xref: /linux/kernel/kprobes.c (revision 02afb8d6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *		Probes initial implementation (includes suggestions from
10  *		Rusty Russell).
11  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *		hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *		interface to access function arguments.
15  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *		exceptions notifier to be first on the priority list.
17  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *		<prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38 #include <linux/static_call.h>
39 #include <linux/perf_event.h>
40 
41 #include <asm/sections.h>
42 #include <asm/cacheflush.h>
43 #include <asm/errno.h>
44 #include <linux/uaccess.h>
45 
46 #define KPROBE_HASH_BITS 6
47 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
48 
49 
50 static int kprobes_initialized;
51 /* kprobe_table can be accessed by
52  * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
53  * Or
54  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
55  */
56 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
57 
58 /* NOTE: change this value only with kprobe_mutex held */
59 static bool kprobes_all_disarmed;
60 
61 /* This protects kprobe_table and optimizing_list */
62 static DEFINE_MUTEX(kprobe_mutex);
63 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
64 
65 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
66 					unsigned int __unused)
67 {
68 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
69 }
70 
71 /* Blacklist -- list of struct kprobe_blacklist_entry */
72 static LIST_HEAD(kprobe_blacklist);
73 
74 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
75 /*
76  * kprobe->ainsn.insn points to the copy of the instruction to be
77  * single-stepped. x86_64, POWER4 and above have no-exec support and
78  * stepping on the instruction on a vmalloced/kmalloced/data page
79  * is a recipe for disaster
80  */
81 struct kprobe_insn_page {
82 	struct list_head list;
83 	kprobe_opcode_t *insns;		/* Page of instruction slots */
84 	struct kprobe_insn_cache *cache;
85 	int nused;
86 	int ngarbage;
87 	char slot_used[];
88 };
89 
90 #define KPROBE_INSN_PAGE_SIZE(slots)			\
91 	(offsetof(struct kprobe_insn_page, slot_used) +	\
92 	 (sizeof(char) * (slots)))
93 
94 static int slots_per_page(struct kprobe_insn_cache *c)
95 {
96 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
97 }
98 
99 enum kprobe_slot_state {
100 	SLOT_CLEAN = 0,
101 	SLOT_DIRTY = 1,
102 	SLOT_USED = 2,
103 };
104 
105 void __weak *alloc_insn_page(void)
106 {
107 	return module_alloc(PAGE_SIZE);
108 }
109 
110 static void free_insn_page(void *page)
111 {
112 	module_memfree(page);
113 }
114 
115 struct kprobe_insn_cache kprobe_insn_slots = {
116 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
117 	.alloc = alloc_insn_page,
118 	.free = free_insn_page,
119 	.sym = KPROBE_INSN_PAGE_SYM,
120 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
121 	.insn_size = MAX_INSN_SIZE,
122 	.nr_garbage = 0,
123 };
124 static int collect_garbage_slots(struct kprobe_insn_cache *c);
125 
126 /**
127  * __get_insn_slot() - Find a slot on an executable page for an instruction.
128  * We allocate an executable page if there's no room on existing ones.
129  */
130 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
131 {
132 	struct kprobe_insn_page *kip;
133 	kprobe_opcode_t *slot = NULL;
134 
135 	/* Since the slot array is not protected by rcu, we need a mutex */
136 	mutex_lock(&c->mutex);
137  retry:
138 	rcu_read_lock();
139 	list_for_each_entry_rcu(kip, &c->pages, list) {
140 		if (kip->nused < slots_per_page(c)) {
141 			int i;
142 			for (i = 0; i < slots_per_page(c); i++) {
143 				if (kip->slot_used[i] == SLOT_CLEAN) {
144 					kip->slot_used[i] = SLOT_USED;
145 					kip->nused++;
146 					slot = kip->insns + (i * c->insn_size);
147 					rcu_read_unlock();
148 					goto out;
149 				}
150 			}
151 			/* kip->nused is broken. Fix it. */
152 			kip->nused = slots_per_page(c);
153 			WARN_ON(1);
154 		}
155 	}
156 	rcu_read_unlock();
157 
158 	/* If there are any garbage slots, collect it and try again. */
159 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
160 		goto retry;
161 
162 	/* All out of space.  Need to allocate a new page. */
163 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
164 	if (!kip)
165 		goto out;
166 
167 	/*
168 	 * Use module_alloc so this page is within +/- 2GB of where the
169 	 * kernel image and loaded module images reside. This is required
170 	 * so x86_64 can correctly handle the %rip-relative fixups.
171 	 */
172 	kip->insns = c->alloc();
173 	if (!kip->insns) {
174 		kfree(kip);
175 		goto out;
176 	}
177 	INIT_LIST_HEAD(&kip->list);
178 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
179 	kip->slot_used[0] = SLOT_USED;
180 	kip->nused = 1;
181 	kip->ngarbage = 0;
182 	kip->cache = c;
183 	list_add_rcu(&kip->list, &c->pages);
184 	slot = kip->insns;
185 
186 	/* Record the perf ksymbol register event after adding the page */
187 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
188 			   PAGE_SIZE, false, c->sym);
189 out:
190 	mutex_unlock(&c->mutex);
191 	return slot;
192 }
193 
194 /* Return 1 if all garbages are collected, otherwise 0. */
195 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
196 {
197 	kip->slot_used[idx] = SLOT_CLEAN;
198 	kip->nused--;
199 	if (kip->nused == 0) {
200 		/*
201 		 * Page is no longer in use.  Free it unless
202 		 * it's the last one.  We keep the last one
203 		 * so as not to have to set it up again the
204 		 * next time somebody inserts a probe.
205 		 */
206 		if (!list_is_singular(&kip->list)) {
207 			/*
208 			 * Record perf ksymbol unregister event before removing
209 			 * the page.
210 			 */
211 			perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
212 					   (unsigned long)kip->insns, PAGE_SIZE, true,
213 					   kip->cache->sym);
214 			list_del_rcu(&kip->list);
215 			synchronize_rcu();
216 			kip->cache->free(kip->insns);
217 			kfree(kip);
218 		}
219 		return 1;
220 	}
221 	return 0;
222 }
223 
224 static int collect_garbage_slots(struct kprobe_insn_cache *c)
225 {
226 	struct kprobe_insn_page *kip, *next;
227 
228 	/* Ensure no-one is interrupted on the garbages */
229 	synchronize_rcu();
230 
231 	list_for_each_entry_safe(kip, next, &c->pages, list) {
232 		int i;
233 		if (kip->ngarbage == 0)
234 			continue;
235 		kip->ngarbage = 0;	/* we will collect all garbages */
236 		for (i = 0; i < slots_per_page(c); i++) {
237 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
238 				break;
239 		}
240 	}
241 	c->nr_garbage = 0;
242 	return 0;
243 }
244 
245 void __free_insn_slot(struct kprobe_insn_cache *c,
246 		      kprobe_opcode_t *slot, int dirty)
247 {
248 	struct kprobe_insn_page *kip;
249 	long idx;
250 
251 	mutex_lock(&c->mutex);
252 	rcu_read_lock();
253 	list_for_each_entry_rcu(kip, &c->pages, list) {
254 		idx = ((long)slot - (long)kip->insns) /
255 			(c->insn_size * sizeof(kprobe_opcode_t));
256 		if (idx >= 0 && idx < slots_per_page(c))
257 			goto out;
258 	}
259 	/* Could not find this slot. */
260 	WARN_ON(1);
261 	kip = NULL;
262 out:
263 	rcu_read_unlock();
264 	/* Mark and sweep: this may sleep */
265 	if (kip) {
266 		/* Check double free */
267 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
268 		if (dirty) {
269 			kip->slot_used[idx] = SLOT_DIRTY;
270 			kip->ngarbage++;
271 			if (++c->nr_garbage > slots_per_page(c))
272 				collect_garbage_slots(c);
273 		} else {
274 			collect_one_slot(kip, idx);
275 		}
276 	}
277 	mutex_unlock(&c->mutex);
278 }
279 
280 /*
281  * Check given address is on the page of kprobe instruction slots.
282  * This will be used for checking whether the address on a stack
283  * is on a text area or not.
284  */
285 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
286 {
287 	struct kprobe_insn_page *kip;
288 	bool ret = false;
289 
290 	rcu_read_lock();
291 	list_for_each_entry_rcu(kip, &c->pages, list) {
292 		if (addr >= (unsigned long)kip->insns &&
293 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
294 			ret = true;
295 			break;
296 		}
297 	}
298 	rcu_read_unlock();
299 
300 	return ret;
301 }
302 
303 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
304 			     unsigned long *value, char *type, char *sym)
305 {
306 	struct kprobe_insn_page *kip;
307 	int ret = -ERANGE;
308 
309 	rcu_read_lock();
310 	list_for_each_entry_rcu(kip, &c->pages, list) {
311 		if ((*symnum)--)
312 			continue;
313 		strlcpy(sym, c->sym, KSYM_NAME_LEN);
314 		*type = 't';
315 		*value = (unsigned long)kip->insns;
316 		ret = 0;
317 		break;
318 	}
319 	rcu_read_unlock();
320 
321 	return ret;
322 }
323 
324 #ifdef CONFIG_OPTPROBES
325 void __weak *alloc_optinsn_page(void)
326 {
327 	return alloc_insn_page();
328 }
329 
330 void __weak free_optinsn_page(void *page)
331 {
332 	free_insn_page(page);
333 }
334 
335 /* For optimized_kprobe buffer */
336 struct kprobe_insn_cache kprobe_optinsn_slots = {
337 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
338 	.alloc = alloc_optinsn_page,
339 	.free = free_optinsn_page,
340 	.sym = KPROBE_OPTINSN_PAGE_SYM,
341 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
342 	/* .insn_size is initialized later */
343 	.nr_garbage = 0,
344 };
345 #endif
346 #endif
347 
348 /* We have preemption disabled.. so it is safe to use __ versions */
349 static inline void set_kprobe_instance(struct kprobe *kp)
350 {
351 	__this_cpu_write(kprobe_instance, kp);
352 }
353 
354 static inline void reset_kprobe_instance(void)
355 {
356 	__this_cpu_write(kprobe_instance, NULL);
357 }
358 
359 /*
360  * This routine is called either:
361  * 	- under the kprobe_mutex - during kprobe_[un]register()
362  * 				OR
363  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
364  */
365 struct kprobe *get_kprobe(void *addr)
366 {
367 	struct hlist_head *head;
368 	struct kprobe *p;
369 
370 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
371 	hlist_for_each_entry_rcu(p, head, hlist,
372 				 lockdep_is_held(&kprobe_mutex)) {
373 		if (p->addr == addr)
374 			return p;
375 	}
376 
377 	return NULL;
378 }
379 NOKPROBE_SYMBOL(get_kprobe);
380 
381 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
382 
383 /* Return true if the kprobe is an aggregator */
384 static inline int kprobe_aggrprobe(struct kprobe *p)
385 {
386 	return p->pre_handler == aggr_pre_handler;
387 }
388 
389 /* Return true(!0) if the kprobe is unused */
390 static inline int kprobe_unused(struct kprobe *p)
391 {
392 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
393 	       list_empty(&p->list);
394 }
395 
396 /*
397  * Keep all fields in the kprobe consistent
398  */
399 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
400 {
401 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
402 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
403 }
404 
405 #ifdef CONFIG_OPTPROBES
406 /* NOTE: change this value only with kprobe_mutex held */
407 static bool kprobes_allow_optimization;
408 
409 /*
410  * Call all pre_handler on the list, but ignores its return value.
