xref: /linux/kernel/kprobes.c (revision 9c89bb8e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *		Probes initial implementation (includes suggestions from
10  *		Rusty Russell).
11  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *		hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *		interface to access function arguments.
15  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *		exceptions notifier to be first on the priority list.
17  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *		<prasanna@in.ibm.com> added function-return probes.
20  */
21 
22 #define pr_fmt(fmt) "kprobes: " fmt
23 
24 #include <linux/kprobes.h>
25 #include <linux/hash.h>
26 #include <linux/init.h>
27 #include <linux/slab.h>
28 #include <linux/stddef.h>
29 #include <linux/export.h>
30 #include <linux/moduleloader.h>
31 #include <linux/kallsyms.h>
32 #include <linux/freezer.h>
33 #include <linux/seq_file.h>
34 #include <linux/debugfs.h>
35 #include <linux/sysctl.h>
36 #include <linux/kdebug.h>
37 #include <linux/memory.h>
38 #include <linux/ftrace.h>
39 #include <linux/cpu.h>
40 #include <linux/jump_label.h>
41 #include <linux/static_call.h>
42 #include <linux/perf_event.h>
43 
44 #include <asm/sections.h>
45 #include <asm/cacheflush.h>
46 #include <asm/errno.h>
47 #include <linux/uaccess.h>
48 
49 #define KPROBE_HASH_BITS 6
50 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
51 
52 
53 static int kprobes_initialized;
54 /* kprobe_table can be accessed by
55  * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
56  * Or
57  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
58  */
59 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
60 
61 /* NOTE: change this value only with kprobe_mutex held */
62 static bool kprobes_all_disarmed;
63 
64 /* This protects kprobe_table and optimizing_list */
65 static DEFINE_MUTEX(kprobe_mutex);
66 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
67 
68 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
69 					unsigned int __unused)
70 {
71 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
72 }
73 
74 /* Blacklist -- list of struct kprobe_blacklist_entry */
75 static LIST_HEAD(kprobe_blacklist);
76 
77 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
78 /*
79  * kprobe->ainsn.insn points to the copy of the instruction to be
80  * single-stepped. x86_64, POWER4 and above have no-exec support and
81  * stepping on the instruction on a vmalloced/kmalloced/data page
82  * is a recipe for disaster
83  */
84 struct kprobe_insn_page {
85 	struct list_head list;
86 	kprobe_opcode_t *insns;		/* Page of instruction slots */
87 	struct kprobe_insn_cache *cache;
88 	int nused;
89 	int ngarbage;
90 	char slot_used[];
91 };
92 
93 #define KPROBE_INSN_PAGE_SIZE(slots)			\
94 	(offsetof(struct kprobe_insn_page, slot_used) +	\
95 	 (sizeof(char) * (slots)))
96 
97 static int slots_per_page(struct kprobe_insn_cache *c)
98 {
99 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
100 }
101 
102 enum kprobe_slot_state {
103 	SLOT_CLEAN = 0,
104 	SLOT_DIRTY = 1,
105 	SLOT_USED = 2,
106 };
107 
108 void __weak *alloc_insn_page(void)
109 {
110 	return module_alloc(PAGE_SIZE);
111 }
112 
113 static void free_insn_page(void *page)
114 {
115 	module_memfree(page);
116 }
117 
118 struct kprobe_insn_cache kprobe_insn_slots = {
119 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
120 	.alloc = alloc_insn_page,
121 	.free = free_insn_page,
122 	.sym = KPROBE_INSN_PAGE_SYM,
123 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
124 	.insn_size = MAX_INSN_SIZE,
125 	.nr_garbage = 0,
126 };
127 static int collect_garbage_slots(struct kprobe_insn_cache *c);
128 
129 /**
130  * __get_insn_slot() - Find a slot on an executable page for an instruction.
131  * We allocate an executable page if there's no room on existing ones.
132  */
133 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
134 {
135 	struct kprobe_insn_page *kip;
136 	kprobe_opcode_t *slot = NULL;
137 
138 	/* Since the slot array is not protected by rcu, we need a mutex */
139 	mutex_lock(&c->mutex);
140  retry:
141 	rcu_read_lock();
142 	list_for_each_entry_rcu(kip, &c->pages, list) {
143 		if (kip->nused < slots_per_page(c)) {
144 			int i;
145 			for (i = 0; i < slots_per_page(c); i++) {
146 				if (kip->slot_used[i] == SLOT_CLEAN) {
147 					kip->slot_used[i] = SLOT_USED;
148 					kip->nused++;
149 					slot = kip->insns + (i * c->insn_size);
150 					rcu_read_unlock();
151 					goto out;
152 				}
153 			}
154 			/* kip->nused is broken. Fix it. */
155 			kip->nused = slots_per_page(c);
156 			WARN_ON(1);
157 		}
158 	}
159 	rcu_read_unlock();
160 
161 	/* If there are any garbage slots, collect it and try again. */
162 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
163 		goto retry;
164 
165 	/* All out of space.  Need to allocate a new page. */
166 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
167 	if (!kip)
168 		goto out;
169 
170 	/*
171 	 * Use module_alloc so this page is within +/- 2GB of where the
172 	 * kernel image and loaded module images reside. This is required
173 	 * so x86_64 can correctly handle the %rip-relative fixups.
174 	 */
175 	kip->insns = c->alloc();
176 	if (!kip->insns) {
177 		kfree(kip);
178 		goto out;
179 	}
180 	INIT_LIST_HEAD(&kip->list);
181 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
182 	kip->slot_used[0] = SLOT_USED;
183 	kip->nused = 1;
184 	kip->ngarbage = 0;
185 	kip->cache = c;
186 	list_add_rcu(&kip->list, &c->pages);
187 	slot = kip->insns;
188 
189 	/* Record the perf ksymbol register event after adding the page */
190 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
191 			   PAGE_SIZE, false, c->sym);
192 out:
193 	mutex_unlock(&c->mutex);
194 	return slot;
195 }
196 
197 /* Return 1 if all garbages are collected, otherwise 0. */
198 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
199 {
200 	kip->slot_used[idx] = SLOT_CLEAN;
201 	kip->nused--;
202 	if (kip->nused == 0) {
203 		/*
204 		 * Page is no longer in use.  Free it unless
205 		 * it's the last one.  We keep the last one
206 		 * so as not to have to set it up again the
207 		 * next time somebody inserts a probe.
208 		 */
209 		if (!list_is_singular(&kip->list)) {
210 			/*
211 			 * Record perf ksymbol unregister event before removing
212 			 * the page.
213 			 */
214 			perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
215 					   (unsigned long)kip->insns, PAGE_SIZE, true,
216 					   kip->cache->sym);
217 			list_del_rcu(&kip->list);
218 			synchronize_rcu();
219 			kip->cache->free(kip->insns);
220 			kfree(kip);
221 		}
222 		return 1;
223 	}
224 	return 0;
225 }
226 
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229 	struct kprobe_insn_page *kip, *next;
230 
231 	/* Ensure no-one is interrupted on the garbages */
232 	synchronize_rcu();
233 
234 	list_for_each_entry_safe(kip, next, &c->pages, list) {
235 		int i;
236 		if (kip->ngarbage == 0)
237 			continue;
238 		kip->ngarbage = 0;	/* we will collect all garbages */
239 		for (i = 0; i < slots_per_page(c); i++) {
240 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241 				break;
242 		}
243 	}
244 	c->nr_garbage = 0;
245 	return 0;
246 }
247 
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249 		      kprobe_opcode_t *slot, int dirty)
250 {
251 	struct kprobe_insn_page *kip;
252 	long idx;
253 
254 	mutex_lock(&c->mutex);
255 	rcu_read_lock();
256 	list_for_each_entry_rcu(kip, &c->pages, list) {
257 		idx = ((long)slot - (long)kip->insns) /
258 			(c->insn_size * sizeof(kprobe_opcode_t));
259 		if (idx >= 0 && idx < slots_per_page(c))
260 			goto out;
261 	}
262 	/* Could not find this slot. */
263 	WARN_ON(1);
264 	kip = NULL;
265 out:
266 	rcu_read_unlock();
267 	/* Mark and sweep: this may sleep */
268 	if (kip) {
269 		/* Check double free */
270 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
271 		if (dirty) {
272 			kip->slot_used[idx] = SLOT_DIRTY;
273 			kip->ngarbage++;
274 			if (++c->nr_garbage > slots_per_page(c))
275 				collect_garbage_slots(c);
276 		} else {
277 			collect_one_slot(kip, idx);
278 		}
279 	}
280 	mutex_unlock(&c->mutex);
281 }
282 
283 /*
284  * Check given address is on the page of kprobe instruction slots.
285  * This will be used for checking whether the address on a stack
286  * is on a text area or not.
287  */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290 	struct kprobe_insn_page *kip;
291 	bool ret = false;
292 
293 	rcu_read_lock();
294 	list_for_each_entry_rcu(kip, &c->pages, list) {
295 		if (addr >= (unsigned long)kip->insns &&
296 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
297 			ret = true;
298 			break;
299 		}
300 	}
301 	rcu_read_unlock();
302 
303 	return ret;
304 }
305 
306 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
307 			     unsigned long *value, char *type, char *sym)
308 {
309 	struct kprobe_insn_page *kip;
310 	int ret = -ERANGE;
311 
312 	rcu_read_lock();
313 	list_for_each_entry_rcu(kip, &c->pages, list) {
314 		if ((*symnum)--)
315 			continue;
316 		strlcpy(sym, c->sym, KSYM_NAME_LEN);
317 		*type = 't';
318 		*value = (unsigned long)kip->insns;
319 		ret = 0;
320 		break;
321 	}
322 	rcu_read_unlock();
323 
324 	return ret;
325 }
326 
327 #ifdef CONFIG_OPTPROBES
328 void __weak *alloc_optinsn_page(void)
329 {
330 	return alloc_insn_page();
331 }
332 
333 void __weak free_optinsn_page(void *page)
334 {
335 	free_insn_page(page);
336 }
337 
338 /* For optimized_kprobe buffer */
339 struct kprobe_insn_cache kprobe_optinsn_slots = {
340 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
341 	.alloc = alloc_optinsn_page,
342 	.free = free_optinsn_page,
343 	.sym = KPROBE_OPTINSN_PAGE_SYM,
344 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
345 	/* .insn_size is initialized later */
346 	.nr_garbage = 0,
347 };
348 #endif
349 #endif
350 
351 /* We have preemption disabled.. so it is safe to use __ versions */
352 static inline void set_kprobe_instance(struct kprobe *kp)
353 {
354 	__this_cpu_write(kprobe_instance, kp);
355 }
356 
357 static inline void reset_kprobe_instance(void)
358 {
359 	__this_cpu_write(kprobe_instance, NULL);
360 }
361 
362 /*
363  * This routine is called either:
364  * 	- under the kprobe_mutex - during kprobe_[un]register()
365  * 				OR
366  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
367  */
368 struct kprobe *get_kprobe(void *addr)
369 {
370 	struct hlist_head *head;
371 	struct kprobe *p;
372 
373 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
374 	hlist_for_each_entry_rcu(p, head, hlist,
375 				 lockdep_is_held(&kprobe_mutex)) {
376 		if (p->addr == addr)
377 			return p;
378 	}
379 
380 	return NULL;
381 }
382 NOKPROBE_SYMBOL(get_kprobe);
383 
384 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
385 
386 /* Return true if the kprobe is an aggregator */
387 static inline int kprobe_aggrprobe(struct kprobe *p)
388 {
389 	return p->pre_handler == aggr_pre_handler;
390 }
391 
392 /* Return true(!0) if the kprobe is unused */
393 static inline int kprobe_unused(struct kprobe *p)
394 {
395 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
396 	       list_empty(&p->list);
397 }
398 
399 /*
400  * Keep all fields in the kprobe consistent
401  */
402 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
403 {
404 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
405 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
406 }
407 
408 #ifdef CONFIG_OPTPROBES
409 /* NOTE: change this value only with kprobe_mutex held */
410 static bool kprobes_allow_optimization;
411 
412 /*
413  * Call all pre_handler on the list, but ignores its return value.
