xref: /linux/kernel/printk/printk.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/debug.h>
50 #include <linux/sched/task_stack.h>
51 
52 #include <linux/uaccess.h>
53 #include <asm/sections.h>
54 
55 #include <trace/events/initcall.h>
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/printk.h>
58 
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62 
63 int console_printk[4] = {
64 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
65 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
66 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
67 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70 
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73 
74 /*
75  * Low level drivers may need that to know if they can schedule in
76  * their unblank() callback or not. So let's export it.
77  */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80 
81 /*
82  * console_sem protects the console_drivers list, and also
83  * provides serialisation for access to the entire console
84  * driver system.
85  */
86 static DEFINE_SEMAPHORE(console_sem);
87 struct console *console_drivers;
88 EXPORT_SYMBOL_GPL(console_drivers);
89 
90 /*
91  * System may need to suppress printk message under certain
92  * circumstances, like after kernel panic happens.
93  */
94 int __read_mostly suppress_printk;
95 
96 #ifdef CONFIG_LOCKDEP
97 static struct lockdep_map console_lock_dep_map = {
98 	.name = "console_lock"
99 };
100 #endif
101 
102 enum devkmsg_log_bits {
103 	__DEVKMSG_LOG_BIT_ON = 0,
104 	__DEVKMSG_LOG_BIT_OFF,
105 	__DEVKMSG_LOG_BIT_LOCK,
106 };
107 
108 enum devkmsg_log_masks {
109 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
110 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
111 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
112 };
113 
114 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
115 #define DEVKMSG_LOG_MASK_DEFAULT	0
116 
117 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
118 
119 static int __control_devkmsg(char *str)
120 {
121 	size_t len;
122 
123 	if (!str)
124 		return -EINVAL;
125 
126 	len = str_has_prefix(str, "on");
127 	if (len) {
128 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
129 		return len;
130 	}
131 
132 	len = str_has_prefix(str, "off");
133 	if (len) {
134 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
135 		return len;
136 	}
137 
138 	len = str_has_prefix(str, "ratelimit");
139 	if (len) {
140 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
141 		return len;
142 	}
143 
144 	return -EINVAL;
145 }
146 
147 static int __init control_devkmsg(char *str)
148 {
149 	if (__control_devkmsg(str) < 0)
150 		return 1;
151 
152 	/*
153 	 * Set sysctl string accordingly:
154 	 */
155 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
156 		strcpy(devkmsg_log_str, "on");
157 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
158 		strcpy(devkmsg_log_str, "off");
159 	/* else "ratelimit" which is set by default. */
160 
161 	/*
162 	 * Sysctl cannot change it anymore. The kernel command line setting of
163 	 * this parameter is to force the setting to be permanent throughout the
164 	 * runtime of the system. This is a precation measure against userspace
165 	 * trying to be a smarta** and attempting to change it up on us.
166 	 */
167 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
168 
169 	return 0;
170 }
171 __setup("printk.devkmsg=", control_devkmsg);
172 
173 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
174 
175 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
176 			      void __user *buffer, size_t *lenp, loff_t *ppos)
177 {
178 	char old_str[DEVKMSG_STR_MAX_SIZE];
179 	unsigned int old;
180 	int err;
181 
182 	if (write) {
183 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
184 			return -EINVAL;
185 
186 		old = devkmsg_log;
187 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
188 	}
189 
190 	err = proc_dostring(table, write, buffer, lenp, ppos);
191 	if (err)
192 		return err;
193 
194 	if (write) {
195 		err = __control_devkmsg(devkmsg_log_str);
196 
197 		/*
198 		 * Do not accept an unknown string OR a known string with
199 		 * trailing crap...
200 		 */
201 		if (err < 0 || (err + 1 != *lenp)) {
202 
203 			/* ... and restore old setting. */
204 			devkmsg_log = old;
205 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
206 
207 			return -EINVAL;
208 		}
209 	}
210 
211 	return 0;
212 }
213 
214 /* Number of registered extended console drivers. */
215 static int nr_ext_console_drivers;
216 
217 /*
218  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
219  * macros instead of functions so that _RET_IP_ contains useful information.
220  */
221 #define down_console_sem() do { \
222 	down(&console_sem);\
223 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
224 } while (0)
225 
226 static int __down_trylock_console_sem(unsigned long ip)
227 {
228 	int lock_failed;
229 	unsigned long flags;
230 
231 	/*
232 	 * Here and in __up_console_sem() we need to be in safe mode,
233 	 * because spindump/WARN/etc from under console ->lock will
234 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
235 	 */
236 	printk_safe_enter_irqsave(flags);
237 	lock_failed = down_trylock(&console_sem);
238 	printk_safe_exit_irqrestore(flags);
239 
240 	if (lock_failed)
241 		return 1;
242 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
243 	return 0;
244 }
245 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
246 
247 static void __up_console_sem(unsigned long ip)
248 {
249 	unsigned long flags;
250 
251 	mutex_release(&console_lock_dep_map, ip);
252 
253 	printk_safe_enter_irqsave(flags);
254 	up(&console_sem);
255 	printk_safe_exit_irqrestore(flags);
256 }
257 #define up_console_sem() __up_console_sem(_RET_IP_)
258 
259 /*
260  * This is used for debugging the mess that is the VT code by
261  * keeping track if we have the console semaphore held. It's
262  * definitely not the perfect debug tool (we don't know if _WE_
263  * hold it and are racing, but it helps tracking those weird code
264  * paths in the console code where we end up in places I want
265  * locked without the console sempahore held).
266  */
267 static int console_locked, console_suspended;
268 
269 /*
270  * If exclusive_console is non-NULL then only this console is to be printed to.
271  */
272 static struct console *exclusive_console;
273 
274 /*
275  *	Array of consoles built from command line options (console=)
276  */
277 
278 #define MAX_CMDLINECONSOLES 8
279 
280 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
281 
282 static int preferred_console = -1;
283 int console_set_on_cmdline;
284 EXPORT_SYMBOL(console_set_on_cmdline);
285 
286 /* Flag: console code may call schedule() */
287 static int console_may_schedule;
288 
289 enum con_msg_format_flags {
290 	MSG_FORMAT_DEFAULT	= 0,
291 	MSG_FORMAT_SYSLOG	= (1 << 0),
292 };
293 
294 static int console_msg_format = MSG_FORMAT_DEFAULT;
295 
296 /*
297  * The printk log buffer consists of a chain of concatenated variable
298  * length records. Every record starts with a record header, containing
299  * the overall length of the record.
300  *
301  * The heads to the first and last entry in the buffer, as well as the
302  * sequence numbers of these entries are maintained when messages are
303  * stored.
304  *
305  * If the heads indicate available messages, the length in the header
306  * tells the start next message. A length == 0 for the next message
307  * indicates a wrap-around to the beginning of the buffer.
308  *
309  * Every record carries the monotonic timestamp in microseconds, as well as
310  * the standard userspace syslog level and syslog facility. The usual
311  * kernel messages use LOG_KERN; userspace-injected messages always carry
312  * a matching syslog facility, by default LOG_USER. The origin of every
313  * message can be reliably determined that way.
314  *
315  * The human readable log message directly follows the message header. The
316  * length of the message text is stored in the header, the stored message
317  * is not terminated.
318  *
319  * Optionally, a message can carry a dictionary of properties (key/value pairs),
320  * to provide userspace with a machine-readable message context.
321  *
322  * Examples for well-defined, commonly used property names are:
323  *   DEVICE=b12:8               device identifier
324  *                                b12:8         block dev_t
325  *                                c127:3        char dev_t
326  *                                n8            netdev ifindex
327  *                                +sound:card0  subsystem:devname
328  *   SUBSYSTEM=pci              driver-core subsystem name
329  *
330  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
331  * follows directly after a '=' character. Every property is terminated by
332  * a '\0' character. The last property is not terminated.
333  *
334  * Example of a message structure:
335  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
336  *   0008  34 00                        record is 52 bytes long
337  *   000a        0b 00                  text is 11 bytes long
338  *   000c              1f 00            dictionary is 23 bytes long
339  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
340  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
341  *         69 6e 65                     "ine"
342  *   001b           44 45 56 49 43      "DEVIC"
343  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
344  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
345  *         67                           "g"
346  *   0032     00 00 00                  padding to next message header
347  *
348  * The 'struct printk_log' buffer header must never be directly exported to
349  * userspace, it is a kernel-private implementation detail that might
350  * need to be changed in the future, when the requirements change.
351  *
352  * /dev/kmsg exports the structured data in the following line format:
353  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
354  *
355  * Users of the export format should ignore possible additional values
356  * separated by ',', and find the message after the ';' character.
357  *
358  * The optional key/value pairs are attached as continuation lines starting
359  * with a space character and terminated by a newline. All possible
360  * non-prinatable characters are escaped in the "\xff" notation.
361  */
362 
363 enum log_flags {
364 	LOG_NEWLINE	= 2,	/* text ended with a newline */
365 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
366 };
367 
368 struct printk_log {
369 	u64 ts_nsec;		/* timestamp in nanoseconds */
370 	u16 len;		/* length of entire record */
371 	u16 text_len;		/* length of text buffer */
372 	u16 dict_len;		/* length of dictionary buffer */
373 	u8 facility;		/* syslog facility */
374 	u8 flags:5;		/* internal record flags */
375 	u8 level:3;		/* syslog level */
376 #ifdef CONFIG_PRINTK_CALLER
377 	u32 caller_id;            /* thread id or processor id */
378 #endif
379 }
380 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
381 __packed __aligned(4)
382 #endif
383 ;
384 
385 /*
386  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
387  * within the scheduler's rq lock. It must be released before calling
388  * console_unlock() or anything else that might wake up a process.
389  */
390 DEFINE_RAW_SPINLOCK(logbuf_lock);
391 
392 /*
393  * Helper macros to lock/unlock logbuf_lock and switch between
394  * printk-safe/unsafe modes.
395  */
396 #define logbuf_lock_irq()				\
397 	do {						\
398 		printk_safe_enter_irq();		\
399 		raw_spin_lock(&logbuf_lock);		\
400 	} while (0)
401 
402 #define logbuf_unlock_irq()				\
403 	do {						\
404 		raw_spin_unlock(&logbuf_lock);		\
405 		printk_safe_exit_irq();			\
406 	} while (0)
407 
408 #define logbuf_lock_irqsave(flags)			\
409 	do {						\
410 		printk_safe_enter_irqsave(flags);	\
411 		raw_spin_lock(&logbuf_lock);		\
412 	} while (0)
413 
414 #define logbuf_unlock_irqrestore(flags)		\
415 	do {						\
416 		raw_spin_unlock(&logbuf_lock);		\
417 		printk_safe_exit_irqrestore(flags);	\
418 	} while (0)
419 
420 #ifdef CONFIG_PRINTK
421 DECLARE_WAIT_QUEUE_HEAD(log_wait);
422 /* the next printk record to read by syslog(READ) or /proc/kmsg */
423 static u64 syslog_seq;
424 static u32 syslog_idx;
425 static size_t syslog_partial;
426 static bool syslog_time;
427 
428 /* index and sequence number of the first record stored in the buffer */
429 static u64 log_first_seq;
430 static u32 log_first_idx;
431 
432 /* index and sequence number of the next record to store in the buffer */
433 static u64 log_next_seq;
434 static u32 log_next_idx;
435 
436 /* the next printk record to write to the console */
437 static u64 console_seq;
438 static u32 console_idx;
439 static u64 exclusive_console_stop_seq;
440 
441 /* the next printk record to read after the last 'clear' command */
442 static u64 clear_seq;
443 static u32 clear_idx;
444 
445 #ifdef CONFIG_PRINTK_CALLER
446 #define PREFIX_MAX		48
447 #else
448 #define PREFIX_MAX		32
449 #endif
450 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
451 
452 #define LOG_LEVEL(v)		((v) & 0x07)
453 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
454 
455 /* record buffer */
456 #define LOG_ALIGN __alignof__(struct printk_log)
457 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
458 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
459 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
460 static char *log_buf = __log_buf;
461 static u32 log_buf_len = __LOG_BUF_LEN;
462 
463 /* Return log buffer address */
464 char *log_buf_addr_get(void)
465 {
466 	return log_buf;
467 }
468 
469 /* Return log buffer size */
470 u32 log_buf_len_get(void)
471 {
472 	return log_buf_len;
473 }
474 
475 /* human readable text of the record */
476 static char *log_text(const struct printk_log *msg)
477 {
478 	return (char *)msg + sizeof(struct printk_log);
479 }
480 
481 /* optional key/value pair dictionary attached to the record */
482 static char *log_dict(const struct printk_log *msg)
483 {
484 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
485 }
486 
487 /* get record by index; idx must point to valid msg */
488 static struct printk_log *log_from_idx(u32 idx)
489 {
490 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
491 
492 	/*
493 	 * A length == 0 record is the end of buffer marker. Wrap around and
494 	 * read the message at the start of the buffer.