411  * This must be called from arch-dep optimized caller.
412  */
413 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
414 {
415 	struct kprobe *kp;
416 
417 	list_for_each_entry_rcu(kp, &p->list, list) {
418 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
419 			set_kprobe_instance(kp);
420 			kp->pre_handler(kp, regs);
421 		}
422 		reset_kprobe_instance();
423 	}
424 }
425 NOKPROBE_SYMBOL(opt_pre_handler);
426 
427 /* Free optimized instructions and optimized_kprobe */
428 static void free_aggr_kprobe(struct kprobe *p)
429 {
430 	struct optimized_kprobe *op;
431 
432 	op = container_of(p, struct optimized_kprobe, kp);
433 	arch_remove_optimized_kprobe(op);
434 	arch_remove_kprobe(p);
435 	kfree(op);
436 }
437 
438 /* Return true(!0) if the kprobe is ready for optimization. */
439 static inline int kprobe_optready(struct kprobe *p)
440 {
441 	struct optimized_kprobe *op;
442 
443 	if (kprobe_aggrprobe(p)) {
444 		op = container_of(p, struct optimized_kprobe, kp);
445 		return arch_prepared_optinsn(&op->optinsn);
446 	}
447 
448 	return 0;
449 }
450 
451 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
452 static inline int kprobe_disarmed(struct kprobe *p)
453 {
454 	struct optimized_kprobe *op;
455 
456 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
457 	if (!kprobe_aggrprobe(p))
458 		return kprobe_disabled(p);
459 
460 	op = container_of(p, struct optimized_kprobe, kp);
461 
462 	return kprobe_disabled(p) && list_empty(&op->list);
463 }
464 
465 /* Return true(!0) if the probe is queued on (un)optimizing lists */
466 static int kprobe_queued(struct kprobe *p)
467 {
468 	struct optimized_kprobe *op;
469 
470 	if (kprobe_aggrprobe(p)) {
471 		op = container_of(p, struct optimized_kprobe, kp);
472 		if (!list_empty(&op->list))
473 			return 1;
474 	}
475 	return 0;
476 }
477 
478 /*
479  * Return an optimized kprobe whose optimizing code replaces
480  * instructions including addr (exclude breakpoint).
481  */
482 static struct kprobe *get_optimized_kprobe(unsigned long addr)
483 {
484 	int i;
485 	struct kprobe *p = NULL;
486 	struct optimized_kprobe *op;
487 
488 	/* Don't check i == 0, since that is a breakpoint case. */
489 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
490 		p = get_kprobe((void *)(addr - i));
491 
492 	if (p && kprobe_optready(p)) {
493 		op = container_of(p, struct optimized_kprobe, kp);
494 		if (arch_within_optimized_kprobe(op, addr))
495 			return p;
496 	}
497 
498 	return NULL;
499 }
500 
501 /* Optimization staging list, protected by kprobe_mutex */
502 static LIST_HEAD(optimizing_list);
503 static LIST_HEAD(unoptimizing_list);
504 static LIST_HEAD(freeing_list);
505 
506 static void kprobe_optimizer(struct work_struct *work);
507 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
508 #define OPTIMIZE_DELAY 5
509 
510 /*
511  * Optimize (replace a breakpoint with a jump) kprobes listed on
512  * optimizing_list.
513  */
514 static void do_optimize_kprobes(void)
515 {
516 	lockdep_assert_held(&text_mutex);
517 	/*
518 	 * The optimization/unoptimization refers online_cpus via
519 	 * stop_machine() and cpu-hotplug modifies online_cpus.
520 	 * And same time, text_mutex will be held in cpu-hotplug and here.
521 	 * This combination can cause a deadlock (cpu-hotplug try to lock
522 	 * text_mutex but stop_machine can not be done because online_cpus
523 	 * has been changed)
524 	 * To avoid this deadlock, caller must have locked cpu hotplug
525 	 * for preventing cpu-hotplug outside of text_mutex locking.
526 	 */
527 	lockdep_assert_cpus_held();
528 
529 	/* Optimization never be done when disarmed */
530 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
531 	    list_empty(&optimizing_list))
532 		return;
533 
534 	arch_optimize_kprobes(&optimizing_list);
535 }
536 
537 /*
538  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
539  * if need) kprobes listed on unoptimizing_list.
540  */
541 static void do_unoptimize_kprobes(void)
542 {
543 	struct optimized_kprobe *op, *tmp;
544 
545 	lockdep_assert_held(&text_mutex);
546 	/* See comment in do_optimize_kprobes() */
547 	lockdep_assert_cpus_held();
548 
549 	/* Unoptimization must be done anytime */
550 	if (list_empty(&unoptimizing_list))
551 		return;
552 
553 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
554 	/* Loop free_list for disarming */
555 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
556 		/* Switching from detour code to origin */
557 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
558 		/* Disarm probes if marked disabled */
559 		if (kprobe_disabled(&op->kp))
560 			arch_disarm_kprobe(&op->kp);
561 		if (kprobe_unused(&op->kp)) {
562 			/*
563 			 * Remove unused probes from hash list. After waiting
564 			 * for synchronization, these probes are reclaimed.
565 			 * (reclaiming is done by do_free_cleaned_kprobes.)
566 			 */
567 			hlist_del_rcu(&op->kp.hlist);
568 		} else
569 			list_del_init(&op->list);
570 	}
571 }
572 
573 /* Reclaim all kprobes on the free_list */
574 static void do_free_cleaned_kprobes(void)
575 {
576 	struct optimized_kprobe *op, *tmp;
577 
578 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
579 		list_del_init(&op->list);
580 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
581 			/*
582 			 * This must not happen, but if there is a kprobe
583 			 * still in use, keep it on kprobes hash list.
584 			 */
585 			continue;
586 		}
587 		free_aggr_kprobe(&op->kp);
588 	}
589 }
590 
591 /* Start optimizer after OPTIMIZE_DELAY passed */
592 static void kick_kprobe_optimizer(void)
593 {
594 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
595 }
596 
597 /* Kprobe jump optimizer */
598 static void kprobe_optimizer(struct work_struct *work)
599 {
600 	mutex_lock(&kprobe_mutex);
601 	cpus_read_lock();
602 	mutex_lock(&text_mutex);
603 
604 	/*
605 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
606 	 * kprobes before waiting for quiesence period.
607 	 */
608 	do_unoptimize_kprobes();
609 
610 	/*
611 	 * Step 2: Wait for quiesence period to ensure all potentially
612 	 * preempted tasks to have normally scheduled. Because optprobe
613 	 * may modify multiple instructions, there is a chance that Nth
614 	 * instruction is preempted. In that case, such tasks can return
615 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
616 	 * Note that on non-preemptive kernel, this is transparently converted
617 	 * to synchronoze_sched() to wait for all interrupts to have completed.
618 	 */
619 	synchronize_rcu_tasks();
620 
621 	/* Step 3: Optimize kprobes after quiesence period */
622 	do_optimize_kprobes();
623 
624 	/* Step 4: Free cleaned kprobes after quiesence period */
625 	do_free_cleaned_kprobes();
626 
627 	mutex_unlock(&text_mutex);
628 	cpus_read_unlock();
629 
630 	/* Step 5: Kick optimizer again if needed */
631 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
632 		kick_kprobe_optimizer();
633 
634 	mutex_unlock(&kprobe_mutex);
635 }
636 
637 /* Wait for completing optimization and unoptimization */
638 void wait_for_kprobe_optimizer(void)
639 {
640 	mutex_lock(&kprobe_mutex);
641 
642 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
643 		mutex_unlock(&kprobe_mutex);
644 
645 		/* this will also make optimizing_work execute immmediately */
646 		flush_delayed_work(&optimizing_work);
647 		/* @optimizing_work might not have been queued yet, relax */
648 		cpu_relax();
649 
650 		mutex_lock(&kprobe_mutex);
651 	}
652 
653 	mutex_unlock(&kprobe_mutex);
654 }
655 
656 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
657 {
658 	struct optimized_kprobe *_op;
659 
660 	list_for_each_entry(_op, &unoptimizing_list, list) {
661 		if (op == _op)
662 			return true;
663 	}
664 
665 	return false;
666 }
667 
668 /* Optimize kprobe if p is ready to be optimized */
669 static void optimize_kprobe(struct kprobe *p)
670 {
671 	struct optimized_kprobe *op;
672 
673 	/* Check if the kprobe is disabled or not ready for optimization. */
674 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
675 	    (kprobe_disabled(p) || kprobes_all_disarmed))
676 		return;
677 
678 	/* kprobes with post_handler can not be optimized */
679 	if (p->post_handler)
680 		return;
681 
682 	op = container_of(p, struct optimized_kprobe, kp);
683 
684 	/* Check there is no other kprobes at the optimized instructions */
685 	if (arch_check_optimized_kprobe(op) < 0)
686 		return;
687 
688 	/* Check if it is already optimized. */
689 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
690 		if (optprobe_queued_unopt(op)) {
691 			/* This is under unoptimizing. Just dequeue the probe */
692 			list_del_init(&op->list);
693 		}
694 		return;
695 	}
696 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
697 
698 	/* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
699 	if (WARN_ON_ONCE(!list_empty(&op->list)))
700 		return;
701 
702 	list_add(&op->list, &optimizing_list);
703 	kick_kprobe_optimizer();
704 }
705 
706 /* Short cut to direct unoptimizing */
707 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
708 {
709 	lockdep_assert_cpus_held();
710 	arch_unoptimize_kprobe(op);
711 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
712 }
713 
714 /* Unoptimize a kprobe if p is optimized */
715 static void unoptimize_kprobe(struct kprobe *p, bool force)
716 {
717 	struct optimized_kprobe *op;
718 
719 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
720 		return; /* This is not an optprobe nor optimized */
721 
722 	op = container_of(p, struct optimized_kprobe, kp);
723 	if (!kprobe_optimized(p))
724 		return;
725 
726 	if (!list_empty(&op->list)) {
727 		if (optprobe_queued_unopt(op)) {
728 			/* Queued in unoptimizing queue */
729 			if (force) {
730 				/*
731 				 * Forcibly unoptimize the kprobe here, and queue it
732 				 * in the freeing list for release afterwards.