414  * This must be called from arch-dep optimized caller.
415  */
416 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
417 {
418 	struct kprobe *kp;
419 
420 	list_for_each_entry_rcu(kp, &p->list, list) {
421 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
422 			set_kprobe_instance(kp);
423 			kp->pre_handler(kp, regs);
424 		}
425 		reset_kprobe_instance();
426 	}
427 }
428 NOKPROBE_SYMBOL(opt_pre_handler);
429 
430 /* Free optimized instructions and optimized_kprobe */
431 static void free_aggr_kprobe(struct kprobe *p)
432 {
433 	struct optimized_kprobe *op;
434 
435 	op = container_of(p, struct optimized_kprobe, kp);
436 	arch_remove_optimized_kprobe(op);
437 	arch_remove_kprobe(p);
438 	kfree(op);
439 }
440 
441 /* Return true(!0) if the kprobe is ready for optimization. */
442 static inline int kprobe_optready(struct kprobe *p)
443 {
444 	struct optimized_kprobe *op;
445 
446 	if (kprobe_aggrprobe(p)) {
447 		op = container_of(p, struct optimized_kprobe, kp);
448 		return arch_prepared_optinsn(&op->optinsn);
449 	}
450 
451 	return 0;
452 }
453 
454 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
455 static inline int kprobe_disarmed(struct kprobe *p)
456 {
457 	struct optimized_kprobe *op;
458 
459 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
460 	if (!kprobe_aggrprobe(p))
461 		return kprobe_disabled(p);
462 
463 	op = container_of(p, struct optimized_kprobe, kp);
464 
465 	return kprobe_disabled(p) && list_empty(&op->list);
466 }
467 
468 /* Return true(!0) if the probe is queued on (un)optimizing lists */
469 static int kprobe_queued(struct kprobe *p)
470 {
471 	struct optimized_kprobe *op;
472 
473 	if (kprobe_aggrprobe(p)) {
474 		op = container_of(p, struct optimized_kprobe, kp);
475 		if (!list_empty(&op->list))
476 			return 1;
477 	}
478 	return 0;
479 }
480 
481 /*
482  * Return an optimized kprobe whose optimizing code replaces
483  * instructions including addr (exclude breakpoint).
484  */
485 static struct kprobe *get_optimized_kprobe(unsigned long addr)
486 {
487 	int i;
488 	struct kprobe *p = NULL;
489 	struct optimized_kprobe *op;
490 
491 	/* Don't check i == 0, since that is a breakpoint case. */
492 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
493 		p = get_kprobe((void *)(addr - i));
494 
495 	if (p && kprobe_optready(p)) {
496 		op = container_of(p, struct optimized_kprobe, kp);
497 		if (arch_within_optimized_kprobe(op, addr))
498 			return p;
499 	}
500 
501 	return NULL;
502 }
503 
504 /* Optimization staging list, protected by kprobe_mutex */
505 static LIST_HEAD(optimizing_list);
506 static LIST_HEAD(unoptimizing_list);
507 static LIST_HEAD(freeing_list);
508 
509 static void kprobe_optimizer(struct work_struct *work);
510 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
511 #define OPTIMIZE_DELAY 5
512 
513 /*
514  * Optimize (replace a breakpoint with a jump) kprobes listed on
515  * optimizing_list.
516  */
517 static void do_optimize_kprobes(void)
518 {
519 	lockdep_assert_held(&text_mutex);
520 	/*
521 	 * The optimization/unoptimization refers online_cpus via
522 	 * stop_machine() and cpu-hotplug modifies online_cpus.
523 	 * And same time, text_mutex will be held in cpu-hotplug and here.
524 	 * This combination can cause a deadlock (cpu-hotplug try to lock
525 	 * text_mutex but stop_machine can not be done because online_cpus
526 	 * has been changed)
527 	 * To avoid this deadlock, caller must have locked cpu hotplug
528 	 * for preventing cpu-hotplug outside of text_mutex locking.
529 	 */
530 	lockdep_assert_cpus_held();
531 
532 	/* Optimization never be done when disarmed */
533 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
534 	    list_empty(&optimizing_list))
535 		return;
536 
537 	arch_optimize_kprobes(&optimizing_list);
538 }
539 
540 /*
541  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
542  * if need) kprobes listed on unoptimizing_list.
543  */
544 static void do_unoptimize_kprobes(void)
545 {
546 	struct optimized_kprobe *op, *tmp;
547 
548 	lockdep_assert_held(&text_mutex);
549 	/* See comment in do_optimize_kprobes() */
550 	lockdep_assert_cpus_held();
551 
552 	/* Unoptimization must be done anytime */
553 	if (list_empty(&unoptimizing_list))
554 		return;
555 
556 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
557 	/* Loop free_list for disarming */
558 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
559 		/* Switching from detour code to origin */
560 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
561 		/* Disarm probes if marked disabled */
562 		if (kprobe_disabled(&op->kp))
563 			arch_disarm_kprobe(&op->kp);
564 		if (kprobe_unused(&op->kp)) {
565 			/*
566 			 * Remove unused probes from hash list. After waiting
567 			 * for synchronization, these probes are reclaimed.
568 			 * (reclaiming is done by do_free_cleaned_kprobes.)
569 			 */
570 			hlist_del_rcu(&op->kp.hlist);
571 		} else
572 			list_del_init(&op->list);
573 	}
574 }
575 
576 /* Reclaim all kprobes on the free_list */
577 static void do_free_cleaned_kprobes(void)
578 {
579 	struct optimized_kprobe *op, *tmp;
580 
581 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
582 		list_del_init(&op->list);
583 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
584 			/*
585 			 * This must not happen, but if there is a kprobe
586 			 * still in use, keep it on kprobes hash list.
587 			 */
588 			continue;
589 		}
590 		free_aggr_kprobe(&op->kp);
591 	}
592 }
593 
594 /* Start optimizer after OPTIMIZE_DELAY passed */
595 static void kick_kprobe_optimizer(void)
596 {
597 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
598 }
599 
600 /* Kprobe jump optimizer */
601 static void kprobe_optimizer(struct work_struct *work)
602 {
603 	mutex_lock(&kprobe_mutex);
604 	cpus_read_lock();
605 	mutex_lock(&text_mutex);
606 
607 	/*
608 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
609 	 * kprobes before waiting for quiesence period.
610 	 */
611 	do_unoptimize_kprobes();
612 
613 	/*
614 	 * Step 2: Wait for quiesence period to ensure all potentially
615 	 * preempted tasks to have normally scheduled. Because optprobe
616 	 * may modify multiple instructions, there is a chance that Nth
617 	 * instruction is preempted. In that case, such tasks can return
618 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
619 	 * Note that on non-preemptive kernel, this is transparently converted
620 	 * to synchronoze_sched() to wait for all interrupts to have completed.
621 	 */
622 	synchronize_rcu_tasks();
623 
624 	/* Step 3: Optimize kprobes after quiesence period */
625 	do_optimize_kprobes();
626 
627 	/* Step 4: Free cleaned kprobes after quiesence period */
628 	do_free_cleaned_kprobes();
629 
630 	mutex_unlock(&text_mutex);
631 	cpus_read_unlock();
632 
633 	/* Step 5: Kick optimizer again if needed */
634 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
635 		kick_kprobe_optimizer();
636 
637 	mutex_unlock(&kprobe_mutex);
638 }
639 
640 /* Wait for completing optimization and unoptimization */
641 void wait_for_kprobe_optimizer(void)
642 {
643 	mutex_lock(&kprobe_mutex);
644 
645 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
646 		mutex_unlock(&kprobe_mutex);
647 
648 		/* this will also make optimizing_work execute immmediately */
649 		flush_delayed_work(&optimizing_work);
650 		/* @optimizing_work might not have been queued yet, relax */
651 		cpu_relax();
652 
653 		mutex_lock(&kprobe_mutex);
654 	}
655 
656 	mutex_unlock(&kprobe_mutex);
657 }
658 
659 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
660 {
661 	struct optimized_kprobe *_op;
662 
663 	list_for_each_entry(_op, &unoptimizing_list, list) {
664 		if (op == _op)
665 			return true;
666 	}
667 
668 	return false;
669 }
670 
671 /* Optimize kprobe if p is ready to be optimized */
672 static void optimize_kprobe(struct kprobe *p)
673 {
674 	struct optimized_kprobe *op;
675 
676 	/* Check if the kprobe is disabled or not ready for optimization. */
677 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
678 	    (kprobe_disabled(p) || kprobes_all_disarmed))
679 		return;
680 
681 	/* kprobes with post_handler can not be optimized */
682 	if (p->post_handler)
683 		return;
684 
685 	op = container_of(p, struct optimized_kprobe, kp);
686 
687 	/* Check there is no other kprobes at the optimized instructions */
688 	if (arch_check_optimized_kprobe(op) < 0)
689 		return;
690 
691 	/* Check if it is already optimized. */
692 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
693 		if (optprobe_queued_unopt(op)) {
694 			/* This is under unoptimizing. Just dequeue the probe */
695 			list_del_init(&op->list);
696 		}
697 		return;
698 	}
699 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
700 
701 	/* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
702 	if (WARN_ON_ONCE(!list_empty(&op->list)))
703 		return;
704 
705 	list_add(&op->list, &optimizing_list);
706 	kick_kprobe_optimizer();
707 }
708 
709 /* Short cut to direct unoptimizing */
710 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
711 {
712 	lockdep_assert_cpus_held();
713 	arch_unoptimize_kprobe(op);
714 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
715 }
716 
717 /* Unoptimize a kprobe if p is optimized */
718 static void unoptimize_kprobe(struct kprobe *p, bool force)
719 {
720 	struct optimized_kprobe *op;
721 
722 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
723 		return; /* This is not an optprobe nor optimized */
724 
725 	op = container_of(p, struct optimized_kprobe, kp);
726 	if (!kprobe_optimized(p))
727 		return;
728 
729 	if (!list_empty(&op->list)) {
730 		if (optprobe_queued_unopt(op)) {
731 			/* Queued in unoptimizing queue */
732 			if (force) {
733 				/*
734 				 * Forcibly unoptimize the kprobe here, and queue it
735 				 * in the freeing list for release afterwards.
