xref: /linux/kernel/locking/rwsem.c (revision 52338415)
1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
3  *
4  * Written by David Howells (dhowells@redhat.com).
5  * Derived from asm-i386/semaphore.h
6  *
7  * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8  * and Michel Lespinasse <walken@google.com>
9  *
10  * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11  * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12  *
13  * Rwsem count bit fields re-definition and rwsem rearchitecture by
14  * Waiman Long <longman@redhat.com> and
15  * Peter Zijlstra <peterz@infradead.org>.
16  */
17 
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30 
31 #include "rwsem.h"
32 #include "lock_events.h"
33 
34 /*
35  * The least significant 3 bits of the owner value has the following
36  * meanings when set.
37  *  - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
38  *  - Bit 1: RWSEM_RD_NONSPINNABLE - Readers cannot spin on this lock.
39  *  - Bit 2: RWSEM_WR_NONSPINNABLE - Writers cannot spin on this lock.
40  *
41  * When the rwsem is either owned by an anonymous writer, or it is
42  * reader-owned, but a spinning writer has timed out, both nonspinnable
43  * bits will be set to disable optimistic spinning by readers and writers.
44  * In the later case, the last unlocking reader should then check the
45  * writer nonspinnable bit and clear it only to give writers preference
46  * to acquire the lock via optimistic spinning, but not readers. Similar
47  * action is also done in the reader slowpath.
48 
49  * When a writer acquires a rwsem, it puts its task_struct pointer
50  * into the owner field. It is cleared after an unlock.
51  *
52  * When a reader acquires a rwsem, it will also puts its task_struct
53  * pointer into the owner field with the RWSEM_READER_OWNED bit set.
54  * On unlock, the owner field will largely be left untouched. So
55  * for a free or reader-owned rwsem, the owner value may contain
56  * information about the last reader that acquires the rwsem.
57  *
58  * That information may be helpful in debugging cases where the system
59  * seems to hang on a reader owned rwsem especially if only one reader
60  * is involved. Ideally we would like to track all the readers that own
61  * a rwsem, but the overhead is simply too big.
62  *
63  * Reader optimistic spinning is helpful when the reader critical section
64  * is short and there aren't that many readers around. It makes readers
65  * relatively more preferred than writers. When a writer times out spinning
66  * on a reader-owned lock and set the nospinnable bits, there are two main
67  * reasons for that.
68  *
69  *  1) The reader critical section is long, perhaps the task sleeps after
70  *     acquiring the read lock.
71  *  2) There are just too many readers contending the lock causing it to
72  *     take a while to service all of them.
73  *
74  * In the former case, long reader critical section will impede the progress
75  * of writers which is usually more important for system performance. In
76  * the later case, reader optimistic spinning tends to make the reader
77  * groups that contain readers that acquire the lock together smaller
78  * leading to more of them. That may hurt performance in some cases. In
79  * other words, the setting of nonspinnable bits indicates that reader
80  * optimistic spinning may not be helpful for those workloads that cause
81  * it.
82  *
83  * Therefore, any writers that had observed the setting of the writer
84  * nonspinnable bit for a given rwsem after they fail to acquire the lock
85  * via optimistic spinning will set the reader nonspinnable bit once they
86  * acquire the write lock. Similarly, readers that observe the setting
87  * of reader nonspinnable bit at slowpath entry will set the reader
88  * nonspinnable bits when they acquire the read lock via the wakeup path.
89  *
90  * Once the reader nonspinnable bit is on, it will only be reset when
91  * a writer is able to acquire the rwsem in the fast path or somehow a
92  * reader or writer in the slowpath doesn't observe the nonspinable bit.
93  *
94  * This is to discourage reader optmistic spinning on that particular
95  * rwsem and make writers more preferred. This adaptive disabling of reader
96  * optimistic spinning will alleviate the negative side effect of this
97  * feature.
98  */
99 #define RWSEM_READER_OWNED	(1UL << 0)
100 #define RWSEM_RD_NONSPINNABLE	(1UL << 1)
101 #define RWSEM_WR_NONSPINNABLE	(1UL << 2)
102 #define RWSEM_NONSPINNABLE	(RWSEM_RD_NONSPINNABLE | RWSEM_WR_NONSPINNABLE)
103 #define RWSEM_OWNER_FLAGS_MASK	(RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
104 
105 #ifdef CONFIG_DEBUG_RWSEMS
106 # define DEBUG_RWSEMS_WARN_ON(c, sem)	do {			\
107 	if (!debug_locks_silent &&				\
108 	    WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
109 		#c, atomic_long_read(&(sem)->count),		\
110 		(unsigned long) sem->magic,			\
111 		atomic_long_read(&(sem)->owner), (long)current,	\
112 		list_empty(&(sem)->wait_list) ? "" : "not "))	\
113 			debug_locks_off();			\
114 	} while (0)
115 #else
116 # define DEBUG_RWSEMS_WARN_ON(c, sem)
117 #endif
118 
119 /*
120  * On 64-bit architectures, the bit definitions of the count are:
121  *
122  * Bit  0    - writer locked bit
123  * Bit  1    - waiters present bit
124  * Bit  2    - lock handoff bit
125  * Bits 3-7  - reserved
126  * Bits 8-62 - 55-bit reader count
127  * Bit  63   - read fail bit
128  *
129  * On 32-bit architectures, the bit definitions of the count are:
130  *
131  * Bit  0    - writer locked bit
132  * Bit  1    - waiters present bit
133  * Bit  2    - lock handoff bit
134  * Bits 3-7  - reserved
135  * Bits 8-30 - 23-bit reader count
136  * Bit  31   - read fail bit
137  *
138  * It is not likely that the most significant bit (read fail bit) will ever
139  * be set. This guard bit is still checked anyway in the down_read() fastpath
140  * just in case we need to use up more of the reader bits for other purpose
141  * in the future.
142  *
143  * atomic_long_fetch_add() is used to obtain reader lock, whereas
144  * atomic_long_cmpxchg() will be used to obtain writer lock.
145  *
146  * There are three places where the lock handoff bit may be set or cleared.
147  * 1) rwsem_mark_wake() for readers.
148  * 2) rwsem_try_write_lock() for writers.
149  * 3) Error path of rwsem_down_write_slowpath().
150  *
151  * For all the above cases, wait_lock will be held. A writer must also
152  * be the first one in the wait_list to be eligible for setting the handoff
153  * bit. So concurrent setting/clearing of handoff bit is not possible.
154  */
155 #define RWSEM_WRITER_LOCKED	(1UL << 0)
156 #define RWSEM_FLAG_WAITERS	(1UL << 1)
157 #define RWSEM_FLAG_HANDOFF	(1UL << 2)
158 #define RWSEM_FLAG_READFAIL	(1UL << (BITS_PER_LONG - 1))
159 
160 #define RWSEM_READER_SHIFT	8
161 #define RWSEM_READER_BIAS	(1UL << RWSEM_READER_SHIFT)
162 #define RWSEM_READER_MASK	(~(RWSEM_READER_BIAS - 1))
163 #define RWSEM_WRITER_MASK	RWSEM_WRITER_LOCKED
164 #define RWSEM_LOCK_MASK		(RWSEM_WRITER_MASK|RWSEM_READER_MASK)
165 #define RWSEM_READ_FAILED_MASK	(RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
166 				 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
167 
168 /*
169  * All writes to owner are protected by WRITE_ONCE() to make sure that
170  * store tearing can't happen as optimistic spinners may read and use
171  * the owner value concurrently without lock. Read from owner, however,
172  * may not need READ_ONCE() as long as the pointer value is only used
173  * for comparison and isn't being dereferenced.