495 	 */
496 	if (!msg->len)
497 		return (struct printk_log *)log_buf;
498 	return msg;
499 }
500 
501 /* get next record; idx must point to valid msg */
502 static u32 log_next(u32 idx)
503 {
504 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
505 
506 	/* length == 0 indicates the end of the buffer; wrap */
507 	/*
508 	 * A length == 0 record is the end of buffer marker. Wrap around and
509 	 * read the message at the start of the buffer as *this* one, and
510 	 * return the one after that.
511 	 */
512 	if (!msg->len) {
513 		msg = (struct printk_log *)log_buf;
514 		return msg->len;
515 	}
516 	return idx + msg->len;
517 }
518 
519 /*
520  * Check whether there is enough free space for the given message.
521  *
522  * The same values of first_idx and next_idx mean that the buffer
523  * is either empty or full.
524  *
525  * If the buffer is empty, we must respect the position of the indexes.
526  * They cannot be reset to the beginning of the buffer.
527  */
528 static int logbuf_has_space(u32 msg_size, bool empty)
529 {
530 	u32 free;
531 
532 	if (log_next_idx > log_first_idx || empty)
533 		free = max(log_buf_len - log_next_idx, log_first_idx);
534 	else
535 		free = log_first_idx - log_next_idx;
536 
537 	/*
538 	 * We need space also for an empty header that signalizes wrapping
539 	 * of the buffer.
540 	 */
541 	return free >= msg_size + sizeof(struct printk_log);
542 }
543 
544 static int log_make_free_space(u32 msg_size)
545 {
546 	while (log_first_seq < log_next_seq &&
547 	       !logbuf_has_space(msg_size, false)) {
548 		/* drop old messages until we have enough contiguous space */
549 		log_first_idx = log_next(log_first_idx);
550 		log_first_seq++;
551 	}
552 
553 	if (clear_seq < log_first_seq) {
554 		clear_seq = log_first_seq;
555 		clear_idx = log_first_idx;
556 	}
557 
558 	/* sequence numbers are equal, so the log buffer is empty */
559 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
560 		return 0;
561 
562 	return -ENOMEM;
563 }
564 
565 /* compute the message size including the padding bytes */
566 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
567 {
568 	u32 size;
569 
570 	size = sizeof(struct printk_log) + text_len + dict_len;
571 	*pad_len = (-size) & (LOG_ALIGN - 1);
572 	size += *pad_len;
573 
574 	return size;
575 }
576 
577 /*
578  * Define how much of the log buffer we could take at maximum. The value
579  * must be greater than two. Note that only half of the buffer is available
580  * when the index points to the middle.
581  */
582 #define MAX_LOG_TAKE_PART 4
583 static const char trunc_msg[] = "<truncated>";
584 
585 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
586 			u16 *dict_len, u32 *pad_len)
587 {
588 	/*
589 	 * The message should not take the whole buffer. Otherwise, it might
590 	 * get removed too soon.
591 	 */
592 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
593 	if (*text_len > max_text_len)
594 		*text_len = max_text_len;
595 	/* enable the warning message */
596 	*trunc_msg_len = strlen(trunc_msg);
597 	/* disable the "dict" completely */
598 	*dict_len = 0;
599 	/* compute the size again, count also the warning message */
600 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
601 }
602 
603 /* insert record into the buffer, discard old ones, update heads */
604 static int log_store(u32 caller_id, int facility, int level,
605 		     enum log_flags flags, u64 ts_nsec,
606 		     const char *dict, u16 dict_len,
607 		     const char *text, u16 text_len)
608 {
609 	struct printk_log *msg;
610 	u32 size, pad_len;
611 	u16 trunc_msg_len = 0;
612 
613 	/* number of '\0' padding bytes to next message */
614 	size = msg_used_size(text_len, dict_len, &pad_len);
615 
616 	if (log_make_free_space(size)) {
617 		/* truncate the message if it is too long for empty buffer */
618 		size = truncate_msg(&text_len, &trunc_msg_len,
619 				    &dict_len, &pad_len);
620 		/* survive when the log buffer is too small for trunc_msg */
621 		if (log_make_free_space(size))
622 			return 0;
623 	}
624 
625 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
626 		/*
627 		 * This message + an additional empty header does not fit
628 		 * at the end of the buffer. Add an empty header with len == 0
629 		 * to signify a wrap around.
630 		 */
631 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
632 		log_next_idx = 0;
633 	}
634 
635 	/* fill message */
636 	msg = (struct printk_log *)(log_buf + log_next_idx);
637 	memcpy(log_text(msg), text, text_len);
638 	msg->text_len = text_len;
639 	if (trunc_msg_len) {
640 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
641 		msg->text_len += trunc_msg_len;
642 	}
643 	memcpy(log_dict(msg), dict, dict_len);
644 	msg->dict_len = dict_len;
645 	msg->facility = facility;
646 	msg->level = level & 7;
647 	msg->flags = flags & 0x1f;
648 	if (ts_nsec > 0)
649 		msg->ts_nsec = ts_nsec;
650 	else
651 		msg->ts_nsec = local_clock();
652 #ifdef CONFIG_PRINTK_CALLER
653 	msg->caller_id = caller_id;
654 #endif
655 	memset(log_dict(msg) + dict_len, 0, pad_len);
656 	msg->len = size;
657 
658 	/* insert message */
659 	log_next_idx += msg->len;
660 	log_next_seq++;
661 
662 	return msg->text_len;
663 }
664 
665 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
666 
667 static int syslog_action_restricted(int type)
668 {
669 	if (dmesg_restrict)
670 		return 1;
671 	/*
672 	 * Unless restricted, we allow "read all" and "get buffer size"
673 	 * for everybody.
674 	 */
675 	return type != SYSLOG_ACTION_READ_ALL &&
676 	       type != SYSLOG_ACTION_SIZE_BUFFER;
677 }
678 
679 static int check_syslog_permissions(int type, int source)
680 {
681 	/*
682 	 * If this is from /proc/kmsg and we've already opened it, then we've
683 	 * already done the capabilities checks at open time.
684 	 */
685 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
686 		goto ok;
687 
688 	if (syslog_action_restricted(type)) {
689 		if (capable(CAP_SYSLOG))
690 			goto ok;
691 		/*
692 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
693 		 * a warning.
694 		 */
695 		if (capable(CAP_SYS_ADMIN)) {
696 			pr_warn_once("%s (%d): Attempt to access syslog with "
697 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
698 				     "(deprecated).\n",
699 				 current->comm, task_pid_nr(current));
700 			goto ok;
701 		}
702 		return -EPERM;
703 	}
704 ok:
705 	return security_syslog(type);
706 }
707 
708 static void append_char(char **pp, char *e, char c)
709 {
710 	if (*pp < e)
711 		*(*pp)++ = c;
712 }
713 
714 static ssize_t msg_print_ext_header(char *buf, size_t size,
715 				    struct printk_log *msg, u64 seq)
716 {
717 	u64 ts_usec = msg->ts_nsec;
718 	char caller[20];
719 #ifdef CONFIG_PRINTK_CALLER
720 	u32 id = msg->caller_id;
721 
722 	snprintf(caller, sizeof(caller), ",caller=%c%u",
723 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
724 #else
725 	caller[0] = '\0';
726 #endif
727 
728 	do_div(ts_usec, 1000);
729 
730 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
731 			 (msg->facility << 3) | msg->level, seq, ts_usec,
732 			 msg->flags & LOG_CONT ? 'c' : '-', caller);
733 }
734 
735 static ssize_t msg_print_ext_body(char *buf, size_t size,
736 				  char *dict, size_t dict_len,
737 				  char *text, size_t text_len)
738 {
739 	char *p = buf, *e = buf + size;
740 	size_t i;
741 
742 	/* escape non-printable characters */
743 	for (i = 0; i < text_len; i++) {
744 		unsigned char c = text[i];
745 
746 		if (c < ' ' || c >= 127 || c == '\\')
747 			p += scnprintf(p, e - p, "\\x%02x", c);
748 		else
749 			append_char(&p, e, c);
750 	}
751 	append_char(&p, e, '\n');
752 
753 	if (dict_len) {
754 		bool line = true;
755 
756 		for (i = 0; i < dict_len; i++) {
757 			unsigned char c = dict[i];
758 
759 			if (line) {
760 				append_char(&p, e, ' ');
761 				line = false;
762 			}
763 
764 			if (c == '\0') {
765 				append_char(&p, e, '\n');
766 				line = true;
767 				continue;
768 			}
769 
770 			if (c < ' ' || c >= 127 || c == '\\') {
771 				p += scnprintf(p, e - p, "\\x%02x", c);
772 				continue;
773 			}
774 
775 			append_char(&p, e, c);
776 		}
777 		append_char(&p, e, '\n');
778 	}
779 
780 	return p - buf;
781 }
782 
783 /* /dev/kmsg - userspace message inject/listen interface */
784 struct devkmsg_user {
785 	u64 seq;
786 	u32 idx;
787 	struct ratelimit_state rs;
788 	struct mutex lock;
789 	char buf[CONSOLE_EXT_LOG_MAX];
790 };
791 
792 static __printf(3, 4) __cold
793 int devkmsg_emit(int facility, int level, const char *fmt, ...)
794 {
795 	va_list args;
796 	int r;
797 
798 	va_start(args, fmt);
799 	r = vprintk_emit(facility, level, NULL, 0, fmt, args);
800 	va_end(args);
801 
802 	return r;
803 }
804 
805 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
806 {
807 	char *buf, *line;
808 	int level = default_message_loglevel;
809 	int facility = 1;	/* LOG_USER */
810 	struct file *file = iocb->ki_filp;
811 	struct devkmsg_user *user = file->private_data;
812 	size_t len = iov_iter_count(from);
813 	ssize_t ret = len;
814 
815 	if (!user || len > LOG_LINE_MAX)
816 		return -EINVAL;
817 
818 	/* Ignore when user logging is disabled. */
819 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
820 		return len;
821 
822 	/* Ratelimit when not explicitly enabled. */
823 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
824 		if (!___ratelimit(&user->rs, current->comm))
825 			return ret;
826 	}
827 
828 	buf = kmalloc(len+1, GFP_KERNEL);
829 	if (buf == NULL)
830 		return -ENOMEM;
831 
832 	buf[len] = '\0';
833 	if (!copy_from_iter_full(buf, len, from)) {
834 		kfree(buf);
835 		return -EFAULT;
836 	}
837 
838 	/*
839 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
840 	 * the decimal value represents 32bit, the lower 3 bit are the log
841 	 * level, the rest are the log facility.
842 	 *
843 	 * If no prefix or no userspace facility is specified, we
844 	 * enforce LOG_USER, to be able to reliably distinguish
845 	 * kernel-generated messages from userspace-injected ones.
846 	 */
847 	line = buf;
848 	if (line[0] == '<') {
849 		char *endp = NULL;
850 		unsigned int u;
851 
852 		u = simple_strtoul(line + 1, &endp, 10);
853 		if (endp && endp[0] == '>') {
854 			level = LOG_LEVEL(u);
855 			if (LOG_FACILITY(u) != 0)
856 				facility = LOG_FACILITY(u);
857 			endp++;
858 			len -= endp - line;
859 			line = endp;
860 		}
861 	}
862 
863 	devkmsg_emit(facility, level, "%s", line);
864 	kfree(buf);
865 	return ret;
866 }
867 
868 static ssize_t devkmsg_read(struct file *file, char __user *buf,
869 			    size_t count, loff_t *ppos)
870 {
871 	struct devkmsg_user *user = file->private_data;
872 	struct printk_log *msg;
873 	size_t len;
874 	ssize_t ret;
875 
876 	if (!user)
877 		return -EBADF;
878 
879 	ret = mutex_lock_interruptible(&user->lock);
880 	if (ret)
881 		return ret;
882 
883 	logbuf_lock_irq();
884 	while (user->seq == log_next_seq) {
885 		if (file->f_flags & O_NONBLOCK) {
886 			ret = -EAGAIN;
887 			logbuf_unlock_irq();
888 			goto out;
889 		}
890 
891 		logbuf_unlock_irq();
892 		ret = wait_event_interruptible(log_wait,
893 					       user->seq != log_next_seq);
894 		if (ret)
895 			goto out;
896 		logbuf_lock_irq();
897 	}
898 
899 	if (user->seq < log_first_seq) {
900 		/* our last seen message is gone, return error and reset */
901 		user->idx = log_first_idx;
902 		user->seq = log_first_seq;
903 		ret = -EPIPE;
904 		logbuf_unlock_irq();
905 		goto out;
906 	}
907 
908 	msg = log_from_idx(user->idx);
909 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
910 				   msg, user->seq);
911 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
912 				  log_dict(msg), msg->dict_len,
913 				  log_text(msg), msg->text_len);
914 
915 	user->idx = log_next(user->idx);
916 	user->seq++;
917 	logbuf_unlock_irq();
918 
919 	if (len > count) {
920 		ret = -EINVAL;
921 		goto out;
922 	}
923 
924 	if (copy_to_user(buf, user->buf, len)) {
925 		ret = -EFAULT;
926 		goto out;
927 	}
928 	ret = len;
929 out:
930 	mutex_unlock(&user->lock);
931 	return ret;
932 }
933 
934 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
935 {
936 	struct devkmsg_user *user = file->private_data;
937 	loff_t ret = 0;
938 
939 	if (!user)
940 		return -EBADF;
941 	if (offset)
942 		return -ESPIPE;
943 
944 	logbuf_lock_irq();
945 	switch (whence) {
946 	case SEEK_SET:
947 		/* the first record */
948 		user->idx = log_first_idx;
949 		user->seq = log_first_seq;
950 		break;
951 	case SEEK_DATA:
952 		/*
953 		 * The first record after the last SYSLOG_ACTION_CLEAR,
954 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
955 		 * changes no global state, and does not clear anything.
