xref: /linux/kernel/rcu/srcutree.c (revision 1e525507)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Sleepable Read-Copy Update mechanism for mutual exclusion.
4  *
5  * Copyright (C) IBM Corporation, 2006
6  * Copyright (C) Fujitsu, 2012
7  *
8  * Authors: Paul McKenney <paulmck@linux.ibm.com>
9  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
10  *
11  * For detailed explanation of Read-Copy Update mechanism see -
12  *		Documentation/RCU/ *.txt
13  *
14  */
15 
16 #define pr_fmt(fmt) "rcu: " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mutex.h>
20 #include <linux/percpu.h>
21 #include <linux/preempt.h>
22 #include <linux/rcupdate_wait.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25 #include <linux/delay.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/srcu.h>
29 
30 #include "rcu.h"
31 #include "rcu_segcblist.h"
32 
33 /* Holdoff in nanoseconds for auto-expediting. */
34 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
35 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
36 module_param(exp_holdoff, ulong, 0444);
37 
38 /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
39 static ulong counter_wrap_check = (ULONG_MAX >> 2);
40 module_param(counter_wrap_check, ulong, 0444);
41 
42 /*
43  * Control conversion to SRCU_SIZE_BIG:
44  *    0: Don't convert at all.
45  *    1: Convert at init_srcu_struct() time.
46  *    2: Convert when rcutorture invokes srcu_torture_stats_print().
47  *    3: Decide at boot time based on system shape (default).
48  * 0x1x: Convert when excessive contention encountered.
49  */
50 #define SRCU_SIZING_NONE	0
51 #define SRCU_SIZING_INIT	1
52 #define SRCU_SIZING_TORTURE	2
53 #define SRCU_SIZING_AUTO	3
54 #define SRCU_SIZING_CONTEND	0x10
55 #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x)
56 #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE))
57 #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT))
58 #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE))
59 #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND)
60 static int convert_to_big = SRCU_SIZING_AUTO;
61 module_param(convert_to_big, int, 0444);
62 
63 /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */
64 static int big_cpu_lim __read_mostly = 128;
65 module_param(big_cpu_lim, int, 0444);
66 
67 /* Contention events per jiffy to initiate transition to big. */
68 static int small_contention_lim __read_mostly = 100;
69 module_param(small_contention_lim, int, 0444);
70 
71 /* Early-boot callback-management, so early that no lock is required! */
72 static LIST_HEAD(srcu_boot_list);
73 static bool __read_mostly srcu_init_done;
74 
75 static void srcu_invoke_callbacks(struct work_struct *work);
76 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
77 static void process_srcu(struct work_struct *work);
78 static void srcu_delay_timer(struct timer_list *t);
79 
80 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
81 #define spin_lock_rcu_node(p)							\
82 do {										\
83 	spin_lock(&ACCESS_PRIVATE(p, lock));					\
84 	smp_mb__after_unlock_lock();						\
85 } while (0)
86 
87 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
88 
89 #define spin_lock_irq_rcu_node(p)						\
90 do {										\
91 	spin_lock_irq(&ACCESS_PRIVATE(p, lock));				\
92 	smp_mb__after_unlock_lock();						\
93 } while (0)
94 
95 #define spin_unlock_irq_rcu_node(p)						\
96 	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
97 
98 #define spin_lock_irqsave_rcu_node(p, flags)					\
99 do {										\
100 	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);			\
101 	smp_mb__after_unlock_lock();						\
102 } while (0)
103 
104 #define spin_trylock_irqsave_rcu_node(p, flags)					\
105 ({										\
106 	bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
107 										\
108 	if (___locked)								\
109 		smp_mb__after_unlock_lock();					\
110 	___locked;								\
111 })
112 
113 #define spin_unlock_irqrestore_rcu_node(p, flags)				\
114 	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)			\
115 
116 /*
117  * Initialize SRCU per-CPU data.  Note that statically allocated
118  * srcu_struct structures might already have srcu_read_lock() and
119  * srcu_read_unlock() running against them.  So if the is_static parameter
120  * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
121  */
122 static void init_srcu_struct_data(struct srcu_struct *ssp)
123 {
124 	int cpu;
125 	struct srcu_data *sdp;
126 
127 	/*
128 	 * Initialize the per-CPU srcu_data array, which feeds into the
129 	 * leaves of the srcu_node tree.
130 	 */
131 	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
132 		     ARRAY_SIZE(sdp->srcu_unlock_count));
133 	for_each_possible_cpu(cpu) {
134 		sdp = per_cpu_ptr(ssp->sda, cpu);
135 		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
136 		rcu_segcblist_init(&sdp->srcu_cblist);
137 		sdp->srcu_cblist_invoking = false;
138 		sdp->srcu_gp_seq_needed = ssp->srcu_sup->srcu_gp_seq;
139 		sdp->srcu_gp_seq_needed_exp = ssp->srcu_sup->srcu_gp_seq;
140 		sdp->mynode = NULL;
141 		sdp->cpu = cpu;
142 		INIT_WORK(&sdp->work, srcu_invoke_callbacks);
143 		timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
144 		sdp->ssp = ssp;
145 	}
146 }
147 
148 /* Invalid seq state, used during snp node initialization */
149 #define SRCU_SNP_INIT_SEQ		0x2
150 
151 /*
152  * Check whether sequence number corresponding to snp node,
153  * is invalid.
154  */
155 static inline bool srcu_invl_snp_seq(unsigned long s)
156 {
157 	return s == SRCU_SNP_INIT_SEQ;
158 }
159 
160 /*
161  * Allocated and initialize SRCU combining tree.  Returns @true if
162  * allocation succeeded and @false otherwise.
163  */
164 static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags)
165 {
166 	int cpu;
167 	int i;
168 	int level = 0;
169 	int levelspread[RCU_NUM_LVLS];
170 	struct srcu_data *sdp;
171 	struct srcu_node *snp;
172 	struct srcu_node *snp_first;
173 
174 	/* Initialize geometry if it has not already been initialized. */
175 	rcu_init_geometry();
176 	ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags);
177 	if (!ssp->srcu_sup->node)
178 		return false;
179 
180 	/* Work out the overall tree geometry. */
181 	ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0];
182 	for (i = 1; i < rcu_num_lvls; i++)
183 		ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1];
184 	rcu_init_levelspread(levelspread, num_rcu_lvl);
185 
186 	/* Each pass through this loop initializes one srcu_node structure. */
187 	srcu_for_each_node_breadth_first(ssp, snp) {
188 		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
189 		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
190 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
191 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
192 			snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ;
193 			snp->srcu_data_have_cbs[i] = 0;
194 		}
195 		snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ;
196 		snp->grplo = -1;
197 		snp->grphi = -1;
198 		if (snp == &ssp->srcu_sup->node[0]) {
199 			/* Root node, special case. */
200 			snp->srcu_parent = NULL;
201 			continue;
202 		}
203 
204 		/* Non-root node. */
205 		if (snp == ssp->srcu_sup->level[level + 1])
206 			level++;
207 		snp->srcu_parent = ssp->srcu_sup->level[level - 1] +
208 				   (snp - ssp->srcu_sup->level[level]) /
209 				   levelspread[level - 1];
210 	}
211 
212 	/*
213 	 * Initialize the per-CPU srcu_data array, which feeds into the
214 	 * leaves of the srcu_node tree.
215 	 */
216 	level = rcu_num_lvls - 1;
217 	snp_first = ssp->srcu_sup->level[level];
218 	for_each_possible_cpu(cpu) {
219 		sdp = per_cpu_ptr(ssp->sda, cpu);
220 		sdp->mynode = &snp_first[cpu / levelspread[level]];
221 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
222 			if (snp->grplo < 0)
223 				snp->grplo = cpu;
224 			snp->grphi = cpu;
225 		}
226 		sdp->grpmask = 1UL << (cpu - sdp->mynode->grplo);
227 	}
228 	smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER);
229 	return true;
230 }
231 
232 /*
233  * Initialize non-compile-time initialized fields, including the
234  * associated srcu_node and srcu_data structures.  The is_static parameter
235  * tells us that ->sda has already been wired up to srcu_data.