736 				 */
737 				force_unoptimize_kprobe(op);
738 				list_move(&op->list, &freeing_list);
739 			}
740 		} else {
741 			/* Dequeue from the optimizing queue */
742 			list_del_init(&op->list);
743 			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
744 		}
745 		return;
746 	}
747 
748 	/* Optimized kprobe case */
749 	if (force) {
750 		/* Forcibly update the code: this is a special case */
751 		force_unoptimize_kprobe(op);
752 	} else {
753 		list_add(&op->list, &unoptimizing_list);
754 		kick_kprobe_optimizer();
755 	}
756 }
757 
758 /* Cancel unoptimizing for reusing */
759 static int reuse_unused_kprobe(struct kprobe *ap)
760 {
761 	struct optimized_kprobe *op;
762 
763 	/*
764 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
765 	 * there is still a relative jump) and disabled.
766 	 */
767 	op = container_of(ap, struct optimized_kprobe, kp);
768 	WARN_ON_ONCE(list_empty(&op->list));
769 	/* Enable the probe again */
770 	ap->flags &= ~KPROBE_FLAG_DISABLED;
771 	/* Optimize it again (remove from op->list) */
772 	if (!kprobe_optready(ap))
773 		return -EINVAL;
774 
775 	optimize_kprobe(ap);
776 	return 0;
777 }
778 
779 /* Remove optimized instructions */
780 static void kill_optimized_kprobe(struct kprobe *p)
781 {
782 	struct optimized_kprobe *op;
783 
784 	op = container_of(p, struct optimized_kprobe, kp);
785 	if (!list_empty(&op->list))
786 		/* Dequeue from the (un)optimization queue */
787 		list_del_init(&op->list);
788 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
789 
790 	if (kprobe_unused(p)) {
791 		/* Enqueue if it is unused */
792 		list_add(&op->list, &freeing_list);
793 		/*
794 		 * Remove unused probes from the hash list. After waiting
795 		 * for synchronization, this probe is reclaimed.
796 		 * (reclaiming is done by do_free_cleaned_kprobes().)
797 		 */
798 		hlist_del_rcu(&op->kp.hlist);
799 	}
800 
801 	/* Don't touch the code, because it is already freed. */
802 	arch_remove_optimized_kprobe(op);
803 }
804 
805 static inline
806 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
807 {
808 	if (!kprobe_ftrace(p))
809 		arch_prepare_optimized_kprobe(op, p);
810 }
811 
812 /* Try to prepare optimized instructions */
813 static void prepare_optimized_kprobe(struct kprobe *p)
814 {
815 	struct optimized_kprobe *op;
816 
817 	op = container_of(p, struct optimized_kprobe, kp);
818 	__prepare_optimized_kprobe(op, p);
819 }
820 
821 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
822 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
823 {
824 	struct optimized_kprobe *op;
825 
826 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
827 	if (!op)
828 		return NULL;
829 
830 	INIT_LIST_HEAD(&op->list);
831 	op->kp.addr = p->addr;
832 	__prepare_optimized_kprobe(op, p);
833 
834 	return &op->kp;
835 }
836 
837 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
838 
839 /*
840  * Prepare an optimized_kprobe and optimize it
841  * NOTE: p must be a normal registered kprobe
842  */
843 static void try_to_optimize_kprobe(struct kprobe *p)
844 {
845 	struct kprobe *ap;
846 	struct optimized_kprobe *op;
847 
848 	/* Impossible to optimize ftrace-based kprobe */
849 	if (kprobe_ftrace(p))
850 		return;
851 
852 	/* For preparing optimization, jump_label_text_reserved() is called */
853 	cpus_read_lock();
854 	jump_label_lock();
855 	mutex_lock(&text_mutex);
856 
857 	ap = alloc_aggr_kprobe(p);
858 	if (!ap)
859 		goto out;
860 
861 	op = container_of(ap, struct optimized_kprobe, kp);
862 	if (!arch_prepared_optinsn(&op->optinsn)) {
863 		/* If failed to setup optimizing, fallback to kprobe */
864 		arch_remove_optimized_kprobe(op);
865 		kfree(op);
866 		goto out;
867 	}
868 
869 	init_aggr_kprobe(ap, p);
870 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
871 
872 out:
873 	mutex_unlock(&text_mutex);
874 	jump_label_unlock();
875 	cpus_read_unlock();
876 }
877 
878 static void optimize_all_kprobes(void)
879 {
880 	struct hlist_head *head;
881 	struct kprobe *p;
882 	unsigned int i;
883 
884 	mutex_lock(&kprobe_mutex);
885 	/* If optimization is already allowed, just return */
886 	if (kprobes_allow_optimization)
887 		goto out;
888 
889 	cpus_read_lock();
890 	kprobes_allow_optimization = true;
891 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
892 		head = &kprobe_table[i];
893 		hlist_for_each_entry(p, head, hlist)
894 			if (!kprobe_disabled(p))
895 				optimize_kprobe(p);
896 	}
897 	cpus_read_unlock();
898 	pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
899 out:
900 	mutex_unlock(&kprobe_mutex);
901 }
902 
903 #ifdef CONFIG_SYSCTL
904 static void unoptimize_all_kprobes(void)
905 {
906 	struct hlist_head *head;
907 	struct kprobe *p;
908 	unsigned int i;
909 
910 	mutex_lock(&kprobe_mutex);
911 	/* If optimization is already prohibited, just return */
912 	if (!kprobes_allow_optimization) {
913 		mutex_unlock(&kprobe_mutex);
914 		return;
915 	}
916 
917 	cpus_read_lock();
918 	kprobes_allow_optimization = false;
919 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
920 		head = &kprobe_table[i];
921 		hlist_for_each_entry(p, head, hlist) {
922 			if (!kprobe_disabled(p))
923 				unoptimize_kprobe(p, false);
924 		}
925 	}
926 	cpus_read_unlock();
927 	mutex_unlock(&kprobe_mutex);
928 
929 	/* Wait for unoptimizing completion */
930 	wait_for_kprobe_optimizer();
931 	pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
932 }
933 
934 static DEFINE_MUTEX(kprobe_sysctl_mutex);
935 int sysctl_kprobes_optimization;
936 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
937 				      void *buffer, size_t *length,
938 				      loff_t *ppos)
939 {
940 	int ret;
941 
942 	mutex_lock(&kprobe_sysctl_mutex);
943 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
944 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
945 
946 	if (sysctl_kprobes_optimization)
947 		optimize_all_kprobes();
948 	else
949 		unoptimize_all_kprobes();
950 	mutex_unlock(&kprobe_sysctl_mutex);
951 
952 	return ret;
953 }
954 #endif /* CONFIG_SYSCTL */
955 
956 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
957 static void __arm_kprobe(struct kprobe *p)
958 {
959 	struct kprobe *_p;
960 
961 	/* Check collision with other optimized kprobes */
962 	_p = get_optimized_kprobe((unsigned long)p->addr);
963 	if (unlikely(_p))
964 		/* Fallback to unoptimized kprobe */
965 		unoptimize_kprobe(_p, true);
966 
967 	arch_arm_kprobe(p);
968 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
969 }
970 
971 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
972 static void __disarm_kprobe(struct kprobe *p, bool reopt)
973 {
974 	struct kprobe *_p;
975 
976 	/* Try to unoptimize */
977 	unoptimize_kprobe(p, kprobes_all_disarmed);
978 
979 	if (!kprobe_queued(p)) {
980 		arch_disarm_kprobe(p);
981 		/* If another kprobe was blocked, optimize it. */
982 		_p = get_optimized_kprobe((unsigned long)p->addr);
983 		if (unlikely(_p) && reopt)
984 			optimize_kprobe(_p);
985 	}
986 	/* TODO: reoptimize others after unoptimized this probe */
987 }
988 
989 #else /* !CONFIG_OPTPROBES */
990 
991 #define optimize_kprobe(p)			do {} while (0)
992 #define unoptimize_kprobe(p, f)			do {} while (0)
993 #define kill_optimized_kprobe(p)		do {} while (0)
994 #define prepare_optimized_kprobe(p)		do {} while (0)
995 #define try_to_optimize_kprobe(p)		do {} while (0)
996 #define __arm_kprobe(p)				arch_arm_kprobe(p)
997 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
998 #define kprobe_disarmed(p)			kprobe_disabled(p)
999 #define wait_for_kprobe_optimizer()		do {} while (0)
1000 
1001 static int reuse_unused_kprobe(struct kprobe *ap)
1002 {
1003 	/*
1004 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
1005 	 * released at the same time that the last aggregated kprobe is
1006 	 * unregistered.
1007 	 * Thus there should be no chance to reuse unused kprobe.
1008 	 */
1009 	WARN_ON_ONCE(1);
1010 	return -EINVAL;
1011 }
1012 
1013 static void free_aggr_kprobe(struct kprobe *p)
1014 {
1015 	arch_remove_kprobe(p);
1016 	kfree(p);
1017 }
1018 
1019 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1020 {
1021 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1022 }
1023 #endif /* CONFIG_OPTPROBES */
1024 
1025 #ifdef CONFIG_KPROBES_ON_FTRACE
1026 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1027 	.func = kprobe_ftrace_handler,
1028 	.flags = FTRACE_OPS_FL_SAVE_REGS,
1029 };
1030 
1031 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1032 	.func = kprobe_ftrace_handler,
1033 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1034 };
1035 
1036 static int kprobe_ipmodify_enabled;
1037 static int kprobe_ftrace_enabled;
1038 
1039 /* Caller must lock kprobe_mutex */
1040 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1041 			       int *cnt)
1042 {
1043 	int ret = 0;
1044 
1045 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1046 	if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1047 		return ret;
1048 
1049 	if (*cnt == 0) {
1050 		ret = register_ftrace_function(ops);
1051 		if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
1052 			goto err_ftrace;
1053 	}
1054 
1055 	(*cnt)++;
1056 	return ret;
1057 
1058 err_ftrace:
1059 	/*
1060 	 * At this point, sinec ops is not registered, we should be sefe from
1061 	 * registering empty filter.