174  */
175 static inline void rwsem_set_owner(struct rw_semaphore *sem)
176 {
177 	atomic_long_set(&sem->owner, (long)current);
178 }
179 
180 static inline void rwsem_clear_owner(struct rw_semaphore *sem)
181 {
182 	atomic_long_set(&sem->owner, 0);
183 }
184 
185 /*
186  * Test the flags in the owner field.
187  */
188 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
189 {
190 	return atomic_long_read(&sem->owner) & flags;
191 }
192 
193 /*
194  * The task_struct pointer of the last owning reader will be left in
195  * the owner field.
196  *
197  * Note that the owner value just indicates the task has owned the rwsem
198  * previously, it may not be the real owner or one of the real owners
199  * anymore when that field is examined, so take it with a grain of salt.
200  *
201  * The reader non-spinnable bit is preserved.
202  */
203 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
204 					    struct task_struct *owner)
205 {
206 	unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
207 		(atomic_long_read(&sem->owner) & RWSEM_RD_NONSPINNABLE);
208 
209 	atomic_long_set(&sem->owner, val);
210 }
211 
212 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
213 {
214 	__rwsem_set_reader_owned(sem, current);
215 }
216 
217 /*
218  * Return true if the rwsem is owned by a reader.
219  */
220 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
221 {
222 #ifdef CONFIG_DEBUG_RWSEMS
223 	/*
224 	 * Check the count to see if it is write-locked.
225 	 */
226 	long count = atomic_long_read(&sem->count);
227 
228 	if (count & RWSEM_WRITER_MASK)
229 		return false;
230 #endif
231 	return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
232 }
233 
234 #ifdef CONFIG_DEBUG_RWSEMS
235 /*
236  * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
237  * is a task pointer in owner of a reader-owned rwsem, it will be the
238  * real owner or one of the real owners. The only exception is when the
239  * unlock is done by up_read_non_owner().
240  */
241 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
242 {
243 	unsigned long val = atomic_long_read(&sem->owner);
244 
245 	while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
246 		if (atomic_long_try_cmpxchg(&sem->owner, &val,
247 					    val & RWSEM_OWNER_FLAGS_MASK))
248 			return;
249 	}
250 }
251 #else
252 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
253 {
254 }
255 #endif
256 
257 /*
258  * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
259  * remains set. Otherwise, the operation will be aborted.
260  */
261 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
262 {
263 	unsigned long owner = atomic_long_read(&sem->owner);
264 
265 	do {
266 		if (!(owner & RWSEM_READER_OWNED))
267 			break;
268 		if (owner & RWSEM_NONSPINNABLE)
269 			break;
270 	} while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
271 					  owner | RWSEM_NONSPINNABLE));
272 }
273 
274 static inline bool rwsem_read_trylock(struct rw_semaphore *sem)
275 {
276 	long cnt = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
277 	if (WARN_ON_ONCE(cnt < 0))
278 		rwsem_set_nonspinnable(sem);
279 	return !(cnt & RWSEM_READ_FAILED_MASK);
280 }
281 
282 /*
283  * Return just the real task structure pointer of the owner
284  */
285 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
286 {
287 	return (struct task_struct *)
288 		(atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
289 }
290 
291 /*
292  * Return the real task structure pointer of the owner and the embedded
293  * flags in the owner. pflags must be non-NULL.
294  */
295 static inline struct task_struct *
296 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
297 {
298 	unsigned long owner = atomic_long_read(&sem->owner);
299 
300 	*pflags = owner & RWSEM_OWNER_FLAGS_MASK;
301 	return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
302 }
303 
304 /*
305  * Guide to the rw_semaphore's count field.
306  *
307  * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
308  * by a writer.
309  *
310  * The lock is owned by readers when
311  * (1) the RWSEM_WRITER_LOCKED isn't set in count,
312  * (2) some of the reader bits are set in count, and
313  * (3) the owner field has RWSEM_READ_OWNED bit set.
314  *
315  * Having some reader bits set is not enough to guarantee a readers owned
316  * lock as the readers may be in the process of backing out from the count
317  * and a writer has just released the lock. So another writer may steal
318  * the lock immediately after that.
319  */
320 
321 /*
322  * Initialize an rwsem:
323  */
324 void __init_rwsem(struct rw_semaphore *sem, const char *name,
325 		  struct lock_class_key *key)
326 {
327 #ifdef CONFIG_DEBUG_LOCK_ALLOC
328 	/*
329 	 * Make sure we are not reinitializing a held semaphore:
330 	 */
331 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
332 	lockdep_init_map(&sem->dep_map, name, key, 0);
333 #endif
334 #ifdef CONFIG_DEBUG_RWSEMS
335 	sem->magic = sem;
336 #endif
337 	atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
338 	raw_spin_lock_init(&sem->wait_lock);
339 	INIT_LIST_HEAD(&sem->wait_list);
340 	atomic_long_set(&sem->owner, 0L);
341 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
342 	osq_lock_init(&sem->osq);
343 #endif
344 }
345 EXPORT_SYMBOL(__init_rwsem);
346 
347 enum rwsem_waiter_type {
348 	RWSEM_WAITING_FOR_WRITE,
349 	RWSEM_WAITING_FOR_READ
350 };
351 
352 struct rwsem_waiter {
353 	struct list_head list;
354 	struct task_struct *task;
355 	enum rwsem_waiter_type type;
356 	unsigned long timeout;
357 	unsigned long last_rowner;
358 };
359 #define rwsem_first_waiter(sem) \
360 	list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
361 
362 enum rwsem_wake_type {
363 	RWSEM_WAKE_ANY,		/* Wake whatever's at head of wait list */
364 	RWSEM_WAKE_READERS,	/* Wake readers only */
365 	RWSEM_WAKE_READ_OWNED	/* Waker thread holds the read lock */
366 };
367 
368 enum writer_wait_state {
369 	WRITER_NOT_FIRST,	/* Writer is not first in wait list */
370 	WRITER_FIRST,		/* Writer is first in wait list     */
371 	WRITER_HANDOFF		/* Writer is first & handoff needed */
372 };
373 
374 /*
375  * The typical HZ value is either 250 or 1000. So set the minimum waiting
376  * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
377  * queue before initiating the handoff protocol.
378  */
379 #define RWSEM_WAIT_TIMEOUT	DIV_ROUND_UP(HZ, 250)
380 
381 /*
382  * Magic number to batch-wakeup waiting readers, even when writers are
383  * also present in the queue. This both limits the amount of work the
384  * waking thread must do and also prevents any potential counter overflow,
385  * however unlikely.
386  */
387 #define MAX_READERS_WAKEUP	0x100
388 
389 /*
390  * handle the lock release when processes blocked on it that can now run
391  * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
392  *   have been set.