236  */
237 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
238 {
239 	if (!is_static)
240 		ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL);
241 	if (!ssp->srcu_sup)
242 		return -ENOMEM;
243 	if (!is_static)
244 		spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
245 	ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL;
246 	ssp->srcu_sup->node = NULL;
247 	mutex_init(&ssp->srcu_sup->srcu_cb_mutex);
248 	mutex_init(&ssp->srcu_sup->srcu_gp_mutex);
249 	ssp->srcu_idx = 0;
250 	ssp->srcu_sup->srcu_gp_seq = 0;
251 	ssp->srcu_sup->srcu_barrier_seq = 0;
252 	mutex_init(&ssp->srcu_sup->srcu_barrier_mutex);
253 	atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 0);
254 	INIT_DELAYED_WORK(&ssp->srcu_sup->work, process_srcu);
255 	ssp->srcu_sup->sda_is_static = is_static;
256 	if (!is_static)
257 		ssp->sda = alloc_percpu(struct srcu_data);
258 	if (!ssp->sda)
259 		goto err_free_sup;
260 	init_srcu_struct_data(ssp);
261 	ssp->srcu_sup->srcu_gp_seq_needed_exp = 0;
262 	ssp->srcu_sup->srcu_last_gp_end = ktime_get_mono_fast_ns();
263 	if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) {
264 		if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC))
265 			goto err_free_sda;
266 		WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG);
267 	}
268 	ssp->srcu_sup->srcu_ssp = ssp;
269 	smp_store_release(&ssp->srcu_sup->srcu_gp_seq_needed, 0); /* Init done. */
270 	return 0;
271 
272 err_free_sda:
273 	if (!is_static) {
274 		free_percpu(ssp->sda);
275 		ssp->sda = NULL;
276 	}
277 err_free_sup:
278 	if (!is_static) {
279 		kfree(ssp->srcu_sup);
280 		ssp->srcu_sup = NULL;
281 	}
282 	return -ENOMEM;
283 }
284 
285 #ifdef CONFIG_DEBUG_LOCK_ALLOC
286 
287 int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
288 		       struct lock_class_key *key)
289 {
290 	/* Don't re-initialize a lock while it is held. */
291 	debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
292 	lockdep_init_map(&ssp->dep_map, name, key, 0);
293 	return init_srcu_struct_fields(ssp, false);
294 }
295 EXPORT_SYMBOL_GPL(__init_srcu_struct);
296 
297 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
298 
299 /**
300  * init_srcu_struct - initialize a sleep-RCU structure
301  * @ssp: structure to initialize.
302  *
303  * Must invoke this on a given srcu_struct before passing that srcu_struct
304  * to any other function.  Each srcu_struct represents a separate domain
305  * of SRCU protection.
306  */
307 int init_srcu_struct(struct srcu_struct *ssp)
308 {
309 	return init_srcu_struct_fields(ssp, false);
310 }
311 EXPORT_SYMBOL_GPL(init_srcu_struct);
312 
313 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
314 
315 /*
316  * Initiate a transition to SRCU_SIZE_BIG with lock held.
317  */
318 static void __srcu_transition_to_big(struct srcu_struct *ssp)
319 {
320 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
321 	smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC);
322 }
323 
324 /*
325  * Initiate an idempotent transition to SRCU_SIZE_BIG.
326  */
327 static void srcu_transition_to_big(struct srcu_struct *ssp)
328 {
329 	unsigned long flags;
330 
331 	/* Double-checked locking on ->srcu_size-state. */
332 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL)
333 		return;
334 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
335 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) {
336 		spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
337 		return;
338 	}
339 	__srcu_transition_to_big(ssp);
340 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
341 }
342 
343 /*
344  * Check to see if the just-encountered contention event justifies
345  * a transition to SRCU_SIZE_BIG.
346  */
347 static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp)
348 {
349 	unsigned long j;
350 
351 	if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state)
352 		return;
353 	j = jiffies;
354 	if (ssp->srcu_sup->srcu_size_jiffies != j) {
355 		ssp->srcu_sup->srcu_size_jiffies = j;
356 		ssp->srcu_sup->srcu_n_lock_retries = 0;
357 	}
358 	if (++ssp->srcu_sup->srcu_n_lock_retries <= small_contention_lim)
359 		return;
360 	__srcu_transition_to_big(ssp);
361 }
362 
363 /*
364  * Acquire the specified srcu_data structure's ->lock, but check for
365  * excessive contention, which results in initiation of a transition
366  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
367  * parameter permits this.
368  */
369 static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags)
370 {
371 	struct srcu_struct *ssp = sdp->ssp;
372 
373 	if (spin_trylock_irqsave_rcu_node(sdp, *flags))
374 		return;
375 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
376 	spin_lock_irqsave_check_contention(ssp);
377 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags);
378 	spin_lock_irqsave_rcu_node(sdp, *flags);
379 }
380 
381 /*
382  * Acquire the specified srcu_struct structure's ->lock, but check for
383  * excessive contention, which results in initiation of a transition
384  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
385  * parameter permits this.
386  */
387 static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags)
388 {
389 	if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags))
390 		return;
391 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
392 	spin_lock_irqsave_check_contention(ssp);
393 }
394 
395 /*
396  * First-use initialization of statically allocated srcu_struct
397  * structure.  Wiring up the combining tree is more than can be
398  * done with compile-time initialization, so this check is added
399  * to each update-side SRCU primitive.  Use ssp->lock, which -is-
400  * compile-time initialized, to resolve races involving multiple
401  * CPUs trying to garner first-use privileges.
402  */
403 static void check_init_srcu_struct(struct srcu_struct *ssp)
404 {
405 	unsigned long flags;
406 
407 	/* The smp_load_acquire() pairs with the smp_store_release(). */
408 	if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed))) /*^^^*/
409 		return; /* Already initialized. */
410 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
411 	if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq_needed)) {
412 		spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
413 		return;
414 	}
415 	init_srcu_struct_fields(ssp, true);
416 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
417 }
418 
419 /*
420  * Returns approximate total of the readers' ->srcu_lock_count[] values
421  * for the rank of per-CPU counters specified by idx.
422  */
423 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
424 {
425 	int cpu;
426 	unsigned long sum = 0;
427 
428 	for_each_possible_cpu(cpu) {
429 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
430 
431 		sum += atomic_long_read(&cpuc->srcu_lock_count[idx]);
432 	}
433 	return sum;
434 }
435 
436 /*
437  * Returns approximate total of the readers' ->srcu_unlock_count[] values
438  * for the rank of per-CPU counters specified by idx.
439  */
440 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
441 {
442 	int cpu;
443 	unsigned long mask = 0;
444 	unsigned long sum = 0;
445 
446 	for_each_possible_cpu(cpu) {
447 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
448 
449 		sum += atomic_long_read(&cpuc->srcu_unlock_count[idx]);
450 		if (IS_ENABLED(CONFIG_PROVE_RCU))
451 			mask = mask | READ_ONCE(cpuc->srcu_nmi_safety);
452 	}
453 	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask >> 1)),
454 		  "Mixed NMI-safe readers for srcu_struct at %ps.\n", ssp);
455 	return sum;
456 }
457 
458 /*
459  * Return true if the number of pre-existing readers is determined to
460  * be zero.
461  */
462 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
463 {
464 	unsigned long unlocks;
465 
466 	unlocks = srcu_readers_unlock_idx(ssp, idx);
467 
468 	/*
469 	 * Make sure that a lock is always counted if the corresponding
470 	 * unlock is counted. Needs to be a smp_mb() as the read side may
471 	 * contain a read from a variable that is written to before the
472 	 * synchronize_srcu() in the write side. In this case smp_mb()s
473 	 * A and B act like the store buffering pattern.
474 	 *
475 	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
476 	 * after the synchronize_srcu() from being executed before the
477 	 * grace period ends.
478 	 */
479 	smp_mb(); /* A */
480 
481 	/*
482 	 * If the locks are the same as the unlocks, then there must have
483 	 * been no readers on this index at some point in this function.