956 		 */
957 		user->idx = clear_idx;
958 		user->seq = clear_seq;
959 		break;
960 	case SEEK_END:
961 		/* after the last record */
962 		user->idx = log_next_idx;
963 		user->seq = log_next_seq;
964 		break;
965 	default:
966 		ret = -EINVAL;
967 	}
968 	logbuf_unlock_irq();
969 	return ret;
970 }
971 
972 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
973 {
974 	struct devkmsg_user *user = file->private_data;
975 	__poll_t ret = 0;
976 
977 	if (!user)
978 		return EPOLLERR|EPOLLNVAL;
979 
980 	poll_wait(file, &log_wait, wait);
981 
982 	logbuf_lock_irq();
983 	if (user->seq < log_next_seq) {
984 		/* return error when data has vanished underneath us */
985 		if (user->seq < log_first_seq)
986 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
987 		else
988 			ret = EPOLLIN|EPOLLRDNORM;
989 	}
990 	logbuf_unlock_irq();
991 
992 	return ret;
993 }
994 
995 static int devkmsg_open(struct inode *inode, struct file *file)
996 {
997 	struct devkmsg_user *user;
998 	int err;
999 
1000 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
1001 		return -EPERM;
1002 
1003 	/* write-only does not need any file context */
1004 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
1005 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
1006 					       SYSLOG_FROM_READER);
1007 		if (err)
1008 			return err;
1009 	}
1010 
1011 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
1012 	if (!user)
1013 		return -ENOMEM;
1014 
1015 	ratelimit_default_init(&user->rs);
1016 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
1017 
1018 	mutex_init(&user->lock);
1019 
1020 	logbuf_lock_irq();
1021 	user->idx = log_first_idx;
1022 	user->seq = log_first_seq;
1023 	logbuf_unlock_irq();
1024 
1025 	file->private_data = user;
1026 	return 0;
1027 }
1028 
1029 static int devkmsg_release(struct inode *inode, struct file *file)
1030 {
1031 	struct devkmsg_user *user = file->private_data;
1032 
1033 	if (!user)
1034 		return 0;
1035 
1036 	ratelimit_state_exit(&user->rs);
1037 
1038 	mutex_destroy(&user->lock);
1039 	kfree(user);
1040 	return 0;
1041 }
1042 
1043 const struct file_operations kmsg_fops = {
1044 	.open = devkmsg_open,
1045 	.read = devkmsg_read,
1046 	.write_iter = devkmsg_write,
1047 	.llseek = devkmsg_llseek,
1048 	.poll = devkmsg_poll,
1049 	.release = devkmsg_release,
1050 };
1051 
1052 #ifdef CONFIG_CRASH_CORE
1053 /*
1054  * This appends the listed symbols to /proc/vmcore
1055  *
1056  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1057  * obtain access to symbols that are otherwise very difficult to locate.  These
1058  * symbols are specifically used so that utilities can access and extract the
1059  * dmesg log from a vmcore file after a crash.
1060  */
1061 void log_buf_vmcoreinfo_setup(void)
1062 {
1063 	VMCOREINFO_SYMBOL(log_buf);
1064 	VMCOREINFO_SYMBOL(log_buf_len);
1065 	VMCOREINFO_SYMBOL(log_first_idx);
1066 	VMCOREINFO_SYMBOL(clear_idx);
1067 	VMCOREINFO_SYMBOL(log_next_idx);
1068 	/*
1069 	 * Export struct printk_log size and field offsets. User space tools can
1070 	 * parse it and detect any changes to structure down the line.
1071 	 */
1072 	VMCOREINFO_STRUCT_SIZE(printk_log);
1073 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1074 	VMCOREINFO_OFFSET(printk_log, len);
1075 	VMCOREINFO_OFFSET(printk_log, text_len);
1076 	VMCOREINFO_OFFSET(printk_log, dict_len);
1077 #ifdef CONFIG_PRINTK_CALLER
1078 	VMCOREINFO_OFFSET(printk_log, caller_id);
1079 #endif
1080 }
1081 #endif
1082 
1083 /* requested log_buf_len from kernel cmdline */
1084 static unsigned long __initdata new_log_buf_len;
1085 
1086 /* we practice scaling the ring buffer by powers of 2 */
1087 static void __init log_buf_len_update(u64 size)
1088 {
1089 	if (size > (u64)LOG_BUF_LEN_MAX) {
1090 		size = (u64)LOG_BUF_LEN_MAX;
1091 		pr_err("log_buf over 2G is not supported.\n");
1092 	}
1093 
1094 	if (size)
1095 		size = roundup_pow_of_two(size);
1096 	if (size > log_buf_len)
1097 		new_log_buf_len = (unsigned long)size;
1098 }
1099 
1100 /* save requested log_buf_len since it's too early to process it */
1101 static int __init log_buf_len_setup(char *str)
1102 {
1103 	u64 size;
1104 
1105 	if (!str)
1106 		return -EINVAL;
1107 
1108 	size = memparse(str, &str);
1109 
1110 	log_buf_len_update(size);
1111 
1112 	return 0;
1113 }
1114 early_param("log_buf_len", log_buf_len_setup);
1115 
1116 #ifdef CONFIG_SMP
1117 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1118 
1119 static void __init log_buf_add_cpu(void)
1120 {
1121 	unsigned int cpu_extra;
1122 
1123 	/*
1124 	 * archs should set up cpu_possible_bits properly with
1125 	 * set_cpu_possible() after setup_arch() but just in
1126 	 * case lets ensure this is valid.
1127 	 */
1128 	if (num_possible_cpus() == 1)
1129 		return;
1130 
1131 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1132 
1133 	/* by default this will only continue through for large > 64 CPUs */
1134 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1135 		return;
1136 
1137 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1138 		__LOG_CPU_MAX_BUF_LEN);
1139 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1140 		cpu_extra);
1141 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1142 
1143 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1144 }
1145 #else /* !CONFIG_SMP */
1146 static inline void log_buf_add_cpu(void) {}
1147 #endif /* CONFIG_SMP */
1148 
1149 void __init setup_log_buf(int early)
1150 {
1151 	unsigned long flags;
1152 	char *new_log_buf;
1153 	unsigned int free;
1154 
1155 	if (log_buf != __log_buf)
1156 		return;
1157 
1158 	if (!early && !new_log_buf_len)
1159 		log_buf_add_cpu();
1160 
1161 	if (!new_log_buf_len)
1162 		return;
1163 
1164 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1165 	if (unlikely(!new_log_buf)) {
1166 		pr_err("log_buf_len: %lu bytes not available\n",
1167 			new_log_buf_len);
1168 		return;
1169 	}
1170 
1171 	logbuf_lock_irqsave(flags);
1172 	log_buf_len = new_log_buf_len;
1173 	log_buf = new_log_buf;
1174 	new_log_buf_len = 0;
1175 	free = __LOG_BUF_LEN - log_next_idx;
1176 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1177 	logbuf_unlock_irqrestore(flags);
1178 
1179 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1180 	pr_info("early log buf free: %u(%u%%)\n",
1181 		free, (free * 100) / __LOG_BUF_LEN);
1182 }
1183 
1184 static bool __read_mostly ignore_loglevel;
1185 
1186 static int __init ignore_loglevel_setup(char *str)
1187 {
1188 	ignore_loglevel = true;
1189 	pr_info("debug: ignoring loglevel setting.\n");
1190 
1191 	return 0;
1192 }
1193 
1194 early_param("ignore_loglevel", ignore_loglevel_setup);
1195 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1196 MODULE_PARM_DESC(ignore_loglevel,
1197 		 "ignore loglevel setting (prints all kernel messages to the console)");
1198 
1199 static bool suppress_message_printing(int level)
1200 {
1201 	return (level >= console_loglevel && !ignore_loglevel);
1202 }
1203 
1204 #ifdef CONFIG_BOOT_PRINTK_DELAY
1205 
1206 static int boot_delay; /* msecs delay after each printk during bootup */
1207 static unsigned long long loops_per_msec;	/* based on boot_delay */
1208 
1209 static int __init boot_delay_setup(char *str)
1210 {
1211 	unsigned long lpj;
1212 
1213 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1214 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1215 
1216 	get_option(&str, &boot_delay);
1217 	if (boot_delay > 10 * 1000)
1218 		boot_delay = 0;
1219 
1220 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1221 		"HZ: %d, loops_per_msec: %llu\n",
1222 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1223 	return 0;
1224 }
1225 early_param("boot_delay", boot_delay_setup);
1226 
1227 static void boot_delay_msec(int level)
1228 {
1229 	unsigned long long k;
1230 	unsigned long timeout;
1231 
1232 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1233 		|| suppress_message_printing(level)) {
1234 		return;
1235 	}
1236 
1237 	k = (unsigned long long)loops_per_msec * boot_delay;
1238 
1239 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1240 	while (k) {
1241 		k--;
1242 		cpu_relax();
1243 		/*
1244 		 * use (volatile) jiffies to prevent
1245 		 * compiler reduction; loop termination via jiffies
1246 		 * is secondary and may or may not happen.
1247 		 */
1248 		if (time_after(jiffies, timeout))
1249 			break;
1250 		touch_nmi_watchdog();
1251 	}
1252 }
1253 #else
1254 static inline void boot_delay_msec(int level)
1255 {
1256 }
1257 #endif
1258 
1259 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1260 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1261 
1262 static size_t print_syslog(unsigned int level, char *buf)
1263 {
1264 	return sprintf(buf, "<%u>", level);
1265 }
1266 
1267 static size_t print_time(u64 ts, char *buf)
1268 {
1269 	unsigned long rem_nsec = do_div(ts, 1000000000);
1270 
1271 	return sprintf(buf, "[%5lu.%06lu]",
1272 		       (unsigned long)ts, rem_nsec / 1000);
1273 }
1274 
1275 #ifdef CONFIG_PRINTK_CALLER
1276 static size_t print_caller(u32 id, char *buf)
1277 {
1278 	char caller[12];
1279 
1280 	snprintf(caller, sizeof(caller), "%c%u",
1281 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1282 	return sprintf(buf, "[%6s]", caller);
1283 }
1284 #else
1285 #define print_caller(id, buf) 0
1286 #endif
1287 
1288 static size_t print_prefix(const struct printk_log *msg, bool syslog,
1289 			   bool time, char *buf)
1290 {
1291 	size_t len = 0;
1292 
1293 	if (syslog)
1294 		len = print_syslog((msg->facility << 3) | msg->level, buf);
1295 
1296 	if (time)
1297 		len += print_time(msg->ts_nsec, buf + len);
1298 
1299 	len += print_caller(msg->caller_id, buf + len);
1300 
1301 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1302 		buf[len++] = ' ';
1303 		buf[len] = '\0';
1304 	}
1305 
1306 	return len;
1307 }
1308 
1309 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
1310 			     bool time, char *buf, size_t size)
1311 {
1312 	const char *text = log_text(msg);
1313 	size_t text_size = msg->text_len;
1314 	size_t len = 0;
1315 	char prefix[PREFIX_MAX];
1316 	const size_t prefix_len = print_prefix(msg, syslog, time, prefix);
1317 
1318 	do {
1319 		const char *next = memchr(text, '\n', text_size);
1320 		size_t text_len;
1321 
1322 		if (next) {
1323 			text_len = next - text;
1324 			next++;
1325 			text_size -= next - text;
1326 		} else {
1327 			text_len = text_size;
1328 		}
1329 
1330 		if (buf) {
1331 			if (prefix_len + text_len + 1 >= size - len)
1332 				break;
1333 
1334 			memcpy(buf + len, prefix, prefix_len);
1335 			len += prefix_len;
1336 			memcpy(buf + len, text, text_len);
1337 			len += text_len;
1338 			buf[len++] = '\n';
1339 		} else {
1340 			/* SYSLOG_ACTION_* buffer size only calculation */
1341 			len += prefix_len + text_len + 1;
1342 		}
1343 
1344 		text = next;
1345 	} while (text);
1346 
1347 	return len;
1348 }
1349 
1350 static int syslog_print(char __user *buf, int size)
1351 {
1352 	char *text;
1353 	struct printk_log *msg;
1354 	int len = 0;
1355 
1356 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1357 	if (!text)
1358 		return -ENOMEM;
1359 
1360 	while (size > 0) {
1361 		size_t n;
1362 		size_t skip;
1363 
1364 		logbuf_lock_irq();
1365 		if (syslog_seq < log_first_seq) {
1366 			/* messages are gone, move to first one */
1367 			syslog_seq = log_first_seq;
1368 			syslog_idx = log_first_idx;
1369 			syslog_partial = 0;
1370 		}
1371 		if (syslog_seq == log_next_seq) {
1372 			logbuf_unlock_irq();
1373 			break;
1374 		}
1375 
1376 		/*
1377 		 * To keep reading/counting partial line consistent,
1378 		 * use printk_time value as of the beginning of a line.