1062 	 */
1063 	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1064 	return ret;
1065 }
1066 
1067 static int arm_kprobe_ftrace(struct kprobe *p)
1068 {
1069 	bool ipmodify = (p->post_handler != NULL);
1070 
1071 	return __arm_kprobe_ftrace(p,
1072 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1073 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1074 }
1075 
1076 /* Caller must lock kprobe_mutex */
1077 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1078 				  int *cnt)
1079 {
1080 	int ret = 0;
1081 
1082 	if (*cnt == 1) {
1083 		ret = unregister_ftrace_function(ops);
1084 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1085 			return ret;
1086 	}
1087 
1088 	(*cnt)--;
1089 
1090 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1091 	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1092 		  p->addr, ret);
1093 	return ret;
1094 }
1095 
1096 static int disarm_kprobe_ftrace(struct kprobe *p)
1097 {
1098 	bool ipmodify = (p->post_handler != NULL);
1099 
1100 	return __disarm_kprobe_ftrace(p,
1101 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1102 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1103 }
1104 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1105 static inline int arm_kprobe_ftrace(struct kprobe *p)
1106 {
1107 	return -ENODEV;
1108 }
1109 
1110 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1111 {
1112 	return -ENODEV;
1113 }
1114 #endif
1115 
1116 static int prepare_kprobe(struct kprobe *p)
1117 {
1118 	/* Must ensure p->addr is really on ftrace */
1119 	if (kprobe_ftrace(p))
1120 		return arch_prepare_kprobe_ftrace(p);
1121 
1122 	return arch_prepare_kprobe(p);
1123 }
1124 
1125 /* Arm a kprobe with text_mutex */
1126 static int arm_kprobe(struct kprobe *kp)
1127 {
1128 	if (unlikely(kprobe_ftrace(kp)))
1129 		return arm_kprobe_ftrace(kp);
1130 
1131 	cpus_read_lock();
1132 	mutex_lock(&text_mutex);
1133 	__arm_kprobe(kp);
1134 	mutex_unlock(&text_mutex);
1135 	cpus_read_unlock();
1136 
1137 	return 0;
1138 }
1139 
1140 /* Disarm a kprobe with text_mutex */
1141 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1142 {
1143 	if (unlikely(kprobe_ftrace(kp)))
1144 		return disarm_kprobe_ftrace(kp);
1145 
1146 	cpus_read_lock();
1147 	mutex_lock(&text_mutex);
1148 	__disarm_kprobe(kp, reopt);
1149 	mutex_unlock(&text_mutex);
1150 	cpus_read_unlock();
1151 
1152 	return 0;
1153 }
1154 
1155 /*
1156  * Aggregate handlers for multiple kprobes support - these handlers
1157  * take care of invoking the individual kprobe handlers on p->list
1158  */
1159 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1160 {
1161 	struct kprobe *kp;
1162 
1163 	list_for_each_entry_rcu(kp, &p->list, list) {
1164 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1165 			set_kprobe_instance(kp);
1166 			if (kp->pre_handler(kp, regs))
1167 				return 1;
1168 		}
1169 		reset_kprobe_instance();
1170 	}
1171 	return 0;
1172 }
1173 NOKPROBE_SYMBOL(aggr_pre_handler);
1174 
1175 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1176 			      unsigned long flags)
1177 {
1178 	struct kprobe *kp;
1179 
1180 	list_for_each_entry_rcu(kp, &p->list, list) {
1181 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1182 			set_kprobe_instance(kp);
1183 			kp->post_handler(kp, regs, flags);
1184 			reset_kprobe_instance();
1185 		}
1186 	}
1187 }
1188 NOKPROBE_SYMBOL(aggr_post_handler);
1189 
1190 /* Walks the list and increments nmissed count for multiprobe case */
1191 void kprobes_inc_nmissed_count(struct kprobe *p)
1192 {
1193 	struct kprobe *kp;
1194 	if (!kprobe_aggrprobe(p)) {
1195 		p->nmissed++;
1196 	} else {
1197 		list_for_each_entry_rcu(kp, &p->list, list)
1198 			kp->nmissed++;
1199 	}
1200 	return;
1201 }
1202 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1203 
1204 static void free_rp_inst_rcu(struct rcu_head *head)
1205 {
1206 	struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1207 
1208 	if (refcount_dec_and_test(&ri->rph->ref))
1209 		kfree(ri->rph);
1210 	kfree(ri);
1211 }
1212 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1213 
1214 static void recycle_rp_inst(struct kretprobe_instance *ri)
1215 {
1216 	struct kretprobe *rp = get_kretprobe(ri);
1217 
1218 	if (likely(rp)) {
1219 		freelist_add(&ri->freelist, &rp->freelist);
1220 	} else
1221 		call_rcu(&ri->rcu, free_rp_inst_rcu);
1222 }
1223 NOKPROBE_SYMBOL(recycle_rp_inst);
1224 
1225 static struct kprobe kprobe_busy = {
1226 	.addr = (void *) get_kprobe,
1227 };
1228 
1229 void kprobe_busy_begin(void)
1230 {
1231 	struct kprobe_ctlblk *kcb;
1232 
1233 	preempt_disable();
1234 	__this_cpu_write(current_kprobe, &kprobe_busy);
1235 	kcb = get_kprobe_ctlblk();
1236 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1237 }
1238 
1239 void kprobe_busy_end(void)
1240 {
1241 	__this_cpu_write(current_kprobe, NULL);
1242 	preempt_enable();
1243 }
1244 
1245 /*
1246  * This function is called from finish_task_switch when task tk becomes dead,
1247  * so that we can recycle any function-return probe instances associated
1248  * with this task. These left over instances represent probed functions
1249  * that have been called but will never return.
1250  */
1251 void kprobe_flush_task(struct task_struct *tk)
1252 {
1253 	struct kretprobe_instance *ri;
1254 	struct llist_node *node;
1255 
1256 	/* Early boot, not yet initialized. */
1257 	if (unlikely(!kprobes_initialized))
1258 		return;
1259 
1260 	kprobe_busy_begin();
1261 
1262 	node = __llist_del_all(&tk->kretprobe_instances);
1263 	while (node) {
1264 		ri = container_of(node, struct kretprobe_instance, llist);
1265 		node = node->next;
1266 
1267 		recycle_rp_inst(ri);
1268 	}
1269 
1270 	kprobe_busy_end();
1271 }
1272 NOKPROBE_SYMBOL(kprobe_flush_task);
1273 
1274 static inline void free_rp_inst(struct kretprobe *rp)
1275 {
1276 	struct kretprobe_instance *ri;
1277 	struct freelist_node *node;
1278 	int count = 0;
1279 
1280 	node = rp->freelist.head;
1281 	while (node) {
1282 		ri = container_of(node, struct kretprobe_instance, freelist);
1283 		node = node->next;
1284 
1285 		kfree(ri);
1286 		count++;
1287 	}
1288 
1289 	if (refcount_sub_and_test(count, &rp->rph->ref)) {
1290 		kfree(rp->rph);
1291 		rp->rph = NULL;
1292 	}
1293 }
1294 
1295 /* Add the new probe to ap->list */
1296 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1297 {
1298 	if (p->post_handler)
1299 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1300 
1301 	list_add_rcu(&p->list, &ap->list);
1302 	if (p->post_handler && !ap->post_handler)
1303 		ap->post_handler = aggr_post_handler;
1304 
1305 	return 0;
1306 }
1307 
1308 /*
1309  * Fill in the required fields of the "manager kprobe". Replace the
1310  * earlier kprobe in the hlist with the manager kprobe
1311  */
1312 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1313 {
1314 	/* Copy p's insn slot to ap */
1315 	copy_kprobe(p, ap);
1316 	flush_insn_slot(ap);
1317 	ap->addr = p->addr;
1318 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1319 	ap->pre_handler = aggr_pre_handler;
1320 	/* We don't care the kprobe which has gone. */
1321 	if (p->post_handler && !kprobe_gone(p))
1322 		ap->post_handler = aggr_post_handler;
1323 
1324 	INIT_LIST_HEAD(&ap->list);
1325 	INIT_HLIST_NODE(&ap->hlist);
1326 
1327 	list_add_rcu(&p->list, &ap->list);
1328 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1329 }
1330 
1331 /*
1332  * This is the second or subsequent kprobe at the address - handle
1333  * the intricacies
1334  */
1335 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1336 {
1337 	int ret = 0;
1338 	struct kprobe *ap = orig_p;
1339 
1340 	cpus_read_lock();
1341 
1342 	/* For preparing optimization, jump_label_text_reserved() is called */
1343 	jump_label_lock();
1344 	mutex_lock(&text_mutex);
1345 
1346 	if (!kprobe_aggrprobe(orig_p)) {
1347 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1348 		ap = alloc_aggr_kprobe(orig_p);
1349 		if (!ap) {
1350 			ret = -ENOMEM;
1351 			goto out;
1352 		}
1353 		init_aggr_kprobe(ap, orig_p);
1354 	} else if (kprobe_unused(ap)) {
1355 		/* This probe is going to die. Rescue it */
1356 		ret = reuse_unused_kprobe(ap);
1357 		if (ret)
1358 			goto out;
1359 	}
1360 
1361 	if (kprobe_gone(ap)) {
1362 		/*
1363 		 * Attempting to insert new probe at the same location that
1364 		 * had a probe in the module vaddr area which already
1365 		 * freed. So, the instruction slot has already been
1366 		 * released. We need a new slot for the new probe.
1367 		 */
1368 		ret = arch_prepare_kprobe(ap);
1369 		if (ret)
1370 			/*
1371 			 * Even if fail to allocate new slot, don't need to
1372 			 * free aggr_probe. It will be used next time, or
1373 			 * freed by unregister_kprobe.
1374 			 */
1375 			goto out;
1376 
1377 		/* Prepare optimized instructions if possible. */
1378 		prepare_optimized_kprobe(ap);
1379 
1380 		/*
1381 		 * Clear gone flag to prevent allocating new slot again, and
1382 		 * set disabled flag because it is not armed yet.
1383 		 */
1384 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1385 			    | KPROBE_FLAG_DISABLED;
1386 	}
1387 
1388 	/* Copy ap's insn slot to p */
1389 	copy_kprobe(ap, p);
1390 	ret = add_new_kprobe(ap, p);
1391 
1392 out:
1393 	mutex_unlock(&text_mutex);
1394 	jump_label_unlock();
1395 	cpus_read_unlock();
1396 
1397 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1398 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1399 		if (!kprobes_all_disarmed) {
1400 			/* Arm the breakpoint again. */
1401 			ret = arm_kprobe(ap);
1402 			if (ret) {
1403 				ap->flags |= KPROBE_FLAG_DISABLED;
1404 				list_del_rcu(&p->list);
1405 				synchronize_rcu();
1406 			}
1407 		}
1408 	}
1409 	return ret;
1410 }
1411 
1412 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1413 {
1414 	/* The __kprobes marked functions and entry code must not be probed */
1415 	return addr >= (unsigned long)__kprobes_text_start &&
1416 	       addr < (unsigned long)__kprobes_text_end;
1417 }
1418 
1419 static bool __within_kprobe_blacklist(unsigned long addr)
1420 {
1421 	struct kprobe_blacklist_entry *ent;
1422 
1423 	if (arch_within_kprobe_blacklist(addr))
1424 		return true;
1425 	/*
1426 	 * If there exists a kprobe_blacklist, verify and
1427 	 * fail any probe registration in the prohibited area
1428 	 */
1429 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1430 		if (addr >= ent->start_addr && addr < ent->end_addr)
1431 			return true;
1432 	}
1433 	return false;
1434 }
1435 
1436 bool within_kprobe_blacklist(unsigned long addr)
1437 {
1438 	char symname[KSYM_NAME_LEN], *p;
1439 
1440 	if (__within_kprobe_blacklist(addr))
1441 		return true;
1442 
1443 	/* Check if the address is on a suffixed-symbol */
1444 	if (!lookup_symbol_name(addr, symname)) {
1445 		p = strchr(symname, '.');
1446 		if (!p)
1447 			return false;
1448 		*p = '\0';
1449 		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1450 		if (addr)
1451 			return __within_kprobe_blacklist(addr);
1452 	}
1453 	return false;
1454 }
1455 
1456 /*
1457  * If we have a symbol_name argument, look it up and add the offset field
1458  * to it. This way, we can specify a relative address to a symbol.