733 				 */
734 				force_unoptimize_kprobe(op);
735 				list_move(&op->list, &freeing_list);
736 			}
737 		} else {
738 			/* Dequeue from the optimizing queue */
739 			list_del_init(&op->list);
740 			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
741 		}
742 		return;
743 	}
744 
745 	/* Optimized kprobe case */
746 	if (force) {
747 		/* Forcibly update the code: this is a special case */
748 		force_unoptimize_kprobe(op);
749 	} else {
750 		list_add(&op->list, &unoptimizing_list);
751 		kick_kprobe_optimizer();
752 	}
753 }
754 
755 /* Cancel unoptimizing for reusing */
756 static int reuse_unused_kprobe(struct kprobe *ap)
757 {
758 	struct optimized_kprobe *op;
759 
760 	/*
761 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
762 	 * there is still a relative jump) and disabled.
763 	 */
764 	op = container_of(ap, struct optimized_kprobe, kp);
765 	WARN_ON_ONCE(list_empty(&op->list));
766 	/* Enable the probe again */
767 	ap->flags &= ~KPROBE_FLAG_DISABLED;
768 	/* Optimize it again (remove from op->list) */
769 	if (!kprobe_optready(ap))
770 		return -EINVAL;
771 
772 	optimize_kprobe(ap);
773 	return 0;
774 }
775 
776 /* Remove optimized instructions */
777 static void kill_optimized_kprobe(struct kprobe *p)
778 {
779 	struct optimized_kprobe *op;
780 
781 	op = container_of(p, struct optimized_kprobe, kp);
782 	if (!list_empty(&op->list))
783 		/* Dequeue from the (un)optimization queue */
784 		list_del_init(&op->list);
785 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
786 
787 	if (kprobe_unused(p)) {
788 		/* Enqueue if it is unused */
789 		list_add(&op->list, &freeing_list);
790 		/*
791 		 * Remove unused probes from the hash list. After waiting
792 		 * for synchronization, this probe is reclaimed.
793 		 * (reclaiming is done by do_free_cleaned_kprobes().)
794 		 */
795 		hlist_del_rcu(&op->kp.hlist);
796 	}
797 
798 	/* Don't touch the code, because it is already freed. */
799 	arch_remove_optimized_kprobe(op);
800 }
801 
802 static inline
803 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
804 {
805 	if (!kprobe_ftrace(p))
806 		arch_prepare_optimized_kprobe(op, p);
807 }
808 
809 /* Try to prepare optimized instructions */
810 static void prepare_optimized_kprobe(struct kprobe *p)
811 {
812 	struct optimized_kprobe *op;
813 
814 	op = container_of(p, struct optimized_kprobe, kp);
815 	__prepare_optimized_kprobe(op, p);
816 }
817 
818 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
819 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
820 {
821 	struct optimized_kprobe *op;
822 
823 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
824 	if (!op)
825 		return NULL;
826 
827 	INIT_LIST_HEAD(&op->list);
828 	op->kp.addr = p->addr;
829 	__prepare_optimized_kprobe(op, p);
830 
831 	return &op->kp;
832 }
833 
834 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
835 
836 /*
837  * Prepare an optimized_kprobe and optimize it
838  * NOTE: p must be a normal registered kprobe
839  */
840 static void try_to_optimize_kprobe(struct kprobe *p)
841 {
842 	struct kprobe *ap;
843 	struct optimized_kprobe *op;
844 
845 	/* Impossible to optimize ftrace-based kprobe */
846 	if (kprobe_ftrace(p))
847 		return;
848 
849 	/* For preparing optimization, jump_label_text_reserved() is called */
850 	cpus_read_lock();
851 	jump_label_lock();
852 	mutex_lock(&text_mutex);
853 
854 	ap = alloc_aggr_kprobe(p);
855 	if (!ap)
856 		goto out;
857 
858 	op = container_of(ap, struct optimized_kprobe, kp);
859 	if (!arch_prepared_optinsn(&op->optinsn)) {
860 		/* If failed to setup optimizing, fallback to kprobe */
861 		arch_remove_optimized_kprobe(op);
862 		kfree(op);
863 		goto out;
864 	}
865 
866 	init_aggr_kprobe(ap, p);
867 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
868 
869 out:
870 	mutex_unlock(&text_mutex);
871 	jump_label_unlock();
872 	cpus_read_unlock();
873 }
874 
875 static void optimize_all_kprobes(void)
876 {
877 	struct hlist_head *head;
878 	struct kprobe *p;
879 	unsigned int i;
880 
881 	mutex_lock(&kprobe_mutex);
882 	/* If optimization is already allowed, just return */
883 	if (kprobes_allow_optimization)
884 		goto out;
885 
886 	cpus_read_lock();
887 	kprobes_allow_optimization = true;
888 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
889 		head = &kprobe_table[i];
890 		hlist_for_each_entry(p, head, hlist)
891 			if (!kprobe_disabled(p))
892 				optimize_kprobe(p);
893 	}
894 	cpus_read_unlock();
895 	printk(KERN_INFO "Kprobes globally optimized\n");
896 out:
897 	mutex_unlock(&kprobe_mutex);
898 }
899 
900 #ifdef CONFIG_SYSCTL
901 static void unoptimize_all_kprobes(void)
902 {
903 	struct hlist_head *head;
904 	struct kprobe *p;
905 	unsigned int i;
906 
907 	mutex_lock(&kprobe_mutex);
908 	/* If optimization is already prohibited, just return */
909 	if (!kprobes_allow_optimization) {
910 		mutex_unlock(&kprobe_mutex);
911 		return;
912 	}
913 
914 	cpus_read_lock();
915 	kprobes_allow_optimization = false;
916 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
917 		head = &kprobe_table[i];
918 		hlist_for_each_entry(p, head, hlist) {
919 			if (!kprobe_disabled(p))
920 				unoptimize_kprobe(p, false);
921 		}
922 	}
923 	cpus_read_unlock();
924 	mutex_unlock(&kprobe_mutex);
925 
926 	/* Wait for unoptimizing completion */
927 	wait_for_kprobe_optimizer();
928 	printk(KERN_INFO "Kprobes globally unoptimized\n");
929 }
930 
931 static DEFINE_MUTEX(kprobe_sysctl_mutex);
932 int sysctl_kprobes_optimization;
933 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
934 				      void *buffer, size_t *length,
935 				      loff_t *ppos)
936 {
937 	int ret;
938 
939 	mutex_lock(&kprobe_sysctl_mutex);
940 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
941 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
942 
943 	if (sysctl_kprobes_optimization)
944 		optimize_all_kprobes();
945 	else
946 		unoptimize_all_kprobes();
947 	mutex_unlock(&kprobe_sysctl_mutex);
948 
949 	return ret;
950 }
951 #endif /* CONFIG_SYSCTL */
952 
953 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
954 static void __arm_kprobe(struct kprobe *p)
955 {
956 	struct kprobe *_p;
957 
958 	/* Check collision with other optimized kprobes */
959 	_p = get_optimized_kprobe((unsigned long)p->addr);
960 	if (unlikely(_p))
961 		/* Fallback to unoptimized kprobe */
962 		unoptimize_kprobe(_p, true);
963 
964 	arch_arm_kprobe(p);
965 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
966 }
967 
968 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
969 static void __disarm_kprobe(struct kprobe *p, bool reopt)
970 {
971 	struct kprobe *_p;
972 
973 	/* Try to unoptimize */
974 	unoptimize_kprobe(p, kprobes_all_disarmed);
975 
976 	if (!kprobe_queued(p)) {
977 		arch_disarm_kprobe(p);
978 		/* If another kprobe was blocked, optimize it. */
979 		_p = get_optimized_kprobe((unsigned long)p->addr);
980 		if (unlikely(_p) && reopt)
981 			optimize_kprobe(_p);
982 	}
983 	/* TODO: reoptimize others after unoptimized this probe */
984 }
985 
986 #else /* !CONFIG_OPTPROBES */
987 
988 #define optimize_kprobe(p)			do {} while (0)
989 #define unoptimize_kprobe(p, f)			do {} while (0)
990 #define kill_optimized_kprobe(p)		do {} while (0)
991 #define prepare_optimized_kprobe(p)		do {} while (0)
992 #define try_to_optimize_kprobe(p)		do {} while (0)
993 #define __arm_kprobe(p)				arch_arm_kprobe(p)
994 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
995 #define kprobe_disarmed(p)			kprobe_disabled(p)
996 #define wait_for_kprobe_optimizer()		do {} while (0)
997 
998 static int reuse_unused_kprobe(struct kprobe *ap)
999 {
1000 	/*
1001 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
1002 	 * released at the same time that the last aggregated kprobe is
1003 	 * unregistered.
1004 	 * Thus there should be no chance to reuse unused kprobe.
1005 	 */
1006 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1007 	return -EINVAL;
1008 }
1009 
1010 static void free_aggr_kprobe(struct kprobe *p)
1011 {
1012 	arch_remove_kprobe(p);
1013 	kfree(p);
1014 }
1015 
1016 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1017 {
1018 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1019 }
1020 #endif /* CONFIG_OPTPROBES */
1021 
1022 #ifdef CONFIG_KPROBES_ON_FTRACE
1023 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1024 	.func = kprobe_ftrace_handler,
1025 	.flags = FTRACE_OPS_FL_SAVE_REGS,
1026 };
1027 
1028 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1029 	.func = kprobe_ftrace_handler,
1030 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1031 };
1032 
1033 static int kprobe_ipmodify_enabled;
1034 static int kprobe_ftrace_enabled;
1035 
1036 /* Caller must lock kprobe_mutex */
1037 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1038 			       int *cnt)
1039 {
1040 	int ret = 0;
1041 
1042 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1043 	if (ret) {
1044 		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1045 			 p->addr, ret);
1046 		return ret;
1047 	}
1048 
1049 	if (*cnt == 0) {
1050 		ret = register_ftrace_function(ops);
1051 		if (ret) {
1052 			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1053 			goto err_ftrace;
1054 		}
1055 	}
1056 
1057 	(*cnt)++;
1058 	return ret;
1059 
1060 err_ftrace:
1061 	/*
1062 	 * At this point, sinec ops is not registered, we should be sefe from
1063 	 * registering empty filter.