1379 		 */
1380 		if (!syslog_partial)
1381 			syslog_time = printk_time;
1382 
1383 		skip = syslog_partial;
1384 		msg = log_from_idx(syslog_idx);
1385 		n = msg_print_text(msg, true, syslog_time, text,
1386 				   LOG_LINE_MAX + PREFIX_MAX);
1387 		if (n - syslog_partial <= size) {
1388 			/* message fits into buffer, move forward */
1389 			syslog_idx = log_next(syslog_idx);
1390 			syslog_seq++;
1391 			n -= syslog_partial;
1392 			syslog_partial = 0;
1393 		} else if (!len){
1394 			/* partial read(), remember position */
1395 			n = size;
1396 			syslog_partial += n;
1397 		} else
1398 			n = 0;
1399 		logbuf_unlock_irq();
1400 
1401 		if (!n)
1402 			break;
1403 
1404 		if (copy_to_user(buf, text + skip, n)) {
1405 			if (!len)
1406 				len = -EFAULT;
1407 			break;
1408 		}
1409 
1410 		len += n;
1411 		size -= n;
1412 		buf += n;
1413 	}
1414 
1415 	kfree(text);
1416 	return len;
1417 }
1418 
1419 static int syslog_print_all(char __user *buf, int size, bool clear)
1420 {
1421 	char *text;
1422 	int len = 0;
1423 	u64 next_seq;
1424 	u64 seq;
1425 	u32 idx;
1426 	bool time;
1427 
1428 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1429 	if (!text)
1430 		return -ENOMEM;
1431 
1432 	time = printk_time;
1433 	logbuf_lock_irq();
1434 	/*
1435 	 * Find first record that fits, including all following records,
1436 	 * into the user-provided buffer for this dump.
1437 	 */
1438 	seq = clear_seq;
1439 	idx = clear_idx;
1440 	while (seq < log_next_seq) {
1441 		struct printk_log *msg = log_from_idx(idx);
1442 
1443 		len += msg_print_text(msg, true, time, NULL, 0);
1444 		idx = log_next(idx);
1445 		seq++;
1446 	}
1447 
1448 	/* move first record forward until length fits into the buffer */
1449 	seq = clear_seq;
1450 	idx = clear_idx;
1451 	while (len > size && seq < log_next_seq) {
1452 		struct printk_log *msg = log_from_idx(idx);
1453 
1454 		len -= msg_print_text(msg, true, time, NULL, 0);
1455 		idx = log_next(idx);
1456 		seq++;
1457 	}
1458 
1459 	/* last message fitting into this dump */
1460 	next_seq = log_next_seq;
1461 
1462 	len = 0;
1463 	while (len >= 0 && seq < next_seq) {
1464 		struct printk_log *msg = log_from_idx(idx);
1465 		int textlen = msg_print_text(msg, true, time, text,
1466 					     LOG_LINE_MAX + PREFIX_MAX);
1467 
1468 		idx = log_next(idx);
1469 		seq++;
1470 
1471 		logbuf_unlock_irq();
1472 		if (copy_to_user(buf + len, text, textlen))
1473 			len = -EFAULT;
1474 		else
1475 			len += textlen;
1476 		logbuf_lock_irq();
1477 
1478 		if (seq < log_first_seq) {
1479 			/* messages are gone, move to next one */
1480 			seq = log_first_seq;
1481 			idx = log_first_idx;
1482 		}
1483 	}
1484 
1485 	if (clear) {
1486 		clear_seq = log_next_seq;
1487 		clear_idx = log_next_idx;
1488 	}
1489 	logbuf_unlock_irq();
1490 
1491 	kfree(text);
1492 	return len;
1493 }
1494 
1495 static void syslog_clear(void)
1496 {
1497 	logbuf_lock_irq();
1498 	clear_seq = log_next_seq;
1499 	clear_idx = log_next_idx;
1500 	logbuf_unlock_irq();
1501 }
1502 
1503 int do_syslog(int type, char __user *buf, int len, int source)
1504 {
1505 	bool clear = false;
1506 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1507 	int error;
1508 
1509 	error = check_syslog_permissions(type, source);
1510 	if (error)
1511 		return error;
1512 
1513 	switch (type) {
1514 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1515 		break;
1516 	case SYSLOG_ACTION_OPEN:	/* Open log */
1517 		break;
1518 	case SYSLOG_ACTION_READ:	/* Read from log */
1519 		if (!buf || len < 0)
1520 			return -EINVAL;
1521 		if (!len)
1522 			return 0;
1523 		if (!access_ok(buf, len))
1524 			return -EFAULT;
1525 		error = wait_event_interruptible(log_wait,
1526 						 syslog_seq != log_next_seq);
1527 		if (error)
1528 			return error;
1529 		error = syslog_print(buf, len);
1530 		break;
1531 	/* Read/clear last kernel messages */
1532 	case SYSLOG_ACTION_READ_CLEAR:
1533 		clear = true;
1534 		/* FALL THRU */
1535 	/* Read last kernel messages */
1536 	case SYSLOG_ACTION_READ_ALL:
1537 		if (!buf || len < 0)
1538 			return -EINVAL;
1539 		if (!len)
1540 			return 0;
1541 		if (!access_ok(buf, len))
1542 			return -EFAULT;
1543 		error = syslog_print_all(buf, len, clear);
1544 		break;
1545 	/* Clear ring buffer */
1546 	case SYSLOG_ACTION_CLEAR:
1547 		syslog_clear();
1548 		break;
1549 	/* Disable logging to console */
1550 	case SYSLOG_ACTION_CONSOLE_OFF:
1551 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1552 			saved_console_loglevel = console_loglevel;
1553 		console_loglevel = minimum_console_loglevel;
1554 		break;
1555 	/* Enable logging to console */
1556 	case SYSLOG_ACTION_CONSOLE_ON:
1557 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1558 			console_loglevel = saved_console_loglevel;
1559 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1560 		}
1561 		break;
1562 	/* Set level of messages printed to console */
1563 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1564 		if (len < 1 || len > 8)
1565 			return -EINVAL;
1566 		if (len < minimum_console_loglevel)
1567 			len = minimum_console_loglevel;
1568 		console_loglevel = len;
1569 		/* Implicitly re-enable logging to console */
1570 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1571 		break;
1572 	/* Number of chars in the log buffer */
1573 	case SYSLOG_ACTION_SIZE_UNREAD:
1574 		logbuf_lock_irq();
1575 		if (syslog_seq < log_first_seq) {
1576 			/* messages are gone, move to first one */
1577 			syslog_seq = log_first_seq;
1578 			syslog_idx = log_first_idx;
1579 			syslog_partial = 0;
1580 		}
1581 		if (source == SYSLOG_FROM_PROC) {
1582 			/*
1583 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1584 			 * for pending data, not the size; return the count of
1585 			 * records, not the length.
1586 			 */
1587 			error = log_next_seq - syslog_seq;
1588 		} else {
1589 			u64 seq = syslog_seq;
1590 			u32 idx = syslog_idx;
1591 			bool time = syslog_partial ? syslog_time : printk_time;
1592 
1593 			while (seq < log_next_seq) {
1594 				struct printk_log *msg = log_from_idx(idx);
1595 
1596 				error += msg_print_text(msg, true, time, NULL,
1597 							0);
1598 				time = printk_time;
1599 				idx = log_next(idx);
1600 				seq++;
1601 			}
1602 			error -= syslog_partial;
1603 		}
1604 		logbuf_unlock_irq();
1605 		break;
1606 	/* Size of the log buffer */
1607 	case SYSLOG_ACTION_SIZE_BUFFER:
1608 		error = log_buf_len;
1609 		break;
1610 	default:
1611 		error = -EINVAL;
1612 		break;
1613 	}
1614 
1615 	return error;
1616 }
1617 
1618 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1619 {
1620 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1621 }
1622 
1623 /*
1624  * Special console_lock variants that help to reduce the risk of soft-lockups.
1625  * They allow to pass console_lock to another printk() call using a busy wait.
1626  */
1627 
1628 #ifdef CONFIG_LOCKDEP
1629 static struct lockdep_map console_owner_dep_map = {
1630 	.name = "console_owner"
1631 };
1632 #endif
1633 
1634 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1635 static struct task_struct *console_owner;
1636 static bool console_waiter;
1637 
1638 /**
1639  * console_lock_spinning_enable - mark beginning of code where another
1640  *	thread might safely busy wait
1641  *
1642  * This basically converts console_lock into a spinlock. This marks
1643  * the section where the console_lock owner can not sleep, because
1644  * there may be a waiter spinning (like a spinlock). Also it must be
1645  * ready to hand over the lock at the end of the section.
1646  */
1647 static void console_lock_spinning_enable(void)
1648 {
1649 	raw_spin_lock(&console_owner_lock);
1650 	console_owner = current;
1651 	raw_spin_unlock(&console_owner_lock);
1652 
1653 	/* The waiter may spin on us after setting console_owner */
1654 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1655 }
1656 
1657 /**
1658  * console_lock_spinning_disable_and_check - mark end of code where another
1659  *	thread was able to busy wait and check if there is a waiter
1660  *
1661  * This is called at the end of the section where spinning is allowed.
1662  * It has two functions. First, it is a signal that it is no longer
1663  * safe to start busy waiting for the lock. Second, it checks if
1664  * there is a busy waiter and passes the lock rights to her.
1665  *
1666  * Important: Callers lose the lock if there was a busy waiter.
1667  *	They must not touch items synchronized by console_lock
1668  *	in this case.
1669  *
1670  * Return: 1 if the lock rights were passed, 0 otherwise.
1671  */
1672 static int console_lock_spinning_disable_and_check(void)
1673 {
1674 	int waiter;
1675 
1676 	raw_spin_lock(&console_owner_lock);
1677 	waiter = READ_ONCE(console_waiter);
1678 	console_owner = NULL;
1679 	raw_spin_unlock(&console_owner_lock);
1680 
1681 	if (!waiter) {
1682 		spin_release(&console_owner_dep_map, _THIS_IP_);
1683 		return 0;
1684 	}
1685 
1686 	/* The waiter is now free to continue */
1687 	WRITE_ONCE(console_waiter, false);
1688 
1689 	spin_release(&console_owner_dep_map, _THIS_IP_);
1690 
1691 	/*
1692 	 * Hand off console_lock to waiter. The waiter will perform
1693 	 * the up(). After this, the waiter is the console_lock owner.
1694 	 */
1695 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1696 	return 1;
1697 }
1698 
1699 /**
1700  * console_trylock_spinning - try to get console_lock by busy waiting
1701  *
1702  * This allows to busy wait for the console_lock when the current
1703  * owner is running in specially marked sections. It means that
1704  * the current owner is running and cannot reschedule until it
1705  * is ready to lose the lock.
1706  *
1707  * Return: 1 if we got the lock, 0 othrewise
1708  */
1709 static int console_trylock_spinning(void)
1710 {
1711 	struct task_struct *owner = NULL;
1712 	bool waiter;
1713 	bool spin = false;
1714 	unsigned long flags;
1715 
1716 	if (console_trylock())
1717 		return 1;
1718 
1719 	printk_safe_enter_irqsave(flags);
1720 
1721 	raw_spin_lock(&console_owner_lock);
1722 	owner = READ_ONCE(console_owner);
1723 	waiter = READ_ONCE(console_waiter);
1724 	if (!waiter && owner && owner != current) {
1725 		WRITE_ONCE(console_waiter, true);
1726 		spin = true;
1727 	}
1728 	raw_spin_unlock(&console_owner_lock);
1729 
1730 	/*
1731 	 * If there is an active printk() writing to the
1732 	 * consoles, instead of having it write our data too,
1733 	 * see if we can offload that load from the active
1734 	 * printer, and do some printing ourselves.
1735 	 * Go into a spin only if there isn't already a waiter
1736 	 * spinning, and there is an active printer, and
1737 	 * that active printer isn't us (recursive printk?).
1738 	 */
1739 	if (!spin) {
1740 		printk_safe_exit_irqrestore(flags);
1741 		return 0;
1742 	}
1743 
1744 	/* We spin waiting for the owner to release us */
1745 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1746 	/* Owner will clear console_waiter on hand off */
1747 	while (READ_ONCE(console_waiter))
1748 		cpu_relax();
1749 	spin_release(&console_owner_dep_map, _THIS_IP_);
1750 
1751 	printk_safe_exit_irqrestore(flags);
1752 	/*
1753 	 * The owner passed the console lock to us.
1754 	 * Since we did not spin on console lock, annotate
1755 	 * this as a trylock. Otherwise lockdep will
1756 	 * complain.
1757 	 */
1758 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1759 
1760 	return 1;
1761 }
1762 
1763 /*
1764  * Call the console drivers, asking them to write out
1765  * log_buf[start] to log_buf[end - 1].