484 	 * But there might be more readers, as a task might have read
485 	 * the current ->srcu_idx but not yet have incremented its CPU's
486 	 * ->srcu_lock_count[idx] counter.  In fact, it is possible
487 	 * that most of the tasks have been preempted between fetching
488 	 * ->srcu_idx and incrementing ->srcu_lock_count[idx].  And there
489 	 * could be almost (ULONG_MAX / sizeof(struct task_struct)) tasks
490 	 * in a system whose address space was fully populated with memory.
491 	 * Call this quantity Nt.
492 	 *
493 	 * So suppose that the updater is preempted at this point in the
494 	 * code for a long time.  That now-preempted updater has already
495 	 * flipped ->srcu_idx (possibly during the preceding grace period),
496 	 * done an smp_mb() (again, possibly during the preceding grace
497 	 * period), and summed up the ->srcu_unlock_count[idx] counters.
498 	 * How many times can a given one of the aforementioned Nt tasks
499 	 * increment the old ->srcu_idx value's ->srcu_lock_count[idx]
500 	 * counter, in the absence of nesting?
501 	 *
502 	 * It can clearly do so once, given that it has already fetched
503 	 * the old value of ->srcu_idx and is just about to use that value
504 	 * to index its increment of ->srcu_lock_count[idx].  But as soon as
505 	 * it leaves that SRCU read-side critical section, it will increment
506 	 * ->srcu_unlock_count[idx], which must follow the updater's above
507 	 * read from that same value.  Thus, as soon the reading task does
508 	 * an smp_mb() and a later fetch from ->srcu_idx, that task will be
509 	 * guaranteed to get the new index.  Except that the increment of
510 	 * ->srcu_unlock_count[idx] in __srcu_read_unlock() is after the
511 	 * smp_mb(), and the fetch from ->srcu_idx in __srcu_read_lock()
512 	 * is before the smp_mb().  Thus, that task might not see the new
513 	 * value of ->srcu_idx until the -second- __srcu_read_lock(),
514 	 * which in turn means that this task might well increment
515 	 * ->srcu_lock_count[idx] for the old value of ->srcu_idx twice,
516 	 * not just once.
517 	 *
518 	 * However, it is important to note that a given smp_mb() takes
519 	 * effect not just for the task executing it, but also for any
520 	 * later task running on that same CPU.
521 	 *
522 	 * That is, there can be almost Nt + Nc further increments of
523 	 * ->srcu_lock_count[idx] for the old index, where Nc is the number
524 	 * of CPUs.  But this is OK because the size of the task_struct
525 	 * structure limits the value of Nt and current systems limit Nc
526 	 * to a few thousand.
527 	 *
528 	 * OK, but what about nesting?  This does impose a limit on
529 	 * nesting of half of the size of the task_struct structure
530 	 * (measured in bytes), which should be sufficient.  A late 2022
531 	 * TREE01 rcutorture run reported this size to be no less than
532 	 * 9408 bytes, allowing up to 4704 levels of nesting, which is
533 	 * comfortably beyond excessive.  Especially on 64-bit systems,
534 	 * which are unlikely to be configured with an address space fully
535 	 * populated with memory, at least not anytime soon.
536 	 */
537 	return srcu_readers_lock_idx(ssp, idx) == unlocks;
538 }
539 
540 /**
541  * srcu_readers_active - returns true if there are readers. and false
542  *                       otherwise
543  * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
544  *
545  * Note that this is not an atomic primitive, and can therefore suffer
546  * severe errors when invoked on an active srcu_struct.  That said, it
547  * can be useful as an error check at cleanup time.
548  */
549 static bool srcu_readers_active(struct srcu_struct *ssp)
550 {
551 	int cpu;
552 	unsigned long sum = 0;
553 
554 	for_each_possible_cpu(cpu) {
555 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
556 
557 		sum += atomic_long_read(&cpuc->srcu_lock_count[0]);
558 		sum += atomic_long_read(&cpuc->srcu_lock_count[1]);
559 		sum -= atomic_long_read(&cpuc->srcu_unlock_count[0]);
560 		sum -= atomic_long_read(&cpuc->srcu_unlock_count[1]);
561 	}
562 	return sum;
563 }
564 
565 /*
566  * We use an adaptive strategy for synchronize_srcu() and especially for
567  * synchronize_srcu_expedited().  We spin for a fixed time period
568  * (defined below, boot time configurable) to allow SRCU readers to exit
569  * their read-side critical sections.  If there are still some readers
570  * after one jiffy, we repeatedly block for one jiffy time periods.
571  * The blocking time is increased as the grace-period age increases,
572  * with max blocking time capped at 10 jiffies.
573  */
574 #define SRCU_DEFAULT_RETRY_CHECK_DELAY		5
575 
576 static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY;
577 module_param(srcu_retry_check_delay, ulong, 0444);
578 
579 #define SRCU_INTERVAL		1		// Base delay if no expedited GPs pending.
580 #define SRCU_MAX_INTERVAL	10		// Maximum incremental delay from slow readers.
581 
582 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO	3UL	// Lowmark on default per-GP-phase
583 							// no-delay instances.
584 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI	1000UL	// Highmark on default per-GP-phase
585 							// no-delay instances.
586 
587 #define SRCU_UL_CLAMP_LO(val, low)	((val) > (low) ? (val) : (low))
588 #define SRCU_UL_CLAMP_HI(val, high)	((val) < (high) ? (val) : (high))
589 #define SRCU_UL_CLAMP(val, low, high)	SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high))
590 // per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto
591 // one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay()
592 // called from process_srcu().
593 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED	\
594 	(2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY)
595 
596 // Maximum per-GP-phase consecutive no-delay instances.
597 #define SRCU_DEFAULT_MAX_NODELAY_PHASE	\
598 	SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED,	\
599 		      SRCU_DEFAULT_MAX_NODELAY_PHASE_LO,	\
600 		      SRCU_DEFAULT_MAX_NODELAY_PHASE_HI)
601 
602 static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE;
603 module_param(srcu_max_nodelay_phase, ulong, 0444);
604 
605 // Maximum consecutive no-delay instances.
606 #define SRCU_DEFAULT_MAX_NODELAY	(SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ?	\
607 					 SRCU_DEFAULT_MAX_NODELAY_PHASE : 100)
608 
609 static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY;
610 module_param(srcu_max_nodelay, ulong, 0444);
611 
612 /*
613  * Return grace-period delay, zero if there are expedited grace
614  * periods pending, SRCU_INTERVAL otherwise.
615  */
616 static unsigned long srcu_get_delay(struct srcu_struct *ssp)
617 {
618 	unsigned long gpstart;
619 	unsigned long j;
620 	unsigned long jbase = SRCU_INTERVAL;
621 	struct srcu_usage *sup = ssp->srcu_sup;
622 
623 	if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp)))
624 		jbase = 0;
625 	if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) {
626 		j = jiffies - 1;
627 		gpstart = READ_ONCE(sup->srcu_gp_start);
628 		if (time_after(j, gpstart))
629 			jbase += j - gpstart;
630 		if (!jbase) {
631 			WRITE_ONCE(sup->srcu_n_exp_nodelay, READ_ONCE(sup->srcu_n_exp_nodelay) + 1);
632 			if (READ_ONCE(sup->srcu_n_exp_nodelay) > srcu_max_nodelay_phase)
633 				jbase = 1;
634 		}
635 	}
636 	return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase;
637 }
638 
639 /**
640  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
641  * @ssp: structure to clean up.
642  *
643  * Must invoke this after you are finished using a given srcu_struct that
644  * was initialized via init_srcu_struct(), else you leak memory.