1064 	 */
1065 	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1066 	return ret;
1067 }
1068 
1069 static int arm_kprobe_ftrace(struct kprobe *p)
1070 {
1071 	bool ipmodify = (p->post_handler != NULL);
1072 
1073 	return __arm_kprobe_ftrace(p,
1074 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1075 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1076 }
1077 
1078 /* Caller must lock kprobe_mutex */
1079 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1080 				  int *cnt)
1081 {
1082 	int ret = 0;
1083 
1084 	if (*cnt == 1) {
1085 		ret = unregister_ftrace_function(ops);
1086 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1087 			return ret;
1088 	}
1089 
1090 	(*cnt)--;
1091 
1092 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1093 	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1094 		  p->addr, ret);
1095 	return ret;
1096 }
1097 
1098 static int disarm_kprobe_ftrace(struct kprobe *p)
1099 {
1100 	bool ipmodify = (p->post_handler != NULL);
1101 
1102 	return __disarm_kprobe_ftrace(p,
1103 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1104 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1105 }
1106 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1107 static inline int arm_kprobe_ftrace(struct kprobe *p)
1108 {
1109 	return -ENODEV;
1110 }
1111 
1112 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1113 {
1114 	return -ENODEV;
1115 }
1116 #endif
1117 
1118 static int prepare_kprobe(struct kprobe *p)
1119 {
1120 	/* Must ensure p->addr is really on ftrace */
1121 	if (kprobe_ftrace(p))
1122 		return arch_prepare_kprobe_ftrace(p);
1123 
1124 	return arch_prepare_kprobe(p);
1125 }
1126 
1127 /* Arm a kprobe with text_mutex */
1128 static int arm_kprobe(struct kprobe *kp)
1129 {
1130 	if (unlikely(kprobe_ftrace(kp)))
1131 		return arm_kprobe_ftrace(kp);
1132 
1133 	cpus_read_lock();
1134 	mutex_lock(&text_mutex);
1135 	__arm_kprobe(kp);
1136 	mutex_unlock(&text_mutex);
1137 	cpus_read_unlock();
1138 
1139 	return 0;
1140 }
1141 
1142 /* Disarm a kprobe with text_mutex */
1143 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1144 {
1145 	if (unlikely(kprobe_ftrace(kp)))
1146 		return disarm_kprobe_ftrace(kp);
1147 
1148 	cpus_read_lock();
1149 	mutex_lock(&text_mutex);
1150 	__disarm_kprobe(kp, reopt);
1151 	mutex_unlock(&text_mutex);
1152 	cpus_read_unlock();
1153 
1154 	return 0;
1155 }
1156 
1157 /*
1158  * Aggregate handlers for multiple kprobes support - these handlers
1159  * take care of invoking the individual kprobe handlers on p->list
1160  */
1161 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1162 {
1163 	struct kprobe *kp;
1164 
1165 	list_for_each_entry_rcu(kp, &p->list, list) {
1166 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1167 			set_kprobe_instance(kp);
1168 			if (kp->pre_handler(kp, regs))
1169 				return 1;
1170 		}
1171 		reset_kprobe_instance();
1172 	}
1173 	return 0;
1174 }
1175 NOKPROBE_SYMBOL(aggr_pre_handler);
1176 
1177 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1178 			      unsigned long flags)
1179 {
1180 	struct kprobe *kp;
1181 
1182 	list_for_each_entry_rcu(kp, &p->list, list) {
1183 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1184 			set_kprobe_instance(kp);
1185 			kp->post_handler(kp, regs, flags);
1186 			reset_kprobe_instance();
1187 		}
1188 	}
1189 }
1190 NOKPROBE_SYMBOL(aggr_post_handler);
1191 
1192 /* Walks the list and increments nmissed count for multiprobe case */
1193 void kprobes_inc_nmissed_count(struct kprobe *p)
1194 {
1195 	struct kprobe *kp;
1196 	if (!kprobe_aggrprobe(p)) {
1197 		p->nmissed++;
1198 	} else {
1199 		list_for_each_entry_rcu(kp, &p->list, list)
1200 			kp->nmissed++;
1201 	}
1202 	return;
1203 }
1204 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1205 
1206 static void free_rp_inst_rcu(struct rcu_head *head)
1207 {
1208 	struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1209 
1210 	if (refcount_dec_and_test(&ri->rph->ref))
1211 		kfree(ri->rph);
1212 	kfree(ri);
1213 }
1214 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1215 
1216 static void recycle_rp_inst(struct kretprobe_instance *ri)
1217 {
1218 	struct kretprobe *rp = get_kretprobe(ri);
1219 
1220 	if (likely(rp)) {
1221 		freelist_add(&ri->freelist, &rp->freelist);
1222 	} else
1223 		call_rcu(&ri->rcu, free_rp_inst_rcu);
1224 }
1225 NOKPROBE_SYMBOL(recycle_rp_inst);
1226 
1227 static struct kprobe kprobe_busy = {
1228 	.addr = (void *) get_kprobe,
1229 };
1230 
1231 void kprobe_busy_begin(void)
1232 {
1233 	struct kprobe_ctlblk *kcb;
1234 
1235 	preempt_disable();
1236 	__this_cpu_write(current_kprobe, &kprobe_busy);
1237 	kcb = get_kprobe_ctlblk();
1238 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1239 }
1240 
1241 void kprobe_busy_end(void)
1242 {
1243 	__this_cpu_write(current_kprobe, NULL);
1244 	preempt_enable();
1245 }
1246 
1247 /*
1248  * This function is called from finish_task_switch when task tk becomes dead,
1249  * so that we can recycle any function-return probe instances associated
1250  * with this task. These left over instances represent probed functions
1251  * that have been called but will never return.
1252  */
1253 void kprobe_flush_task(struct task_struct *tk)
1254 {
1255 	struct kretprobe_instance *ri;
1256 	struct llist_node *node;
1257 
1258 	/* Early boot, not yet initialized. */
1259 	if (unlikely(!kprobes_initialized))
1260 		return;
1261 
1262 	kprobe_busy_begin();
1263 
1264 	node = __llist_del_all(&tk->kretprobe_instances);
1265 	while (node) {
1266 		ri = container_of(node, struct kretprobe_instance, llist);
1267 		node = node->next;
1268 
1269 		recycle_rp_inst(ri);
1270 	}
1271 
1272 	kprobe_busy_end();
1273 }
1274 NOKPROBE_SYMBOL(kprobe_flush_task);
1275 
1276 static inline void free_rp_inst(struct kretprobe *rp)
1277 {
1278 	struct kretprobe_instance *ri;
1279 	struct freelist_node *node;
1280 	int count = 0;
1281 
1282 	node = rp->freelist.head;
1283 	while (node) {
1284 		ri = container_of(node, struct kretprobe_instance, freelist);
1285 		node = node->next;
1286 
1287 		kfree(ri);
1288 		count++;
1289 	}
1290 
1291 	if (refcount_sub_and_test(count, &rp->rph->ref)) {
1292 		kfree(rp->rph);
1293 		rp->rph = NULL;
1294 	}
1295 }
1296 
1297 /* Add the new probe to ap->list */
1298 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1299 {
1300 	if (p->post_handler)
1301 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1302 
1303 	list_add_rcu(&p->list, &ap->list);
1304 	if (p->post_handler && !ap->post_handler)
1305 		ap->post_handler = aggr_post_handler;
1306 
1307 	return 0;
1308 }
1309 
1310 /*
1311  * Fill in the required fields of the "manager kprobe". Replace the
1312  * earlier kprobe in the hlist with the manager kprobe
1313  */
1314 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1315 {
1316 	/* Copy p's insn slot to ap */
1317 	copy_kprobe(p, ap);
1318 	flush_insn_slot(ap);
1319 	ap->addr = p->addr;
1320 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1321 	ap->pre_handler = aggr_pre_handler;
1322 	/* We don't care the kprobe which has gone. */
1323 	if (p->post_handler && !kprobe_gone(p))
1324 		ap->post_handler = aggr_post_handler;
1325 
1326 	INIT_LIST_HEAD(&ap->list);
1327 	INIT_HLIST_NODE(&ap->hlist);
1328 
1329 	list_add_rcu(&p->list, &ap->list);
1330 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1331 }
1332 
1333 /*
1334  * This is the second or subsequent kprobe at the address - handle
1335  * the intricacies
1336  */
1337 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1338 {
1339 	int ret = 0;
1340 	struct kprobe *ap = orig_p;
1341 
1342 	cpus_read_lock();
1343 
1344 	/* For preparing optimization, jump_label_text_reserved() is called */
1345 	jump_label_lock();
1346 	mutex_lock(&text_mutex);
1347 
1348 	if (!kprobe_aggrprobe(orig_p)) {
1349 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1350 		ap = alloc_aggr_kprobe(orig_p);
1351 		if (!ap) {
1352 			ret = -ENOMEM;
1353 			goto out;
1354 		}
1355 		init_aggr_kprobe(ap, orig_p);
1356 	} else if (kprobe_unused(ap)) {
1357 		/* This probe is going to die. Rescue it */
1358 		ret = reuse_unused_kprobe(ap);
1359 		if (ret)
1360 			goto out;
1361 	}
1362 
1363 	if (kprobe_gone(ap)) {
1364 		/*
1365 		 * Attempting to insert new probe at the same location that
1366 		 * had a probe in the module vaddr area which already
1367 		 * freed. So, the instruction slot has already been
1368 		 * released. We need a new slot for the new probe.
1369 		 */
1370 		ret = arch_prepare_kprobe(ap);
1371 		if (ret)
1372 			/*
1373 			 * Even if fail to allocate new slot, don't need to
1374 			 * free aggr_probe. It will be used next time, or
1375 			 * freed by unregister_kprobe.
1376 			 */
1377 			goto out;
1378 
1379 		/* Prepare optimized instructions if possible. */
1380 		prepare_optimized_kprobe(ap);
1381 
1382 		/*
1383 		 * Clear gone flag to prevent allocating new slot again, and
1384 		 * set disabled flag because it is not armed yet.
1385 		 */
1386 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1387 			    | KPROBE_FLAG_DISABLED;
1388 	}
1389 
1390 	/* Copy ap's insn slot to p */
1391 	copy_kprobe(ap, p);
1392 	ret = add_new_kprobe(ap, p);
1393 
1394 out:
1395 	mutex_unlock(&text_mutex);
1396 	jump_label_unlock();
1397 	cpus_read_unlock();
1398 
1399 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1400 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1401 		if (!kprobes_all_disarmed) {
1402 			/* Arm the breakpoint again. */
1403 			ret = arm_kprobe(ap);
1404 			if (ret) {
1405 				ap->flags |= KPROBE_FLAG_DISABLED;
1406 				list_del_rcu(&p->list);
1407 				synchronize_rcu();
1408 			}
1409 		}
1410 	}
1411 	return ret;
1412 }
1413 
1414 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1415 {
1416 	/* The __kprobes marked functions and entry code must not be probed */
1417 	return addr >= (unsigned long)__kprobes_text_start &&
1418 	       addr < (unsigned long)__kprobes_text_end;
1419 }
1420 
1421 static bool __within_kprobe_blacklist(unsigned long addr)
1422 {
1423 	struct kprobe_blacklist_entry *ent;
1424 
1425 	if (arch_within_kprobe_blacklist(addr))
1426 		return true;
1427 	/*
1428 	 * If there exists a kprobe_blacklist, verify and
1429 	 * fail any probe registration in the prohibited area
1430 	 */
1431 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1432 		if (addr >= ent->start_addr && addr < ent->end_addr)
1433 			return true;
1434 	}
1435 	return false;
1436 }
1437 
1438 bool within_kprobe_blacklist(unsigned long addr)
1439 {
1440 	char symname[KSYM_NAME_LEN], *p;
1441 
1442 	if (__within_kprobe_blacklist(addr))
1443 		return true;
1444 
1445 	/* Check if the address is on a suffixed-symbol */
1446 	if (!lookup_symbol_name(addr, symname)) {
1447 		p = strchr(symname, '.');
1448 		if (!p)
1449 			return false;
1450 		*p = '\0';
1451 		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1452 		if (addr)
1453 			return __within_kprobe_blacklist(addr);
1454 	}
1455 	return false;
1456 }
1457 
1458 /*
1459  * If we have a symbol_name argument, look it up and add the offset field
1460  * to it. This way, we can specify a relative address to a symbol.