1766  * The console_lock must be held.
1767  */
1768 static void call_console_drivers(const char *ext_text, size_t ext_len,
1769 				 const char *text, size_t len)
1770 {
1771 	struct console *con;
1772 
1773 	trace_console_rcuidle(text, len);
1774 
1775 	if (!console_drivers)
1776 		return;
1777 
1778 	for_each_console(con) {
1779 		if (exclusive_console && con != exclusive_console)
1780 			continue;
1781 		if (!(con->flags & CON_ENABLED))
1782 			continue;
1783 		if (!con->write)
1784 			continue;
1785 		if (!cpu_online(smp_processor_id()) &&
1786 		    !(con->flags & CON_ANYTIME))
1787 			continue;
1788 		if (con->flags & CON_EXTENDED)
1789 			con->write(con, ext_text, ext_len);
1790 		else
1791 			con->write(con, text, len);
1792 	}
1793 }
1794 
1795 int printk_delay_msec __read_mostly;
1796 
1797 static inline void printk_delay(void)
1798 {
1799 	if (unlikely(printk_delay_msec)) {
1800 		int m = printk_delay_msec;
1801 
1802 		while (m--) {
1803 			mdelay(1);
1804 			touch_nmi_watchdog();
1805 		}
1806 	}
1807 }
1808 
1809 static inline u32 printk_caller_id(void)
1810 {
1811 	return in_task() ? task_pid_nr(current) :
1812 		0x80000000 + raw_smp_processor_id();
1813 }
1814 
1815 /*
1816  * Continuation lines are buffered, and not committed to the record buffer
1817  * until the line is complete, or a race forces it. The line fragments
1818  * though, are printed immediately to the consoles to ensure everything has
1819  * reached the console in case of a kernel crash.
1820  */
1821 static struct cont {
1822 	char buf[LOG_LINE_MAX];
1823 	size_t len;			/* length == 0 means unused buffer */
1824 	u32 caller_id;			/* printk_caller_id() of first print */
1825 	u64 ts_nsec;			/* time of first print */
1826 	u8 level;			/* log level of first message */
1827 	u8 facility;			/* log facility of first message */
1828 	enum log_flags flags;		/* prefix, newline flags */
1829 } cont;
1830 
1831 static void cont_flush(void)
1832 {
1833 	if (cont.len == 0)
1834 		return;
1835 
1836 	log_store(cont.caller_id, cont.facility, cont.level, cont.flags,
1837 		  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1838 	cont.len = 0;
1839 }
1840 
1841 static bool cont_add(u32 caller_id, int facility, int level,
1842 		     enum log_flags flags, const char *text, size_t len)
1843 {
1844 	/* If the line gets too long, split it up in separate records. */
1845 	if (cont.len + len > sizeof(cont.buf)) {
1846 		cont_flush();
1847 		return false;
1848 	}
1849 
1850 	if (!cont.len) {
1851 		cont.facility = facility;
1852 		cont.level = level;
1853 		cont.caller_id = caller_id;
1854 		cont.ts_nsec = local_clock();
1855 		cont.flags = flags;
1856 	}
1857 
1858 	memcpy(cont.buf + cont.len, text, len);
1859 	cont.len += len;
1860 
1861 	// The original flags come from the first line,
1862 	// but later continuations can add a newline.
1863 	if (flags & LOG_NEWLINE) {
1864 		cont.flags |= LOG_NEWLINE;
1865 		cont_flush();
1866 	}
1867 
1868 	return true;
1869 }
1870 
1871 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1872 {
1873 	const u32 caller_id = printk_caller_id();
1874 
1875 	/*
1876 	 * If an earlier line was buffered, and we're a continuation
1877 	 * write from the same context, try to add it to the buffer.
1878 	 */
1879 	if (cont.len) {
1880 		if (cont.caller_id == caller_id && (lflags & LOG_CONT)) {
1881 			if (cont_add(caller_id, facility, level, lflags, text, text_len))
1882 				return text_len;
1883 		}
1884 		/* Otherwise, make sure it's flushed */
1885 		cont_flush();
1886 	}
1887 
1888 	/* Skip empty continuation lines that couldn't be added - they just flush */
1889 	if (!text_len && (lflags & LOG_CONT))
1890 		return 0;
1891 
1892 	/* If it doesn't end in a newline, try to buffer the current line */
1893 	if (!(lflags & LOG_NEWLINE)) {
1894 		if (cont_add(caller_id, facility, level, lflags, text, text_len))
1895 			return text_len;
1896 	}
1897 
1898 	/* Store it in the record log */
1899 	return log_store(caller_id, facility, level, lflags, 0,
1900 			 dict, dictlen, text, text_len);
1901 }
1902 
1903 /* Must be called under logbuf_lock. */
1904 int vprintk_store(int facility, int level,
1905 		  const char *dict, size_t dictlen,
1906 		  const char *fmt, va_list args)
1907 {
1908 	static char textbuf[LOG_LINE_MAX];
1909 	char *text = textbuf;
1910 	size_t text_len;
1911 	enum log_flags lflags = 0;
1912 
1913 	/*
1914 	 * The printf needs to come first; we need the syslog
1915 	 * prefix which might be passed-in as a parameter.
1916 	 */
1917 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1918 
1919 	/* mark and strip a trailing newline */
1920 	if (text_len && text[text_len-1] == '\n') {
1921 		text_len--;
1922 		lflags |= LOG_NEWLINE;
1923 	}
1924 
1925 	/* strip kernel syslog prefix and extract log level or control flags */
1926 	if (facility == 0) {
1927 		int kern_level;
1928 
1929 		while ((kern_level = printk_get_level(text)) != 0) {
1930 			switch (kern_level) {
1931 			case '0' ... '7':
1932 				if (level == LOGLEVEL_DEFAULT)
1933 					level = kern_level - '0';
1934 				break;
1935 			case 'c':	/* KERN_CONT */
1936 				lflags |= LOG_CONT;
1937 			}
1938 
1939 			text_len -= 2;
1940 			text += 2;
1941 		}
1942 	}
1943 
1944 	if (level == LOGLEVEL_DEFAULT)
1945 		level = default_message_loglevel;
1946 
1947 	if (dict)
1948 		lflags |= LOG_NEWLINE;
1949 
1950 	return log_output(facility, level, lflags,
1951 			  dict, dictlen, text, text_len);
1952 }
1953 
1954 asmlinkage int vprintk_emit(int facility, int level,
1955 			    const char *dict, size_t dictlen,
1956 			    const char *fmt, va_list args)
1957 {
1958 	int printed_len;
1959 	bool in_sched = false, pending_output;
1960 	unsigned long flags;
1961 	u64 curr_log_seq;
1962 
1963 	/* Suppress unimportant messages after panic happens */
1964 	if (unlikely(suppress_printk))
1965 		return 0;
1966 
1967 	if (level == LOGLEVEL_SCHED) {
1968 		level = LOGLEVEL_DEFAULT;
1969 		in_sched = true;
1970 	}
1971 
1972 	boot_delay_msec(level);
1973 	printk_delay();
1974 
1975 	/* This stops the holder of console_sem just where we want him */
1976 	logbuf_lock_irqsave(flags);
1977 	curr_log_seq = log_next_seq;
1978 	printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
1979 	pending_output = (curr_log_seq != log_next_seq);
1980 	logbuf_unlock_irqrestore(flags);
1981 
1982 	/* If called from the scheduler, we can not call up(). */
1983 	if (!in_sched && pending_output) {
1984 		/*
1985 		 * Disable preemption to avoid being preempted while holding
1986 		 * console_sem which would prevent anyone from printing to
1987 		 * console
1988 		 */
1989 		preempt_disable();
1990 		/*
1991 		 * Try to acquire and then immediately release the console
1992 		 * semaphore.  The release will print out buffers and wake up
1993 		 * /dev/kmsg and syslog() users.
1994 		 */
1995 		if (console_trylock_spinning())
1996 			console_unlock();
1997 		preempt_enable();
1998 	}
1999 
2000 	if (pending_output)
2001 		wake_up_klogd();
2002 	return printed_len;
2003 }
2004 EXPORT_SYMBOL(vprintk_emit);
2005 
2006 asmlinkage int vprintk(const char *fmt, va_list args)
2007 {
2008 	return vprintk_func(fmt, args);
2009 }
2010 EXPORT_SYMBOL(vprintk);
2011 
2012 int vprintk_default(const char *fmt, va_list args)
2013 {
2014 	int r;
2015 
2016 #ifdef CONFIG_KGDB_KDB
2017 	/* Allow to pass printk() to kdb but avoid a recursion. */
2018 	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
2019 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
2020 		return r;
2021 	}
2022 #endif
2023 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
2024 
2025 	return r;
2026 }
2027 EXPORT_SYMBOL_GPL(vprintk_default);
2028 
2029 /**
2030  * printk - print a kernel message
2031  * @fmt: format string
2032  *
2033  * This is printk(). It can be called from any context. We want it to work.
2034  *
2035  * We try to grab the console_lock. If we succeed, it's easy - we log the
2036  * output and call the console drivers.  If we fail to get the semaphore, we
2037  * place the output into the log buffer and return. The current holder of
2038  * the console_sem will notice the new output in console_unlock(); and will
2039  * send it to the consoles before releasing the lock.
2040  *
2041  * One effect of this deferred printing is that code which calls printk() and
2042  * then changes console_loglevel may break. This is because console_loglevel
2043  * is inspected when the actual printing occurs.
2044  *
2045  * See also:
2046  * printf(3)
2047  *
2048  * See the vsnprintf() documentation for format string extensions over C99.
2049  */
2050 asmlinkage __visible int printk(const char *fmt, ...)
2051 {
2052 	va_list args;
2053 	int r;
2054 
2055 	va_start(args, fmt);
2056 	r = vprintk_func(fmt, args);
2057 	va_end(args);
2058 
2059 	return r;
2060 }
2061 EXPORT_SYMBOL(printk);
2062 
2063 #else /* CONFIG_PRINTK */
2064 
2065 #define LOG_LINE_MAX		0
2066 #define PREFIX_MAX		0
2067 #define printk_time		false
2068 
2069 static u64 syslog_seq;
2070 static u32 syslog_idx;
2071 static u64 console_seq;
2072 static u32 console_idx;
2073 static u64 exclusive_console_stop_seq;
2074 static u64 log_first_seq;
2075 static u32 log_first_idx;
2076 static u64 log_next_seq;
2077 static char *log_text(const struct printk_log *msg) { return NULL; }
2078 static char *log_dict(const struct printk_log *msg) { return NULL; }
2079 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2080 static u32 log_next(u32 idx) { return 0; }
2081 static ssize_t msg_print_ext_header(char *buf, size_t size,
2082 				    struct printk_log *msg,
2083 				    u64 seq) { return 0; }
2084 static ssize_t msg_print_ext_body(char *buf, size_t size,
2085 				  char *dict, size_t dict_len,
2086 				  char *text, size_t text_len) { return 0; }
2087 static void console_lock_spinning_enable(void) { }
2088 static int console_lock_spinning_disable_and_check(void) { return 0; }
2089 static void call_console_drivers(const char *ext_text, size_t ext_len,
2090 				 const char *text, size_t len) {}
2091 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
2092 			     bool time, char *buf, size_t size) { return 0; }
2093 static bool suppress_message_printing(int level) { return false; }
2094 
2095 #endif /* CONFIG_PRINTK */
2096 
2097 #ifdef CONFIG_EARLY_PRINTK
2098 struct console *early_console;
2099 
2100 asmlinkage __visible void early_printk(const char *fmt, ...)
2101 {
2102 	va_list ap;
2103 	char buf[512];
2104 	int n;
2105 
2106 	if (!early_console)
2107 		return;
2108 
2109 	va_start(ap, fmt);
2110 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2111 	va_end(ap);
2112 
2113 	early_console->write(early_console, buf, n);
2114 }
2115 #endif
2116 
2117 static int __add_preferred_console(char *name, int idx, char *options,
2118 				   char *brl_options)
2119 {
2120 	struct console_cmdline *c;
2121 	int i;
2122 
2123 	/*
2124 	 *	See if this tty is not yet registered, and
2125 	 *	if we have a slot free.
2126 	 */
2127 	for (i = 0, c = console_cmdline;
2128 	     i < MAX_CMDLINECONSOLES && c->name[0];
2129 	     i++, c++) {
2130 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2131 			if (!brl_options)
2132 				preferred_console = i;
2133 			return 0;
2134 		}
2135 	}
2136 	if (i == MAX_CMDLINECONSOLES)
2137 		return -E2BIG;
2138 	if (!brl_options)
2139 		preferred_console = i;
2140 	strlcpy(c->name, name, sizeof(c->name));
2141 	c->options = options;
2142 	braille_set_options(c, brl_options);
2143 
2144 	c->index = idx;
2145 	return 0;
2146 }
2147 
2148 static int __init console_msg_format_setup(char *str)
2149 {
2150 	if (!strcmp(str, "syslog"))
2151 		console_msg_format = MSG_FORMAT_SYSLOG;
2152 	if (!strcmp(str, "default"))
2153 		console_msg_format = MSG_FORMAT_DEFAULT;
2154 	return 1;
2155 }
2156 __setup("console_msg_format=", console_msg_format_setup);
2157 
2158 /*
2159  * Set up a console.  Called via do_early_param() in init/main.c
2160  * for each "console=" parameter in the boot command line.