645  */
646 void cleanup_srcu_struct(struct srcu_struct *ssp)
647 {
648 	int cpu;
649 	struct srcu_usage *sup = ssp->srcu_sup;
650 
651 	if (WARN_ON(!srcu_get_delay(ssp)))
652 		return; /* Just leak it! */
653 	if (WARN_ON(srcu_readers_active(ssp)))
654 		return; /* Just leak it! */
655 	flush_delayed_work(&sup->work);
656 	for_each_possible_cpu(cpu) {
657 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
658 
659 		del_timer_sync(&sdp->delay_work);
660 		flush_work(&sdp->work);
661 		if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
662 			return; /* Forgot srcu_barrier(), so just leak it! */
663 	}
664 	if (WARN_ON(rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
665 	    WARN_ON(rcu_seq_current(&sup->srcu_gp_seq) != sup->srcu_gp_seq_needed) ||
666 	    WARN_ON(srcu_readers_active(ssp))) {
667 		pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n",
668 			__func__, ssp, rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)),
669 			rcu_seq_current(&sup->srcu_gp_seq), sup->srcu_gp_seq_needed);
670 		return; /* Caller forgot to stop doing call_srcu()? */
671 	}
672 	kfree(sup->node);
673 	sup->node = NULL;
674 	sup->srcu_size_state = SRCU_SIZE_SMALL;
675 	if (!sup->sda_is_static) {
676 		free_percpu(ssp->sda);
677 		ssp->sda = NULL;
678 		kfree(sup);
679 		ssp->srcu_sup = NULL;
680 	}
681 }
682 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
683 
684 #ifdef CONFIG_PROVE_RCU
685 /*
686  * Check for consistent NMI safety.
687  */
688 void srcu_check_nmi_safety(struct srcu_struct *ssp, bool nmi_safe)
689 {
690 	int nmi_safe_mask = 1 << nmi_safe;
691 	int old_nmi_safe_mask;
692 	struct srcu_data *sdp;
693 
694 	/* NMI-unsafe use in NMI is a bad sign */
695 	WARN_ON_ONCE(!nmi_safe && in_nmi());
696 	sdp = raw_cpu_ptr(ssp->sda);
697 	old_nmi_safe_mask = READ_ONCE(sdp->srcu_nmi_safety);
698 	if (!old_nmi_safe_mask) {
699 		WRITE_ONCE(sdp->srcu_nmi_safety, nmi_safe_mask);
700 		return;
701 	}
702 	WARN_ONCE(old_nmi_safe_mask != nmi_safe_mask, "CPU %d old state %d new state %d\n", sdp->cpu, old_nmi_safe_mask, nmi_safe_mask);
703 }
704 EXPORT_SYMBOL_GPL(srcu_check_nmi_safety);
705 #endif /* CONFIG_PROVE_RCU */
706 
707 /*
708  * Counts the new reader in the appropriate per-CPU element of the
709  * srcu_struct.
710  * Returns an index that must be passed to the matching srcu_read_unlock().
711  */
712 int __srcu_read_lock(struct srcu_struct *ssp)
713 {
714 	int idx;
715 
716 	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
717 	this_cpu_inc(ssp->sda->srcu_lock_count[idx].counter);
718 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
719 	return idx;
720 }
721 EXPORT_SYMBOL_GPL(__srcu_read_lock);
722 
723 /*
724  * Removes the count for the old reader from the appropriate per-CPU
725  * element of the srcu_struct.  Note that this may well be a different
726  * CPU than that which was incremented by the corresponding srcu_read_lock().
727  */
728 void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
729 {
730 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
731 	this_cpu_inc(ssp->sda->srcu_unlock_count[idx].counter);
732 }
733 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
734 
735 #ifdef CONFIG_NEED_SRCU_NMI_SAFE
736 
737 /*
738  * Counts the new reader in the appropriate per-CPU element of the
739  * srcu_struct, but in an NMI-safe manner using RMW atomics.
740  * Returns an index that must be passed to the matching srcu_read_unlock().
741  */
742 int __srcu_read_lock_nmisafe(struct srcu_struct *ssp)
743 {
744 	int idx;
745 	struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
746 
747 	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
748 	atomic_long_inc(&sdp->srcu_lock_count[idx]);
749 	smp_mb__after_atomic(); /* B */  /* Avoid leaking the critical section. */
750 	return idx;
751 }
752 EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe);
753 
754 /*
755  * Removes the count for the old reader from the appropriate per-CPU
756  * element of the srcu_struct.  Note that this may well be a different
757  * CPU than that which was incremented by the corresponding srcu_read_lock().
758  */
759 void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx)
760 {
761 	struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
762 
763 	smp_mb__before_atomic(); /* C */  /* Avoid leaking the critical section. */
764 	atomic_long_inc(&sdp->srcu_unlock_count[idx]);
765 }
766 EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe);
767 
768 #endif // CONFIG_NEED_SRCU_NMI_SAFE
769 
770 /*
771  * Start an SRCU grace period.
772  */
773 static void srcu_gp_start(struct srcu_struct *ssp)
774 {
775 	int state;
776 
777 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
778 	WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed));
779 	WRITE_ONCE(ssp->srcu_sup->srcu_gp_start, jiffies);
780 	WRITE_ONCE(ssp->srcu_sup->srcu_n_exp_nodelay, 0);
781 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
782 	rcu_seq_start(&ssp->srcu_sup->srcu_gp_seq);
783 	state = rcu_seq_state(ssp->srcu_sup->srcu_gp_seq);
784 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
785 }
786 
787 
788 static void srcu_delay_timer(struct timer_list *t)
789 {
790 	struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
791 
792 	queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
793 }
794 
795 static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
796 				       unsigned long delay)
797 {
798 	if (!delay) {
799 		queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
800 		return;
801 	}
802 
803 	timer_reduce(&sdp->delay_work, jiffies + delay);
804 }
805 
806 /*
807  * Schedule callback invocation for the specified srcu_data structure,
808  * if possible, on the corresponding CPU.
809  */
810 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
811 {
812 	srcu_queue_delayed_work_on(sdp, delay);
813 }
814 
815 /*
816  * Schedule callback invocation for all srcu_data structures associated
817  * with the specified srcu_node structure that have callbacks for the
818  * just-completed grace period, the one corresponding to idx.  If possible,
819  * schedule this invocation on the corresponding CPUs.
820  */
821 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
822 				  unsigned long mask, unsigned long delay)
823 {
824 	int cpu;
825 
826 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
827 		if (!(mask & (1UL << (cpu - snp->grplo))))
828 			continue;
829 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
830 	}
831 }
832 
833 /*
834  * Note the end of an SRCU grace period.  Initiates callback invocation
835  * and starts a new grace period if needed.
836  *
837  * The ->srcu_cb_mutex acquisition does not protect any data, but
838  * instead prevents more than one grace period from starting while we
839  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
840  * array to have a finite number of elements.
