt) "KGDB: " fmt
32 
33 #include <linux/pid_namespace.h>
34 #include <linux/clocksource.h>
35 #include <linux/serial_core.h>
36 #include <linux/interrupt.h>
37 #include <linux/spinlock.h>
38 #include <linux/console.h>
39 #include <linux/threads.h>
40 #include <linux/uaccess.h>
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/sched.h>
47 #include <linux/sysrq.h>
48 #include <linux/reboot.h>
49 #include <linux/init.h>
50 #include <linux/kgdb.h>
51 #include <linux/kdb.h>
52 #include <linux/nmi.h>
53 #include <linux/pid.h>
54 #include <linux/smp.h>
55 #include <linux/mm.h>
56 #include <linux/vmacache.h>
57 #include <linux/rcupdate.h>
58 #include <linux/irq.h>
59 
60 #include <asm/cacheflush.h>
61 #include <asm/byteorder.h>
62 #include <linux/atomic.h>
63 
64 #include "debug_core.h"
65 
66 static int kgdb_break_asap;
67 
68 struct debuggerinfo_struct kgdb_info[NR_CPUS];
69 
70 /**
71  * kgdb_connected - Is a host GDB connected to us?
72  */
73 int				kgdb_connected;
74 EXPORT_SYMBOL_GPL(kgdb_connected);
75 
76 /* All the KGDB handlers are installed */
77 int			kgdb_io_module_registered;
78 
79 /* Guard for recursive entry */
80 static int			exception_level;
81 
82 struct kgdb_io		*dbg_io_ops;
83 static DEFINE_SPINLOCK(kgdb_registration_lock);
84 
85 /* Action for the reboot notifiter, a global allow kdb to change it */
86 static int kgdbreboot;
87 /* kgdb console driver is loaded */
88 static int kgdb_con_registered;
89 /* determine if kgdb console output should be used */
90 static int kgdb_use_con;
91 /* Flag for alternate operations for early debugging */
92 bool dbg_is_early = true;
93 /* Next cpu to become the master debug core */
94 int dbg_switch_cpu;
95 
96 /* Use kdb or gdbserver mode */
97 int dbg_kdb_mode = 1;
98 
99 static int __init opt_kgdb_con(char *str)
100 {
101 	kgdb_use_con = 1;
102 	return 0;
103 }
104 
105 early_param("kgdbcon", opt_kgdb_con);
106 
107 module_param(kgdb_use_con, int, 0644);
108 module_param(kgdbreboot, int, 0644);
109 
110 /*
111  * Holds information about breakpoints in a kernel. These breakpoints are
112  * added and removed by gdb.
113  */
114 static struct kgdb_bkpt		kgdb_break[KGDB_MAX_BREAKPOINTS] = {
115 	[0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
116 };
117 
118 /*
119  * The CPU# of the active CPU, or -1 if none:
120  */
121 atomic_t			kgdb_active = ATOMIC_INIT(-1);
122 EXPORT_SYMBOL_GPL(kgdb_active);
123 static DEFINE_RAW_SPINLOCK(dbg_master_lock);
124 static DEFINE_RAW_SPINLOCK(dbg_slave_lock);
125 
126 /*
127  * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
128  * bootup code (which might not have percpu set up yet):
129  */
130 static atomic_t			masters_in_kgdb;
131 static atomic_t			slaves_in_kgdb;
132 static atomic_t			kgdb_break_tasklet_var;
133 atomic_t			kgdb_setting_breakpoint;
134 
135 struct task_struct		*kgdb_usethread;
136 struct task_struct		*kgdb_contthread;
137 
138 int				kgdb_single_step;
139 static pid_t			kgdb_sstep_pid;
140 
141 /* to keep track of the CPU which is doing the single stepping*/
142 atomic_t			kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
143 
144 /*
145  * If you are debugging a problem where roundup (the collection of
146  * all other CPUs) is a problem [this should be extremely rare],
147  * then use the nokgdbroundup option to avoid roundup. In that case
148  * the other CPUs might interfere with your debugging context, so
149  * use this with care:
150  */
151 static int kgdb_do_roundup = 1;
152 
153 static int __init opt_nokgdbroundup(char *str)
154 {
155 	kgdb_do_roundup = 0;
156 
157 	return 0;
158 }
159 
160 early_param("nokgdbroundup", opt_nokgdbroundup);
161 
162 /*
163  * Finally, some KGDB code :-)
164  */
165 
166 /*
167  * Weak aliases for breakpoint management,
168  * can be overriden by architectures when needed:
169  */
170 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
171 {
172 	int err;
173 
174 	err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
175 				BREAK_INSTR_SIZE);
176 	if (err)
177 		return err;
178 	err = probe_kernel_write((char *)bpt->bpt_addr,
179 				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
180 	return err;
181 }
182 
183 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
184 {
185 	return probe_kernel_write((char *)bpt->bpt_addr,
186 				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
187 }
188 
189 int __weak kgdb_validate_break_address(unsigned long addr)
190 {
191 	struct kgdb_bkpt tmp;
192 	int err;
193 	/* Validate setting the breakpoint and then removing it.  If the
194 	 * remove fails, the kernel needs to emit a bad message because we
195 	 * are deep trouble not being able to put things back the way we
196 	 * found them.