393  * - there must be someone on the queue
394  * - the wait_lock must be held by the caller
395  * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
396  *   to actually wakeup the blocked task(s) and drop the reference count,
397  *   preferably when the wait_lock is released
398  * - woken process blocks are discarded from the list after having task zeroed
399  * - writers are only marked woken if downgrading is false
400  */
401 static void rwsem_mark_wake(struct rw_semaphore *sem,
402 			    enum rwsem_wake_type wake_type,
403 			    struct wake_q_head *wake_q)
404 {
405 	struct rwsem_waiter *waiter, *tmp;
406 	long oldcount, woken = 0, adjustment = 0;
407 	struct list_head wlist;
408 
409 	lockdep_assert_held(&sem->wait_lock);
410 
411 	/*
412 	 * Take a peek at the queue head waiter such that we can determine
413 	 * the wakeup(s) to perform.
414 	 */
415 	waiter = rwsem_first_waiter(sem);
416 
417 	if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
418 		if (wake_type == RWSEM_WAKE_ANY) {
419 			/*
420 			 * Mark writer at the front of the queue for wakeup.
421 			 * Until the task is actually later awoken later by
422 			 * the caller, other writers are able to steal it.
423 			 * Readers, on the other hand, will block as they
424 			 * will notice the queued writer.
425 			 */
426 			wake_q_add(wake_q, waiter->task);
427 			lockevent_inc(rwsem_wake_writer);
428 		}
429 
430 		return;
431 	}
432 
433 	/*
434 	 * No reader wakeup if there are too many of them already.
435 	 */
436 	if (unlikely(atomic_long_read(&sem->count) < 0))
437 		return;
438 
439 	/*
440 	 * Writers might steal the lock before we grant it to the next reader.
441 	 * We prefer to do the first reader grant before counting readers
442 	 * so we can bail out early if a writer stole the lock.
443 	 */
444 	if (wake_type != RWSEM_WAKE_READ_OWNED) {
445 		struct task_struct *owner;
446 
447 		adjustment = RWSEM_READER_BIAS;
448 		oldcount = atomic_long_fetch_add(adjustment, &sem->count);
449 		if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
450 			/*
451 			 * When we've been waiting "too" long (for writers
452 			 * to give up the lock), request a HANDOFF to
453 			 * force the issue.
454 			 */
455 			if (!(oldcount & RWSEM_FLAG_HANDOFF) &&
456 			    time_after(jiffies, waiter->timeout)) {
457 				adjustment -= RWSEM_FLAG_HANDOFF;
458 				lockevent_inc(rwsem_rlock_handoff);
459 			}
460 
461 			atomic_long_add(-adjustment, &sem->count);
462 			return;
463 		}
464 		/*
465 		 * Set it to reader-owned to give spinners an early
466 		 * indication that readers now have the lock.
467 		 * The reader nonspinnable bit seen at slowpath entry of
468 		 * the reader is copied over.
469 		 */
470 		owner = waiter->task;
471 		if (waiter->last_rowner & RWSEM_RD_NONSPINNABLE) {
472 			owner = (void *)((unsigned long)owner | RWSEM_RD_NONSPINNABLE);
473 			lockevent_inc(rwsem_opt_norspin);
474 		}
475 		__rwsem_set_reader_owned(sem, owner);
476 	}
477 
478 	/*
479 	 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
480 	 * queue. We know that the woken will be at least 1 as we accounted
481 	 * for above. Note we increment the 'active part' of the count by the
482 	 * number of readers before waking any processes up.
483 	 *
484 	 * This is an adaptation of the phase-fair R/W locks where at the
485 	 * reader phase (first waiter is a reader), all readers are eligible
486 	 * to acquire the lock at the same time irrespective of their order
487 	 * in the queue. The writers acquire the lock according to their
488 	 * order in the queue.
489 	 *
490 	 * We have to do wakeup in 2 passes to prevent the possibility that
491 	 * the reader count may be decremented before it is incremented. It
492 	 * is because the to-be-woken waiter may not have slept yet. So it
493 	 * may see waiter->task got cleared, finish its critical section and
494 	 * do an unlock before the reader count increment.
495 	 *
496 	 * 1) Collect the read-waiters in a separate list, count them and
497 	 *    fully increment the reader count in rwsem.
498 	 * 2) For each waiters in the new list, clear waiter->task and
499 	 *    put them into wake_q to be woken up later.
500 	 */
501 	INIT_LIST_HEAD(&wlist);
502 	list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
503 		if (waiter->type == RWSEM_WAITING_FOR_WRITE)
504 			continue;
505 
506 		woken++;
507 		list_move_tail(&waiter->list, &wlist);
508 
509 		/*
510 		 * Limit # of readers that can be woken up per wakeup call.
511 		 */
512 		if (woken >= MAX_READERS_WAKEUP)
513 			break;
514 	}
515 
516 	adjustment = woken * RWSEM_READER_BIAS - adjustment;
517 	lockevent_cond_inc(rwsem_wake_reader, woken);
518 	if (list_empty(&sem->wait_list)) {
519 		/* hit end of list above */
520 		adjustment -= RWSEM_FLAG_WAITERS;
521 	}
522 
523 	/*
524 	 * When we've woken a reader, we no longer need to force writers
525 	 * to give up the lock and we can clear HANDOFF.
526 	 */
527 	if (woken && (atomic_long_read(&sem->count) & RWSEM_FLAG_HANDOFF))
528 		adjustment -= RWSEM_FLAG_HANDOFF;
529 
530 	if (adjustment)
531 		atomic_long_add(adjustment, &sem->count);
532 
533 	/* 2nd pass */
534 	list_for_each_entry_safe(waiter, tmp, &wlist, list) {
535 		struct task_struct *tsk;
536 
537 		tsk = waiter->task;
538 		get_task_struct(tsk);
539 
540 		/*
541 		 * Ensure calling get_task_struct() before setting the reader
542 		 * waiter to nil such that rwsem_down_read_slowpath() cannot
543 		 * race with do_exit() by always holding a reference count
544 		 * to the task to wakeup.
545 		 */
546 		smp_store_release(&waiter->task, NULL);
547 		/*
548 		 * Ensure issuing the wakeup (either by us or someone else)
549 		 * after setting the reader waiter to nil.
550 		 */
551 		wake_q_add_safe(wake_q, tsk);
552 	}
553 }
554 
555 /*
556  * This function must be called with the sem->wait_lock held to prevent
557  * race conditions between checking the rwsem wait list and setting the
558  * sem->count accordingly.
559  *
560  * If wstate is WRITER_HANDOFF, it will make sure that either the handoff
561  * bit is set or the lock is acquired with handoff bit cleared.
562  */
563 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
564 					enum writer_wait_state wstate)
565 {
566 	long count, new;
567 
568 	lockdep_assert_held(&sem->wait_lock);
569 
570 	count = atomic_long_read(&sem->count);
571 	do {
572 		bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
573 
574 		if (has_handoff && wstate == WRITER_NOT_FIRST)
575 			return false;
576 
577 		new = count;
578 
579 		if (count & RWSEM_LOCK_MASK) {
580 			if (has_handoff || (wstate != WRITER_HANDOFF))
581 				return false;
582 
583 			new |= RWSEM_FLAG_HANDOFF;
584 		} else {
585 			new |= RWSEM_WRITER_LOCKED;
586 			new &= ~RWSEM_FLAG_HANDOFF;
587 
588 			if (list_is_singular(&sem->wait_list))
589 				new &= ~RWSEM_FLAG_WAITERS;
590 		}
591 	} while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
592 
593 	/*
594 	 * We have either acquired the lock with handoff bit cleared or
595 	 * set the handoff bit.