841  */
842 static void srcu_gp_end(struct srcu_struct *ssp)
843 {
844 	unsigned long cbdelay = 1;
845 	bool cbs;
846 	bool last_lvl;
847 	int cpu;
848 	unsigned long flags;
849 	unsigned long gpseq;
850 	int idx;
851 	unsigned long mask;
852 	struct srcu_data *sdp;
853 	unsigned long sgsne;
854 	struct srcu_node *snp;
855 	int ss_state;
856 	struct srcu_usage *sup = ssp->srcu_sup;
857 
858 	/* Prevent more than one additional grace period. */
859 	mutex_lock(&sup->srcu_cb_mutex);
860 
861 	/* End the current grace period. */
862 	spin_lock_irq_rcu_node(sup);
863 	idx = rcu_seq_state(sup->srcu_gp_seq);
864 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
865 	if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp)))
866 		cbdelay = 0;
867 
868 	WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns());
869 	rcu_seq_end(&sup->srcu_gp_seq);
870 	gpseq = rcu_seq_current(&sup->srcu_gp_seq);
871 	if (ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, gpseq))
872 		WRITE_ONCE(sup->srcu_gp_seq_needed_exp, gpseq);
873 	spin_unlock_irq_rcu_node(sup);
874 	mutex_unlock(&sup->srcu_gp_mutex);
875 	/* A new grace period can start at this point.  But only one. */
876 
877 	/* Initiate callback invocation as needed. */
878 	ss_state = smp_load_acquire(&sup->srcu_size_state);
879 	if (ss_state < SRCU_SIZE_WAIT_BARRIER) {
880 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()),
881 					cbdelay);
882 	} else {
883 		idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
884 		srcu_for_each_node_breadth_first(ssp, snp) {
885 			spin_lock_irq_rcu_node(snp);
886 			cbs = false;
887 			last_lvl = snp >= sup->level[rcu_num_lvls - 1];
888 			if (last_lvl)
889 				cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq;
890 			snp->srcu_have_cbs[idx] = gpseq;
891 			rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
892 			sgsne = snp->srcu_gp_seq_needed_exp;
893 			if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq))
894 				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
895 			if (ss_state < SRCU_SIZE_BIG)
896 				mask = ~0;
897 			else
898 				mask = snp->srcu_data_have_cbs[idx];
899 			snp->srcu_data_have_cbs[idx] = 0;
900 			spin_unlock_irq_rcu_node(snp);
901 			if (cbs)
902 				srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
903 		}
904 	}
905 
906 	/* Occasionally prevent srcu_data counter wrap. */
907 	if (!(gpseq & counter_wrap_check))
908 		for_each_possible_cpu(cpu) {
909 			sdp = per_cpu_ptr(ssp->sda, cpu);
910 			spin_lock_irqsave_rcu_node(sdp, flags);
911 			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100))
912 				sdp->srcu_gp_seq_needed = gpseq;
913 			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100))
914 				sdp->srcu_gp_seq_needed_exp = gpseq;
915 			spin_unlock_irqrestore_rcu_node(sdp, flags);
916 		}
917 
918 	/* Callback initiation done, allow grace periods after next. */
919 	mutex_unlock(&sup->srcu_cb_mutex);
920 
921 	/* Start a new grace period if needed. */
922 	spin_lock_irq_rcu_node(sup);
923 	gpseq = rcu_seq_current(&sup->srcu_gp_seq);
924 	if (!rcu_seq_state(gpseq) &&
925 	    ULONG_CMP_LT(gpseq, sup->srcu_gp_seq_needed)) {
926 		srcu_gp_start(ssp);
927 		spin_unlock_irq_rcu_node(sup);
928 		srcu_reschedule(ssp, 0);
929 	} else {
930 		spin_unlock_irq_rcu_node(sup);
931 	}
932 
933 	/* Transition to big if needed. */
934 	if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) {
935 		if (ss_state == SRCU_SIZE_ALLOC)
936 			init_srcu_struct_nodes(ssp, GFP_KERNEL);
937 		else
938 			smp_store_release(&sup->srcu_size_state, ss_state + 1);
939 	}
940 }
941 
942 /*
943  * Funnel-locking scheme to scalably mediate many concurrent expedited
944  * grace-period requests.  This function is invoked for the first known
945  * expedited request for a grace period that has already been requested,
946  * but without expediting.  To start a completely new grace period,
947  * whether expedited or not, use srcu_funnel_gp_start() instead.
948  */
949 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
950 				  unsigned long s)
951 {
952 	unsigned long flags;
953 	unsigned long sgsne;
954 
955 	if (snp)
956 		for (; snp != NULL; snp = snp->srcu_parent) {
957 			sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp);
958 			if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, s)) ||
959 			    (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)))
960 				return;
961 			spin_lock_irqsave_rcu_node(snp, flags);
962 			sgsne = snp->srcu_gp_seq_needed_exp;
963 			if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) {
964 				spin_unlock_irqrestore_rcu_node(snp, flags);
965 				return;
966 			}
967 			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
968 			spin_unlock_irqrestore_rcu_node(snp, flags);
969 		}
970 	spin_lock_irqsave_ssp_contention(ssp, &flags);
971 	if (ULONG_CMP_LT(ssp->srcu_sup->srcu_gp_seq_needed_exp, s))
972 		WRITE_ONCE(ssp->srcu_sup->srcu_gp_seq_needed_exp, s);
973 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
974 }
975 
976 /*
977  * Funnel-locking scheme to scalably mediate many concurrent grace-period
978  * requests.  The winner has to do the work of actually starting grace
979  * period s.  Losers must either ensure that their desired grace-period
980  * number is recorded on at least their leaf srcu_node structure, or they
981  * must take steps to invoke their own callbacks.
982  *
983  * Note that this function also does the work of srcu_funnel_exp_start(),
984  * in some cases by directly invoking it.
985  *
986  * The srcu read lock should be hold around this function. And s is a seq snap
987  * after holding that lock.
988  */
989 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
990 				 unsigned long s, bool do_norm)
991 {
992 	unsigned long flags;
993 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
994 	unsigned long sgsne;
995 	struct srcu_node *snp;
996 	struct srcu_node *snp_leaf;
997 	unsigned long snp_seq;
998 	struct srcu_usage *sup = ssp->srcu_sup;
999 
1000 	/* Ensure that snp node tree is fully initialized before traversing it */
1001 	if (smp_load_acquire(&sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1002 		snp_leaf = NULL;
1003 	else
1004 		snp_leaf = sdp->mynode;
1005 
1006 	if (snp_leaf)
1007 		/* Each pass through the loop does one level of the srcu_node tree. */
1008 		for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) {
1009 			if (WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && snp != snp_leaf)
1010 				return; /* GP already done and CBs recorded. */
1011 			spin_lock_irqsave_rcu_node(snp, flags);
1012 			snp_seq = snp->srcu_have_cbs[idx];
1013 			if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) {
1014 				if (snp == snp_leaf && snp_seq == s)
1015 					snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1016 				spin_unlock_irqrestore_rcu_node(snp, flags);
1017 				if (snp == snp_leaf && snp_seq != s) {
1018 					srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0);
1019 					return;
1020 				}
1021 				if (!do_norm)
1022 					srcu_funnel_exp_start(ssp, snp, s);
1023 				return;
1024 			}
1025 			snp->srcu_have_cbs[idx] = s;
1026 			if (snp == snp_leaf)
1027 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1028 			sgsne = snp->srcu_gp_seq_needed_exp;
1029 			if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s)))
1030 				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
1031 			spin_unlock_irqrestore_rcu_node(snp, flags);
1032 		}
1033 
1034 	/* Top of tree, must ensure the grace period will be started. */
1035 	spin_lock_irqsave_ssp_contention(ssp, &flags);
1036 	if (ULONG_CMP_LT(sup->srcu_gp_seq_needed, s)) {
1037 		/*
1038 		 * Record need for grace period s.  Pair with load
1039 		 * acquire setting up for initialization.
1040 		 */
1041 		smp_store_release(&sup->srcu_gp_seq_needed, s); /*^^^*/
1042 	}
1043 	if (!do_norm && ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, s))
1044 		WRITE_ONCE(sup->srcu_gp_seq_needed_exp, s);
1045 
1046 	/* If grace period not already in progress, start it. */
1047 	if (!WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) &&
1048 	    rcu_seq_state(sup->srcu_gp_seq) == SRCU_STATE_IDLE) {
1049 		WARN_ON_ONCE(ULONG_CMP_GE(sup->srcu_gp_seq, sup->srcu_gp_seq_needed));
1050 		srcu_gp_start(ssp);
1051 
1052 		// And how can that list_add() in the "else" clause
1053 		// possibly be safe for concurrent execution?  Well,
1054 		// it isn't.  And it does not have to be.  After all, it
1055 		// can only be executed during early boot when there is only
1056 		// the one boot CPU running with interrupts still disabled.
1057 		if (likely(srcu_init_done))
1058 			queue_delayed_work(rcu_gp_wq, &sup->work,
1059 					   !!srcu_get_delay(ssp));
1060 		else if (list_empty(&sup->work.work.entry))
1061 			list_add(&sup->work.work.entry, &srcu_boot_list);
1062 	}
1063 	spin_unlock_irqrestore_rcu_node(sup, flags);
1064 }
1065 
1066 /*
1067  * Wait until all readers counted by array index idx complete, but
1068  * loop an additional time if there is an expedited grace period pending.
1069  * The caller must ensure that ->srcu_idx is not changed while checking.
1070  */
1071 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
1072 {
1073 	unsigned long curdelay;
1074 
1075 	curdelay = !srcu_get_delay(ssp);
1076 
1077 	for (;;) {
1078 		if (srcu_readers_active_idx_check(ssp, idx))
1079 			return true;
1080 		if ((--trycount + curdelay) <= 0)
1081 			return false;
1082 		udelay(srcu_retry_check_delay);
1083 	}
1084 }
1085 
1086 /*
1087  * Increment the ->srcu_idx counter so that future SRCU readers will
1088  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
1089  * us to wait for pre-existing readers in a starvation-free manner.