197 	 */
198 	tmp.bpt_addr = addr;
199 	err = kgdb_arch_set_breakpoint(&tmp);
200 	if (err)
201 		return err;
202 	err = kgdb_arch_remove_breakpoint(&tmp);
203 	if (err)
204 		pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n",
205 		       addr);
206 	return err;
207 }
208 
209 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
210 {
211 	return instruction_pointer(regs);
212 }
213 
214 int __weak kgdb_arch_init(void)
215 {
216 	return 0;
217 }
218 
219 int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
220 {
221 	return 0;
222 }
223 
224 #ifdef CONFIG_SMP
225 
226 /*
227  * Default (weak) implementation for kgdb_roundup_cpus
228  */
229 
230 static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd);
231 
232 void __weak kgdb_call_nmi_hook(void *ignored)
233 {
234 	/*
235 	 * NOTE: get_irq_regs() is supposed to get the registers from
236 	 * before the IPI interrupt happened and so is supposed to
237 	 * show where the processor was.  In some situations it's
238 	 * possible we might be called without an IPI, so it might be
239 	 * safer to figure out how to make kgdb_breakpoint() work
240 	 * properly here.
241 	 */
242 	kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
243 }
244 
245 void __weak kgdb_roundup_cpus(void)
246 {
247 	call_single_data_t *csd;
248 	int this_cpu = raw_smp_processor_id();
249 	int cpu;
250 	int ret;
251 
252 	for_each_online_cpu(cpu) {
253 		/* No need to roundup ourselves */
254 		if (cpu == this_cpu)
255 			continue;
256 
257 		csd = &per_cpu(kgdb_roundup_csd, cpu);
258 
259 		/*
260 		 * If it didn't round up last time, don't try again
261 		 * since smp_call_function_single_async() will block.
262 		 *
263 		 * If rounding_up is false then we know that the
264 		 * previous call must have at least started and that
265 		 * means smp_call_function_single_async() won't block.
266 		 */
267 		if (kgdb_info[cpu].rounding_up)
268 			continue;
269 		kgdb_info[cpu].rounding_up = true;
270 
271 		csd->func = kgdb_call_nmi_hook;
272 		ret = smp_call_function_single_async(cpu, csd);
273 		if (ret)
274 			kgdb_info[cpu].rounding_up = false;
275 	}
276 }
277 
278 #endif
279 
280 /*
281  * Some architectures need cache flushes when we set/clear a
282  * breakpoint:
283  */
284 static void kgdb_flush_swbreak_addr(unsigned long addr)
285 {
286 	if (!CACHE_FLUSH_IS_SAFE)
287 		return;
288 
289 	if (current->mm) {
290 		int i;
291 
292 		for (i = 0; i < VMACACHE_SIZE; i++) {
293 			if (!current->vmacache.vmas[i])
294 				continue;
295 			flush_cache_range(current->vmacache.vmas[i],
296 					  addr, addr + BREAK_INSTR_SIZE);
297 		}
298 	}
299 
300 	/* Force flush instruction cache if it was outside the mm */
301 	flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
302 }
303 
304 /*
305  * SW breakpoint management:
306  */
307 int dbg_activate_sw_breakpoints(void)
308 {
309 	int error;
310 	int ret = 0;
311 	int i;
312 
313 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
314 		if (kgdb_break[i].state != BP_SET)
315 			continue;
316 
317 		error = kgdb_arch_set_breakpoint(&kgdb_break[i]);
318 		if (error) {
319 			ret = error;
320 			pr_info("BP install failed: %lx\n",
321 				kgdb_break[i].bpt_addr);
322 			continue;
323 		}
324 
325 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
326 		kgdb_break[i].state = BP_ACTIVE;
327 	}
328 	return ret;
329 }
330 
331 int dbg_set_sw_break(unsigned long addr)
332 {
333 	int err = kgdb_validate_break_address(addr);
334 	int breakno = -1;
335 	int i;
336 
337 	if (err)
338 		return err;
339 
340 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
341 		if ((kgdb_break[i].state == BP_SET) &&
342 					(kgdb_break[i].bpt_addr == addr))
343 			return -EEXIST;
344 	}