596 	 */
597 	if (new & RWSEM_FLAG_HANDOFF)
598 		return false;
599 
600 	rwsem_set_owner(sem);
601 	return true;
602 }
603 
604 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
605 /*
606  * Try to acquire read lock before the reader is put on wait queue.
607  * Lock acquisition isn't allowed if the rwsem is locked or a writer handoff
608  * is ongoing.
609  */
610 static inline bool rwsem_try_read_lock_unqueued(struct rw_semaphore *sem)
611 {
612 	long count = atomic_long_read(&sem->count);
613 
614 	if (count & (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))
615 		return false;
616 
617 	count = atomic_long_fetch_add_acquire(RWSEM_READER_BIAS, &sem->count);
618 	if (!(count & (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) {
619 		rwsem_set_reader_owned(sem);
620 		lockevent_inc(rwsem_opt_rlock);
621 		return true;
622 	}
623 
624 	/* Back out the change */
625 	atomic_long_add(-RWSEM_READER_BIAS, &sem->count);
626 	return false;
627 }
628 
629 /*
630  * Try to acquire write lock before the writer has been put on wait queue.
631  */
632 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
633 {
634 	long count = atomic_long_read(&sem->count);
635 
636 	while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
637 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
638 					count | RWSEM_WRITER_LOCKED)) {
639 			rwsem_set_owner(sem);
640 			lockevent_inc(rwsem_opt_wlock);
641 			return true;
642 		}
643 	}
644 	return false;
645 }
646 
647 static inline bool owner_on_cpu(struct task_struct *owner)
648 {
649 	/*
650 	 * As lock holder preemption issue, we both skip spinning if
651 	 * task is not on cpu or its cpu is preempted
652 	 */
653 	return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
654 }
655 
656 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem,
657 					   unsigned long nonspinnable)
658 {
659 	struct task_struct *owner;
660 	unsigned long flags;
661 	bool ret = true;
662 
663 	BUILD_BUG_ON(!(RWSEM_OWNER_UNKNOWN & RWSEM_NONSPINNABLE));
664 
665 	if (need_resched()) {
666 		lockevent_inc(rwsem_opt_fail);
667 		return false;
668 	}
669 
670 	preempt_disable();
671 	rcu_read_lock();
672 	owner = rwsem_owner_flags(sem, &flags);
673 	/*
674 	 * Don't check the read-owner as the entry may be stale.
675 	 */
676 	if ((flags & nonspinnable) ||
677 	    (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
678 		ret = false;
679 	rcu_read_unlock();
680 	preempt_enable();
681 
682 	lockevent_cond_inc(rwsem_opt_fail, !ret);
683 	return ret;
684 }
685 
686 /*
687  * The rwsem_spin_on_owner() function returns the folowing 4 values
688  * depending on the lock owner state.
689  *   OWNER_NULL  : owner is currently NULL
690  *   OWNER_WRITER: when owner changes and is a writer
691  *   OWNER_READER: when owner changes and the new owner may be a reader.
692  *   OWNER_NONSPINNABLE:
693  *		   when optimistic spinning has to stop because either the
694  *		   owner stops running, is unknown, or its timeslice has
695  *		   been used up.
696  */
697 enum owner_state {
698 	OWNER_NULL		= 1 << 0,
699 	OWNER_WRITER		= 1 << 1,
700 	OWNER_READER		= 1 << 2,
701 	OWNER_NONSPINNABLE	= 1 << 3,
702 };
703 #define OWNER_SPINNABLE		(OWNER_NULL | OWNER_WRITER | OWNER_READER)
704 
705 static inline enum owner_state
706 rwsem_owner_state(struct task_struct *owner, unsigned long flags, unsigned long nonspinnable)
707 {
708 	if (flags & nonspinnable)
709 		return OWNER_NONSPINNABLE;
710 
711 	if (flags & RWSEM_READER_OWNED)
712 		return OWNER_READER;
713 
714 	return owner ? OWNER_WRITER : OWNER_NULL;
715 }
716 
717 static noinline enum owner_state
718 rwsem_spin_on_owner(struct rw_semaphore *sem, unsigned long nonspinnable)
719 {
720 	struct task_struct *new, *owner;
721 	unsigned long flags, new_flags;
722 	enum owner_state state;
723 
724 	owner = rwsem_owner_flags(sem, &flags);
725 	state = rwsem_owner_state(owner, flags, nonspinnable);
726 	if (state != OWNER_WRITER)
727 		return state;
728 
729 	rcu_read_lock();
730 	for (;;) {
731 		/*
732 		 * When a waiting writer set the handoff flag, it may spin
733 		 * on the owner as well. Once that writer acquires the lock,
734 		 * we can spin on it. So we don't need to quit even when the
735 		 * handoff bit is set.
736 		 */
737 		new = rwsem_owner_flags(sem, &new_flags);
738 		if ((new != owner) || (new_flags != flags)) {
739 			state = rwsem_owner_state(new, new_flags, nonspinnable);
740 			break;
741 		}
742 
743 		/*
744 		 * Ensure we emit the owner->on_cpu, dereference _after_
745 		 * checking sem->owner still matches owner, if that fails,
746 		 * owner might point to free()d memory, if it still matches,
747 		 * the rcu_read_lock() ensures the memory stays valid.
748 		 */
749 		barrier();
750 
751 		if (need_resched() || !owner_on_cpu(owner)) {
752 			state = OWNER_NONSPINNABLE;
753 			break;
754 		}
755 
756 		cpu_relax();
757 	}
758 	rcu_read_unlock();
759 
760 	return state;
761 }
762 
763 /*
764  * Calculate reader-owned rwsem spinning threshold for writer
765  *
766  * The more readers own the rwsem, the longer it will take for them to
767  * wind down and free the rwsem. So the empirical formula used to
768  * determine the actual spinning time limit here is:
769  *
770  *   Spinning threshold = (10 + nr_readers/2)us
771  *
772  * The limit is capped to a maximum of 25us (30 readers). This is just
773  * a heuristic and is subjected to change in the future.
774  */
775 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
776 {
777 	long count = atomic_long_read(&sem->count);
778 	int readers = count >> RWSEM_READER_SHIFT;
779 	u64 delta;
780 
781 	if (readers > 30)
782 		readers = 30;
783 	delta = (20 + readers) * NSEC_PER_USEC / 2;
784 
785 	return sched_clock() + delta;
786 }
787 
788 static bool rwsem_optimistic_spin(struct rw_semaphore *sem, bool wlock)
789 {
790 	bool taken = false;
791 	int prev_owner_state = OWNER_NULL;
792 	int loop = 0;
793 	u64 rspin_threshold = 0;
794 	unsigned long nonspinnable = wlock ? RWSEM_WR_NONSPINNABLE
795 					   : RWSEM_RD_NONSPINNABLE;
796 
797 	preempt_disable();
798 
799 	/* sem->wait_lock should not be held when doing optimistic spinning */
800 	if (!osq_lock(&sem->osq))
801 		goto done;
802 
803 	/*
804 	 * Optimistically spin on the owner field and attempt to acquire the
805 	 * lock whenever the owner changes. Spinning will be stopped when:
806 	 *  1) the owning writer isn't running; or
807 	 *  2) readers own the lock and spinning time has exceeded limit.