1090  */
1091 static void srcu_flip(struct srcu_struct *ssp)
1092 {
1093 	/*
1094 	 * Because the flip of ->srcu_idx is executed only if the
1095 	 * preceding call to srcu_readers_active_idx_check() found that
1096 	 * the ->srcu_unlock_count[] and ->srcu_lock_count[] sums matched
1097 	 * and because that summing uses atomic_long_read(), there is
1098 	 * ordering due to a control dependency between that summing and
1099 	 * the WRITE_ONCE() in this call to srcu_flip().  This ordering
1100 	 * ensures that if this updater saw a given reader's increment from
1101 	 * __srcu_read_lock(), that reader was using a value of ->srcu_idx
1102 	 * from before the previous call to srcu_flip(), which should be
1103 	 * quite rare.  This ordering thus helps forward progress because
1104 	 * the grace period could otherwise be delayed by additional
1105 	 * calls to __srcu_read_lock() using that old (soon to be new)
1106 	 * value of ->srcu_idx.
1107 	 *
1108 	 * This sum-equality check and ordering also ensures that if
1109 	 * a given call to __srcu_read_lock() uses the new value of
1110 	 * ->srcu_idx, this updater's earlier scans cannot have seen
1111 	 * that reader's increments, which is all to the good, because
1112 	 * this grace period need not wait on that reader.  After all,
1113 	 * if those earlier scans had seen that reader, there would have
1114 	 * been a sum mismatch and this code would not be reached.
1115 	 *
1116 	 * This means that the following smp_mb() is redundant, but
1117 	 * it stays until either (1) Compilers learn about this sort of
1118 	 * control dependency or (2) Some production workload running on
1119 	 * a production system is unduly delayed by this slowpath smp_mb().
1120 	 */
1121 	smp_mb(); /* E */  /* Pairs with B and C. */
1122 
1123 	WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); // Flip the counter.
1124 
1125 	/*
1126 	 * Ensure that if the updater misses an __srcu_read_unlock()
1127 	 * increment, that task's __srcu_read_lock() following its next
1128 	 * __srcu_read_lock() or __srcu_read_unlock() will see the above
1129 	 * counter update.  Note that both this memory barrier and the
1130 	 * one in srcu_readers_active_idx_check() provide the guarantee
1131 	 * for __srcu_read_lock().
1132 	 */
1133 	smp_mb(); /* D */  /* Pairs with C. */
1134 }
1135 
1136 /*
1137  * If SRCU is likely idle, return true, otherwise return false.
1138  *
1139  * Note that it is OK for several current from-idle requests for a new
1140  * grace period from idle to specify expediting because they will all end
1141  * up requesting the same grace period anyhow.  So no loss.
1142  *
1143  * Note also that if any CPU (including the current one) is still invoking
1144  * callbacks, this function will nevertheless say "idle".  This is not
1145  * ideal, but the overhead of checking all CPUs' callback lists is even
1146  * less ideal, especially on large systems.  Furthermore, the wakeup
1147  * can happen before the callback is fully removed, so we have no choice
1148  * but to accept this type of error.
1149  *
1150  * This function is also subject to counter-wrap errors, but let's face
1151  * it, if this function was preempted for enough time for the counters
1152  * to wrap, it really doesn't matter whether or not we expedite the grace
1153  * period.  The extra overhead of a needlessly expedited grace period is
1154  * negligible when amortized over that time period, and the extra latency
1155  * of a needlessly non-expedited grace period is similarly negligible.
1156  */
1157 static bool srcu_might_be_idle(struct srcu_struct *ssp)
1158 {
1159 	unsigned long curseq;
1160 	unsigned long flags;
1161 	struct srcu_data *sdp;
1162 	unsigned long t;
1163 	unsigned long tlast;
1164 
1165 	check_init_srcu_struct(ssp);
1166 	/* If the local srcu_data structure has callbacks, not idle.  */
1167 	sdp = raw_cpu_ptr(ssp->sda);
1168 	spin_lock_irqsave_rcu_node(sdp, flags);
1169 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
1170 		spin_unlock_irqrestore_rcu_node(sdp, flags);
1171 		return false; /* Callbacks already present, so not idle. */
1172 	}
1173 	spin_unlock_irqrestore_rcu_node(sdp, flags);
1174 
1175 	/*
1176 	 * No local callbacks, so probabilistically probe global state.
1177 	 * Exact information would require acquiring locks, which would
1178 	 * kill scalability, hence the probabilistic nature of the probe.
1179 	 */
1180 
1181 	/* First, see if enough time has passed since the last GP. */
1182 	t = ktime_get_mono_fast_ns();
1183 	tlast = READ_ONCE(ssp->srcu_sup->srcu_last_gp_end);
1184 	if (exp_holdoff == 0 ||
1185 	    time_in_range_open(t, tlast, tlast + exp_holdoff))
1186 		return false; /* Too soon after last GP. */
1187 
1188 	/* Next, check for probable idleness. */
1189 	curseq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
1190 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
1191 	if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_sup->srcu_gp_seq_needed)))
1192 		return false; /* Grace period in progress, so not idle. */
1193 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
1194 	if (curseq != rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq))
1195 		return false; /* GP # changed, so not idle. */
1196 	return true; /* With reasonable probability, idle! */
1197 }
1198 
1199 /*
1200  * SRCU callback function to leak a callback.
1201  */
1202 static void srcu_leak_callback(struct rcu_head *rhp)
1203 {
1204 }
1205 
1206 /*
1207  * Start an SRCU grace period, and also queue the callback if non-NULL.
1208  */
1209 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
1210 					     struct rcu_head *rhp, bool do_norm)
1211 {
1212 	unsigned long flags;
1213 	int idx;
1214 	bool needexp = false;
1215 	bool needgp = false;
1216 	unsigned long s;
1217 	struct srcu_data *sdp;
1218 	struct srcu_node *sdp_mynode;
1219 	int ss_state;
1220 
1221 	check_init_srcu_struct(ssp);
1222 	/*
1223 	 * While starting a new grace period, make sure we are in an
1224 	 * SRCU read-side critical section so that the grace-period
1225 	 * sequence number cannot wrap around in the meantime.
1226 	 */
1227 	idx = __srcu_read_lock_nmisafe(ssp);
1228 	ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state);
1229 	if (ss_state < SRCU_SIZE_WAIT_CALL)
1230 		sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id());
1231 	else
1232 		sdp = raw_cpu_ptr(ssp->sda);
1233 	spin_lock_irqsave_sdp_contention(sdp, &flags);
1234 	if (rhp)
1235 		rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
1236 	/*
1237 	 * It's crucial to capture the snapshot 's' for acceleration before
1238 	 * reading the current gp_seq that is used for advancing. This is
1239 	 * essential because if the acceleration snapshot is taken after a
1240 	 * failed advancement attempt, there's a risk that a grace period may
1241 	 * conclude and a new one may start in the interim. If the snapshot is
1242 	 * captured after this sequence of events, the acceleration snapshot 's'
1243 	 * could be excessively advanced, leading to acceleration failure.
1244 	 * In such a scenario, an 'acceleration leak' can occur, where new
1245 	 * callbacks become indefinitely stuck in the RCU_NEXT_TAIL segment.
1246 	 * Also note that encountering advancing failures is a normal
1247 	 * occurrence when the grace period for RCU_WAIT_TAIL is in progress.
1248 	 *
1249 	 * To see this, consider the following events which occur if
1250 	 * rcu_seq_snap() were to be called after advance:
1251 	 *
1252 	 *  1) The RCU_WAIT_TAIL segment has callbacks (gp_num = X + 4) and the
1253 	 *     RCU_NEXT_READY_TAIL also has callbacks (gp_num = X + 8).
1254 	 *
1255 	 *  2) The grace period for RCU_WAIT_TAIL is seen as started but not
1256 	 *     completed so rcu_seq_current() returns X + SRCU_STATE_SCAN1.
1257 	 *
1258 	 *  3) This value is passed to rcu_segcblist_advance() which can't move
1259 	 *     any segment forward and fails.
1260 	 *
1261 	 *  4) srcu_gp_start_if_needed() still proceeds with callback acceleration.