345 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
346 		if (kgdb_break[i].state == BP_REMOVED &&
347 					kgdb_break[i].bpt_addr == addr) {
348 			breakno = i;
349 			break;
350 		}
351 	}
352 
353 	if (breakno == -1) {
354 		for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
355 			if (kgdb_break[i].state == BP_UNDEFINED) {
356 				breakno = i;
357 				break;
358 			}
359 		}
360 	}
361 
362 	if (breakno == -1)
363 		return -E2BIG;
364 
365 	kgdb_break[breakno].state = BP_SET;
366 	kgdb_break[breakno].type = BP_BREAKPOINT;
367 	kgdb_break[breakno].bpt_addr = addr;
368 
369 	return 0;
370 }
371 
372 int dbg_deactivate_sw_breakpoints(void)
373 {
374 	int error;
375 	int ret = 0;
376 	int i;
377 
378 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
379 		if (kgdb_break[i].state != BP_ACTIVE)
380 			continue;
381 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
382 		if (error) {
383 			pr_info("BP remove failed: %lx\n",
384 				kgdb_break[i].bpt_addr);
385 			ret = error;
386 		}
387 
388 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
389 		kgdb_break[i].state = BP_SET;
390 	}
391 	return ret;
392 }
393 
394 int dbg_remove_sw_break(unsigned long addr)
395 {
396 	int i;
397 
398 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
399 		if ((kgdb_break[i].state == BP_SET) &&
400 				(kgdb_break[i].bpt_addr == addr)) {
401 			kgdb_break[i].state = BP_REMOVED;
402 			return 0;
403 		}
404 	}
405 	return -ENOENT;
406 }
407 
408 int kgdb_isremovedbreak(unsigned long addr)
409 {
410 	int i;
411 
412 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
413 		if ((kgdb_break[i].state == BP_REMOVED) &&
414 					(kgdb_break[i].bpt_addr == addr))
415 			return 1;
416 	}
417 	return 0;
418 }
419 
420 int dbg_remove_all_break(void)
421 {
422 	int error;
423 	int i;
424 
425 	/* Clear memory breakpoints. */
426 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
427 		if (kgdb_break[i].state != BP_ACTIVE)
428 			goto setundefined;
429 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
430 		if (error)
431 			pr_err("breakpoint remove failed: %lx\n",
432 			       kgdb_break[i].bpt_addr);
433 setundefined:
434 		kgdb_break[i].state = BP_UNDEFINED;
435 	}
436 
437 	/* Clear hardware breakpoints. */
438 	if (arch_kgdb_ops.remove_all_hw_break)
439 		arch_kgdb_ops.remove_all_hw_break();
440 
441 	return 0;
442 }
443 
444 /*
445  * Return true if there is a valid kgdb I/O module.  Also if no
446  * debugger is attached a message can be printed to the console about
447  * waiting for the debugger to attach.
448  *
449  * The print_wait argument is only to be true when called from inside
450  * the core kgdb_handle_exception, because it will wait for the
451  * debugger to attach.
452  */
453 static int kgdb_io_ready(int print_wait)
454 {
455 	if (!dbg_io_ops)
456 		return 0;
457 	if (kgdb_connected)
458 		return 1;
459 	if (atomic_read(&kgdb_setting_breakpoint))
460 		return 1;
461 	if (print_wait) {
462 #ifdef CONFIG_KGDB_KDB
463 		if (!dbg_kdb_mode)
464 			pr_crit("waiting... or $3#33 for KDB\n");
465 #else
466 		pr_crit("Waiting for remote debugger\n");
467 #endif
468 	}
469 	return 1;
470 }
471 
472 static int kgdb_reenter_check(struct kgdb_state *ks)
473 {
474 	unsigned long addr;
475 
476 	if (atomic_read(&kgdb_active) != raw_smp_processor_id())
477 		return 0;
478 
479 	/* Panic on recursive debugger calls: */
480 	exception_level++;
481 	addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
482 	dbg_deactivate_sw_breakpoints();
483 
484 	/*
485 	 * If the break point removed ok at the place exception
486 	 * occurred, try to recover and print a warning to the end
487 	 * user because the user planted a breakpoint in a place that
488 	 * KGDB needs in order to function.