808 	 */
809 	for (;;) {
810 		enum owner_state owner_state;
811 
812 		owner_state = rwsem_spin_on_owner(sem, nonspinnable);
813 		if (!(owner_state & OWNER_SPINNABLE))
814 			break;
815 
816 		/*
817 		 * Try to acquire the lock
818 		 */
819 		taken = wlock ? rwsem_try_write_lock_unqueued(sem)
820 			      : rwsem_try_read_lock_unqueued(sem);
821 
822 		if (taken)
823 			break;
824 
825 		/*
826 		 * Time-based reader-owned rwsem optimistic spinning
827 		 */
828 		if (wlock && (owner_state == OWNER_READER)) {
829 			/*
830 			 * Re-initialize rspin_threshold every time when
831 			 * the owner state changes from non-reader to reader.
832 			 * This allows a writer to steal the lock in between
833 			 * 2 reader phases and have the threshold reset at
834 			 * the beginning of the 2nd reader phase.
835 			 */
836 			if (prev_owner_state != OWNER_READER) {
837 				if (rwsem_test_oflags(sem, nonspinnable))
838 					break;
839 				rspin_threshold = rwsem_rspin_threshold(sem);
840 				loop = 0;
841 			}
842 
843 			/*
844 			 * Check time threshold once every 16 iterations to
845 			 * avoid calling sched_clock() too frequently so
846 			 * as to reduce the average latency between the times
847 			 * when the lock becomes free and when the spinner
848 			 * is ready to do a trylock.
849 			 */
850 			else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
851 				rwsem_set_nonspinnable(sem);
852 				lockevent_inc(rwsem_opt_nospin);
853 				break;
854 			}
855 		}
856 
857 		/*
858 		 * An RT task cannot do optimistic spinning if it cannot
859 		 * be sure the lock holder is running or live-lock may
860 		 * happen if the current task and the lock holder happen
861 		 * to run in the same CPU. However, aborting optimistic
862 		 * spinning while a NULL owner is detected may miss some
863 		 * opportunity where spinning can continue without causing
864 		 * problem.
865 		 *
866 		 * There are 2 possible cases where an RT task may be able
867 		 * to continue spinning.
868 		 *
869 		 * 1) The lock owner is in the process of releasing the
870 		 *    lock, sem->owner is cleared but the lock has not
871 		 *    been released yet.
872 		 * 2) The lock was free and owner cleared, but another
873 		 *    task just comes in and acquire the lock before
874 		 *    we try to get it. The new owner may be a spinnable
875 		 *    writer.
876 		 *
877 		 * To take advantage of two scenarios listed agove, the RT
878 		 * task is made to retry one more time to see if it can
879 		 * acquire the lock or continue spinning on the new owning
880 		 * writer. Of course, if the time lag is long enough or the
881 		 * new owner is not a writer or spinnable, the RT task will
882 		 * quit spinning.
883 		 *
884 		 * If the owner is a writer, the need_resched() check is
885 		 * done inside rwsem_spin_on_owner(). If the owner is not
886 		 * a writer, need_resched() check needs to be done here.
887 		 */
888 		if (owner_state != OWNER_WRITER) {
889 			if (need_resched())
890 				break;
891 			if (rt_task(current) &&
892 			   (prev_owner_state != OWNER_WRITER))
893 				break;
894 		}
895 		prev_owner_state = owner_state;
896 
897 		/*
898 		 * The cpu_relax() call is a compiler barrier which forces
899 		 * everything in this loop to be re-loaded. We don't need
900 		 * memory barriers as we'll eventually observe the right
901 		 * values at the cost of a few extra spins.
902 		 */
903 		cpu_relax();
904 	}
905 	osq_unlock(&sem->osq);
906 done:
907 	preempt_enable();
908 	lockevent_cond_inc(rwsem_opt_fail, !taken);
909 	return taken;
910 }
911 
912 /*
913  * Clear the owner's RWSEM_WR_NONSPINNABLE bit if it is set. This should
914  * only be called when the reader count reaches 0.
915  *
916  * This give writers better chance to acquire the rwsem first before
917  * readers when the rwsem was being held by readers for a relatively long
918  * period of time. Race can happen that an optimistic spinner may have
919  * just stolen the rwsem and set the owner, but just clearing the
920  * RWSEM_WR_NONSPINNABLE bit will do no harm anyway.
921  */
922 static inline void clear_wr_nonspinnable(struct rw_semaphore *sem)
923 {
924 	if (rwsem_test_oflags(sem, RWSEM_WR_NONSPINNABLE))
925 		atomic_long_andnot(RWSEM_WR_NONSPINNABLE, &sem->owner);
926 }
927 
928 /*
929  * This function is called when the reader fails to acquire the lock via
930  * optimistic spinning. In this case we will still attempt to do a trylock
931  * when comparing the rwsem state right now with the state when entering
932  * the slowpath indicates that the reader is still in a valid reader phase.
933  * This happens when the following conditions are true:
934  *
935  * 1) The lock is currently reader owned, and
936  * 2) The lock is previously not reader-owned or the last read owner changes.
937  *
938  * In the former case, we have transitioned from a writer phase to a
939  * reader-phase while spinning. In the latter case, it means the reader
940  * phase hasn't ended when we entered the optimistic spinning loop. In
941  * both cases, the reader is eligible to acquire the lock. This is the
942  * secondary path where a read lock is acquired optimistically.
943  *
944  * The reader non-spinnable bit wasn't set at time of entry or it will
945  * not be here at all.
946  */
947 static inline bool rwsem_reader_phase_trylock(struct rw_semaphore *sem,
948 					      unsigned long last_rowner)
949 {
950 	unsigned long owner = atomic_long_read(&sem->owner);
951 
952 	if (!(owner & RWSEM_READER_OWNED))
953 		return false;
954 
955 	if (((owner ^ last_rowner) & ~RWSEM_OWNER_FLAGS_MASK) &&
956 	    rwsem_try_read_lock_unqueued(sem)) {
957 		lockevent_inc(rwsem_opt_rlock2);
958 		lockevent_add(rwsem_opt_fail, -1);
959 		return true;
960 	}
961 	return false;
962 }
963 #else
964 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem,
965 					   unsigned long nonspinnable)
966 {
967 	return false;
968 }
969 
970 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem, bool wlock)
971 {
972 	return false;
973 }
974 
975 static inline void clear_wr_nonspinnable(struct rw_semaphore *sem) { }
976 
977 static inline bool rwsem_reader_phase_trylock(struct rw_semaphore *sem,
978 					      unsigned long last_rowner)
979 {
980 	return false;
981 }
982 
983 static inline int
984 rwsem_spin_on_owner(struct rw_semaphore *sem, unsigned long nonspinnable)
985 {
986 	return 0;
987 }
988 #define OWNER_NULL	1
989 #endif
990 
991 /*
992  * Wait for the read lock to be granted
993  */
994 static struct rw_semaphore __sched *
995 rwsem_down_read_slowpath(struct rw_semaphore *sem, int state)
996 {
997 	long count, adjustment = -RWSEM_READER_BIAS;
998 	struct rwsem_waiter waiter;
999 	DEFINE_WAKE_Q(wake_q);
1000 	bool wake = false;
1001 
1002 	/*
1003 	 * Save the current read-owner of rwsem, if available, and the
1004 	 * reader nonspinnable bit.