1459  * This returns encoded errors if it fails to look up symbol or invalid
1460  * combination of parameters.
1461  */
1462 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1463 			const char *symbol_name, unsigned int offset)
1464 {
1465 	if ((symbol_name && addr) || (!symbol_name && !addr))
1466 		goto invalid;
1467 
1468 	if (symbol_name) {
1469 		addr = kprobe_lookup_name(symbol_name, offset);
1470 		if (!addr)
1471 			return ERR_PTR(-ENOENT);
1472 	}
1473 
1474 	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1475 	if (addr)
1476 		return addr;
1477 
1478 invalid:
1479 	return ERR_PTR(-EINVAL);
1480 }
1481 
1482 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1483 {
1484 	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1485 }
1486 
1487 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1488 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1489 {
1490 	struct kprobe *ap, *list_p;
1491 
1492 	lockdep_assert_held(&kprobe_mutex);
1493 
1494 	ap = get_kprobe(p->addr);
1495 	if (unlikely(!ap))
1496 		return NULL;
1497 
1498 	if (p != ap) {
1499 		list_for_each_entry(list_p, &ap->list, list)
1500 			if (list_p == p)
1501 			/* kprobe p is a valid probe */
1502 				goto valid;
1503 		return NULL;
1504 	}
1505 valid:
1506 	return ap;
1507 }
1508 
1509 /*
1510  * Warn and return error if the kprobe is being re-registered since
1511  * there must be a software bug.
1512  */
1513 static inline int warn_kprobe_rereg(struct kprobe *p)
1514 {
1515 	int ret = 0;
1516 
1517 	mutex_lock(&kprobe_mutex);
1518 	if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1519 		ret = -EINVAL;
1520 	mutex_unlock(&kprobe_mutex);
1521 
1522 	return ret;
1523 }
1524 
1525 static int check_ftrace_location(struct kprobe *p)
1526 {
1527 	unsigned long ftrace_addr;
1528 
1529 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1530 	if (ftrace_addr) {
1531 #ifdef CONFIG_KPROBES_ON_FTRACE
1532 		/* Given address is not on the instruction boundary */
1533 		if ((unsigned long)p->addr != ftrace_addr)
1534 			return -EILSEQ;
1535 		p->flags |= KPROBE_FLAG_FTRACE;
1536 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1537 		return -EINVAL;
1538 #endif
1539 	}
1540 	return 0;
1541 }
1542 
1543 static int check_kprobe_address_safe(struct kprobe *p,
1544 				     struct module **probed_mod)
1545 {
1546 	int ret;
1547 
1548 	ret = check_ftrace_location(p);
1549 	if (ret)
1550 		return ret;
1551 	jump_label_lock();
1552 	preempt_disable();
1553 
1554 	/* Ensure it is not in reserved area nor out of text */
1555 	if (!kernel_text_address((unsigned long) p->addr) ||
1556 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1557 	    jump_label_text_reserved(p->addr, p->addr) ||
1558 	    static_call_text_reserved(p->addr, p->addr) ||
1559 	    find_bug((unsigned long)p->addr)) {
1560 		ret = -EINVAL;
1561 		goto out;
1562 	}
1563 
1564 	/* Check if are we probing a module */
1565 	*probed_mod = __module_text_address((unsigned long) p->addr);
1566 	if (*probed_mod) {
1567 		/*
1568 		 * We must hold a refcount of the probed module while updating
1569 		 * its code to prohibit unexpected unloading.
1570 		 */
1571 		if (unlikely(!try_module_get(*probed_mod))) {
1572 			ret = -ENOENT;
1573 			goto out;
1574 		}
1575 
1576 		/*
1577 		 * If the module freed .init.text, we couldn't insert
1578 		 * kprobes in there.
1579 		 */
1580 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1581 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1582 			module_put(*probed_mod);
1583 			*probed_mod = NULL;
1584 			ret = -ENOENT;
1585 		}
1586 	}
1587 out:
1588 	preempt_enable();
1589 	jump_label_unlock();
1590 
1591 	return ret;
1592 }
1593 
1594 int register_kprobe(struct kprobe *p)
1595 {
1596 	int ret;
1597 	struct kprobe *old_p;
1598 	struct module *probed_mod;
1599 	kprobe_opcode_t *addr;
1600 
1601 	/* Adjust probe address from symbol */
1602 	addr = kprobe_addr(p);
1603 	if (IS_ERR(addr))
1604 		return PTR_ERR(addr);
1605 	p->addr = addr;
1606 
1607 	ret = warn_kprobe_rereg(p);
1608 	if (ret)
1609 		return ret;
1610 
1611 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1612 	p->flags &= KPROBE_FLAG_DISABLED;
1613 	p->nmissed = 0;
1614 	INIT_LIST_HEAD(&p->list);
1615 
1616 	ret = check_kprobe_address_safe(p, &probed_mod);
1617 	if (ret)
1618 		return ret;
1619 
1620 	mutex_lock(&kprobe_mutex);
1621 
1622 	old_p = get_kprobe(p->addr);
1623 	if (old_p) {
1624 		/* Since this may unoptimize old_p, locking text_mutex. */
1625 		ret = register_aggr_kprobe(old_p, p);
1626 		goto out;
1627 	}
1628 
1629 	cpus_read_lock();
1630 	/* Prevent text modification */
1631 	mutex_lock(&text_mutex);
1632 	ret = prepare_kprobe(p);
1633 	mutex_unlock(&text_mutex);
1634 	cpus_read_unlock();
1635 	if (ret)
1636 		goto out;
1637 
1638 	INIT_HLIST_NODE(&p->hlist);
1639 	hlist_add_head_rcu(&p->hlist,
1640 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1641 
1642 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1643 		ret = arm_kprobe(p);
1644 		if (ret) {
1645 			hlist_del_rcu(&p->hlist);
1646 			synchronize_rcu();
1647 			goto out;
1648 		}
1649 	}
1650 
1651 	/* Try to optimize kprobe */
1652 	try_to_optimize_kprobe(p);
1653 out:
1654 	mutex_unlock(&kprobe_mutex);
1655 
1656 	if (probed_mod)
1657 		module_put(probed_mod);
1658 
1659 	return ret;
1660 }
1661 EXPORT_SYMBOL_GPL(register_kprobe);
1662 
1663 /* Check if all probes on the aggrprobe are disabled */
1664 static int aggr_kprobe_disabled(struct kprobe *ap)
1665 {
1666 	struct kprobe *kp;
1667 
1668 	lockdep_assert_held(&kprobe_mutex);
1669 
1670 	list_for_each_entry(kp, &ap->list, list)
1671 		if (!kprobe_disabled(kp))
1672 			/*
1673 			 * There is an active probe on the list.
1674 			 * We can't disable this ap.
1675 			 */
1676 			return 0;
1677 
1678 	return 1;
1679 }
1680 
1681 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1682 static struct kprobe *__disable_kprobe(struct kprobe *p)
1683 {
1684 	struct kprobe *orig_p;
1685 	int ret;
1686 
1687 	/* Get an original kprobe for return */
1688 	orig_p = __get_valid_kprobe(p);
1689 	if (unlikely(orig_p == NULL))
1690 		return ERR_PTR(-EINVAL);
1691 
1692 	if (!kprobe_disabled(p)) {
1693 		/* Disable probe if it is a child probe */
1694 		if (p != orig_p)
1695 			p->flags |= KPROBE_FLAG_DISABLED;
1696 
1697 		/* Try to disarm and disable this/parent probe */
1698 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1699 			/*
1700 			 * If kprobes_all_disarmed is set, orig_p
1701 			 * should have already been disarmed, so
1702 			 * skip unneed disarming process.
1703 			 */
1704 			if (!kprobes_all_disarmed) {
1705 				ret = disarm_kprobe(orig_p, true);
1706 				if (ret) {
1707 					p->flags &= ~KPROBE_FLAG_DISABLED;
1708 					return ERR_PTR(ret);
1709 				}
1710 			}
1711 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1712 		}
1713 	}
1714 
1715 	return orig_p;
1716 }
1717 
1718 /*
1719  * Unregister a kprobe without a scheduler synchronization.
1720  */
1721 static int __unregister_kprobe_top(struct kprobe *p)
1722 {
1723 	struct kprobe *ap, *list_p;
1724 
1725 	/* Disable kprobe. This will disarm it if needed. */
1726 	ap = __disable_kprobe(p);
1727 	if (IS_ERR(ap))
1728 		return PTR_ERR(ap);
1729 
1730 	if (ap == p)
1731 		/*
1732 		 * This probe is an independent(and non-optimized) kprobe
1733 		 * (not an aggrprobe). Remove from the hash list.
1734 		 */
1735 		goto disarmed;
1736 
1737 	/* Following process expects this probe is an aggrprobe */
1738 	WARN_ON(!kprobe_aggrprobe(ap));
1739 
1740 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1741 		/*
1742 		 * !disarmed could be happen if the probe is under delayed
1743 		 * unoptimizing.
1744 		 */
1745 		goto disarmed;
1746 	else {
1747 		/* If disabling probe has special handlers, update aggrprobe */
1748 		if (p->post_handler && !kprobe_gone(p)) {
1749 			list_for_each_entry(list_p, &ap->list, list) {
1750 				if ((list_p != p) && (list_p->post_handler))
1751 					goto noclean;
1752 			}
1753 			ap->post_handler = NULL;
1754 		}
1755 noclean:
1756 		/*
1757 		 * Remove from the aggrprobe: this path will do nothing in
1758 		 * __unregister_kprobe_bottom().
1759 		 */
1760 		list_del_rcu(&p->list);
1761 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1762 			/*
1763 			 * Try to optimize this probe again, because post
1764 			 * handler may have been changed.