489 	 */
490 	if (dbg_remove_sw_break(addr) == 0) {
491 		exception_level = 0;
492 		kgdb_skipexception(ks->ex_vector, ks->linux_regs);
493 		dbg_activate_sw_breakpoints();
494 		pr_crit("re-enter error: breakpoint removed %lx\n", addr);
495 		WARN_ON_ONCE(1);
496 
497 		return 1;
498 	}
499 	dbg_remove_all_break();
500 	kgdb_skipexception(ks->ex_vector, ks->linux_regs);
501 
502 	if (exception_level > 1) {
503 		dump_stack();
504 		panic("Recursive entry to debugger");
505 	}
506 
507 	pr_crit("re-enter exception: ALL breakpoints killed\n");
508 #ifdef CONFIG_KGDB_KDB
509 	/* Allow kdb to debug itself one level */
510 	return 0;
511 #endif
512 	dump_stack();
513 	panic("Recursive entry to debugger");
514 
515 	return 1;
516 }
517 
518 static void dbg_touch_watchdogs(void)
519 {
520 	touch_softlockup_watchdog_sync();
521 	clocksource_touch_watchdog();
522 	rcu_cpu_stall_reset();
523 }
524 
525 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs,
526 		int exception_state)
527 {
528 	unsigned long flags;
529 	int sstep_tries = 100;
530 	int error;
531 	int cpu;
532 	int trace_on = 0;
533 	int online_cpus = num_online_cpus();
534 	u64 time_left;
535 
536 	kgdb_info[ks->cpu].enter_kgdb++;
537 	kgdb_info[ks->cpu].exception_state |= exception_state;
538 
539 	if (exception_state == DCPU_WANT_MASTER)
540 		atomic_inc(&masters_in_kgdb);
541 	else
542 		atomic_inc(&slaves_in_kgdb);
543 
544 	if (arch_kgdb_ops.disable_hw_break)
545 		arch_kgdb_ops.disable_hw_break(regs);
546 
547 acquirelock:
548 	/*
549 	 * Interrupts will be restored by the 'trap return' code, except when
550 	 * single stepping.
551 	 */
552 	local_irq_save(flags);
553 
554 	cpu = ks->cpu;
555 	kgdb_info[cpu].debuggerinfo = regs;
556 	kgdb_info[cpu].task = current;
557 	kgdb_info[cpu].ret_state = 0;
558 	kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
559 
560 	/* Make sure the above info reaches the primary CPU */
561 	smp_mb();
562 
563 	if (exception_level == 1) {
564 		if (raw_spin_trylock(&dbg_master_lock))
565 			atomic_xchg(&kgdb_active, cpu);
566 		goto cpu_master_loop;
567 	}
568 
569 	/*
570 	 * CPU will loop if it is a slave or request to become a kgdb
571 	 * master cpu and acquire the kgdb_active lock:
572 	 */
573 	while (1) {
574 cpu_loop:
575 		if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
576 			kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
577 			goto cpu_master_loop;
578 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
579 			if (raw_spin_trylock(&dbg_master_lock)) {
580 				atomic_xchg(&kgdb_active, cpu);
581 				break;
582 			}
583 		} else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
584 			if (!raw_spin_is_locked(&dbg_slave_lock))
585 				goto return_normal;
586 		} else {
587 return_normal:
588 			/* Return to normal operation by executing any
589 			 * hw breakpoint fixup.
590 			 */
591 			if (arch_kgdb_ops.correct_hw_break)
592 				arch_kgdb_ops.correct_hw_break();
593 			if (trace_on)
594 				tracing_on();
595 			kgdb_info[cpu].debuggerinfo = NULL;
596 			kgdb_info[cpu].task = NULL;
597 			kgdb_info[cpu].exception_state &=
598 				~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
599 			kgdb_info[cpu].enter_kgdb--;
600 			smp_mb__before_atomic();
601 			atomic_dec(&slaves_in_kgdb);
602 			dbg_touch_watchdogs();
603 			local_irq_restore(flags);
604 			return 0;
605 		}
606 		cpu_relax();
607 	}
608 
609 	/*
610 	 * For single stepping, try to only enter on the processor
611 	 * that was single stepping.  To guard against a deadlock, the
612 	 * kernel will only try for the value of sstep_tries before
613 	 * giving up and continuing on.