1262 	 *     But then the call to rcu_seq_snap() observes the grace period for the
1263 	 *     RCU_WAIT_TAIL segment as completed and the subsequent one for the
1264 	 *     RCU_NEXT_READY_TAIL segment as started (ie: X + 4 + SRCU_STATE_SCAN1)
1265 	 *     so it returns a snapshot of the next grace period, which is X + 12.
1266 	 *
1267 	 *  5) The value of X + 12 is passed to rcu_segcblist_accelerate() but the
1268 	 *     freshly enqueued callback in RCU_NEXT_TAIL can't move to
1269 	 *     RCU_NEXT_READY_TAIL which already has callbacks for a previous grace
1270 	 *     period (gp_num = X + 8). So acceleration fails.
1271 	 */
1272 	s = rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1273 	if (rhp) {
1274 		rcu_segcblist_advance(&sdp->srcu_cblist,
1275 				      rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1276 		/*
1277 		 * Acceleration can never fail because the base current gp_seq
1278 		 * used for acceleration is <= the value of gp_seq used for
1279 		 * advancing. This means that RCU_NEXT_TAIL segment will
1280 		 * always be able to be emptied by the acceleration into the
1281 		 * RCU_NEXT_READY_TAIL or RCU_WAIT_TAIL segments.
1282 		 */
1283 		WARN_ON_ONCE(!rcu_segcblist_accelerate(&sdp->srcu_cblist, s));
1284 	}
1285 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
1286 		sdp->srcu_gp_seq_needed = s;
1287 		needgp = true;
1288 	}
1289 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
1290 		sdp->srcu_gp_seq_needed_exp = s;
1291 		needexp = true;
1292 	}
1293 	spin_unlock_irqrestore_rcu_node(sdp, flags);
1294 
1295 	/* Ensure that snp node tree is fully initialized before traversing it */
1296 	if (ss_state < SRCU_SIZE_WAIT_BARRIER)
1297 		sdp_mynode = NULL;
1298 	else
1299 		sdp_mynode = sdp->mynode;
1300 
1301 	if (needgp)
1302 		srcu_funnel_gp_start(ssp, sdp, s, do_norm);
1303 	else if (needexp)
1304 		srcu_funnel_exp_start(ssp, sdp_mynode, s);
1305 	__srcu_read_unlock_nmisafe(ssp, idx);
1306 	return s;
1307 }
1308 
1309 /*
1310  * Enqueue an SRCU callback on the srcu_data structure associated with
1311  * the current CPU and the specified srcu_struct structure, initiating
1312  * grace-period processing if it is not already running.
1313  *
1314  * Note that all CPUs must agree that the grace period extended beyond
1315  * all pre-existing SRCU read-side critical section.  On systems with
1316  * more than one CPU, this means that when "func()" is invoked, each CPU
1317  * is guaranteed to have executed a full memory barrier since the end of
1318  * its last corresponding SRCU read-side critical section whose beginning
1319  * preceded the call to call_srcu().  It also means that each CPU executing
1320  * an SRCU read-side critical section that continues beyond the start of
1321  * "func()" must have executed a memory barrier after the call_srcu()
1322  * but before the beginning of that SRCU read-side critical section.
1323  * Note that these guarantees include CPUs that are offline, idle, or
1324  * executing in user mode, as well as CPUs that are executing in the kernel.
1325  *
1326  * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
1327  * resulting SRCU callback function "func()", then both CPU A and CPU
1328  * B are guaranteed to execute a full memory barrier during the time
1329  * interval between the call to call_srcu() and the invocation of "func()".
1330  * This guarantee applies even if CPU A and CPU B are the same CPU (but
1331  * again only if the system has more than one CPU).
1332  *
1333  * Of course, these guarantees apply only for invocations of call_srcu(),
1334  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
1335  * srcu_struct structure.
1336  */
1337 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1338 			rcu_callback_t func, bool do_norm)
1339 {
1340 	if (debug_rcu_head_queue(rhp)) {
1341 		/* Probable double call_srcu(), so leak the callback. */
1342 		WRITE_ONCE(rhp->func, srcu_leak_callback);
1343 		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
1344 		return;
1345 	}
1346 	rhp->func = func;
1347 	(void)srcu_gp_start_if_needed(ssp, rhp, do_norm);
1348 }
1349 
1350 /**
1351  * call_srcu() - Queue a callback for invocation after an SRCU grace period
1352  * @ssp: srcu_struct in queue the callback
1353  * @rhp: structure to be used for queueing the SRCU callback.
1354  * @func: function to be invoked after the SRCU grace period
1355  *
1356  * The callback function will be invoked some time after a full SRCU
1357  * grace period elapses, in other words after all pre-existing SRCU
1358  * read-side critical sections have completed.  However, the callback
1359  * function might well execute concurrently with other SRCU read-side
1360  * critical sections that started after call_srcu() was invoked.  SRCU
1361  * read-side critical sections are delimited by srcu_read_lock() and
1362  * srcu_read_unlock(), and may be nested.
1363  *
1364  * The callback will be invoked from process context, but must nevertheless
1365  * be fast and must not block.
1366  */
1367 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1368 	       rcu_callback_t func)
1369 {
1370 	__call_srcu(ssp, rhp, func, true);
1371 }
1372 EXPORT_SYMBOL_GPL(call_srcu);
1373 
1374 /*
1375  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
1376  */
1377 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
1378 {
1379 	struct rcu_synchronize rcu;
1380 
1381 	srcu_lock_sync(&ssp->dep_map);
1382 
1383 	RCU_LOCKDEP_WARN(lockdep_is_held(ssp) ||
1384 			 lock_is_held(&rcu_bh_lock_map) ||
1385 			 lock_is_held(&rcu_lock_map) ||
1386 			 lock_is_held(&rcu_sched_lock_map),
1387 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
1388 
1389 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
1390 		return;
1391 	might_sleep();
1392 	check_init_srcu_struct(ssp);
1393 	init_completion(&rcu.completion);
1394 	init_rcu_head_on_stack(&rcu.head);
1395 	__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
1396 	wait_for_completion(&rcu.completion);
1397 	destroy_rcu_head_on_stack(&rcu.head);
1398 
1399 	/*
1400 	 * Make sure that later code is ordered after the SRCU grace
1401 	 * period.  This pairs with the spin_lock_irq_rcu_node()
1402 	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
1403 	 * because the current CPU might have been totally uninvolved with
1404 	 * (and thus unordered against) that grace period.
1405 	 */
1406 	smp_mb();
1407 }
1408 
1409 /**
1410  * synchronize_srcu_expedited - Brute-force SRCU grace period
1411  * @ssp: srcu_struct with which to synchronize.
1412  *
1413  * Wait for an SRCU grace period to elapse, but be more aggressive about
1414  * spinning rather than blocking when waiting.
1415  *
1416  * Note that synchronize_srcu_expedited() has the same deadlock and
1417  * memory-ordering properties as does synchronize_srcu().
1418  */
1419 void synchronize_srcu_expedited(struct srcu_struct *ssp)
1420 {
1421 	__synchronize_srcu(ssp, rcu_gp_is_normal());
1422 }
1423 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
1424 
1425 /**
1426  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
1427  * @ssp: srcu_struct with which to synchronize.
1428  *
1429  * Wait for the count to drain to zero of both indexes. To avoid the
1430  * possible starvation of synchronize_srcu(), it waits for the count of
1431  * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
1432  * and then flip the srcu_idx and wait for the count of the other index.
1433  *
1434  * Can block; must be called from process context.
1435  *
1436  * Note that it is illegal to call synchronize_srcu() from the corresponding
1437  * SRCU read-side critical section; doing so will result in deadlock.
1438  * However, it is perfectly legal to call synchronize_srcu() on one
1439  * srcu_struct from some other srcu_struct's read-side critical section,
1440  * as long as the resulting graph of srcu_structs is acyclic.
1441  *
1442  * There are memory-ordering constraints implied by synchronize_srcu().