2161  */
2162 static int __init console_setup(char *str)
2163 {
2164 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2165 	char *s, *options, *brl_options = NULL;
2166 	int idx;
2167 
2168 	if (_braille_console_setup(&str, &brl_options))
2169 		return 1;
2170 
2171 	/*
2172 	 * Decode str into name, index, options.
2173 	 */
2174 	if (str[0] >= '0' && str[0] <= '9') {
2175 		strcpy(buf, "ttyS");
2176 		strncpy(buf + 4, str, sizeof(buf) - 5);
2177 	} else {
2178 		strncpy(buf, str, sizeof(buf) - 1);
2179 	}
2180 	buf[sizeof(buf) - 1] = 0;
2181 	options = strchr(str, ',');
2182 	if (options)
2183 		*(options++) = 0;
2184 #ifdef __sparc__
2185 	if (!strcmp(str, "ttya"))
2186 		strcpy(buf, "ttyS0");
2187 	if (!strcmp(str, "ttyb"))
2188 		strcpy(buf, "ttyS1");
2189 #endif
2190 	for (s = buf; *s; s++)
2191 		if (isdigit(*s) || *s == ',')
2192 			break;
2193 	idx = simple_strtoul(s, NULL, 10);
2194 	*s = 0;
2195 
2196 	__add_preferred_console(buf, idx, options, brl_options);
2197 	console_set_on_cmdline = 1;
2198 	return 1;
2199 }
2200 __setup("console=", console_setup);
2201 
2202 /**
2203  * add_preferred_console - add a device to the list of preferred consoles.
2204  * @name: device name
2205  * @idx: device index
2206  * @options: options for this console
2207  *
2208  * The last preferred console added will be used for kernel messages
2209  * and stdin/out/err for init.  Normally this is used by console_setup
2210  * above to handle user-supplied console arguments; however it can also
2211  * be used by arch-specific code either to override the user or more
2212  * commonly to provide a default console (ie from PROM variables) when
2213  * the user has not supplied one.
2214  */
2215 int add_preferred_console(char *name, int idx, char *options)
2216 {
2217 	return __add_preferred_console(name, idx, options, NULL);
2218 }
2219 
2220 bool console_suspend_enabled = true;
2221 EXPORT_SYMBOL(console_suspend_enabled);
2222 
2223 static int __init console_suspend_disable(char *str)
2224 {
2225 	console_suspend_enabled = false;
2226 	return 1;
2227 }
2228 __setup("no_console_suspend", console_suspend_disable);
2229 module_param_named(console_suspend, console_suspend_enabled,
2230 		bool, S_IRUGO | S_IWUSR);
2231 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2232 	" and hibernate operations");
2233 
2234 /**
2235  * suspend_console - suspend the console subsystem
2236  *
2237  * This disables printk() while we go into suspend states
2238  */
2239 void suspend_console(void)
2240 {
2241 	if (!console_suspend_enabled)
2242 		return;
2243 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2244 	console_lock();
2245 	console_suspended = 1;
2246 	up_console_sem();
2247 }
2248 
2249 void resume_console(void)
2250 {
2251 	if (!console_suspend_enabled)
2252 		return;
2253 	down_console_sem();
2254 	console_suspended = 0;
2255 	console_unlock();
2256 }
2257 
2258 /**
2259  * console_cpu_notify - print deferred console messages after CPU hotplug
2260  * @cpu: unused
2261  *
2262  * If printk() is called from a CPU that is not online yet, the messages
2263  * will be printed on the console only if there are CON_ANYTIME consoles.
2264  * This function is called when a new CPU comes online (or fails to come
2265  * up) or goes offline.
2266  */
2267 static int console_cpu_notify(unsigned int cpu)
2268 {
2269 	if (!cpuhp_tasks_frozen) {
2270 		/* If trylock fails, someone else is doing the printing */
2271 		if (console_trylock())
2272 			console_unlock();
2273 	}
2274 	return 0;
2275 }
2276 
2277 /**
2278  * console_lock - lock the console system for exclusive use.
2279  *
2280  * Acquires a lock which guarantees that the caller has
2281  * exclusive access to the console system and the console_drivers list.
2282  *
2283  * Can sleep, returns nothing.
2284  */
2285 void console_lock(void)
2286 {
2287 	might_sleep();
2288 
2289 	down_console_sem();
2290 	if (console_suspended)
2291 		return;
2292 	console_locked = 1;
2293 	console_may_schedule = 1;
2294 }
2295 EXPORT_SYMBOL(console_lock);
2296 
2297 /**
2298  * console_trylock - try to lock the console system for exclusive use.
2299  *
2300  * Try to acquire a lock which guarantees that the caller has exclusive
2301  * access to the console system and the console_drivers list.
2302  *
2303  * returns 1 on success, and 0 on failure to acquire the lock.
2304  */
2305 int console_trylock(void)
2306 {
2307 	if (down_trylock_console_sem())
2308 		return 0;
2309 	if (console_suspended) {
2310 		up_console_sem();
2311 		return 0;
2312 	}
2313 	console_locked = 1;
2314 	console_may_schedule = 0;
2315 	return 1;
2316 }
2317 EXPORT_SYMBOL(console_trylock);
2318 
2319 int is_console_locked(void)
2320 {
2321 	return console_locked;
2322 }
2323 EXPORT_SYMBOL(is_console_locked);
2324 
2325 /*
2326  * Check if we have any console that is capable of printing while cpu is
2327  * booting or shutting down. Requires console_sem.
2328  */
2329 static int have_callable_console(void)
2330 {
2331 	struct console *con;
2332 
2333 	for_each_console(con)
2334 		if ((con->flags & CON_ENABLED) &&
2335 				(con->flags & CON_ANYTIME))
2336 			return 1;
2337 
2338 	return 0;
2339 }
2340 
2341 /*
2342  * Can we actually use the console at this time on this cpu?
2343  *
2344  * Console drivers may assume that per-cpu resources have been allocated. So
2345  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2346  * call them until this CPU is officially up.
2347  */
2348 static inline int can_use_console(void)
2349 {
2350 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2351 }
2352 
2353 /**
2354  * console_unlock - unlock the console system
2355  *
2356  * Releases the console_lock which the caller holds on the console system
2357  * and the console driver list.
2358  *
2359  * While the console_lock was held, console output may have been buffered
2360  * by printk().  If this is the case, console_unlock(); emits
2361  * the output prior to releasing the lock.
2362  *
2363  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2364  *
2365  * console_unlock(); may be called from any context.
2366  */
2367 void console_unlock(void)
2368 {
2369 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2370 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2371 	unsigned long flags;
2372 	bool do_cond_resched, retry;
2373 
2374 	if (console_suspended) {
2375 		up_console_sem();
2376 		return;
2377 	}
2378 
2379 	/*
2380 	 * Console drivers are called with interrupts disabled, so
2381 	 * @console_may_schedule should be cleared before; however, we may
2382 	 * end up dumping a lot of lines, for example, if called from
2383 	 * console registration path, and should invoke cond_resched()
2384 	 * between lines if allowable.  Not doing so can cause a very long
2385 	 * scheduling stall on a slow console leading to RCU stall and
2386 	 * softlockup warnings which exacerbate the issue with more
2387 	 * messages practically incapacitating the system.
2388 	 *
2389 	 * console_trylock() is not able to detect the preemptive
2390 	 * context reliably. Therefore the value must be stored before
2391 	 * and cleared after the the "again" goto label.
2392 	 */
2393 	do_cond_resched = console_may_schedule;
2394 again:
2395 	console_may_schedule = 0;
2396 
2397 	/*
2398 	 * We released the console_sem lock, so we need to recheck if
2399 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2400 	 * console.
2401 	 */
2402 	if (!can_use_console()) {
2403 		console_locked = 0;
2404 		up_console_sem();
2405 		return;
2406 	}
2407 
2408 	for (;;) {
2409 		struct printk_log *msg;
2410 		size_t ext_len = 0;
2411 		size_t len;
2412 
2413 		printk_safe_enter_irqsave(flags);
2414 		raw_spin_lock(&logbuf_lock);
2415 		if (console_seq < log_first_seq) {
2416 			len = sprintf(text,
2417 				      "** %llu printk messages dropped **\n",
2418 				      log_first_seq - console_seq);
2419 
2420 			/* messages are gone, move to first one */
2421 			console_seq = log_first_seq;
2422 			console_idx = log_first_idx;
2423 		} else {
2424 			len = 0;
2425 		}
2426 skip:
2427 		if (console_seq == log_next_seq)
2428 			break;
2429 
2430 		msg = log_from_idx(console_idx);
2431 		if (suppress_message_printing(msg->level)) {
2432 			/*
2433 			 * Skip record we have buffered and already printed
2434 			 * directly to the console when we received it, and
2435 			 * record that has level above the console loglevel.
2436 			 */
2437 			console_idx = log_next(console_idx);
2438 			console_seq++;
2439 			goto skip;
2440 		}
2441 
2442 		/* Output to all consoles once old messages replayed. */
2443 		if (unlikely(exclusive_console &&
2444 			     console_seq >= exclusive_console_stop_seq)) {
2445 			exclusive_console = NULL;
2446 		}
2447 
2448 		len += msg_print_text(msg,
2449 				console_msg_format & MSG_FORMAT_SYSLOG,
2450 				printk_time, text + len, sizeof(text) - len);
2451 		if (nr_ext_console_drivers) {
2452 			ext_len = msg_print_ext_header(ext_text,
2453 						sizeof(ext_text),
2454 						msg, console_seq);
2455 			ext_len += msg_print_ext_body(ext_text + ext_len,
2456 						sizeof(ext_text) - ext_len,
2457 						log_dict(msg), msg->dict_len,
2458 						log_text(msg), msg->text_len);
2459 		}
2460 		console_idx = log_next(console_idx);
2461 		console_seq++;
2462 		raw_spin_unlock(&logbuf_lock);
2463 
2464 		/*
2465 		 * While actively printing out messages, if another printk()
2466 		 * were to occur on another CPU, it may wait for this one to
2467 		 * finish. This task can not be preempted if there is a
2468 		 * waiter waiting to take over.
2469 		 */
2470 		console_lock_spinning_enable();
2471 
2472 		stop_critical_timings();	/* don't trace print latency */
2473 		call_console_drivers(ext_text, ext_len, text, len);
2474 		start_critical_timings();
2475 
2476 		if (console_lock_spinning_disable_and_check()) {
2477 			printk_safe_exit_irqrestore(flags);
2478 			return;
2479 		}
2480 
2481 		printk_safe_exit_irqrestore(flags);
2482 
2483 		if (do_cond_resched)
2484 			cond_resched();
2485 	}
2486 
2487 	console_locked = 0;
2488 
2489 	raw_spin_unlock(&logbuf_lock);
2490 
2491 	up_console_sem();
2492 
2493 	/*
2494 	 * Someone could have filled up the buffer again, so re-check if there's
2495 	 * something to flush. In case we cannot trylock the console_sem again,
2496 	 * there's a new owner and the console_unlock() from them will do the
2497 	 * flush, no worries.
2498 	 */
2499 	raw_spin_lock(&logbuf_lock);
2500 	retry = console_seq != log_next_seq;
2501 	raw_spin_unlock(&logbuf_lock);
2502 	printk_safe_exit_irqrestore(flags);
2503 
2504 	if (retry && console_trylock())
2505 		goto again;
2506 }
2507 EXPORT_SYMBOL(console_unlock);
2508 
2509 /**
2510  * console_conditional_schedule - yield the CPU if required
2511  *
2512  * If the console code is currently allowed to sleep, and
2513  * if this CPU should yield the CPU to another task, do
2514  * so here.
2515  *
2516  * Must be called within console_lock();.
2517  */
2518 void __sched console_conditional_schedule(void)
2519 {
2520 	if (console_may_schedule)
2521 		cond_resched();
2522 }
2523 EXPORT_SYMBOL(console_conditional_schedule);
2524 
2525 void console_unblank(void)
2526 {
2527 	struct console *c;
2528 
2529 	/*
2530 	 * console_unblank can no longer be called in interrupt context unless
2531 	 * oops_in_progress is set to 1..
2532 	 */
2533 	if (oops_in_progress) {
2534 		if (down_trylock_console_sem() != 0)
2535 			return;
2536 	} else
2537 		console_lock();
2538 
2539 	console_locked = 1;
2540 	console_may_schedule = 0;
2541 	for_each_console(c)
2542 		if ((c->flags & CON_ENABLED) && c->unblank)
2543 			c->unblank();
2544 	console_unlock();
2545 }
2546 
2547 /**
2548  * console_flush_on_panic - flush console content on panic
2549  * @mode: flush all messages in buffer or just the pending ones
2550  *
2551  * Immediately output all pending messages no matter what.