614 	 */
615 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
616 	    (kgdb_info[cpu].task &&
617 	     kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
618 		atomic_set(&kgdb_active, -1);
619 		raw_spin_unlock(&dbg_master_lock);
620 		dbg_touch_watchdogs();
621 		local_irq_restore(flags);
622 
623 		goto acquirelock;
624 	}
625 
626 	if (!kgdb_io_ready(1)) {
627 		kgdb_info[cpu].ret_state = 1;
628 		goto kgdb_restore; /* No I/O connection, resume the system */
629 	}
630 
631 	/*
632 	 * Don't enter if we have hit a removed breakpoint.
633 	 */
634 	if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
635 		goto kgdb_restore;
636 
637 	/* Call the I/O driver's pre_exception routine */
638 	if (dbg_io_ops->pre_exception)
639 		dbg_io_ops->pre_exception();
640 
641 	/*
642 	 * Get the passive CPU lock which will hold all the non-primary
643 	 * CPU in a spin state while the debugger is active
644 	 */
645 	if (!kgdb_single_step)
646 		raw_spin_lock(&dbg_slave_lock);
647 
648 #ifdef CONFIG_SMP
649 	/* If send_ready set, slaves are already waiting */
650 	if (ks->send_ready)
651 		atomic_set(ks->send_ready, 1);
652 
653 	/* Signal the other CPUs to enter kgdb_wait() */
654 	else if ((!kgdb_single_step) && kgdb_do_roundup)
655 		kgdb_roundup_cpus();
656 #endif
657 
658 	/*
659 	 * Wait for the other CPUs to be notified and be waiting for us:
660 	 */
661 	time_left = MSEC_PER_SEC;
662 	while (kgdb_do_roundup && --time_left &&
663 	       (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) !=
664 		   online_cpus)
665 		udelay(1000);
666 	if (!time_left)
667 		pr_crit("Timed out waiting for secondary CPUs.\n");
668 
669 	/*
670 	 * At this point the primary processor is completely
671 	 * in the debugger and all secondary CPUs are quiescent
672 	 */
673 	dbg_deactivate_sw_breakpoints();
674 	kgdb_single_step = 0;
675 	kgdb_contthread = current;
676 	exception_level = 0;
677 	trace_on = tracing_is_on();
678 	if (trace_on)
679 		tracing_off();
680 
681 	while (1) {
682 cpu_master_loop:
683 		if (dbg_kdb_mode) {
684 			kgdb_connected = 1;
685 			error = kdb_stub(ks);
686 			if (error == -1)
687 				continue;
688 			kgdb_connected = 0;
689 		} else {
690 			error = gdb_serial_stub(ks);
691 		}
692 
693 		if (error == DBG_PASS_EVENT) {
694 			dbg_kdb_mode = !dbg_kdb_mode;
695 		} else if (error == DBG_SWITCH_CPU_EVENT) {
696 			kgdb_info[dbg_switch_cpu].exception_state |=
697 				DCPU_NEXT_MASTER;
698 			goto cpu_loop;
699 		} else {
700 			kgdb_info[cpu].ret_state = error;
701 			break;
702 		}
703 	}
704 
705 	/* Call the I/O driver's post_exception routine */
706 	if (dbg_io_ops->post_exception)
707 		dbg_io_ops->post_exception();
708 
709 	if (!kgdb_single_step) {
710 		raw_spin_unlock(&dbg_slave_lock);
711 		/* Wait till all the CPUs have quit from the debugger. */
712 		while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb))
713 			cpu_relax();
714 	}
715 
716 kgdb_restore:
717 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
718 		int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
719 		if (kgdb_info[sstep_cpu].task)
720 			kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
721 		else
722 			kgdb_sstep_pid = 0;
723 	}
724 	if (arch_kgdb_ops.correct_hw_break)
725 		arch_kgdb_ops.correct_hw_break();
726 	if (trace_on)
727 		tracing_on();
728 
729 	kgdb_info[cpu].debuggerinfo = NULL;
730 	kgdb_info[cpu].task = NULL;
731 	kgdb_info[cpu].exception_state &=
732 		~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
733 	kgdb_info[cpu].enter_kgdb--;
734 	smp_mb__before_atomic();
735 	atomic_dec(&masters_in_kgdb);
736 	/* Free kgdb_active */
737 	atomic_set(&kgdb_active, -1);
738 	raw_spin_unlock(&dbg_master_lock);
739 	dbg_touch_watchdogs();
740 	local_irq_restore(flags);
741 
742 	return kgdb_info[cpu].ret_state;
743 }
744 
745 /*
746  * kgdb_handle_exception() - main entry point from a kernel exception
747  *
748  * Locking hierarchy:
749  *	interface locks, if any (begin_session)
750  *	kgdb lock (kgdb_active)
751  */
752 int
753 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
754 {
755 	struct kgdb_state kgdb_var;
756 	struct kgdb_state *ks = &kgdb_var;
757 	int ret = 0;
758 
759 	if (arch_kgdb_ops.enable_nmi)
760 		arch_kgdb_ops.enable_nmi(0);
761 	/*
762 	 * Avoid entering the debugger if we were triggered due to an oops
763 	 * but panic_timeout indicates the system should automatically
764 	 * reboot on panic. We don't want to get stuck waiting for input
765 	 * on such systems, especially if its "just" an oops.