1461  * This returns encoded errors if it fails to look up symbol or invalid
1462  * combination of parameters.
1463  */
1464 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1465 			const char *symbol_name, unsigned int offset)
1466 {
1467 	if ((symbol_name && addr) || (!symbol_name && !addr))
1468 		goto invalid;
1469 
1470 	if (symbol_name) {
1471 		addr = kprobe_lookup_name(symbol_name, offset);
1472 		if (!addr)
1473 			return ERR_PTR(-ENOENT);
1474 	}
1475 
1476 	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1477 	if (addr)
1478 		return addr;
1479 
1480 invalid:
1481 	return ERR_PTR(-EINVAL);
1482 }
1483 
1484 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1485 {
1486 	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1487 }
1488 
1489 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1490 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1491 {
1492 	struct kprobe *ap, *list_p;
1493 
1494 	lockdep_assert_held(&kprobe_mutex);
1495 
1496 	ap = get_kprobe(p->addr);
1497 	if (unlikely(!ap))
1498 		return NULL;
1499 
1500 	if (p != ap) {
1501 		list_for_each_entry(list_p, &ap->list, list)
1502 			if (list_p == p)
1503 			/* kprobe p is a valid probe */
1504 				goto valid;
1505 		return NULL;
1506 	}
1507 valid:
1508 	return ap;
1509 }
1510 
1511 /*
1512  * Warn and return error if the kprobe is being re-registered since
1513  * there must be a software bug.
1514  */
1515 static inline int warn_kprobe_rereg(struct kprobe *p)
1516 {
1517 	int ret = 0;
1518 
1519 	mutex_lock(&kprobe_mutex);
1520 	if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1521 		ret = -EINVAL;
1522 	mutex_unlock(&kprobe_mutex);
1523 
1524 	return ret;
1525 }
1526 
1527 int __weak arch_check_ftrace_location(struct kprobe *p)
1528 {
1529 	unsigned long ftrace_addr;
1530 
1531 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1532 	if (ftrace_addr) {
1533 #ifdef CONFIG_KPROBES_ON_FTRACE
1534 		/* Given address is not on the instruction boundary */
1535 		if ((unsigned long)p->addr != ftrace_addr)
1536 			return -EILSEQ;
1537 		p->flags |= KPROBE_FLAG_FTRACE;
1538 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1539 		return -EINVAL;
1540 #endif
1541 	}
1542 	return 0;
1543 }
1544 
1545 static int check_kprobe_address_safe(struct kprobe *p,
1546 				     struct module **probed_mod)
1547 {
1548 	int ret;
1549 
1550 	ret = arch_check_ftrace_location(p);
1551 	if (ret)
1552 		return ret;
1553 	jump_label_lock();
1554 	preempt_disable();
1555 
1556 	/* Ensure it is not in reserved area nor out of text */
1557 	if (!kernel_text_address((unsigned long) p->addr) ||
1558 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1559 	    jump_label_text_reserved(p->addr, p->addr) ||
1560 	    static_call_text_reserved(p->addr, p->addr) ||
1561 	    find_bug((unsigned long)p->addr)) {
1562 		ret = -EINVAL;
1563 		goto out;
1564 	}
1565 
1566 	/* Check if are we probing a module */
1567 	*probed_mod = __module_text_address((unsigned long) p->addr);
1568 	if (*probed_mod) {
1569 		/*
1570 		 * We must hold a refcount of the probed module while updating
1571 		 * its code to prohibit unexpected unloading.
1572 		 */
1573 		if (unlikely(!try_module_get(*probed_mod))) {
1574 			ret = -ENOENT;
1575 			goto out;
1576 		}
1577 
1578 		/*
1579 		 * If the module freed .init.text, we couldn't insert
1580 		 * kprobes in there.
1581 		 */
1582 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1583 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1584 			module_put(*probed_mod);
1585 			*probed_mod = NULL;
1586 			ret = -ENOENT;
1587 		}
1588 	}
1589 out:
1590 	preempt_enable();
1591 	jump_label_unlock();
1592 
1593 	return ret;
1594 }
1595 
1596 int register_kprobe(struct kprobe *p)
1597 {
1598 	int ret;
1599 	struct kprobe *old_p;
1600 	struct module *probed_mod;
1601 	kprobe_opcode_t *addr;
1602 
1603 	/* Adjust probe address from symbol */
1604 	addr = kprobe_addr(p);
1605 	if (IS_ERR(addr))
1606 		return PTR_ERR(addr);
1607 	p->addr = addr;
1608 
1609 	ret = warn_kprobe_rereg(p);
1610 	if (ret)
1611 		return ret;
1612 
1613 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1614 	p->flags &= KPROBE_FLAG_DISABLED;
1615 	p->nmissed = 0;
1616 	INIT_LIST_HEAD(&p->list);
1617 
1618 	ret = check_kprobe_address_safe(p, &probed_mod);
1619 	if (ret)
1620 		return ret;
1621 
1622 	mutex_lock(&kprobe_mutex);
1623 
1624 	old_p = get_kprobe(p->addr);
1625 	if (old_p) {
1626 		/* Since this may unoptimize old_p, locking text_mutex. */
1627 		ret = register_aggr_kprobe(old_p, p);
1628 		goto out;
1629 	}
1630 
1631 	cpus_read_lock();
1632 	/* Prevent text modification */
1633 	mutex_lock(&text_mutex);
1634 	ret = prepare_kprobe(p);
1635 	mutex_unlock(&text_mutex);
1636 	cpus_read_unlock();
1637 	if (ret)
1638 		goto out;
1639 
1640 	INIT_HLIST_NODE(&p->hlist);
1641 	hlist_add_head_rcu(&p->hlist,
1642 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1643 
1644 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1645 		ret = arm_kprobe(p);
1646 		if (ret) {
1647 			hlist_del_rcu(&p->hlist);
1648 			synchronize_rcu();
1649 			goto out;
1650 		}
1651 	}
1652 
1653 	/* Try to optimize kprobe */
1654 	try_to_optimize_kprobe(p);
1655 out:
1656 	mutex_unlock(&kprobe_mutex);
1657 
1658 	if (probed_mod)
1659 		module_put(probed_mod);
1660 
1661 	return ret;
1662 }
1663 EXPORT_SYMBOL_GPL(register_kprobe);
1664 
1665 /* Check if all probes on the aggrprobe are disabled */
1666 static int aggr_kprobe_disabled(struct kprobe *ap)
1667 {
1668 	struct kprobe *kp;
1669 
1670 	lockdep_assert_held(&kprobe_mutex);
1671 
1672 	list_for_each_entry(kp, &ap->list, list)
1673 		if (!kprobe_disabled(kp))
1674 			/*
1675 			 * There is an active probe on the list.
1676 			 * We can't disable this ap.
1677 			 */
1678 			return 0;
1679 
1680 	return 1;
1681 }
1682 
1683 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1684 static struct kprobe *__disable_kprobe(struct kprobe *p)
1685 {
1686 	struct kprobe *orig_p;
1687 	int ret;
1688 
1689 	/* Get an original kprobe for return */
1690 	orig_p = __get_valid_kprobe(p);
1691 	if (unlikely(orig_p == NULL))
1692 		return ERR_PTR(-EINVAL);
1693 
1694 	if (!kprobe_disabled(p)) {
1695 		/* Disable probe if it is a child probe */
1696 		if (p != orig_p)
1697 			p->flags |= KPROBE_FLAG_DISABLED;
1698 
1699 		/* Try to disarm and disable this/parent probe */
1700 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1701 			/*
1702 			 * If kprobes_all_disarmed is set, orig_p
1703 			 * should have already been disarmed, so
1704 			 * skip unneed disarming process.
1705 			 */
1706 			if (!kprobes_all_disarmed) {
1707 				ret = disarm_kprobe(orig_p, true);
1708 				if (ret) {
1709 					p->flags &= ~KPROBE_FLAG_DISABLED;
1710 					return ERR_PTR(ret);
1711 				}
1712 			}
1713 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1714 		}
1715 	}
1716 
1717 	return orig_p;
1718 }
1719 
1720 /*
1721  * Unregister a kprobe without a scheduler synchronization.
1722  */
1723 static int __unregister_kprobe_top(struct kprobe *p)
1724 {
1725 	struct kprobe *ap, *list_p;
1726 
1727 	/* Disable kprobe. This will disarm it if needed. */
1728 	ap = __disable_kprobe(p);
1729 	if (IS_ERR(ap))
1730 		return PTR_ERR(ap);
1731 
1732 	if (ap == p)
1733 		/*
1734 		 * This probe is an independent(and non-optimized) kprobe
1735 		 * (not an aggrprobe). Remove from the hash list.
1736 		 */
1737 		goto disarmed;
1738 
1739 	/* Following process expects this probe is an aggrprobe */
1740 	WARN_ON(!kprobe_aggrprobe(ap));
1741 
1742 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1743 		/*
1744 		 * !disarmed could be happen if the probe is under delayed
1745 		 * unoptimizing.
1746 		 */
1747 		goto disarmed;
1748 	else {
1749 		/* If disabling probe has special handlers, update aggrprobe */
1750 		if (p->post_handler && !kprobe_gone(p)) {
1751 			list_for_each_entry(list_p, &ap->list, list) {
1752 				if ((list_p != p) && (list_p->post_handler))
1753 					goto noclean;
1754 			}
1755 			ap->post_handler = NULL;
1756 		}
1757 noclean:
1758 		/*
1759 		 * Remove from the aggrprobe: this path will do nothing in
1760 		 * __unregister_kprobe_bottom().
1761 		 */
1762 		list_del_rcu(&p->list);
1763 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1764 			/*
1765 			 * Try to optimize this probe again, because post
1766 			 * handler may have been changed.