2552  */
2553 void console_flush_on_panic(enum con_flush_mode mode)
2554 {
2555 	/*
2556 	 * If someone else is holding the console lock, trylock will fail
2557 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2558 	 * that messages are flushed out.  As this can be called from any
2559 	 * context and we don't want to get preempted while flushing,
2560 	 * ensure may_schedule is cleared.
2561 	 */
2562 	console_trylock();
2563 	console_may_schedule = 0;
2564 
2565 	if (mode == CONSOLE_REPLAY_ALL) {
2566 		unsigned long flags;
2567 
2568 		logbuf_lock_irqsave(flags);
2569 		console_seq = log_first_seq;
2570 		console_idx = log_first_idx;
2571 		logbuf_unlock_irqrestore(flags);
2572 	}
2573 	console_unlock();
2574 }
2575 
2576 /*
2577  * Return the console tty driver structure and its associated index
2578  */
2579 struct tty_driver *console_device(int *index)
2580 {
2581 	struct console *c;
2582 	struct tty_driver *driver = NULL;
2583 
2584 	console_lock();
2585 	for_each_console(c) {
2586 		if (!c->device)
2587 			continue;
2588 		driver = c->device(c, index);
2589 		if (driver)
2590 			break;
2591 	}
2592 	console_unlock();
2593 	return driver;
2594 }
2595 
2596 /*
2597  * Prevent further output on the passed console device so that (for example)
2598  * serial drivers can disable console output before suspending a port, and can
2599  * re-enable output afterwards.
2600  */
2601 void console_stop(struct console *console)
2602 {
2603 	console_lock();
2604 	console->flags &= ~CON_ENABLED;
2605 	console_unlock();
2606 }
2607 EXPORT_SYMBOL(console_stop);
2608 
2609 void console_start(struct console *console)
2610 {
2611 	console_lock();
2612 	console->flags |= CON_ENABLED;
2613 	console_unlock();
2614 }
2615 EXPORT_SYMBOL(console_start);
2616 
2617 static int __read_mostly keep_bootcon;
2618 
2619 static int __init keep_bootcon_setup(char *str)
2620 {
2621 	keep_bootcon = 1;
2622 	pr_info("debug: skip boot console de-registration.\n");
2623 
2624 	return 0;
2625 }
2626 
2627 early_param("keep_bootcon", keep_bootcon_setup);
2628 
2629 /*
2630  * The console driver calls this routine during kernel initialization
2631  * to register the console printing procedure with printk() and to
2632  * print any messages that were printed by the kernel before the
2633  * console driver was initialized.
2634  *
2635  * This can happen pretty early during the boot process (because of
2636  * early_printk) - sometimes before setup_arch() completes - be careful
2637  * of what kernel features are used - they may not be initialised yet.
2638  *
2639  * There are two types of consoles - bootconsoles (early_printk) and
2640  * "real" consoles (everything which is not a bootconsole) which are
2641  * handled differently.
2642  *  - Any number of bootconsoles can be registered at any time.
2643  *  - As soon as a "real" console is registered, all bootconsoles
2644  *    will be unregistered automatically.
2645  *  - Once a "real" console is registered, any attempt to register a
2646  *    bootconsoles will be rejected
2647  */
2648 void register_console(struct console *newcon)
2649 {
2650 	int i;
2651 	unsigned long flags;
2652 	struct console *bcon = NULL;
2653 	struct console_cmdline *c;
2654 	static bool has_preferred;
2655 
2656 	if (console_drivers)
2657 		for_each_console(bcon)
2658 			if (WARN(bcon == newcon,
2659 					"console '%s%d' already registered\n",
2660 					bcon->name, bcon->index))
2661 				return;
2662 
2663 	/*
2664 	 * before we register a new CON_BOOT console, make sure we don't
2665 	 * already have a valid console
2666 	 */
2667 	if (console_drivers && newcon->flags & CON_BOOT) {
2668 		/* find the last or real console */
2669 		for_each_console(bcon) {
2670 			if (!(bcon->flags & CON_BOOT)) {
2671 				pr_info("Too late to register bootconsole %s%d\n",
2672 					newcon->name, newcon->index);
2673 				return;
2674 			}
2675 		}
2676 	}
2677 
2678 	if (console_drivers && console_drivers->flags & CON_BOOT)
2679 		bcon = console_drivers;
2680 
2681 	if (!has_preferred || bcon || !console_drivers)
2682 		has_preferred = preferred_console >= 0;
2683 
2684 	/*
2685 	 *	See if we want to use this console driver. If we
2686 	 *	didn't select a console we take the first one
2687 	 *	that registers here.
2688 	 */
2689 	if (!has_preferred) {
2690 		if (newcon->index < 0)
2691 			newcon->index = 0;
2692 		if (newcon->setup == NULL ||
2693 		    newcon->setup(newcon, NULL) == 0) {
2694 			newcon->flags |= CON_ENABLED;
2695 			if (newcon->device) {
2696 				newcon->flags |= CON_CONSDEV;
2697 				has_preferred = true;
2698 			}
2699 		}
2700 	}
2701 
2702 	/*
2703 	 *	See if this console matches one we selected on
2704 	 *	the command line.
2705 	 */
2706 	for (i = 0, c = console_cmdline;
2707 	     i < MAX_CMDLINECONSOLES && c->name[0];
2708 	     i++, c++) {
2709 		if (!newcon->match ||
2710 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2711 			/* default matching */
2712 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2713 			if (strcmp(c->name, newcon->name) != 0)
2714 				continue;
2715 			if (newcon->index >= 0 &&
2716 			    newcon->index != c->index)
2717 				continue;
2718 			if (newcon->index < 0)
2719 				newcon->index = c->index;
2720 
2721 			if (_braille_register_console(newcon, c))
2722 				return;
2723 
2724 			if (newcon->setup &&
2725 			    newcon->setup(newcon, c->options) != 0)
2726 				break;
2727 		}
2728 
2729 		newcon->flags |= CON_ENABLED;
2730 		if (i == preferred_console) {
2731 			newcon->flags |= CON_CONSDEV;
2732 			has_preferred = true;
2733 		}
2734 		break;
2735 	}
2736 
2737 	if (!(newcon->flags & CON_ENABLED))
2738 		return;
2739 
2740 	/*
2741 	 * If we have a bootconsole, and are switching to a real console,
2742 	 * don't print everything out again, since when the boot console, and
2743 	 * the real console are the same physical device, it's annoying to
2744 	 * see the beginning boot messages twice
2745 	 */
2746 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2747 		newcon->flags &= ~CON_PRINTBUFFER;
2748 
2749 	/*
2750 	 *	Put this console in the list - keep the
2751 	 *	preferred driver at the head of the list.
2752 	 */
2753 	console_lock();
2754 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2755 		newcon->next = console_drivers;
2756 		console_drivers = newcon;
2757 		if (newcon->next)
2758 			newcon->next->flags &= ~CON_CONSDEV;
2759 	} else {
2760 		newcon->next = console_drivers->next;
2761 		console_drivers->next = newcon;
2762 	}
2763 
2764 	if (newcon->flags & CON_EXTENDED)
2765 		nr_ext_console_drivers++;
2766 
2767 	if (newcon->flags & CON_PRINTBUFFER) {
2768 		/*
2769 		 * console_unlock(); will print out the buffered messages
2770 		 * for us.
2771 		 */
2772 		logbuf_lock_irqsave(flags);
2773 		console_seq = syslog_seq;
2774 		console_idx = syslog_idx;
2775 		/*
2776 		 * We're about to replay the log buffer.  Only do this to the
2777 		 * just-registered console to avoid excessive message spam to
2778 		 * the already-registered consoles.
2779 		 *
2780 		 * Set exclusive_console with disabled interrupts to reduce
2781 		 * race window with eventual console_flush_on_panic() that
2782 		 * ignores console_lock.
2783 		 */
2784 		exclusive_console = newcon;
2785 		exclusive_console_stop_seq = console_seq;
2786 		logbuf_unlock_irqrestore(flags);
2787 	}
2788 	console_unlock();
2789 	console_sysfs_notify();
2790 
2791 	/*
2792 	 * By unregistering the bootconsoles after we enable the real console
2793 	 * we get the "console xxx enabled" message on all the consoles -
2794 	 * boot consoles, real consoles, etc - this is to ensure that end
2795 	 * users know there might be something in the kernel's log buffer that
2796 	 * went to the bootconsole (that they do not see on the real console)
2797 	 */
2798 	pr_info("%sconsole [%s%d] enabled\n",
2799 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2800 		newcon->name, newcon->index);
2801 	if (bcon &&
2802 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2803 	    !keep_bootcon) {
2804 		/* We need to iterate through all boot consoles, to make
2805 		 * sure we print everything out, before we unregister them.
2806 		 */
2807 		for_each_console(bcon)
2808 			if (bcon->flags & CON_BOOT)
2809 				unregister_console(bcon);
2810 	}
2811 }
2812 EXPORT_SYMBOL(register_console);
2813 
2814 int unregister_console(struct console *console)
2815 {
2816         struct console *a, *b;
2817 	int res;
2818 
2819 	pr_info("%sconsole [%s%d] disabled\n",
2820 		(console->flags & CON_BOOT) ? "boot" : "" ,
2821 		console->name, console->index);
2822 
2823 	res = _braille_unregister_console(console);
2824 	if (res)
2825 		return res;
2826 
2827 	res = 1;
2828 	console_lock();
2829 	if (console_drivers == console) {
2830 		console_drivers=console->next;
2831 		res = 0;
2832 	} else if (console_drivers) {
2833 		for (a=console_drivers->next, b=console_drivers ;
2834 		     a; b=a, a=b->next) {
2835 			if (a == console) {
2836 				b->next = a->next;
2837 				res = 0;
2838 				break;
2839 			}
2840 		}
2841 	}
2842 
2843 	if (!res && (console->flags & CON_EXTENDED))
2844 		nr_ext_console_drivers--;
2845 
2846 	/*
2847 	 * If this isn't the last console and it has CON_CONSDEV set, we
2848 	 * need to set it on the next preferred console.
2849 	 */
2850 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2851 		console_drivers->flags |= CON_CONSDEV;
2852 
2853 	console->flags &= ~CON_ENABLED;
2854 	console_unlock();
2855 	console_sysfs_notify();
2856 	return res;
2857 }
2858 EXPORT_SYMBOL(unregister_console);
2859 
2860 /*
2861  * Initialize the console device. This is called *early*, so
2862  * we can't necessarily depend on lots of kernel help here.
2863  * Just do some early initializations, and do the complex setup
2864  * later.
2865  */
2866 void __init console_init(void)
2867 {
2868 	int ret;
2869 	initcall_t call;
2870 	initcall_entry_t *ce;
2871 
2872 	/* Setup the default TTY line discipline. */
2873 	n_tty_init();
2874 
2875 	/*
2876 	 * set up the console device so that later boot sequences can
2877 	 * inform about problems etc..
2878 	 */
2879 	ce = __con_initcall_start;
2880 	trace_initcall_level("console");
2881 	while (ce < __con_initcall_end) {
2882 		call = initcall_from_entry(ce);
2883 		trace_initcall_start(call);
2884 		ret = call();
2885 		trace_initcall_finish(call, ret);
2886 		ce++;
2887 	}
2888 }
2889 
2890 /*
2891  * Some boot consoles access data that is in the init section and which will
2892  * be discarded after the initcalls have been run. To make sure that no code
2893  * will access this data, unregister the boot consoles in a late initcall.
2894  *
2895  * If for some reason, such as deferred probe or the driver being a loadable
2896  * module, the real console hasn't registered yet at this point, there will
2897  * be a brief interval in which no messages are logged to the console, which
2898  * makes it difficult to diagnose problems that occur during this time.
2899  *
2900  * To mitigate this problem somewhat, only unregister consoles whose memory
2901  * intersects with the init section. Note that all other boot consoles will
2902  * get unregistred when the real preferred console is registered.
2903  */
2904 static int __init printk_late_init(void)
2905 {
2906 	struct console *con;
2907 	int ret;
2908 
2909 	for_each_console(con) {
2910 		if (!(con->flags & CON_BOOT))
2911 			continue;
2912 
2913 		/* Check addresses that might be used for enabled consoles. */
2914 		if (init_section_intersects(con, sizeof(*con)) ||
2915 		    init_section_contains(con->write, 0) ||
2916 		    init_section_contains(con->read, 0) ||
2917 		    init_section_contains(con->device, 0) ||
2918 		    init_section_contains(con->unblank, 0) ||
2919 		    init_section_contains(con->data, 0)) {
2920 			/*
2921 			 * Please, consider moving the reported consoles out
2922 			 * of the init section.