1005 	 */
1006 	waiter.last_rowner = atomic_long_read(&sem->owner);
1007 	if (!(waiter.last_rowner & RWSEM_READER_OWNED))
1008 		waiter.last_rowner &= RWSEM_RD_NONSPINNABLE;
1009 
1010 	if (!rwsem_can_spin_on_owner(sem, RWSEM_RD_NONSPINNABLE))
1011 		goto queue;
1012 
1013 	/*
1014 	 * Undo read bias from down_read() and do optimistic spinning.
1015 	 */
1016 	atomic_long_add(-RWSEM_READER_BIAS, &sem->count);
1017 	adjustment = 0;
1018 	if (rwsem_optimistic_spin(sem, false)) {
1019 		/* rwsem_optimistic_spin() implies ACQUIRE on success */
1020 		/*
1021 		 * Wake up other readers in the wait list if the front
1022 		 * waiter is a reader.
1023 		 */
1024 		if ((atomic_long_read(&sem->count) & RWSEM_FLAG_WAITERS)) {
1025 			raw_spin_lock_irq(&sem->wait_lock);
1026 			if (!list_empty(&sem->wait_list))
1027 				rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
1028 						&wake_q);
1029 			raw_spin_unlock_irq(&sem->wait_lock);
1030 			wake_up_q(&wake_q);
1031 		}
1032 		return sem;
1033 	} else if (rwsem_reader_phase_trylock(sem, waiter.last_rowner)) {
1034 		/* rwsem_reader_phase_trylock() implies ACQUIRE on success */
1035 		return sem;
1036 	}
1037 
1038 queue:
1039 	waiter.task = current;
1040 	waiter.type = RWSEM_WAITING_FOR_READ;
1041 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1042 
1043 	raw_spin_lock_irq(&sem->wait_lock);
1044 	if (list_empty(&sem->wait_list)) {
1045 		/*
1046 		 * In case the wait queue is empty and the lock isn't owned
1047 		 * by a writer or has the handoff bit set, this reader can
1048 		 * exit the slowpath and return immediately as its
1049 		 * RWSEM_READER_BIAS has already been set in the count.
1050 		 */
1051 		if (adjustment && !(atomic_long_read(&sem->count) &
1052 		     (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) {
1053 			/* Provide lock ACQUIRE */
1054 			smp_acquire__after_ctrl_dep();
1055 			raw_spin_unlock_irq(&sem->wait_lock);
1056 			rwsem_set_reader_owned(sem);
1057 			lockevent_inc(rwsem_rlock_fast);
1058 			return sem;
1059 		}
1060 		adjustment += RWSEM_FLAG_WAITERS;
1061 	}
1062 	list_add_tail(&waiter.list, &sem->wait_list);
1063 
1064 	/* we're now waiting on the lock, but no longer actively locking */
1065 	if (adjustment)
1066 		count = atomic_long_add_return(adjustment, &sem->count);
1067 	else
1068 		count = atomic_long_read(&sem->count);
1069 
1070 	/*
1071 	 * If there are no active locks, wake the front queued process(es).
1072 	 *
1073 	 * If there are no writers and we are first in the queue,
1074 	 * wake our own waiter to join the existing active readers !
1075 	 */
1076 	if (!(count & RWSEM_LOCK_MASK)) {
1077 		clear_wr_nonspinnable(sem);
1078 		wake = true;
1079 	}
1080 	if (wake || (!(count & RWSEM_WRITER_MASK) &&
1081 		    (adjustment & RWSEM_FLAG_WAITERS)))
1082 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1083 
1084 	raw_spin_unlock_irq(&sem->wait_lock);
1085 	wake_up_q(&wake_q);
1086 
1087 	/* wait to be given the lock */
1088 	for (;;) {
1089 		set_current_state(state);
1090 		if (!smp_load_acquire(&waiter.task)) {
1091 			/* Matches rwsem_mark_wake()'s smp_store_release(). */
1092 			break;
1093 		}
1094 		if (signal_pending_state(state, current)) {
1095 			raw_spin_lock_irq(&sem->wait_lock);
1096 			if (waiter.task)
1097 				goto out_nolock;
1098 			raw_spin_unlock_irq(&sem->wait_lock);
1099 			/* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1100 			break;
1101 		}
1102 		schedule();
1103 		lockevent_inc(rwsem_sleep_reader);
1104 	}
1105 
1106 	__set_current_state(TASK_RUNNING);
1107 	lockevent_inc(rwsem_rlock);
1108 	return sem;
1109 
1110 out_nolock:
1111 	list_del(&waiter.list);
1112 	if (list_empty(&sem->wait_list)) {
1113 		atomic_long_andnot(RWSEM_FLAG_WAITERS|RWSEM_FLAG_HANDOFF,
1114 				   &sem->count);
1115 	}
1116 	raw_spin_unlock_irq(&sem->wait_lock);
1117 	__set_current_state(TASK_RUNNING);
1118 	lockevent_inc(rwsem_rlock_fail);
1119 	return ERR_PTR(-EINTR);
1120 }
1121 
1122 /*
1123  * This function is called by the a write lock owner. So the owner value
1124  * won't get changed by others.
1125  */
1126 static inline void rwsem_disable_reader_optspin(struct rw_semaphore *sem,
1127 						bool disable)
1128 {
1129 	if (unlikely(disable)) {
1130 		atomic_long_or(RWSEM_RD_NONSPINNABLE, &sem->owner);
1131 		lockevent_inc(rwsem_opt_norspin);
1132 	}
1133 }
1134 
1135 /*
1136  * Wait until we successfully acquire the write lock
1137  */
1138 static struct rw_semaphore *
1139 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1140 {
1141 	long count;
1142 	bool disable_rspin;
1143 	enum writer_wait_state wstate;
1144 	struct rwsem_waiter waiter;
1145 	struct rw_semaphore *ret = sem;
1146 	DEFINE_WAKE_Q(wake_q);
1147 
1148 	/* do optimistic spinning and steal lock if possible */
1149 	if (rwsem_can_spin_on_owner(sem, RWSEM_WR_NONSPINNABLE) &&
1150 	    rwsem_optimistic_spin(sem, true)) {
1151 		/* rwsem_optimistic_spin() implies ACQUIRE on success */
1152 		return sem;
1153 	}
1154 
1155 	/*
1156 	 * Disable reader optimistic spinning for this rwsem after
1157 	 * acquiring the write lock when the setting of the nonspinnable
1158 	 * bits are observed.
1159 	 */
1160 	disable_rspin = atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE;
1161 
1162 	/*
1163 	 * Optimistic spinning failed, proceed to the slowpath
1164 	 * and block until we can acquire the sem.
1165 	 */
1166 	waiter.task = current;
1167 	waiter.type = RWSEM_WAITING_FOR_WRITE;
1168 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1169 
1170 	raw_spin_lock_irq(&sem->wait_lock);
1171 
1172 	/* account for this before adding a new element to the list */
1173 	wstate = list_empty(&sem->wait_list) ? WRITER_FIRST : WRITER_NOT_FIRST;
1174 
1175 	list_add_tail(&waiter.list, &sem->wait_list);
1176 
1177 	/* we're now waiting on the lock */
1178 	if (wstate == WRITER_NOT_FIRST) {
1179 		count = atomic_long_read(&sem->count);
1180 
1181 		/*
1182 		 * If there were already threads queued before us and:
1183 		 *  1) there are no no active locks, wake the front
1184 		 *     queued process(es) as the handoff bit might be set.