1767 			 */
1768 			optimize_kprobe(ap);
1769 	}
1770 	return 0;
1771 
1772 disarmed:
1773 	hlist_del_rcu(&ap->hlist);
1774 	return 0;
1775 }
1776 
1777 static void __unregister_kprobe_bottom(struct kprobe *p)
1778 {
1779 	struct kprobe *ap;
1780 
1781 	if (list_empty(&p->list))
1782 		/* This is an independent kprobe */
1783 		arch_remove_kprobe(p);
1784 	else if (list_is_singular(&p->list)) {
1785 		/* This is the last child of an aggrprobe */
1786 		ap = list_entry(p->list.next, struct kprobe, list);
1787 		list_del(&p->list);
1788 		free_aggr_kprobe(ap);
1789 	}
1790 	/* Otherwise, do nothing. */
1791 }
1792 
1793 int register_kprobes(struct kprobe **kps, int num)
1794 {
1795 	int i, ret = 0;
1796 
1797 	if (num <= 0)
1798 		return -EINVAL;
1799 	for (i = 0; i < num; i++) {
1800 		ret = register_kprobe(kps[i]);
1801 		if (ret < 0) {
1802 			if (i > 0)
1803 				unregister_kprobes(kps, i);
1804 			break;
1805 		}
1806 	}
1807 	return ret;
1808 }
1809 EXPORT_SYMBOL_GPL(register_kprobes);
1810 
1811 void unregister_kprobe(struct kprobe *p)
1812 {
1813 	unregister_kprobes(&p, 1);
1814 }
1815 EXPORT_SYMBOL_GPL(unregister_kprobe);
1816 
1817 void unregister_kprobes(struct kprobe **kps, int num)
1818 {
1819 	int i;
1820 
1821 	if (num <= 0)
1822 		return;
1823 	mutex_lock(&kprobe_mutex);
1824 	for (i = 0; i < num; i++)
1825 		if (__unregister_kprobe_top(kps[i]) < 0)
1826 			kps[i]->addr = NULL;
1827 	mutex_unlock(&kprobe_mutex);
1828 
1829 	synchronize_rcu();
1830 	for (i = 0; i < num; i++)
1831 		if (kps[i]->addr)
1832 			__unregister_kprobe_bottom(kps[i]);
1833 }
1834 EXPORT_SYMBOL_GPL(unregister_kprobes);
1835 
1836 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1837 					unsigned long val, void *data)
1838 {
1839 	return NOTIFY_DONE;
1840 }
1841 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1842 
1843 static struct notifier_block kprobe_exceptions_nb = {
1844 	.notifier_call = kprobe_exceptions_notify,
1845 	.priority = 0x7fffffff /* we need to be notified first */
1846 };
1847 
1848 unsigned long __weak arch_deref_entry_point(void *entry)
1849 {
1850 	return (unsigned long)entry;
1851 }
1852 
1853 #ifdef CONFIG_KRETPROBES
1854 
1855 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1856 					     void *trampoline_address,
1857 					     void *frame_pointer)
1858 {
1859 	kprobe_opcode_t *correct_ret_addr = NULL;
1860 	struct kretprobe_instance *ri = NULL;
1861 	struct llist_node *first, *node;
1862 	struct kretprobe *rp;
1863 
1864 	/* Find all nodes for this frame. */
1865 	first = node = current->kretprobe_instances.first;
1866 	while (node) {
1867 		ri = container_of(node, struct kretprobe_instance, llist);
1868 
1869 		BUG_ON(ri->fp != frame_pointer);
1870 
1871 		if (ri->ret_addr != trampoline_address) {
1872 			correct_ret_addr = ri->ret_addr;
1873 			/*
1874 			 * This is the real return address. Any other
1875 			 * instances associated with this task are for
1876 			 * other calls deeper on the call stack
1877 			 */
1878 			goto found;
1879 		}
1880 
1881 		node = node->next;
1882 	}
1883 	pr_err("Oops! Kretprobe fails to find correct return address.\n");
1884 	BUG_ON(1);
1885 
1886 found:
1887 	/* Unlink all nodes for this frame. */
1888 	current->kretprobe_instances.first = node->next;
1889 	node->next = NULL;
1890 
1891 	/* Run them..  */
1892 	while (first) {
1893 		ri = container_of(first, struct kretprobe_instance, llist);
1894 		first = first->next;
1895 
1896 		rp = get_kretprobe(ri);
1897 		if (rp && rp->handler) {
1898 			struct kprobe *prev = kprobe_running();
1899 
1900 			__this_cpu_write(current_kprobe, &rp->kp);
1901 			ri->ret_addr = correct_ret_addr;
1902 			rp->handler(ri, regs);
1903 			__this_cpu_write(current_kprobe, prev);
1904 		}
1905 
1906 		recycle_rp_inst(ri);
1907 	}
1908 
1909 	return (unsigned long)correct_ret_addr;
1910 }
1911 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
1912 
1913 /*
1914  * This kprobe pre_handler is registered with every kretprobe. When probe
1915  * hits it will set up the return probe.
1916  */
1917 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1918 {
1919 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1920 	struct kretprobe_instance *ri;
1921 	struct freelist_node *fn;
1922 
1923 	fn = freelist_try_get(&rp->freelist);
1924 	if (!fn) {
1925 		rp->nmissed++;
1926 		return 0;
1927 	}
1928 
1929 	ri = container_of(fn, struct kretprobe_instance, freelist);
1930 
1931 	if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1932 		freelist_add(&ri->freelist, &rp->freelist);
1933 		return 0;
1934 	}
1935 
1936 	arch_prepare_kretprobe(ri, regs);
1937 
1938 	__llist_add(&ri->llist, &current->kretprobe_instances);
1939 
1940 	return 0;
1941 }
1942 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1943 
1944 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1945 {
1946 	return !offset;
1947 }
1948 
1949 /**
1950  * kprobe_on_func_entry() -- check whether given address is function entry
1951  * @addr: Target address
1952  * @sym:  Target symbol name
1953  * @offset: The offset from the symbol or the address
1954  *
1955  * This checks whether the given @addr+@offset or @sym+@offset is on the
1956  * function entry address or not.
1957  * This returns 0 if it is the function entry, or -EINVAL if it is not.
1958  * And also it returns -ENOENT if it fails the symbol or address lookup.
1959  * Caller must pass @addr or @sym (either one must be NULL), or this
1960  * returns -EINVAL.
1961  */
1962 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1963 {
1964 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1965 
1966 	if (IS_ERR(kp_addr))
1967 		return PTR_ERR(kp_addr);
1968 
1969 	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1970 		return -ENOENT;
1971 
1972 	if (!arch_kprobe_on_func_entry(offset))
1973 		return -EINVAL;
1974 
1975 	return 0;
1976 }
1977 
1978 int register_kretprobe(struct kretprobe *rp)
1979 {
1980 	int ret;
1981 	struct kretprobe_instance *inst;
1982 	int i;
1983 	void *addr;
1984 
1985 	ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
1986 	if (ret)
1987 		return ret;
1988 
1989 	/* If only rp->kp.addr is specified, check reregistering kprobes */
1990 	if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
1991 		return -EINVAL;
1992 
1993 	if (kretprobe_blacklist_size) {
1994 		addr = kprobe_addr(&rp->kp);
1995 		if (IS_ERR(addr))
1996 			return PTR_ERR(addr);
1997 
1998 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1999 			if (kretprobe_blacklist[i].addr == addr)
2000 				return -EINVAL;
2001 		}
2002 	}
2003 
2004 	rp->kp.pre_handler = pre_handler_kretprobe;
2005 	rp->kp.post_handler = NULL;
2006 
2007 	/* Pre-allocate memory for max kretprobe instances */
2008 	if (rp->maxactive <= 0) {
2009 #ifdef CONFIG_PREEMPTION
2010 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2011 #else
2012 		rp->maxactive = num_possible_cpus();
2013 #endif
2014 	}
2015 	rp->freelist.head = NULL;
2016 	rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2017 	if (!rp->rph)
2018 		return -ENOMEM;
2019 
2020 	rp->rph->rp = rp;
2021 	for (i = 0; i < rp->maxactive; i++) {
2022 		inst = kzalloc(sizeof(struct kretprobe_instance) +
2023 			       rp->data_size, GFP_KERNEL);
2024 		if (inst == NULL) {
2025 			refcount_set(&rp->rph->ref, i);
2026 			free_rp_inst(rp);
2027 			return -ENOMEM;
2028 		}
2029 		inst->rph = rp->rph;
2030 		freelist_add(&inst->freelist, &rp->freelist);
2031 	}
2032 	refcount_set(&rp->rph->ref, i);
2033 
2034 	rp->nmissed = 0;
2035 	/* Establish function entry probe point */
2036 	ret = register_kprobe(&rp->kp);
2037 	if (ret != 0)
2038 		free_rp_inst(rp);
2039 	return ret;
2040 }
2041 EXPORT_SYMBOL_GPL(register_kretprobe);
2042 
2043 int register_kretprobes(struct kretprobe **rps, int num)
2044 {
2045 	int ret = 0, i;
2046 
2047 	if (num <= 0)
2048 		return -EINVAL;
2049 	for (i = 0; i < num; i++) {
2050 		ret = register_kretprobe(rps[i]);
2051 		if (ret < 0) {
2052 			if (i > 0)
2053 				unregister_kretprobes(rps, i);
2054 			break;
2055 		}
2056 	}
2057 	return ret;
2058 }
2059 EXPORT_SYMBOL_GPL(register_kretprobes);
2060 
2061 void unregister_kretprobe(struct kretprobe *rp)
2062 {
2063 	unregister_kretprobes(&rp, 1);
2064 }
2065 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2066 
2067 void unregister_kretprobes(struct kretprobe **rps, int num)
2068 {
2069 	int i;
2070 
2071 	if (num <= 0)
2072 		return;
2073 	mutex_lock(&kprobe_mutex);
2074 	for (i = 0; i < num; i++) {
2075 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2076 			rps[i]->kp.addr = NULL;
2077 		rps[i]->rph->rp = NULL;
2078 	}
2079 	mutex_unlock(&kprobe_mutex);
2080 
2081 	synchronize_rcu();
2082 	for (i = 0; i < num; i++) {
2083 		if (rps[i]->kp.addr) {
2084 			__unregister_kprobe_bottom(&rps[i]->kp);
2085 			free_rp_inst(rps[i]);
2086 		}
2087 	}
2088 }
2089 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2090 
2091 #else /* CONFIG_KRETPROBES */
2092 int register_kretprobe(struct kretprobe *rp)
2093 {
2094 	return -ENOSYS;
2095 }
2096 EXPORT_SYMBOL_GPL(register_kretprobe);
2097 
2098 int register_kretprobes(struct kretprobe **rps, int num)
2099 {
2100 	return -ENOSYS;
2101 }
2102 EXPORT_SYMBOL_GPL(register_kretprobes);
2103 
2104 void unregister_kretprobe(struct kretprobe *rp)
2105 {
2106 }
2107 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2108 
2109 void unregister_kretprobes(struct kretprobe **rps, int num)
2110 {
2111 }
2112 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2113 
2114 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2115 {
2116 	return 0;
2117 }
2118 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2119 
2120 #endif /* CONFIG_KRETPROBES */
2121 
2122 /* Set the kprobe gone and remove its instruction buffer. */
2123 static void kill_kprobe(struct kprobe *p)
2124 {
2125 	struct kprobe *kp;
2126 
2127 	lockdep_assert_held(&kprobe_mutex);
2128 
2129 	p->flags |= KPROBE_FLAG_GONE;
2130 	if (kprobe_aggrprobe(p)) {
2131 		/*
2132 		 * If this is an aggr_kprobe, we have to list all the
2133 		 * chained probes and mark them GONE.