2923 			 */
2924 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2925 				con->name, con->index);
2926 			unregister_console(con);
2927 		}
2928 	}
2929 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2930 					console_cpu_notify);
2931 	WARN_ON(ret < 0);
2932 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2933 					console_cpu_notify, NULL);
2934 	WARN_ON(ret < 0);
2935 	return 0;
2936 }
2937 late_initcall(printk_late_init);
2938 
2939 #if defined CONFIG_PRINTK
2940 /*
2941  * Delayed printk version, for scheduler-internal messages:
2942  */
2943 #define PRINTK_PENDING_WAKEUP	0x01
2944 #define PRINTK_PENDING_OUTPUT	0x02
2945 
2946 static DEFINE_PER_CPU(int, printk_pending);
2947 
2948 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2949 {
2950 	int pending = __this_cpu_xchg(printk_pending, 0);
2951 
2952 	if (pending & PRINTK_PENDING_OUTPUT) {
2953 		/* If trylock fails, someone else is doing the printing */
2954 		if (console_trylock())
2955 			console_unlock();
2956 	}
2957 
2958 	if (pending & PRINTK_PENDING_WAKEUP)
2959 		wake_up_interruptible(&log_wait);
2960 }
2961 
2962 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2963 	.func = wake_up_klogd_work_func,
2964 	.flags = ATOMIC_INIT(IRQ_WORK_LAZY),
2965 };
2966 
2967 void wake_up_klogd(void)
2968 {
2969 	preempt_disable();
2970 	if (waitqueue_active(&log_wait)) {
2971 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2972 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2973 	}
2974 	preempt_enable();
2975 }
2976 
2977 void defer_console_output(void)
2978 {
2979 	preempt_disable();
2980 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2981 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2982 	preempt_enable();
2983 }
2984 
2985 int vprintk_deferred(const char *fmt, va_list args)
2986 {
2987 	int r;
2988 
2989 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2990 	defer_console_output();
2991 
2992 	return r;
2993 }
2994 
2995 int printk_deferred(const char *fmt, ...)
2996 {
2997 	va_list args;
2998 	int r;
2999 
3000 	va_start(args, fmt);
3001 	r = vprintk_deferred(fmt, args);
3002 	va_end(args);
3003 
3004 	return r;
3005 }
3006 
3007 /*
3008  * printk rate limiting, lifted from the networking subsystem.
3009  *
3010  * This enforces a rate limit: not more than 10 kernel messages
3011  * every 5s to make a denial-of-service attack impossible.
3012  */
3013 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3014 
3015 int __printk_ratelimit(const char *func)
3016 {
3017 	return ___ratelimit(&printk_ratelimit_state, func);
3018 }
3019 EXPORT_SYMBOL(__printk_ratelimit);
3020 
3021 /**
3022  * printk_timed_ratelimit - caller-controlled printk ratelimiting
3023  * @caller_jiffies: pointer to caller's state
3024  * @interval_msecs: minimum interval between prints
3025  *
3026  * printk_timed_ratelimit() returns true if more than @interval_msecs
3027  * milliseconds have elapsed since the last time printk_timed_ratelimit()
3028  * returned true.
3029  */
3030 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3031 			unsigned int interval_msecs)
3032 {
3033 	unsigned long elapsed = jiffies - *caller_jiffies;
3034 
3035 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3036 		return false;
3037 
3038 	*caller_jiffies = jiffies;
3039 	return true;
3040 }
3041 EXPORT_SYMBOL(printk_timed_ratelimit);
3042 
3043 static DEFINE_SPINLOCK(dump_list_lock);
3044 static LIST_HEAD(dump_list);
3045 
3046 /**
3047  * kmsg_dump_register - register a kernel log dumper.
3048  * @dumper: pointer to the kmsg_dumper structure
3049  *
3050  * Adds a kernel log dumper to the system. The dump callback in the
3051  * structure will be called when the kernel oopses or panics and must be
3052  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3053  */
3054 int kmsg_dump_register(struct kmsg_dumper *dumper)
3055 {
3056 	unsigned long flags;
3057 	int err = -EBUSY;
3058 
3059 	/* The dump callback needs to be set */
3060 	if (!dumper->dump)
3061 		return -EINVAL;
3062 
3063 	spin_lock_irqsave(&dump_list_lock, flags);
3064 	/* Don't allow registering multiple times */
3065 	if (!dumper->registered) {
3066 		dumper->registered = 1;
3067 		list_add_tail_rcu(&dumper->list, &dump_list);
3068 		err = 0;
3069 	}
3070 	spin_unlock_irqrestore(&dump_list_lock, flags);
3071 
3072 	return err;
3073 }
3074 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3075 
3076 /**
3077  * kmsg_dump_unregister - unregister a kmsg dumper.
3078  * @dumper: pointer to the kmsg_dumper structure
3079  *
3080  * Removes a dump device from the system. Returns zero on success and
3081  * %-EINVAL otherwise.
3082  */
3083 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3084 {
3085 	unsigned long flags;
3086 	int err = -EINVAL;
3087 
3088 	spin_lock_irqsave(&dump_list_lock, flags);
3089 	if (dumper->registered) {
3090 		dumper->registered = 0;
3091 		list_del_rcu(&dumper->list);
3092 		err = 0;
3093 	}
3094 	spin_unlock_irqrestore(&dump_list_lock, flags);
3095 	synchronize_rcu();
3096 
3097 	return err;
3098 }
3099 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3100 
3101 static bool always_kmsg_dump;
3102 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3103 
3104 /**
3105  * kmsg_dump - dump kernel log to kernel message dumpers.
3106  * @reason: the reason (oops, panic etc) for dumping
3107  *
3108  * Call each of the registered dumper's dump() callback, which can
3109  * retrieve the kmsg records with kmsg_dump_get_line() or
3110  * kmsg_dump_get_buffer().
3111  */
3112 void kmsg_dump(enum kmsg_dump_reason reason)
3113 {
3114 	struct kmsg_dumper *dumper;
3115 	unsigned long flags;
3116 
3117 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3118 		return;
3119 
3120 	rcu_read_lock();
3121 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3122 		if (dumper->max_reason && reason > dumper->max_reason)
3123 			continue;
3124 
3125 		/* initialize iterator with data about the stored records */
3126 		dumper->active = true;
3127 
3128 		logbuf_lock_irqsave(flags);
3129 		dumper->cur_seq = clear_seq;
3130 		dumper->cur_idx = clear_idx;
3131 		dumper->next_seq = log_next_seq;
3132 		dumper->next_idx = log_next_idx;
3133 		logbuf_unlock_irqrestore(flags);
3134 
3135 		/* invoke dumper which will iterate over records */
3136 		dumper->dump(dumper, reason);
3137 
3138 		/* reset iterator */
3139 		dumper->active = false;
3140 	}
3141 	rcu_read_unlock();
3142 }
3143 
3144 /**
3145  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3146  * @dumper: registered kmsg dumper
3147  * @syslog: include the "<4>" prefixes
3148  * @line: buffer to copy the line to
3149  * @size: maximum size of the buffer
3150  * @len: length of line placed into buffer
3151  *
3152  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3153  * record, and copy one record into the provided buffer.
3154  *
3155  * Consecutive calls will return the next available record moving
3156  * towards the end of the buffer with the youngest messages.
3157  *
3158  * A return value of FALSE indicates that there are no more records to
3159  * read.
3160  *
3161  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3162  */
3163 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3164 			       char *line, size_t size, size_t *len)
3165 {
3166 	struct printk_log *msg;
3167 	size_t l = 0;
3168 	bool ret = false;
3169 
3170 	if (!dumper->active)
3171 		goto out;
3172 
3173 	if (dumper->cur_seq < log_first_seq) {
3174 		/* messages are gone, move to first available one */
3175 		dumper->cur_seq = log_first_seq;
3176 		dumper->cur_idx = log_first_idx;
3177 	}
3178 
3179 	/* last entry */
3180 	if (dumper->cur_seq >= log_next_seq)
3181 		goto out;
3182 
3183 	msg = log_from_idx(dumper->cur_idx);
3184 	l = msg_print_text(msg, syslog, printk_time, line, size);
3185 
3186 	dumper->cur_idx = log_next(dumper->cur_idx);
3187 	dumper->cur_seq++;
3188 	ret = true;
3189 out:
3190 	if (len)
3191 		*len = l;
3192 	return ret;
3193 }
3194 
3195 /**
3196  * kmsg_dump_get_line - retrieve one kmsg log line
3197  * @dumper: registered kmsg dumper
3198  * @syslog: include the "<4>" prefixes
3199  * @line: buffer to copy the line to
3200  * @size: maximum size of the buffer
3201  * @len: length of line placed into buffer
3202  *
3203  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3204  * record, and copy one record into the provided buffer.
3205  *
3206  * Consecutive calls will return the next available record moving
3207  * towards the end of the buffer with the youngest messages.
3208  *
3209  * A return value of FALSE indicates that there are no more records to
3210  * read.
3211  */
3212 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3213 			char *line, size_t size, size_t *len)
3214 {
3215 	unsigned long flags;
3216 	bool ret;
3217 
3218 	logbuf_lock_irqsave(flags);
3219 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3220 	logbuf_unlock_irqrestore(flags);
3221 
3222 	return ret;
3223 }
3224 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3225 
3226 /**
3227  * kmsg_dump_get_buffer - copy kmsg log lines
3228  * @dumper: registered kmsg dumper
3229  * @syslog: include the "<4>" prefixes
3230  * @buf: buffer to copy the line to
3231  * @size: maximum size of the buffer
3232  * @len: length of line placed into buffer
3233  *
3234  * Start at the end of the kmsg buffer and fill the provided buffer
3235  * with as many of the the *youngest* kmsg records that fit into it.
3236  * If the buffer is large enough, all available kmsg records will be
3237  * copied with a single call.
3238  *
3239  * Consecutive calls will fill the buffer with the next block of
3240  * available older records, not including the earlier retrieved ones.
3241  *
3242  * A return value of FALSE indicates that there are no more records to
3243  * read.
3244  */
3245 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3246 			  char *buf, size_t size, size_t *len)
3247 {
3248 	unsigned long flags;
3249 	u64 seq;
3250 	u32 idx;
3251 	u64 next_seq;
3252 	u32 next_idx;
3253 	size_t l = 0;
3254 	bool ret = false;
3255 	bool time = printk_time;
3256 
3257 	if (!dumper->active)
3258 		goto out;
3259 
3260 	logbuf_lock_irqsave(flags);
3261 	if (dumper->cur_seq < log_first_seq) {
3262 		/* messages are gone, move to first available one */
3263 		dumper->cur_seq = log_first_seq;
3264 		dumper->cur_idx = log_first_idx;
3265 	}
3266 
3267 	/* last entry */
3268 	if (dumper->cur_seq >= dumper->next_seq) {
3269 		logbuf_unlock_irqrestore(flags);
3270 		goto out;
3271 	}
3272 
3273 	/* calculate length of entire buffer */
3274 	seq = dumper->cur_seq;
3275 	idx = dumper->cur_idx;
3276 	while (seq < dumper->next_seq) {
3277 		struct printk_log *msg = log_from_idx(idx);
3278 
3279 		l += msg_print_text(msg, true, time, NULL, 0);
3280 		idx = log_next(idx);
3281 		seq++;
3282 	}
3283 
3284 	/* move first record forward until length fits into the buffer */
3285 	seq = dumper->cur_seq;
3286 	idx = dumper->cur_idx;
3287 	while (l >= size && seq < dumper->next_seq) {
3288 		struct printk_log *msg = log_from_idx(idx);
3289 
3290 		l -= msg_print_text(msg, true, time, NULL, 0);
3291 		idx = log_next(idx);
3292 		seq++;
3293 	}
3294 
3295 	/* last message in next interation */
3296 	next_seq = seq;
3297 	next_idx = idx;
3298 
3299 	l = 0;
3300 	while (seq < dumper->next_seq) {
3301 		struct printk_log *msg = log_from_idx(idx);
3302 
3303 		l += msg_print_text(msg, syslog, time, buf + l, size - l);
3304 		idx = log_next(idx);
3305 		seq++;
3306 	}
3307 
3308 	dumper->next_seq = next_seq;
3309 	dumper->next_idx = next_idx;
3310 	ret = true;
3311 	logbuf_unlock_irqrestore(flags);
3312 out:
3313 	if (len)
3314 		*len = l;
3315 	return ret;
3316 }
3317 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3318 
3319 /**
3320  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3321  * @dumper: registered kmsg dumper
3322  *
3323  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3324  * kmsg_dump_get_buffer() can be called again and used multiple
3325  * times within the same dumper.dump() callback.
3326  *
3327  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3328  */
3329 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3330 {
3331 	dumper->cur_seq = clear_seq;
3332 	dumper->cur_idx = clear_idx;
3333 	dumper->next_seq = log_next_seq;
3334 	dumper->next_idx = log_next_idx;
3335 }
3336 
3337 /**
3338  * kmsg_dump_rewind - reset the interator
3339  * @dumper: registered kmsg dumper
3340  *
3341  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3342  * kmsg_dump_get_buffer() can be called again and used multiple
3343  * times within the same dumper.dump() callback.
3344  */
3345 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3346 {
3347 	unsigned long flags;
3348 
3349 	logbuf_lock_irqsave(flags);
3350 	kmsg_dump_rewind_nolock(dumper);
3351 	logbuf_unlock_irqrestore(flags);
3352 }
3353 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3354 
3355 #endif
3356