766 	 */
767 	if (signo != SIGTRAP && panic_timeout)
768 		return 1;
769 
770 	memset(ks, 0, sizeof(struct kgdb_state));
771 	ks->cpu			= raw_smp_processor_id();
772 	ks->ex_vector		= evector;
773 	ks->signo		= signo;
774 	ks->err_code		= ecode;
775 	ks->linux_regs		= regs;
776 
777 	if (kgdb_reenter_check(ks))
778 		goto out; /* Ouch, double exception ! */
779 	if (kgdb_info[ks->cpu].enter_kgdb != 0)
780 		goto out;
781 
782 	ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
783 out:
784 	if (arch_kgdb_ops.enable_nmi)
785 		arch_kgdb_ops.enable_nmi(1);
786 	return ret;
787 }
788 
789 /*
790  * GDB places a breakpoint at this function to know dynamically
791  * loaded objects. It's not defined static so that only one instance with this
792  * name exists in the kernel.
793  */
794 
795 static int module_event(struct notifier_block *self, unsigned long val,
796 	void *data)
797 {
798 	return 0;
799 }
800 
801 static struct notifier_block dbg_module_load_nb = {
802 	.notifier_call	= module_event,
803 };
804 
805 int kgdb_nmicallback(int cpu, void *regs)
806 {
807 #ifdef CONFIG_SMP
808 	struct kgdb_state kgdb_var;
809 	struct kgdb_state *ks = &kgdb_var;
810 
811 	kgdb_info[cpu].rounding_up = false;
812 
813 	memset(ks, 0, sizeof(struct kgdb_state));
814 	ks->cpu			= cpu;
815 	ks->linux_regs		= regs;
816 
817 	if (kgdb_info[ks->cpu].enter_kgdb == 0 &&
818 			raw_spin_is_locked(&dbg_master_lock)) {
819 		kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE);
820 		return 0;
821 	}
822 #endif
823 	return 1;
824 }
825 
826 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code,
827 							atomic_t *send_ready)
828 {
829 #ifdef CONFIG_SMP
830 	if (!kgdb_io_ready(0) || !send_ready)
831 		return 1;
832 
833 	if (kgdb_info[cpu].enter_kgdb == 0) {
834 		struct kgdb_state kgdb_var;
835 		struct kgdb_state *ks = &kgdb_var;
836 
837 		memset(ks, 0, sizeof(struct kgdb_state));
838 		ks->cpu			= cpu;
839 		ks->ex_vector		= trapnr;
840 		ks->signo		= SIGTRAP;
841 		ks->err_code		= err_code;
842 		ks->linux_regs		= regs;
843 		ks->send_ready		= send_ready;
844 		kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
845 		return 0;
846 	}
847 #endif
848 	return 1;
849 }
850 
851 static void kgdb_console_write(struct console *co, const char *s,
852    unsigned count)
853 {
854 	unsigned long flags;
855 
856 	/* If we're debugging, or KGDB has not connected, don't try
857 	 * and print. */
858 	if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
859 		return;
860 
861 	local_irq_save(flags);
862 	gdbstub_msg_write(s, count);
863 	local_irq_restore(flags);
864 }
865 
866 static struct console kgdbcons = {
867 	.name		= "kgdb",
868 	.write		= kgdb_console_write,
869 	.flags		= CON_PRINTBUFFER | CON_ENABLED,
870 	.index		= -1,
871 };
872 
873 #ifdef CONFIG_MAGIC_SYSRQ
874 static void sysrq_handle_dbg(int key)
875 {
876 	if (!dbg_io_ops) {
877 		pr_crit("ERROR: No KGDB I/O module available\n");
878 		return;
879 	}
880 	if (!kgdb_connected) {
881 #ifdef CONFIG_KGDB_KDB
882 		if (!dbg_kdb_mode)
883 			pr_crit("KGDB or $3#33 for KDB\n");
884 #else
885 		pr_crit("Entering KGDB\n");
886 #endif
887 	}
888 
889 	kgdb_breakpoint();
890 }
891 
892 static struct sysrq_key_op sysrq_dbg_op = {
893 	.handler	= sysrq_handle_dbg,
894 	.help_msg	= "debug(g)",
895 	.action_msg	= "DEBUG",
896 };
897 #endif
898 
899 static int kgdb_panic_event(struct notifier_block *self,
900 			    unsigned long val,
901 			    void *data)
902 {
903 	/*
904 	 * Avoid entering the debugger if we were triggered due to a panic
905 	 * We don't want to get stuck waiting for input from user in such case.