1765 			 */
1766 			optimize_kprobe(ap);
1767 	}
1768 	return 0;
1769 
1770 disarmed:
1771 	hlist_del_rcu(&ap->hlist);
1772 	return 0;
1773 }
1774 
1775 static void __unregister_kprobe_bottom(struct kprobe *p)
1776 {
1777 	struct kprobe *ap;
1778 
1779 	if (list_empty(&p->list))
1780 		/* This is an independent kprobe */
1781 		arch_remove_kprobe(p);
1782 	else if (list_is_singular(&p->list)) {
1783 		/* This is the last child of an aggrprobe */
1784 		ap = list_entry(p->list.next, struct kprobe, list);
1785 		list_del(&p->list);
1786 		free_aggr_kprobe(ap);
1787 	}
1788 	/* Otherwise, do nothing. */
1789 }
1790 
1791 int register_kprobes(struct kprobe **kps, int num)
1792 {
1793 	int i, ret = 0;
1794 
1795 	if (num <= 0)
1796 		return -EINVAL;
1797 	for (i = 0; i < num; i++) {
1798 		ret = register_kprobe(kps[i]);
1799 		if (ret < 0) {
1800 			if (i > 0)
1801 				unregister_kprobes(kps, i);
1802 			break;
1803 		}
1804 	}
1805 	return ret;
1806 }
1807 EXPORT_SYMBOL_GPL(register_kprobes);
1808 
1809 void unregister_kprobe(struct kprobe *p)
1810 {
1811 	unregister_kprobes(&p, 1);
1812 }
1813 EXPORT_SYMBOL_GPL(unregister_kprobe);
1814 
1815 void unregister_kprobes(struct kprobe **kps, int num)
1816 {
1817 	int i;
1818 
1819 	if (num <= 0)
1820 		return;
1821 	mutex_lock(&kprobe_mutex);
1822 	for (i = 0; i < num; i++)
1823 		if (__unregister_kprobe_top(kps[i]) < 0)
1824 			kps[i]->addr = NULL;
1825 	mutex_unlock(&kprobe_mutex);
1826 
1827 	synchronize_rcu();
1828 	for (i = 0; i < num; i++)
1829 		if (kps[i]->addr)
1830 			__unregister_kprobe_bottom(kps[i]);
1831 }
1832 EXPORT_SYMBOL_GPL(unregister_kprobes);
1833 
1834 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1835 					unsigned long val, void *data)
1836 {
1837 	return NOTIFY_DONE;
1838 }
1839 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1840 
1841 static struct notifier_block kprobe_exceptions_nb = {
1842 	.notifier_call = kprobe_exceptions_notify,
1843 	.priority = 0x7fffffff /* we need to be notified first */
1844 };
1845 
1846 unsigned long __weak arch_deref_entry_point(void *entry)
1847 {
1848 	return (unsigned long)entry;
1849 }
1850 
1851 #ifdef CONFIG_KRETPROBES
1852 
1853 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1854 					     void *trampoline_address,
1855 					     void *frame_pointer)
1856 {
1857 	kprobe_opcode_t *correct_ret_addr = NULL;
1858 	struct kretprobe_instance *ri = NULL;
1859 	struct llist_node *first, *node;
1860 	struct kretprobe *rp;
1861 
1862 	/* Find all nodes for this frame. */
1863 	first = node = current->kretprobe_instances.first;
1864 	while (node) {
1865 		ri = container_of(node, struct kretprobe_instance, llist);
1866 
1867 		BUG_ON(ri->fp != frame_pointer);
1868 
1869 		if (ri->ret_addr != trampoline_address) {
1870 			correct_ret_addr = ri->ret_addr;
1871 			/*
1872 			 * This is the real return address. Any other
1873 			 * instances associated with this task are for
1874 			 * other calls deeper on the call stack
1875 			 */
1876 			goto found;
1877 		}
1878 
1879 		node = node->next;
1880 	}
1881 	pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
1882 	BUG_ON(1);
1883 
1884 found:
1885 	/* Unlink all nodes for this frame. */
1886 	current->kretprobe_instances.first = node->next;
1887 	node->next = NULL;
1888 
1889 	/* Run them..  */
1890 	while (first) {
1891 		ri = container_of(first, struct kretprobe_instance, llist);
1892 		first = first->next;
1893 
1894 		rp = get_kretprobe(ri);
1895 		if (rp && rp->handler) {
1896 			struct kprobe *prev = kprobe_running();
1897 
1898 			__this_cpu_write(current_kprobe, &rp->kp);
1899 			ri->ret_addr = correct_ret_addr;
1900 			rp->handler(ri, regs);
1901 			__this_cpu_write(current_kprobe, prev);
1902 		}
1903 
1904 		recycle_rp_inst(ri);
1905 	}
1906 
1907 	return (unsigned long)correct_ret_addr;
1908 }
1909 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
1910 
1911 /*
1912  * This kprobe pre_handler is registered with every kretprobe. When probe
1913  * hits it will set up the return probe.
1914  */
1915 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1916 {
1917 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1918 	struct kretprobe_instance *ri;
1919 	struct freelist_node *fn;
1920 
1921 	fn = freelist_try_get(&rp->freelist);
1922 	if (!fn) {
1923 		rp->nmissed++;
1924 		return 0;
1925 	}
1926 
1927 	ri = container_of(fn, struct kretprobe_instance, freelist);
1928 
1929 	if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1930 		freelist_add(&ri->freelist, &rp->freelist);
1931 		return 0;
1932 	}
1933 
1934 	arch_prepare_kretprobe(ri, regs);
1935 
1936 	__llist_add(&ri->llist, &current->kretprobe_instances);
1937 
1938 	return 0;
1939 }
1940 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1941 
1942 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1943 {
1944 	return !offset;
1945 }
1946 
1947 /**
1948  * kprobe_on_func_entry() -- check whether given address is function entry
1949  * @addr: Target address
1950  * @sym:  Target symbol name
1951  * @offset: The offset from the symbol or the address
1952  *
1953  * This checks whether the given @addr+@offset or @sym+@offset is on the
1954  * function entry address or not.
1955  * This returns 0 if it is the function entry, or -EINVAL if it is not.
1956  * And also it returns -ENOENT if it fails the symbol or address lookup.
1957  * Caller must pass @addr or @sym (either one must be NULL), or this
1958  * returns -EINVAL.
1959  */
1960 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1961 {
1962 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1963 
1964 	if (IS_ERR(kp_addr))
1965 		return PTR_ERR(kp_addr);
1966 
1967 	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1968 		return -ENOENT;
1969 
1970 	if (!arch_kprobe_on_func_entry(offset))
1971 		return -EINVAL;
1972 
1973 	return 0;
1974 }
1975 
1976 int register_kretprobe(struct kretprobe *rp)
1977 {
1978 	int ret;
1979 	struct kretprobe_instance *inst;
1980 	int i;
1981 	void *addr;
1982 
1983 	ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
1984 	if (ret)
1985 		return ret;
1986 
1987 	/* If only rp->kp.addr is specified, check reregistering kprobes */
1988 	if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
1989 		return -EINVAL;
1990 
1991 	if (kretprobe_blacklist_size) {
1992 		addr = kprobe_addr(&rp->kp);
1993 		if (IS_ERR(addr))
1994 			return PTR_ERR(addr);
1995 
1996 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1997 			if (kretprobe_blacklist[i].addr == addr)
1998 				return -EINVAL;
1999 		}
2000 	}
2001 
2002 	rp->kp.pre_handler = pre_handler_kretprobe;
2003 	rp->kp.post_handler = NULL;
2004 
2005 	/* Pre-allocate memory for max kretprobe instances */
2006 	if (rp->maxactive <= 0) {
2007 #ifdef CONFIG_PREEMPTION
2008 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2009 #else
2010 		rp->maxactive = num_possible_cpus();
2011 #endif
2012 	}
2013 	rp->freelist.head = NULL;
2014 	rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2015 	if (!rp->rph)
2016 		return -ENOMEM;
2017 
2018 	rp->rph->rp = rp;
2019 	for (i = 0; i < rp->maxactive; i++) {
2020 		inst = kzalloc(sizeof(struct kretprobe_instance) +
2021 			       rp->data_size, GFP_KERNEL);
2022 		if (inst == NULL) {
2023 			refcount_set(&rp->rph->ref, i);
2024 			free_rp_inst(rp);
2025 			return -ENOMEM;
2026 		}
2027 		inst->rph = rp->rph;
2028 		freelist_add(&inst->freelist, &rp->freelist);
2029 	}
2030 	refcount_set(&rp->rph->ref, i);
2031 
2032 	rp->nmissed = 0;
2033 	/* Establish function entry probe point */
2034 	ret = register_kprobe(&rp->kp);
2035 	if (ret != 0)
2036 		free_rp_inst(rp);
2037 	return ret;
2038 }
2039 EXPORT_SYMBOL_GPL(register_kretprobe);
2040 
2041 int register_kretprobes(struct kretprobe **rps, int num)
2042 {
2043 	int ret = 0, i;
2044 
2045 	if (num <= 0)
2046 		return -EINVAL;
2047 	for (i = 0; i < num; i++) {
2048 		ret = register_kretprobe(rps[i]);
2049 		if (ret < 0) {
2050 			if (i > 0)
2051 				unregister_kretprobes(rps, i);
2052 			break;
2053 		}
2054 	}
2055 	return ret;
2056 }
2057 EXPORT_SYMBOL_GPL(register_kretprobes);
2058 
2059 void unregister_kretprobe(struct kretprobe *rp)
2060 {
2061 	unregister_kretprobes(&rp, 1);
2062 }
2063 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2064 
2065 void unregister_kretprobes(struct kretprobe **rps, int num)
2066 {
2067 	int i;
2068 
2069 	if (num <= 0)
2070 		return;
2071 	mutex_lock(&kprobe_mutex);
2072 	for (i = 0; i < num; i++) {
2073 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2074 			rps[i]->kp.addr = NULL;
2075 		rps[i]->rph->rp = NULL;
2076 	}
2077 	mutex_unlock(&kprobe_mutex);
2078 
2079 	synchronize_rcu();
2080 	for (i = 0; i < num; i++) {
2081 		if (rps[i]->kp.addr) {
2082 			__unregister_kprobe_bottom(&rps[i]->kp);
2083 			free_rp_inst(rps[i]);
2084 		}
2085 	}
2086 }
2087 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2088 
2089 #else /* CONFIG_KRETPROBES */
2090 int register_kretprobe(struct kretprobe *rp)
2091 {
2092 	return -ENOSYS;
2093 }
2094 EXPORT_SYMBOL_GPL(register_kretprobe);
2095 
2096 int register_kretprobes(struct kretprobe **rps, int num)
2097 {
2098 	return -ENOSYS;
2099 }
2100 EXPORT_SYMBOL_GPL(register_kretprobes);
2101 
2102 void unregister_kretprobe(struct kretprobe *rp)
2103 {
2104 }
2105 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2106 
2107 void unregister_kretprobes(struct kretprobe **rps, int num)
2108 {
2109 }
2110 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2111 
2112 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2113 {
2114 	return 0;
2115 }
2116 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2117 
2118 #endif /* CONFIG_KRETPROBES */
2119 
2120 /* Set the kprobe gone and remove its instruction buffer. */
2121 static void kill_kprobe(struct kprobe *p)
2122 {
2123 	struct kprobe *kp;
2124 
2125 	lockdep_assert_held(&kprobe_mutex);
2126 
2127 	p->flags |= KPROBE_FLAG_GONE;
2128 	if (kprobe_aggrprobe(p)) {
2129 		/*
2130 		 * If this is an aggr_kprobe, we have to list all the
2131 		 * chained probes and mark them GONE.