1185 		 *  2) there are no active writers and some readers, the lock
1186 		 *     must be read owned; so we try to wake any read lock
1187 		 *     waiters that were queued ahead of us.
1188 		 */
1189 		if (count & RWSEM_WRITER_MASK)
1190 			goto wait;
1191 
1192 		rwsem_mark_wake(sem, (count & RWSEM_READER_MASK)
1193 					? RWSEM_WAKE_READERS
1194 					: RWSEM_WAKE_ANY, &wake_q);
1195 
1196 		if (!wake_q_empty(&wake_q)) {
1197 			/*
1198 			 * We want to minimize wait_lock hold time especially
1199 			 * when a large number of readers are to be woken up.
1200 			 */
1201 			raw_spin_unlock_irq(&sem->wait_lock);
1202 			wake_up_q(&wake_q);
1203 			wake_q_init(&wake_q);	/* Used again, reinit */
1204 			raw_spin_lock_irq(&sem->wait_lock);
1205 		}
1206 	} else {
1207 		atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1208 	}
1209 
1210 wait:
1211 	/* wait until we successfully acquire the lock */
1212 	set_current_state(state);
1213 	for (;;) {
1214 		if (rwsem_try_write_lock(sem, wstate)) {
1215 			/* rwsem_try_write_lock() implies ACQUIRE on success */
1216 			break;
1217 		}
1218 
1219 		raw_spin_unlock_irq(&sem->wait_lock);
1220 
1221 		/*
1222 		 * After setting the handoff bit and failing to acquire
1223 		 * the lock, attempt to spin on owner to accelerate lock
1224 		 * transfer. If the previous owner is a on-cpu writer and it
1225 		 * has just released the lock, OWNER_NULL will be returned.
1226 		 * In this case, we attempt to acquire the lock again
1227 		 * without sleeping.
1228 		 */
1229 		if ((wstate == WRITER_HANDOFF) &&
1230 		    (rwsem_spin_on_owner(sem, 0) == OWNER_NULL))
1231 			goto trylock_again;
1232 
1233 		/* Block until there are no active lockers. */
1234 		for (;;) {
1235 			if (signal_pending_state(state, current))
1236 				goto out_nolock;
1237 
1238 			schedule();
1239 			lockevent_inc(rwsem_sleep_writer);
1240 			set_current_state(state);
1241 			/*
1242 			 * If HANDOFF bit is set, unconditionally do
1243 			 * a trylock.
1244 			 */
1245 			if (wstate == WRITER_HANDOFF)
1246 				break;
1247 
1248 			if ((wstate == WRITER_NOT_FIRST) &&
1249 			    (rwsem_first_waiter(sem) == &waiter))
1250 				wstate = WRITER_FIRST;
1251 
1252 			count = atomic_long_read(&sem->count);
1253 			if (!(count & RWSEM_LOCK_MASK))
1254 				break;
1255 
1256 			/*
1257 			 * The setting of the handoff bit is deferred
1258 			 * until rwsem_try_write_lock() is called.
1259 			 */
1260 			if ((wstate == WRITER_FIRST) && (rt_task(current) ||
1261 			    time_after(jiffies, waiter.timeout))) {
1262 				wstate = WRITER_HANDOFF;
1263 				lockevent_inc(rwsem_wlock_handoff);
1264 				break;
1265 			}
1266 		}
1267 trylock_again:
1268 		raw_spin_lock_irq(&sem->wait_lock);
1269 	}
1270 	__set_current_state(TASK_RUNNING);
1271 	list_del(&waiter.list);
1272 	rwsem_disable_reader_optspin(sem, disable_rspin);
1273 	raw_spin_unlock_irq(&sem->wait_lock);
1274 	lockevent_inc(rwsem_wlock);
1275 
1276 	return ret;
1277 
1278 out_nolock:
1279 	__set_current_state(TASK_RUNNING);
1280 	raw_spin_lock_irq(&sem->wait_lock);
1281 	list_del(&waiter.list);
1282 
1283 	if (unlikely(wstate == WRITER_HANDOFF))
1284 		atomic_long_add(-RWSEM_FLAG_HANDOFF,  &sem->count);
1285 
1286 	if (list_empty(&sem->wait_list))
1287 		atomic_long_andnot(RWSEM_FLAG_WAITERS, &sem->count);
1288 	else
1289 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1290 	raw_spin_unlock_irq(&sem->wait_lock);
1291 	wake_up_q(&wake_q);
1292 	lockevent_inc(rwsem_wlock_fail);
1293 
1294 	return ERR_PTR(-EINTR);
1295 }
1296 
1297 /*
1298  * handle waking up a waiter on the semaphore
1299  * - up_read/up_write has decremented the active part of count if we come here
1300  */
1301 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem, long count)
1302 {
1303 	unsigned long flags;
1304 	DEFINE_WAKE_Q(wake_q);
1305 
1306 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1307 
1308 	if (!list_empty(&sem->wait_list))
1309 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1310 
1311 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1312 	wake_up_q(&wake_q);
1313 
1314 	return sem;
1315 }
1316 
1317 /*
1318  * downgrade a write lock into a read lock
1319  * - caller incremented waiting part of count and discovered it still negative
1320  * - just wake up any readers at the front of the queue
1321  */
1322 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1323 {
1324 	unsigned long flags;
1325 	DEFINE_WAKE_Q(wake_q);
1326 
1327 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1328 
1329 	if (!list_empty(&sem->wait_list))
1330 		rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1331 
1332 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1333 	wake_up_q(&wake_q);
1334 
1335 	return sem;
1336 }
1337 
1338 /*
1339  * lock for reading
1340  */
1341 inline void __down_read(struct rw_semaphore *sem)
1342 {
1343 	if (!rwsem_read_trylock(sem)) {
1344 		rwsem_down_read_slowpath(sem, TASK_UNINTERRUPTIBLE);
1345 		DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1346 	} else {
1347 		rwsem_set_reader_owned(sem);
1348 	}
1349 }
1350 
1351 static inline int __down_read_killable(struct rw_semaphore *sem)
1352 {
1353 	if (!rwsem_read_trylock(sem)) {
1354 		if (IS_ERR(rwsem_down_read_slowpath(sem, TASK_KILLABLE)))
1355 			return -EINTR;
1356 		DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1357 	} else {
1358 		rwsem_set_reader_owned(sem);
1359 	}
1360 	return 0;
1361 }
1362 
1363 static inline int __down_read_trylock(struct rw_semaphore *sem)
1364 {
1365 	long tmp;
1366 
1367 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1368 
1369 	/*
1370 	 * Optimize for the case when the rwsem is not locked at all.