906 	 * panic_timeout indicates the system should automatically
907 	 * reboot on panic.
908 	 */
909 	if (panic_timeout)
910 		return NOTIFY_DONE;
911 
912 	if (dbg_kdb_mode)
913 		kdb_printf("PANIC: %s\n", (char *)data);
914 	kgdb_breakpoint();
915 	return NOTIFY_DONE;
916 }
917 
918 static struct notifier_block kgdb_panic_event_nb = {
919        .notifier_call	= kgdb_panic_event,
920        .priority	= INT_MAX,
921 };
922 
923 void __weak kgdb_arch_late(void)
924 {
925 }
926 
927 void __init dbg_late_init(void)
928 {
929 	dbg_is_early = false;
930 	if (kgdb_io_module_registered)
931 		kgdb_arch_late();
932 	kdb_init(KDB_INIT_FULL);
933 }
934 
935 static int
936 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
937 {
938 	/*
939 	 * Take the following action on reboot notify depending on value:
940 	 *    1 == Enter debugger
941 	 *    0 == [the default] detatch debug client
942 	 *   -1 == Do nothing... and use this until the board resets
943 	 */
944 	switch (kgdbreboot) {
945 	case 1:
946 		kgdb_breakpoint();
947 	case -1:
948 		goto done;
949 	}
950 	if (!dbg_kdb_mode)
951 		gdbstub_exit(code);
952 done:
953 	return NOTIFY_DONE;
954 }
955 
956 static struct notifier_block dbg_reboot_notifier = {
957 	.notifier_call		= dbg_notify_reboot,
958 	.next			= NULL,
959 	.priority		= INT_MAX,
960 };
961 
962 static void kgdb_register_callbacks(void)
963 {
964 	if (!kgdb_io_module_registered) {
965 		kgdb_io_module_registered = 1;
966 		kgdb_arch_init();
967 		if (!dbg_is_early)
968 			kgdb_arch_late();
969 		register_module_notifier(&dbg_module_load_nb);
970 		register_reboot_notifier(&dbg_reboot_notifier);
971 		atomic_notifier_chain_register(&panic_notifier_list,
972 					       &kgdb_panic_event_nb);
973 #ifdef CONFIG_MAGIC_SYSRQ
974 		register_sysrq_key('g', &sysrq_dbg_op);
975 #endif
976 		if (kgdb_use_con && !kgdb_con_registered) {
977 			register_console(&kgdbcons);
978 			kgdb_con_registered = 1;
979 		}
980 	}
981 }
982 
983 static void kgdb_unregister_callbacks(void)
984 {
985 	/*
986 	 * When this routine is called KGDB should unregister from the
987 	 * panic handler and clean up, making sure it is not handling any
988 	 * break exceptions at the time.
989 	 */
990 	if (kgdb_io_module_registered) {
991 		kgdb_io_module_registered = 0;
992 		unregister_reboot_notifier(&dbg_reboot_notifier);
993 		unregister_module_notifier(&dbg_module_load_nb);
994 		atomic_notifier_chain_unregister(&panic_notifier_list,
995 					       &kgdb_panic_event_nb);
996 		kgdb_arch_exit();
997 #ifdef CONFIG_MAGIC_SYSRQ
998 		unregister_sysrq_key('g', &sysrq_dbg_op);
999 #endif
1000 		if (kgdb_con_registered) {
1001 			unregister_console(&kgdbcons);
1002 			kgdb_con_registered = 0;
1003 		}
1004 	}
1005 }
1006 
1007 /*
1008  * There are times a tasklet needs to be used vs a compiled in
1009  * break point so as to cause an exception outside a kgdb I/O module,
1010  * such as is the case with kgdboe, where calling a breakpoint in the
1011  * I/O driver itself would be fatal.