2132 		 */
2133 		list_for_each_entry(kp, &p->list, list)
2134 			kp->flags |= KPROBE_FLAG_GONE;
2135 		p->post_handler = NULL;
2136 		kill_optimized_kprobe(p);
2137 	}
2138 	/*
2139 	 * Here, we can remove insn_slot safely, because no thread calls
2140 	 * the original probed function (which will be freed soon) any more.
2141 	 */
2142 	arch_remove_kprobe(p);
2143 
2144 	/*
2145 	 * The module is going away. We should disarm the kprobe which
2146 	 * is using ftrace, because ftrace framework is still available at
2147 	 * MODULE_STATE_GOING notification.
2148 	 */
2149 	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2150 		disarm_kprobe_ftrace(p);
2151 }
2152 
2153 /* Disable one kprobe */
2154 int disable_kprobe(struct kprobe *kp)
2155 {
2156 	int ret = 0;
2157 	struct kprobe *p;
2158 
2159 	mutex_lock(&kprobe_mutex);
2160 
2161 	/* Disable this kprobe */
2162 	p = __disable_kprobe(kp);
2163 	if (IS_ERR(p))
2164 		ret = PTR_ERR(p);
2165 
2166 	mutex_unlock(&kprobe_mutex);
2167 	return ret;
2168 }
2169 EXPORT_SYMBOL_GPL(disable_kprobe);
2170 
2171 /* Enable one kprobe */
2172 int enable_kprobe(struct kprobe *kp)
2173 {
2174 	int ret = 0;
2175 	struct kprobe *p;
2176 
2177 	mutex_lock(&kprobe_mutex);
2178 
2179 	/* Check whether specified probe is valid. */
2180 	p = __get_valid_kprobe(kp);
2181 	if (unlikely(p == NULL)) {
2182 		ret = -EINVAL;
2183 		goto out;
2184 	}
2185 
2186 	if (kprobe_gone(kp)) {
2187 		/* This kprobe has gone, we couldn't enable it. */
2188 		ret = -EINVAL;
2189 		goto out;
2190 	}
2191 
2192 	if (p != kp)
2193 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2194 
2195 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2196 		p->flags &= ~KPROBE_FLAG_DISABLED;
2197 		ret = arm_kprobe(p);
2198 		if (ret)
2199 			p->flags |= KPROBE_FLAG_DISABLED;
2200 	}
2201 out:
2202 	mutex_unlock(&kprobe_mutex);
2203 	return ret;
2204 }
2205 EXPORT_SYMBOL_GPL(enable_kprobe);
2206 
2207 /* Caller must NOT call this in usual path. This is only for critical case */
2208 void dump_kprobe(struct kprobe *kp)
2209 {
2210 	pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2211 	       kp->symbol_name, kp->offset, kp->addr);
2212 }
2213 NOKPROBE_SYMBOL(dump_kprobe);
2214 
2215 int kprobe_add_ksym_blacklist(unsigned long entry)
2216 {
2217 	struct kprobe_blacklist_entry *ent;
2218 	unsigned long offset = 0, size = 0;
2219 
2220 	if (!kernel_text_address(entry) ||
2221 	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2222 		return -EINVAL;
2223 
2224 	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2225 	if (!ent)
2226 		return -ENOMEM;
2227 	ent->start_addr = entry;
2228 	ent->end_addr = entry + size;
2229 	INIT_LIST_HEAD(&ent->list);
2230 	list_add_tail(&ent->list, &kprobe_blacklist);
2231 
2232 	return (int)size;
2233 }
2234 
2235 /* Add all symbols in given area into kprobe blacklist */
2236 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2237 {
2238 	unsigned long entry;
2239 	int ret = 0;
2240 
2241 	for (entry = start; entry < end; entry += ret) {
2242 		ret = kprobe_add_ksym_blacklist(entry);
2243 		if (ret < 0)
2244 			return ret;
2245 		if (ret == 0)	/* In case of alias symbol */
2246 			ret = 1;
2247 	}
2248 	return 0;
2249 }
2250 
2251 /* Remove all symbols in given area from kprobe blacklist */
2252 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2253 {
2254 	struct kprobe_blacklist_entry *ent, *n;
2255 
2256 	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2257 		if (ent->start_addr < start || ent->start_addr >= end)
2258 			continue;
2259 		list_del(&ent->list);
2260 		kfree(ent);
2261 	}
2262 }
2263 
2264 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2265 {
2266 	kprobe_remove_area_blacklist(entry, entry + 1);
2267 }
2268 
2269 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2270 				   char *type, char *sym)
2271 {
2272 	return -ERANGE;
2273 }
2274 
2275 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2276 		       char *sym)
2277 {
2278 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2279 	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2280 		return 0;
2281 #ifdef CONFIG_OPTPROBES
2282 	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2283 		return 0;
2284 #endif
2285 #endif
2286 	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2287 		return 0;
2288 	return -ERANGE;
2289 }
2290 
2291 int __init __weak arch_populate_kprobe_blacklist(void)
2292 {
2293 	return 0;
2294 }
2295 
2296 /*
2297  * Lookup and populate the kprobe_blacklist.
2298  *
2299  * Unlike the kretprobe blacklist, we'll need to determine
2300  * the range of addresses that belong to the said functions,
2301  * since a kprobe need not necessarily be at the beginning
2302  * of a function.
2303  */
2304 static int __init populate_kprobe_blacklist(unsigned long *start,
2305 					     unsigned long *end)
2306 {
2307 	unsigned long entry;
2308 	unsigned long *iter;
2309 	int ret;
2310 
2311 	for (iter = start; iter < end; iter++) {
2312 		entry = arch_deref_entry_point((void *)*iter);
2313 		ret = kprobe_add_ksym_blacklist(entry);
2314 		if (ret == -EINVAL)
2315 			continue;
2316 		if (ret < 0)
2317 			return ret;
2318 	}
2319 
2320 	/* Symbols in __kprobes_text are blacklisted */
2321 	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2322 					(unsigned long)__kprobes_text_end);
2323 	if (ret)
2324 		return ret;
2325 
2326 	/* Symbols in noinstr section are blacklisted */
2327 	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2328 					(unsigned long)__noinstr_text_end);
2329 
2330 	return ret ? : arch_populate_kprobe_blacklist();
2331 }
2332 
2333 static void add_module_kprobe_blacklist(struct module *mod)
2334 {
2335 	unsigned long start, end;
2336 	int i;
2337 
2338 	if (mod->kprobe_blacklist) {
2339 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2340 			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2341 	}
2342 
2343 	start = (unsigned long)mod->kprobes_text_start;
2344 	if (start) {
2345 		end = start + mod->kprobes_text_size;
2346 		kprobe_add_area_blacklist(start, end);
2347 	}
2348 
2349 	start = (unsigned long)mod->noinstr_text_start;
2350 	if (start) {
2351 		end = start + mod->noinstr_text_size;
2352 		kprobe_add_area_blacklist(start, end);
2353 	}
2354 }
2355 
2356 static void remove_module_kprobe_blacklist(struct module *mod)
2357 {
2358 	unsigned long start, end;
2359 	int i;
2360 
2361 	if (mod->kprobe_blacklist) {
2362 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2363 			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2364 	}
2365 
2366 	start = (unsigned long)mod->kprobes_text_start;
2367 	if (start) {
2368 		end = start + mod->kprobes_text_size;
2369 		kprobe_remove_area_blacklist(start, end);
2370 	}
2371 
2372 	start = (unsigned long)mod->noinstr_text_start;
2373 	if (start) {
2374 		end = start + mod->noinstr_text_size;
2375 		kprobe_remove_area_blacklist(start, end);
2376 	}
2377 }
2378 
2379 /* Module notifier call back, checking kprobes on the module */
2380 static int kprobes_module_callback(struct notifier_block *nb,
2381 				   unsigned long val, void *data)
2382 {
2383 	struct module *mod = data;
2384 	struct hlist_head *head;
2385 	struct kprobe *p;
2386 	unsigned int i;
2387 	int checkcore = (val == MODULE_STATE_GOING);
2388 
2389 	if (val == MODULE_STATE_COMING) {
2390 		mutex_lock(&kprobe_mutex);
2391 		add_module_kprobe_blacklist(mod);
2392 		mutex_unlock(&kprobe_mutex);
2393 	}
2394 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2395 		return NOTIFY_DONE;
2396 
2397 	/*
2398 	 * When MODULE_STATE_GOING was notified, both of module .text and
2399 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2400 	 * notified, only .init.text section would be freed. We need to
2401 	 * disable kprobes which have been inserted in the sections.
2402 	 */
2403 	mutex_lock(&kprobe_mutex);
2404 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2405 		head = &kprobe_table[i];
2406 		hlist_for_each_entry(p, head, hlist)
2407 			if (within_module_init((unsigned long)p->addr, mod) ||
2408 			    (checkcore &&
2409 			     within_module_core((unsigned long)p->addr, mod))) {
2410 				/*
2411 				 * The vaddr this probe is installed will soon
2412 				 * be vfreed buy not synced to disk. Hence,
2413 				 * disarming the breakpoint isn't needed.
2414 				 *
2415 				 * Note, this will also move any optimized probes
2416 				 * that are pending to be removed from their
2417 				 * corresponding lists to the freeing_list and
2418 				 * will not be touched by the delayed
2419 				 * kprobe_optimizer work handler.