2134 		 */
2135 		list_for_each_entry(kp, &p->list, list)
2136 			kp->flags |= KPROBE_FLAG_GONE;
2137 		p->post_handler = NULL;
2138 		kill_optimized_kprobe(p);
2139 	}
2140 	/*
2141 	 * Here, we can remove insn_slot safely, because no thread calls
2142 	 * the original probed function (which will be freed soon) any more.
2143 	 */
2144 	arch_remove_kprobe(p);
2145 
2146 	/*
2147 	 * The module is going away. We should disarm the kprobe which
2148 	 * is using ftrace, because ftrace framework is still available at
2149 	 * MODULE_STATE_GOING notification.
2150 	 */
2151 	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2152 		disarm_kprobe_ftrace(p);
2153 }
2154 
2155 /* Disable one kprobe */
2156 int disable_kprobe(struct kprobe *kp)
2157 {
2158 	int ret = 0;
2159 	struct kprobe *p;
2160 
2161 	mutex_lock(&kprobe_mutex);
2162 
2163 	/* Disable this kprobe */
2164 	p = __disable_kprobe(kp);
2165 	if (IS_ERR(p))
2166 		ret = PTR_ERR(p);
2167 
2168 	mutex_unlock(&kprobe_mutex);
2169 	return ret;
2170 }
2171 EXPORT_SYMBOL_GPL(disable_kprobe);
2172 
2173 /* Enable one kprobe */
2174 int enable_kprobe(struct kprobe *kp)
2175 {
2176 	int ret = 0;
2177 	struct kprobe *p;
2178 
2179 	mutex_lock(&kprobe_mutex);
2180 
2181 	/* Check whether specified probe is valid. */
2182 	p = __get_valid_kprobe(kp);
2183 	if (unlikely(p == NULL)) {
2184 		ret = -EINVAL;
2185 		goto out;
2186 	}
2187 
2188 	if (kprobe_gone(kp)) {
2189 		/* This kprobe has gone, we couldn't enable it. */
2190 		ret = -EINVAL;
2191 		goto out;
2192 	}
2193 
2194 	if (p != kp)
2195 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2196 
2197 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2198 		p->flags &= ~KPROBE_FLAG_DISABLED;
2199 		ret = arm_kprobe(p);
2200 		if (ret)
2201 			p->flags |= KPROBE_FLAG_DISABLED;
2202 	}
2203 out:
2204 	mutex_unlock(&kprobe_mutex);
2205 	return ret;
2206 }
2207 EXPORT_SYMBOL_GPL(enable_kprobe);
2208 
2209 /* Caller must NOT call this in usual path. This is only for critical case */
2210 void dump_kprobe(struct kprobe *kp)
2211 {
2212 	pr_err("Dumping kprobe:\n");
2213 	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2214 	       kp->symbol_name, kp->offset, kp->addr);
2215 }
2216 NOKPROBE_SYMBOL(dump_kprobe);
2217 
2218 int kprobe_add_ksym_blacklist(unsigned long entry)
2219 {
2220 	struct kprobe_blacklist_entry *ent;
2221 	unsigned long offset = 0, size = 0;
2222 
2223 	if (!kernel_text_address(entry) ||
2224 	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2225 		return -EINVAL;
2226 
2227 	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2228 	if (!ent)
2229 		return -ENOMEM;
2230 	ent->start_addr = entry;
2231 	ent->end_addr = entry + size;
2232 	INIT_LIST_HEAD(&ent->list);
2233 	list_add_tail(&ent->list, &kprobe_blacklist);
2234 
2235 	return (int)size;
2236 }
2237 
2238 /* Add all symbols in given area into kprobe blacklist */
2239 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2240 {
2241 	unsigned long entry;
2242 	int ret = 0;
2243 
2244 	for (entry = start; entry < end; entry += ret) {
2245 		ret = kprobe_add_ksym_blacklist(entry);
2246 		if (ret < 0)
2247 			return ret;
2248 		if (ret == 0)	/* In case of alias symbol */
2249 			ret = 1;
2250 	}
2251 	return 0;
2252 }
2253 
2254 /* Remove all symbols in given area from kprobe blacklist */
2255 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2256 {
2257 	struct kprobe_blacklist_entry *ent, *n;
2258 
2259 	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2260 		if (ent->start_addr < start || ent->start_addr >= end)
2261 			continue;
2262 		list_del(&ent->list);
2263 		kfree(ent);
2264 	}
2265 }
2266 
2267 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2268 {
2269 	kprobe_remove_area_blacklist(entry, entry + 1);
2270 }
2271 
2272 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2273 				   char *type, char *sym)
2274 {
2275 	return -ERANGE;
2276 }
2277 
2278 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2279 		       char *sym)
2280 {
2281 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2282 	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2283 		return 0;
2284 #ifdef CONFIG_OPTPROBES
2285 	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2286 		return 0;
2287 #endif
2288 #endif
2289 	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2290 		return 0;
2291 	return -ERANGE;
2292 }
2293 
2294 int __init __weak arch_populate_kprobe_blacklist(void)
2295 {
2296 	return 0;
2297 }
2298 
2299 /*
2300  * Lookup and populate the kprobe_blacklist.
2301  *
2302  * Unlike the kretprobe blacklist, we'll need to determine
2303  * the range of addresses that belong to the said functions,
2304  * since a kprobe need not necessarily be at the beginning
2305  * of a function.
2306  */
2307 static int __init populate_kprobe_blacklist(unsigned long *start,
2308 					     unsigned long *end)
2309 {
2310 	unsigned long entry;
2311 	unsigned long *iter;
2312 	int ret;
2313 
2314 	for (iter = start; iter < end; iter++) {
2315 		entry = arch_deref_entry_point((void *)*iter);
2316 		ret = kprobe_add_ksym_blacklist(entry);
2317 		if (ret == -EINVAL)
2318 			continue;
2319 		if (ret < 0)
2320 			return ret;
2321 	}
2322 
2323 	/* Symbols in __kprobes_text are blacklisted */
2324 	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2325 					(unsigned long)__kprobes_text_end);
2326 	if (ret)
2327 		return ret;
2328 
2329 	/* Symbols in noinstr section are blacklisted */
2330 	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2331 					(unsigned long)__noinstr_text_end);
2332 
2333 	return ret ? : arch_populate_kprobe_blacklist();
2334 }
2335 
2336 static void add_module_kprobe_blacklist(struct module *mod)
2337 {
2338 	unsigned long start, end;
2339 	int i;
2340 
2341 	if (mod->kprobe_blacklist) {
2342 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2343 			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2344 	}
2345 
2346 	start = (unsigned long)mod->kprobes_text_start;
2347 	if (start) {
2348 		end = start + mod->kprobes_text_size;
2349 		kprobe_add_area_blacklist(start, end);
2350 	}
2351 
2352 	start = (unsigned long)mod->noinstr_text_start;
2353 	if (start) {
2354 		end = start + mod->noinstr_text_size;
2355 		kprobe_add_area_blacklist(start, end);
2356 	}
2357 }
2358 
2359 static void remove_module_kprobe_blacklist(struct module *mod)
2360 {
2361 	unsigned long start, end;
2362 	int i;
2363 
2364 	if (mod->kprobe_blacklist) {
2365 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2366 			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2367 	}
2368 
2369 	start = (unsigned long)mod->kprobes_text_start;
2370 	if (start) {
2371 		end = start + mod->kprobes_text_size;
2372 		kprobe_remove_area_blacklist(start, end);
2373 	}
2374 
2375 	start = (unsigned long)mod->noinstr_text_start;
2376 	if (start) {
2377 		end = start + mod->noinstr_text_size;
2378 		kprobe_remove_area_blacklist(start, end);
2379 	}
2380 }
2381 
2382 /* Module notifier call back, checking kprobes on the module */
2383 static int kprobes_module_callback(struct notifier_block *nb,
2384 				   unsigned long val, void *data)
2385 {
2386 	struct module *mod = data;
2387 	struct hlist_head *head;
2388 	struct kprobe *p;
2389 	unsigned int i;
2390 	int checkcore = (val == MODULE_STATE_GOING);
2391 
2392 	if (val == MODULE_STATE_COMING) {
2393 		mutex_lock(&kprobe_mutex);
2394 		add_module_kprobe_blacklist(mod);
2395 		mutex_unlock(&kprobe_mutex);
2396 	}
2397 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2398 		return NOTIFY_DONE;
2399 
2400 	/*
2401 	 * When MODULE_STATE_GOING was notified, both of module .text and
2402 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2403 	 * notified, only .init.text section would be freed. We need to
2404 	 * disable kprobes which have been inserted in the sections.
2405 	 */
2406 	mutex_lock(&kprobe_mutex);
2407 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2408 		head = &kprobe_table[i];
2409 		hlist_for_each_entry(p, head, hlist)
2410 			if (within_module_init((unsigned long)p->addr, mod) ||
2411 			    (checkcore &&
2412 			     within_module_core((unsigned long)p->addr, mod))) {
2413 				/*
2414 				 * The vaddr this probe is installed will soon
2415 				 * be vfreed buy not synced to disk. Hence,
2416 				 * disarming the breakpoint isn't needed.
2417 				 *
2418 				 * Note, this will also move any optimized probes
2419 				 * that are pending to be removed from their
2420 				 * corresponding lists to the freeing_list and
2421 				 * will not be touched by the delayed
2422 				 * kprobe_optimizer work handler.