1012  */
1013 static void kgdb_tasklet_bpt(unsigned long ing)
1014 {
1015 	kgdb_breakpoint();
1016 	atomic_set(&kgdb_break_tasklet_var, 0);
1017 }
1018 
1019 static DECLARE_TASKLET(kgdb_tasklet_breakpoint, kgdb_tasklet_bpt, 0);
1020 
1021 void kgdb_schedule_breakpoint(void)
1022 {
1023 	if (atomic_read(&kgdb_break_tasklet_var) ||
1024 		atomic_read(&kgdb_active) != -1 ||
1025 		atomic_read(&kgdb_setting_breakpoint))
1026 		return;
1027 	atomic_inc(&kgdb_break_tasklet_var);
1028 	tasklet_schedule(&kgdb_tasklet_breakpoint);
1029 }
1030 EXPORT_SYMBOL_GPL(kgdb_schedule_breakpoint);
1031 
1032 static void kgdb_initial_breakpoint(void)
1033 {
1034 	kgdb_break_asap = 0;
1035 
1036 	pr_crit("Waiting for connection from remote gdb...\n");
1037 	kgdb_breakpoint();
1038 }
1039 
1040 /**
1041  *	kgdb_register_io_module - register KGDB IO module
1042  *	@new_dbg_io_ops: the io ops vector
1043  *
1044  *	Register it with the KGDB core.
1045  */
1046 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
1047 {
1048 	int err;
1049 
1050 	spin_lock(&kgdb_registration_lock);
1051 
1052 	if (dbg_io_ops) {
1053 		spin_unlock(&kgdb_registration_lock);
1054 
1055 		pr_err("Another I/O driver is already registered with KGDB\n");
1056 		return -EBUSY;
1057 	}
1058 
1059 	if (new_dbg_io_ops->init) {
1060 		err = new_dbg_io_ops->init();
1061 		if (err) {
1062 			spin_unlock(&kgdb_registration_lock);
1063 			return err;
1064 		}
1065 	}
1066 
1067 	dbg_io_ops = new_dbg_io_ops;
1068 
1069 	spin_unlock(&kgdb_registration_lock);
1070 
1071 	pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name);
1072 
1073 	/* Arm KGDB now. */
1074 	kgdb_register_callbacks();
1075 
1076 	if (kgdb_break_asap)
1077 		kgdb_initial_breakpoint();
1078 
1079 	return 0;
1080 }
1081 EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1082 
1083 /**
1084  *	kkgdb_unregister_io_module - unregister KGDB IO module
1085  *	@old_dbg_io_ops: the io ops vector
1086  *
1087  *	Unregister it with the KGDB core.
1088  */
1089 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
1090 {
1091 	BUG_ON(kgdb_connected);
1092 
1093 	/*
1094 	 * KGDB is no longer able to communicate out, so
1095 	 * unregister our callbacks and reset state.
1096 	 */
1097 	kgdb_unregister_callbacks();
1098 
1099 	spin_lock(&kgdb_registration_lock);
1100 
1101 	WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
1102 	dbg_io_ops = NULL;
1103 
1104 	spin_unlock(&kgdb_registration_lock);
1105 
1106 	pr_info("Unregistered I/O driver %s, debugger disabled\n",
1107 		old_dbg_io_ops->name);
1108 }
1109 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1110 
1111 int dbg_io_get_char(void)
1112 {
1113 	int ret = dbg_io_ops->read_char();
1114 	if (ret == NO_POLL_CHAR)
1115 		return -1;
1116 	if (!dbg_kdb_mode)
1117 		return ret;
1118 	if (ret == 127)
1119 		return 8;
1120 	return ret;
1121 }
1122 
1123 /**
1124  * kgdb_breakpoint - generate breakpoint exception
1125  *
1126  * This function will generate a breakpoint exception.  It is used at the
1127  * beginning of a program to sync up with a debugger and can be used
1128  * otherwise as a quick means to stop program execution and "break" into
1129  * the debugger.
1130  */
1131 noinline void kgdb_breakpoint(void)
1132 {
1133 	atomic_inc(&kgdb_setting_breakpoint);
1134 	wmb(); /* Sync point before breakpoint */
1135 	arch_kgdb_breakpoint();
1136 	wmb(); /* Sync point after breakpoint */
1137 	atomic_dec(&kgdb_setting_breakpoint);
1138 }
1139 EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1140 
1141 static int __init opt_kgdb_wait(char *str)
1142 {
1143 	kgdb_break_asap = 1;
1144 
1145 	kdb_init(KDB_INIT_EARLY);
1146 	if (kgdb_io_module_registered)
1147 		kgdb_initial_breakpoint();
1148 
1149 	return 0;
1150 }
1151 
1152 early_param("kgdbwait", opt_kgdb_wait);
1153