2420 				 */
2421 				kill_kprobe(p);
2422 			}
2423 	}
2424 	if (val == MODULE_STATE_GOING)
2425 		remove_module_kprobe_blacklist(mod);
2426 	mutex_unlock(&kprobe_mutex);
2427 	return NOTIFY_DONE;
2428 }
2429 
2430 static struct notifier_block kprobe_module_nb = {
2431 	.notifier_call = kprobes_module_callback,
2432 	.priority = 0
2433 };
2434 
2435 /* Markers of _kprobe_blacklist section */
2436 extern unsigned long __start_kprobe_blacklist[];
2437 extern unsigned long __stop_kprobe_blacklist[];
2438 
2439 void kprobe_free_init_mem(void)
2440 {
2441 	void *start = (void *)(&__init_begin);
2442 	void *end = (void *)(&__init_end);
2443 	struct hlist_head *head;
2444 	struct kprobe *p;
2445 	int i;
2446 
2447 	mutex_lock(&kprobe_mutex);
2448 
2449 	/* Kill all kprobes on initmem */
2450 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2451 		head = &kprobe_table[i];
2452 		hlist_for_each_entry(p, head, hlist) {
2453 			if (start <= (void *)p->addr && (void *)p->addr < end)
2454 				kill_kprobe(p);
2455 		}
2456 	}
2457 
2458 	mutex_unlock(&kprobe_mutex);
2459 }
2460 
2461 static int __init init_kprobes(void)
2462 {
2463 	int i, err = 0;
2464 
2465 	/* FIXME allocate the probe table, currently defined statically */
2466 	/* initialize all list heads */
2467 	for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2468 		INIT_HLIST_HEAD(&kprobe_table[i]);
2469 
2470 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2471 					__stop_kprobe_blacklist);
2472 	if (err) {
2473 		pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
2474 	}
2475 
2476 	if (kretprobe_blacklist_size) {
2477 		/* lookup the function address from its name */
2478 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2479 			kretprobe_blacklist[i].addr =
2480 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2481 			if (!kretprobe_blacklist[i].addr)
2482 				pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2483 				       kretprobe_blacklist[i].name);
2484 		}
2485 	}
2486 
2487 	/* By default, kprobes are armed */
2488 	kprobes_all_disarmed = false;
2489 
2490 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2491 	/* Init kprobe_optinsn_slots for allocation */
2492 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2493 #endif
2494 
2495 	err = arch_init_kprobes();
2496 	if (!err)
2497 		err = register_die_notifier(&kprobe_exceptions_nb);
2498 	if (!err)
2499 		err = register_module_notifier(&kprobe_module_nb);
2500 
2501 	kprobes_initialized = (err == 0);
2502 
2503 	if (!err)
2504 		init_test_probes();
2505 	return err;
2506 }
2507 early_initcall(init_kprobes);
2508 
2509 #if defined(CONFIG_OPTPROBES)
2510 static int __init init_optprobes(void)
2511 {
2512 	/*
2513 	 * Enable kprobe optimization - this kicks the optimizer which
2514 	 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2515 	 * not spawned in early initcall. So delay the optimization.
2516 	 */
2517 	optimize_all_kprobes();
2518 
2519 	return 0;
2520 }
2521 subsys_initcall(init_optprobes);
2522 #endif
2523 
2524 #ifdef CONFIG_DEBUG_FS
2525 static void report_probe(struct seq_file *pi, struct kprobe *p,
2526 		const char *sym, int offset, char *modname, struct kprobe *pp)
2527 {
2528 	char *kprobe_type;
2529 	void *addr = p->addr;
2530 
2531 	if (p->pre_handler == pre_handler_kretprobe)
2532 		kprobe_type = "r";
2533 	else
2534 		kprobe_type = "k";
2535 
2536 	if (!kallsyms_show_value(pi->file->f_cred))
2537 		addr = NULL;
2538 
2539 	if (sym)
2540 		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2541 			addr, kprobe_type, sym, offset,
2542 			(modname ? modname : " "));
2543 	else	/* try to use %pS */
2544 		seq_printf(pi, "%px  %s  %pS ",
2545 			addr, kprobe_type, p->addr);
2546 
2547 	if (!pp)
2548 		pp = p;
2549 	seq_printf(pi, "%s%s%s%s\n",
2550 		(kprobe_gone(p) ? "[GONE]" : ""),
2551 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2552 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2553 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2554 }
2555 
2556 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2557 {
2558 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2559 }
2560 
2561 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2562 {
2563 	(*pos)++;
2564 	if (*pos >= KPROBE_TABLE_SIZE)
2565 		return NULL;
2566 	return pos;
2567 }
2568 
2569 static void kprobe_seq_stop(struct seq_file *f, void *v)
2570 {
2571 	/* Nothing to do */
2572 }
2573 
2574 static int show_kprobe_addr(struct seq_file *pi, void *v)
2575 {
2576 	struct hlist_head *head;
2577 	struct kprobe *p, *kp;
2578 	const char *sym = NULL;
2579 	unsigned int i = *(loff_t *) v;
2580 	unsigned long offset = 0;
2581 	char *modname, namebuf[KSYM_NAME_LEN];
2582 
2583 	head = &kprobe_table[i];
2584 	preempt_disable();
2585 	hlist_for_each_entry_rcu(p, head, hlist) {
2586 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2587 					&offset, &modname, namebuf);
2588 		if (kprobe_aggrprobe(p)) {
2589 			list_for_each_entry_rcu(kp, &p->list, list)
2590 				report_probe(pi, kp, sym, offset, modname, p);
2591 		} else
2592 			report_probe(pi, p, sym, offset, modname, NULL);
2593 	}
2594 	preempt_enable();
2595 	return 0;
2596 }
2597 
2598 static const struct seq_operations kprobes_sops = {
2599 	.start = kprobe_seq_start,
2600 	.next  = kprobe_seq_next,
2601 	.stop  = kprobe_seq_stop,
2602 	.show  = show_kprobe_addr
2603 };
2604 
2605 DEFINE_SEQ_ATTRIBUTE(kprobes);
2606 
2607 /* kprobes/blacklist -- shows which functions can not be probed */
2608 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2609 {
2610 	mutex_lock(&kprobe_mutex);
2611 	return seq_list_start(&kprobe_blacklist, *pos);
2612 }
2613 
2614 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2615 {
2616 	return seq_list_next(v, &kprobe_blacklist, pos);
2617 }
2618 
2619 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2620 {
2621 	struct kprobe_blacklist_entry *ent =
2622 		list_entry(v, struct kprobe_blacklist_entry, list);
2623 
2624 	/*
2625 	 * If /proc/kallsyms is not showing kernel address, we won't
2626 	 * show them here either.
2627 	 */
2628 	if (!kallsyms_show_value(m->file->f_cred))
2629 		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2630 			   (void *)ent->start_addr);
2631 	else
2632 		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2633 			   (void *)ent->end_addr, (void *)ent->start_addr);
2634 	return 0;
2635 }
2636 
2637 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2638 {
2639 	mutex_unlock(&kprobe_mutex);
2640 }
2641 
2642 static const struct seq_operations kprobe_blacklist_sops = {
2643 	.start = kprobe_blacklist_seq_start,
2644 	.next  = kprobe_blacklist_seq_next,
2645 	.stop  = kprobe_blacklist_seq_stop,
2646 	.show  = kprobe_blacklist_seq_show,
2647 };
2648 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2649 
2650 static int arm_all_kprobes(void)
2651 {
2652 	struct hlist_head *head;
2653 	struct kprobe *p;
2654 	unsigned int i, total = 0, errors = 0;
2655 	int err, ret = 0;
2656 
2657 	mutex_lock(&kprobe_mutex);
2658 
2659 	/* If kprobes are armed, just return */
2660 	if (!kprobes_all_disarmed)
2661 		goto already_enabled;
2662 
2663 	/*
2664 	 * optimize_kprobe() called by arm_kprobe() checks
2665 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2666 	 * arm_kprobe.
2667 	 */
2668 	kprobes_all_disarmed = false;
2669 	/* Arming kprobes doesn't optimize kprobe itself */
2670 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2671 		head = &kprobe_table[i];
2672 		/* Arm all kprobes on a best-effort basis */
2673 		hlist_for_each_entry(p, head, hlist) {
2674 			if (!kprobe_disabled(p)) {
2675 				err = arm_kprobe(p);
2676 				if (err)  {
2677 					errors++;
2678 					ret = err;
2679 				}
2680 				total++;
2681 			}
2682 		}
2683 	}
2684 
2685 	if (errors)
2686 		pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2687 			errors, total);
2688 	else
2689 		pr_info("Kprobes globally enabled\n");
2690 
2691 already_enabled:
2692 	mutex_unlock(&kprobe_mutex);
2693 	return ret;
2694 }
2695 
2696 static int disarm_all_kprobes(void)
2697 {
2698 	struct hlist_head *head;
2699 	struct kprobe *p;
2700 	unsigned int i, total = 0, errors = 0;
2701 	int err, ret = 0;
2702 
2703 	mutex_lock(&kprobe_mutex);
2704 
2705 	/* If kprobes are already disarmed, just return */
2706 	if (kprobes_all_disarmed) {
2707 		mutex_unlock(&kprobe_mutex);
2708 		return 0;
2709 	}
2710 
2711 	kprobes_all_disarmed = true;
2712 
2713 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2714 		head = &kprobe_table[i];
2715 		/* Disarm all kprobes on a best-effort basis */
2716 		hlist_for_each_entry(p, head, hlist) {
2717 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2718 				err = disarm_kprobe(p, false);
2719 				if (err) {
2720 					errors++;
2721 					ret = err;
2722 				}
2723 				total++;
2724 			}
2725 		}
2726 	}
2727 
2728 	if (errors)
2729 		pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2730 			errors, total);
2731 	else
2732 		pr_info("Kprobes globally disabled\n");
2733 
2734 	mutex_unlock(&kprobe_mutex);
2735 
2736 	/* Wait for disarming all kprobes by optimizer */
2737 	wait_for_kprobe_optimizer();
2738 
2739 	return ret;
2740 }
2741 
2742 /*
2743  * XXX: The debugfs bool file interface doesn't allow for callbacks
2744  * when the bool state is switched. We can reuse that facility when
2745  * available
2746  */
2747 static ssize_t read_enabled_file_bool(struct file *file,
2748 	       char __user *user_buf, size_t count, loff_t *ppos)
2749 {
2750 	char buf[3];
2751 
2752 	if (!kprobes_all_disarmed)
2753 		buf[0] = '1';
2754 	else
2755 		buf[0] = '0';
2756 	buf[1] = '\n';
2757 	buf[2] = 0x00;
2758 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2759 }
2760 
2761 static ssize_t write_enabled_file_bool(struct file *file,
2762 	       const char __user *user_buf, size_t count, loff_t *ppos)
2763 {
2764 	bool enable;
2765 	int ret;
2766 
2767 	ret = kstrtobool_from_user(user_buf, count, &enable);
2768 	if (ret)
2769 		return ret;
2770 
2771 	ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
2772 	if (ret)
2773 		return ret;
2774 
2775 	return count;
2776 }
2777 
2778 static const struct file_operations fops_kp = {
2779 	.read =         read_enabled_file_bool,
2780 	.write =        write_enabled_file_bool,
2781 	.llseek =	default_llseek,
2782 };
2783 
2784 static int __init debugfs_kprobe_init(void)
2785 {
2786 	struct dentry *dir;
2787 
2788 	dir = debugfs_create_dir("kprobes", NULL);
2789 
2790 	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2791 
2792 	debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
2793 
2794 	debugfs_create_file("blacklist", 0400, dir, NULL,
2795 			    &kprobe_blacklist_fops);
2796 
2797 	return 0;
2798 }
2799 
2800 late_initcall(debugfs_kprobe_init);
2801 #endif /* CONFIG_DEBUG_FS */
2802