1371 	 */
1372 	tmp = RWSEM_UNLOCKED_VALUE;
1373 	do {
1374 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1375 					tmp + RWSEM_READER_BIAS)) {
1376 			rwsem_set_reader_owned(sem);
1377 			return 1;
1378 		}
1379 	} while (!(tmp & RWSEM_READ_FAILED_MASK));
1380 	return 0;
1381 }
1382 
1383 /*
1384  * lock for writing
1385  */
1386 static inline void __down_write(struct rw_semaphore *sem)
1387 {
1388 	long tmp = RWSEM_UNLOCKED_VALUE;
1389 
1390 	if (unlikely(!atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1391 						      RWSEM_WRITER_LOCKED)))
1392 		rwsem_down_write_slowpath(sem, TASK_UNINTERRUPTIBLE);
1393 	else
1394 		rwsem_set_owner(sem);
1395 }
1396 
1397 static inline int __down_write_killable(struct rw_semaphore *sem)
1398 {
1399 	long tmp = RWSEM_UNLOCKED_VALUE;
1400 
1401 	if (unlikely(!atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1402 						      RWSEM_WRITER_LOCKED))) {
1403 		if (IS_ERR(rwsem_down_write_slowpath(sem, TASK_KILLABLE)))
1404 			return -EINTR;
1405 	} else {
1406 		rwsem_set_owner(sem);
1407 	}
1408 	return 0;
1409 }
1410 
1411 static inline int __down_write_trylock(struct rw_semaphore *sem)
1412 {
1413 	long tmp;
1414 
1415 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1416 
1417 	tmp  = RWSEM_UNLOCKED_VALUE;
1418 	if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1419 					    RWSEM_WRITER_LOCKED)) {
1420 		rwsem_set_owner(sem);
1421 		return true;
1422 	}
1423 	return false;
1424 }
1425 
1426 /*
1427  * unlock after reading
1428  */
1429 inline void __up_read(struct rw_semaphore *sem)
1430 {
1431 	long tmp;
1432 
1433 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1434 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1435 
1436 	rwsem_clear_reader_owned(sem);
1437 	tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1438 	DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1439 	if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1440 		      RWSEM_FLAG_WAITERS)) {
1441 		clear_wr_nonspinnable(sem);
1442 		rwsem_wake(sem, tmp);
1443 	}
1444 }
1445 
1446 /*
1447  * unlock after writing
1448  */
1449 static inline void __up_write(struct rw_semaphore *sem)
1450 {
1451 	long tmp;
1452 
1453 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1454 	/*
1455 	 * sem->owner may differ from current if the ownership is transferred
1456 	 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1457 	 */
1458 	DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1459 			    !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1460 
1461 	rwsem_clear_owner(sem);
1462 	tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1463 	if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1464 		rwsem_wake(sem, tmp);
1465 }
1466 
1467 /*
1468  * downgrade write lock to read lock
1469  */
1470 static inline void __downgrade_write(struct rw_semaphore *sem)
1471 {
1472 	long tmp;
1473 
1474 	/*
1475 	 * When downgrading from exclusive to shared ownership,
1476 	 * anything inside the write-locked region cannot leak
1477 	 * into the read side. In contrast, anything in the
1478 	 * read-locked region is ok to be re-ordered into the
1479 	 * write side. As such, rely on RELEASE semantics.
1480 	 */
1481 	DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1482 	tmp = atomic_long_fetch_add_release(
1483 		-RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1484 	rwsem_set_reader_owned(sem);
1485 	if (tmp & RWSEM_FLAG_WAITERS)
1486 		rwsem_downgrade_wake(sem);
1487 }
1488 
1489 /*
1490  * lock for reading
1491  */
1492 void __sched down_read(struct rw_semaphore *sem)
1493 {
1494 	might_sleep();
1495 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1496 
1497 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1498 }
1499 EXPORT_SYMBOL(down_read);
1500 
1501 int __sched down_read_killable(struct rw_semaphore *sem)
1502 {
1503 	might_sleep();
1504 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1505 
1506 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1507 		rwsem_release(&sem->dep_map, 1, _RET_IP_);
1508 		return -EINTR;
1509 	}
1510 
1511 	return 0;
1512 }
1513 EXPORT_SYMBOL(down_read_killable);
1514 
1515 /*
1516  * trylock for reading -- returns 1 if successful, 0 if contention
1517  */
1518 int down_read_trylock(struct rw_semaphore *sem)
1519 {
1520 	int ret = __down_read_trylock(sem);
1521 
1522 	if (ret == 1)
1523 		rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1524 	return ret;
1525 }
1526 EXPORT_SYMBOL(down_read_trylock);
1527 
1528 /*
1529  * lock for writing
1530  */
1531 void __sched down_write(struct rw_semaphore *sem)
1532 {
1533 	might_sleep();
1534 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1535 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1536 }
1537 EXPORT_SYMBOL(down_write);
1538 
1539 /*
1540  * lock for writing
1541  */
1542 int __sched down_write_killable(struct rw_semaphore *sem)
1543 {
1544 	might_sleep();
1545 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1546 
1547 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1548 				  __down_write_killable)) {
1549 		rwsem_release(&sem->dep_map, 1, _RET_IP_);
1550 		return -EINTR;
1551 	}
1552 
1553 	return 0;
1554 }
1555 EXPORT_SYMBOL(down_write_killable);
1556 
1557 /*
1558  * trylock for writing -- returns 1 if successful, 0 if contention
1559  */
1560 int down_write_trylock(struct rw_semaphore *sem)
1561 {
1562 	int ret = __down_write_trylock(sem);
1563 
1564 	if (ret == 1)
1565 		rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1566 
1567 	return ret;
1568 }
1569 EXPORT_SYMBOL(down_write_trylock);
1570 
1571 /*
1572  * release a read lock
1573  */
1574 void up_read(struct rw_semaphore *sem)
1575 {
1576 	rwsem_release(&sem->dep_map, 1, _RET_IP_);
1577 	__up_read(sem);
1578 }
1579 EXPORT_SYMBOL(up_read);
1580 
1581 /*
1582  * release a write lock
1583  */
1584 void up_write(struct rw_semaphore *sem)
1585 {
1586 	rwsem_release(&sem->dep_map, 1, _RET_IP_);
1587 	__up_write(sem);
1588 }
1589 EXPORT_SYMBOL(up_write);
1590 
1591 /*
1592  * downgrade write lock to read lock
1593  */
1594 void downgrade_write(struct rw_semaphore *sem)
1595 {
1596 	lock_downgrade(&sem->dep_map, _RET_IP_);
1597 	__downgrade_write(sem);
1598 }
1599 EXPORT_SYMBOL(downgrade_write);
1600 
1601 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1602 
1603 void down_read_nested(struct rw_semaphore *sem, int subclass)
1604 {
1605 	might_sleep();
1606 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1607 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1608 }
1609 EXPORT_SYMBOL(down_read_nested);
1610 
1611 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1612 {
1613 	might_sleep();
1614 	rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1615 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1616 }
1617 EXPORT_SYMBOL(_down_write_nest_lock);
1618 
1619 void down_read_non_owner(struct rw_semaphore *sem)
1620 {
1621 	might_sleep();
1622 	__down_read(sem);
1623 	__rwsem_set_reader_owned(sem, NULL);
1624 }
1625 EXPORT_SYMBOL(down_read_non_owner);
1626 
1627 void down_write_nested(struct rw_semaphore *sem, int subclass)
1628 {
1629 	might_sleep();
1630 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1631 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1632 }
1633 EXPORT_SYMBOL(down_write_nested);
1634 
1635 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1636 {
1637 	might_sleep();
1638 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1639 
1640 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1641 				  __down_write_killable)) {
1642 		rwsem_release(&sem->dep_map, 1, _RET_IP_);
1643 		return -EINTR;
1644 	}
1645 
1646 	return 0;
1647 }
1648 EXPORT_SYMBOL(down_write_killable_nested);
1649 
1650 void up_read_non_owner(struct rw_semaphore *sem)
1651 {
1652 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1653 	__up_read(sem);
1654 }
1655 EXPORT_SYMBOL(up_read_non_owner);
1656 
1657 #endif
1658