2423 				 */
2424 				kill_kprobe(p);
2425 			}
2426 	}
2427 	if (val == MODULE_STATE_GOING)
2428 		remove_module_kprobe_blacklist(mod);
2429 	mutex_unlock(&kprobe_mutex);
2430 	return NOTIFY_DONE;
2431 }
2432 
2433 static struct notifier_block kprobe_module_nb = {
2434 	.notifier_call = kprobes_module_callback,
2435 	.priority = 0
2436 };
2437 
2438 /* Markers of _kprobe_blacklist section */
2439 extern unsigned long __start_kprobe_blacklist[];
2440 extern unsigned long __stop_kprobe_blacklist[];
2441 
2442 void kprobe_free_init_mem(void)
2443 {
2444 	void *start = (void *)(&__init_begin);
2445 	void *end = (void *)(&__init_end);
2446 	struct hlist_head *head;
2447 	struct kprobe *p;
2448 	int i;
2449 
2450 	mutex_lock(&kprobe_mutex);
2451 
2452 	/* Kill all kprobes on initmem */
2453 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2454 		head = &kprobe_table[i];
2455 		hlist_for_each_entry(p, head, hlist) {
2456 			if (start <= (void *)p->addr && (void *)p->addr < end)
2457 				kill_kprobe(p);
2458 		}
2459 	}
2460 
2461 	mutex_unlock(&kprobe_mutex);
2462 }
2463 
2464 static int __init init_kprobes(void)
2465 {
2466 	int i, err = 0;
2467 
2468 	/* FIXME allocate the probe table, currently defined statically */
2469 	/* initialize all list heads */
2470 	for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2471 		INIT_HLIST_HEAD(&kprobe_table[i]);
2472 
2473 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2474 					__stop_kprobe_blacklist);
2475 	if (err) {
2476 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2477 		pr_err("Please take care of using kprobes.\n");
2478 	}
2479 
2480 	if (kretprobe_blacklist_size) {
2481 		/* lookup the function address from its name */
2482 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2483 			kretprobe_blacklist[i].addr =
2484 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2485 			if (!kretprobe_blacklist[i].addr)
2486 				printk("kretprobe: lookup failed: %s\n",
2487 				       kretprobe_blacklist[i].name);
2488 		}
2489 	}
2490 
2491 	/* By default, kprobes are armed */
2492 	kprobes_all_disarmed = false;
2493 
2494 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2495 	/* Init kprobe_optinsn_slots for allocation */
2496 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2497 #endif
2498 
2499 	err = arch_init_kprobes();
2500 	if (!err)
2501 		err = register_die_notifier(&kprobe_exceptions_nb);
2502 	if (!err)
2503 		err = register_module_notifier(&kprobe_module_nb);
2504 
2505 	kprobes_initialized = (err == 0);
2506 
2507 	if (!err)
2508 		init_test_probes();
2509 	return err;
2510 }
2511 early_initcall(init_kprobes);
2512 
2513 #if defined(CONFIG_OPTPROBES)
2514 static int __init init_optprobes(void)
2515 {
2516 	/*
2517 	 * Enable kprobe optimization - this kicks the optimizer which
2518 	 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2519 	 * not spawned in early initcall. So delay the optimization.
2520 	 */
2521 	optimize_all_kprobes();
2522 
2523 	return 0;
2524 }
2525 subsys_initcall(init_optprobes);
2526 #endif
2527 
2528 #ifdef CONFIG_DEBUG_FS
2529 static void report_probe(struct seq_file *pi, struct kprobe *p,
2530 		const char *sym, int offset, char *modname, struct kprobe *pp)
2531 {
2532 	char *kprobe_type;
2533 	void *addr = p->addr;
2534 
2535 	if (p->pre_handler == pre_handler_kretprobe)
2536 		kprobe_type = "r";
2537 	else
2538 		kprobe_type = "k";
2539 
2540 	if (!kallsyms_show_value(pi->file->f_cred))
2541 		addr = NULL;
2542 
2543 	if (sym)
2544 		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2545 			addr, kprobe_type, sym, offset,
2546 			(modname ? modname : " "));
2547 	else	/* try to use %pS */
2548 		seq_printf(pi, "%px  %s  %pS ",
2549 			addr, kprobe_type, p->addr);
2550 
2551 	if (!pp)
2552 		pp = p;
2553 	seq_printf(pi, "%s%s%s%s\n",
2554 		(kprobe_gone(p) ? "[GONE]" : ""),
2555 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2556 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2557 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2558 }
2559 
2560 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2561 {
2562 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2563 }
2564 
2565 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2566 {
2567 	(*pos)++;
2568 	if (*pos >= KPROBE_TABLE_SIZE)
2569 		return NULL;
2570 	return pos;
2571 }
2572 
2573 static void kprobe_seq_stop(struct seq_file *f, void *v)
2574 {
2575 	/* Nothing to do */
2576 }
2577 
2578 static int show_kprobe_addr(struct seq_file *pi, void *v)
2579 {
2580 	struct hlist_head *head;
2581 	struct kprobe *p, *kp;
2582 	const char *sym = NULL;
2583 	unsigned int i = *(loff_t *) v;
2584 	unsigned long offset = 0;
2585 	char *modname, namebuf[KSYM_NAME_LEN];
2586 
2587 	head = &kprobe_table[i];
2588 	preempt_disable();
2589 	hlist_for_each_entry_rcu(p, head, hlist) {
2590 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2591 					&offset, &modname, namebuf);
2592 		if (kprobe_aggrprobe(p)) {
2593 			list_for_each_entry_rcu(kp, &p->list, list)
2594 				report_probe(pi, kp, sym, offset, modname, p);
2595 		} else
2596 			report_probe(pi, p, sym, offset, modname, NULL);
2597 	}
2598 	preempt_enable();
2599 	return 0;
2600 }
2601 
2602 static const struct seq_operations kprobes_sops = {
2603 	.start = kprobe_seq_start,
2604 	.next  = kprobe_seq_next,
2605 	.stop  = kprobe_seq_stop,
2606 	.show  = show_kprobe_addr
2607 };
2608 
2609 DEFINE_SEQ_ATTRIBUTE(kprobes);
2610 
2611 /* kprobes/blacklist -- shows which functions can not be probed */
2612 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2613 {
2614 	mutex_lock(&kprobe_mutex);
2615 	return seq_list_start(&kprobe_blacklist, *pos);
2616 }
2617 
2618 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2619 {
2620 	return seq_list_next(v, &kprobe_blacklist, pos);
2621 }
2622 
2623 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2624 {
2625 	struct kprobe_blacklist_entry *ent =
2626 		list_entry(v, struct kprobe_blacklist_entry, list);
2627 
2628 	/*
2629 	 * If /proc/kallsyms is not showing kernel address, we won't
2630 	 * show them here either.
2631 	 */
2632 	if (!kallsyms_show_value(m->file->f_cred))
2633 		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2634 			   (void *)ent->start_addr);
2635 	else
2636 		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2637 			   (void *)ent->end_addr, (void *)ent->start_addr);
2638 	return 0;
2639 }
2640 
2641 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2642 {
2643 	mutex_unlock(&kprobe_mutex);
2644 }
2645 
2646 static const struct seq_operations kprobe_blacklist_sops = {
2647 	.start = kprobe_blacklist_seq_start,
2648 	.next  = kprobe_blacklist_seq_next,
2649 	.stop  = kprobe_blacklist_seq_stop,
2650 	.show  = kprobe_blacklist_seq_show,
2651 };
2652 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2653 
2654 static int arm_all_kprobes(void)
2655 {
2656 	struct hlist_head *head;
2657 	struct kprobe *p;
2658 	unsigned int i, total = 0, errors = 0;
2659 	int err, ret = 0;
2660 
2661 	mutex_lock(&kprobe_mutex);
2662 
2663 	/* If kprobes are armed, just return */
2664 	if (!kprobes_all_disarmed)
2665 		goto already_enabled;
2666 
2667 	/*
2668 	 * optimize_kprobe() called by arm_kprobe() checks
2669 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2670 	 * arm_kprobe.
2671 	 */
2672 	kprobes_all_disarmed = false;
2673 	/* Arming kprobes doesn't optimize kprobe itself */
2674 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2675 		head = &kprobe_table[i];
2676 		/* Arm all kprobes on a best-effort basis */
2677 		hlist_for_each_entry(p, head, hlist) {
2678 			if (!kprobe_disabled(p)) {
2679 				err = arm_kprobe(p);
2680 				if (err)  {
2681 					errors++;
2682 					ret = err;
2683 				}
2684 				total++;
2685 			}
2686 		}
2687 	}
2688 
2689 	if (errors)
2690 		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2691 			errors, total);
2692 	else
2693 		pr_info("Kprobes globally enabled\n");
2694 
2695 already_enabled:
2696 	mutex_unlock(&kprobe_mutex);
2697 	return ret;
2698 }
2699 
2700 static int disarm_all_kprobes(void)
2701 {
2702 	struct hlist_head *head;
2703 	struct kprobe *p;
2704 	unsigned int i, total = 0, errors = 0;
2705 	int err, ret = 0;
2706 
2707 	mutex_lock(&kprobe_mutex);
2708 
2709 	/* If kprobes are already disarmed, just return */
2710 	if (kprobes_all_disarmed) {
2711 		mutex_unlock(&kprobe_mutex);
2712 		return 0;
2713 	}
2714 
2715 	kprobes_all_disarmed = true;
2716 
2717 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2718 		head = &kprobe_table[i];
2719 		/* Disarm all kprobes on a best-effort basis */
2720 		hlist_for_each_entry(p, head, hlist) {
2721 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2722 				err = disarm_kprobe(p, false);
2723 				if (err) {
2724 					errors++;
2725 					ret = err;
2726 				}
2727 				total++;
2728 			}
2729 		}
2730 	}
2731 
2732 	if (errors)
2733 		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2734 			errors, total);
2735 	else
2736 		pr_info("Kprobes globally disabled\n");
2737 
2738 	mutex_unlock(&kprobe_mutex);
2739 
2740 	/* Wait for disarming all kprobes by optimizer */
2741 	wait_for_kprobe_optimizer();
2742 
2743 	return ret;
2744 }
2745 
2746 /*
2747  * XXX: The debugfs bool file interface doesn't allow for callbacks
2748  * when the bool state is switched. We can reuse that facility when
2749  * available
2750  */
2751 static ssize_t read_enabled_file_bool(struct file *file,
2752 	       char __user *user_buf, size_t count, loff_t *ppos)
2753 {
2754 	char buf[3];
2755 
2756 	if (!kprobes_all_disarmed)
2757 		buf[0] = '1';
2758 	else
2759 		buf[0] = '0';
2760 	buf[1] = '\n';
2761 	buf[2] = 0x00;
2762 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2763 }
2764 
2765 static ssize_t write_enabled_file_bool(struct file *file,
2766 	       const char __user *user_buf, size_t count, loff_t *ppos)
2767 {
2768 	bool enable;
2769 	int ret;
2770 
2771 	ret = kstrtobool_from_user(user_buf, count, &enable);
2772 	if (ret)
2773 		return ret;
2774 
2775 	ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
2776 	if (ret)
2777 		return ret;
2778 
2779 	return count;
2780 }
2781 
2782 static const struct file_operations fops_kp = {
2783 	.read =         read_enabled_file_bool,
2784 	.write =        write_enabled_file_bool,
2785 	.llseek =	default_llseek,
2786 };
2787 
2788 static int __init debugfs_kprobe_init(void)
2789 {
2790 	struct dentry *dir;
2791 
2792 	dir = debugfs_create_dir("kprobes", NULL);
2793 
2794 	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2795 
2796 	debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
2797 
2798 	debugfs_create_file("blacklist", 0400, dir, NULL,
2799 			    &kprobe_blacklist_fops);
2800 
2801 	return 0;
2802 }
2803 
2804 late_initcall(debugfs_kprobe_init);
2805 #endif /* CONFIG_DEBUG_FS */
2806