1443  * On systems with more than one CPU, when synchronize_srcu() returns,
1444  * each CPU is guaranteed to have executed a full memory barrier since
1445  * the end of its last corresponding SRCU read-side critical section
1446  * whose beginning preceded the call to synchronize_srcu().  In addition,
1447  * each CPU having an SRCU read-side critical section that extends beyond
1448  * the return from synchronize_srcu() is guaranteed to have executed a
1449  * full memory barrier after the beginning of synchronize_srcu() and before
1450  * the beginning of that SRCU read-side critical section.  Note that these
1451  * guarantees include CPUs that are offline, idle, or executing in user mode,
1452  * as well as CPUs that are executing in the kernel.
1453  *
1454  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
1455  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
1456  * to have executed a full memory barrier during the execution of
1457  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
1458  * are the same CPU, but again only if the system has more than one CPU.
1459  *
1460  * Of course, these memory-ordering guarantees apply only when
1461  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1462  * passed the same srcu_struct structure.
1463  *
1464  * Implementation of these memory-ordering guarantees is similar to
1465  * that of synchronize_rcu().
1466  *
1467  * If SRCU is likely idle, expedite the first request.  This semantic
1468  * was provided by Classic SRCU, and is relied upon by its users, so TREE
1469  * SRCU must also provide it.  Note that detecting idleness is heuristic
1470  * and subject to both false positives and negatives.
1471  */
1472 void synchronize_srcu(struct srcu_struct *ssp)
1473 {
1474 	if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
1475 		synchronize_srcu_expedited(ssp);
1476 	else
1477 		__synchronize_srcu(ssp, true);
1478 }
1479 EXPORT_SYMBOL_GPL(synchronize_srcu);
1480 
1481 /**
1482  * get_state_synchronize_srcu - Provide an end-of-grace-period cookie
1483  * @ssp: srcu_struct to provide cookie for.
1484  *
1485  * This function returns a cookie that can be passed to
1486  * poll_state_synchronize_srcu(), which will return true if a full grace
1487  * period has elapsed in the meantime.  It is the caller's responsibility
1488  * to make sure that grace period happens, for example, by invoking
1489  * call_srcu() after return from get_state_synchronize_srcu().
1490  */
1491 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp)
1492 {
1493 	// Any prior manipulation of SRCU-protected data must happen
1494 	// before the load from ->srcu_gp_seq.
1495 	smp_mb();
1496 	return rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq);
1497 }
1498 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
1499 
1500 /**
1501  * start_poll_synchronize_srcu - Provide cookie and start grace period
1502  * @ssp: srcu_struct to provide cookie for.
1503  *
1504  * This function returns a cookie that can be passed to
1505  * poll_state_synchronize_srcu(), which will return true if a full grace
1506  * period has elapsed in the meantime.  Unlike get_state_synchronize_srcu(),
1507  * this function also ensures that any needed SRCU grace period will be
1508  * started.  This convenience does come at a cost in terms of CPU overhead.
1509  */
1510 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
1511 {
1512 	return srcu_gp_start_if_needed(ssp, NULL, true);
1513 }
1514 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
1515 
1516 /**
1517  * poll_state_synchronize_srcu - Has cookie's grace period ended?
1518  * @ssp: srcu_struct to provide cookie for.
1519  * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu().
1520  *
1521  * This function takes the cookie that was returned from either
1522  * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and
1523  * returns @true if an SRCU grace period elapsed since the time that the
1524  * cookie was created.
1525  *
1526  * Because cookies are finite in size, wrapping/overflow is possible.
1527  * This is more pronounced on 32-bit systems where cookies are 32 bits,
1528  * where in theory wrapping could happen in about 14 hours assuming
1529  * 25-microsecond expedited SRCU grace periods.  However, a more likely
1530  * overflow lower bound is on the order of 24 days in the case of
1531  * one-millisecond SRCU grace periods.  Of course, wrapping in a 64-bit
1532  * system requires geologic timespans, as in more than seven million years
1533  * even for expedited SRCU grace periods.
1534  *
1535  * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems
1536  * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU.  This uses
1537  * a 16-bit cookie, which rcutorture routinely wraps in a matter of a
1538  * few minutes.  If this proves to be a problem, this counter will be
1539  * expanded to the same size as for Tree SRCU.
1540  */
1541 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie)
1542 {
1543 	if (!rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, cookie))
1544 		return false;
1545 	// Ensure that the end of the SRCU grace period happens before
1546 	// any subsequent code that the caller might execute.
1547 	smp_mb(); // ^^^
1548 	return true;
1549 }
1550 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu);
1551 
1552 /*
1553  * Callback function for srcu_barrier() use.
1554  */
1555 static void srcu_barrier_cb(struct rcu_head *rhp)
1556 {
1557 	struct srcu_data *sdp;
1558 	struct srcu_struct *ssp;
1559 
1560 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1561 	ssp = sdp->ssp;
1562 	if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1563 		complete(&ssp->srcu_sup->srcu_barrier_completion);
1564 }
1565 
1566 /*
1567  * Enqueue an srcu_barrier() callback on the specified srcu_data
1568  * structure's ->cblist.  but only if that ->cblist already has at least one
1569  * callback enqueued.  Note that if a CPU already has callbacks enqueue,
1570  * it must have already registered the need for a future grace period,
1571  * so all we need do is enqueue a callback that will use the same grace
1572  * period as the last callback already in the queue.
1573  */
1574 static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp)
1575 {
1576 	spin_lock_irq_rcu_node(sdp);
1577 	atomic_inc(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1578 	sdp->srcu_barrier_head.func = srcu_barrier_cb;
1579 	debug_rcu_head_queue(&sdp->srcu_barrier_head);
1580 	if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1581 				   &sdp->srcu_barrier_head)) {
1582 		debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1583 		atomic_dec(&ssp->srcu_sup->srcu_barrier_cpu_cnt);
1584 	}
1585 	spin_unlock_irq_rcu_node(sdp);
1586 }
1587 
1588 /**
1589  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1590  * @ssp: srcu_struct on which to wait for in-flight callbacks.
1591  */
1592 void srcu_barrier(struct srcu_struct *ssp)
1593 {
1594 	int cpu;
1595 	int idx;
1596 	unsigned long s = rcu_seq_snap(&ssp->srcu_sup->srcu_barrier_seq);
1597 
1598 	check_init_srcu_struct(ssp);
1599 	mutex_lock(&ssp->srcu_sup->srcu_barrier_mutex);
1600 	if (rcu_seq_done(&ssp->srcu_sup->srcu_barrier_seq, s)) {
1601 		smp_mb(); /* Force ordering following return. */
1602 		mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1603 		return; /* Someone else did our work for us. */
1604 	}
1605 	rcu_seq_start(&ssp->srcu_sup->srcu_barrier_seq);
1606 	init_completion(&ssp->srcu_sup->srcu_barrier_completion);
1607 
1608 	/* Initial count prevents reaching zero until all CBs are posted. */
1609 	atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 1);
1610 
1611 	idx = __srcu_read_lock_nmisafe(ssp);
1612 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1613 		srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda,	get_boot_cpu_id()));
1614 	else
1615 		for_each_possible_cpu(cpu)
1616 			srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu));
1617 	__srcu_read_unlock_nmisafe(ssp, idx);
1618 
1619 	/* Remove the initial count, at which point reaching zero can happen. */
1620 	if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt))
1621 		complete(&ssp->srcu_sup->srcu_barrier_completion);
1622 	wait_for_completion(&ssp->srcu_sup->srcu_barrier_completion);
1623 
1624 	rcu_seq_end(&ssp->srcu_sup->srcu_barrier_seq);
1625 	mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex);
1626 }
1627 EXPORT_SYMBOL_GPL(srcu_barrier);
1628 
1629 /**
1630  * srcu_batches_completed - return batches completed.
1631  * @ssp: srcu_struct on which to report batch completion.
1632  *
1633  * Report the number of batches, correlated with, but not necessarily
1634  * precisely the same as, the number of grace periods that have elapsed.
1635  */
1636 unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1637 {
1638 	return READ_ONCE(ssp->srcu_idx);
1639 }
1640 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1641 
1642 /*
1643  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1644  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1645  * completed in that state.
1646  */
1647 static void srcu_advance_state(struct srcu_struct *ssp)
1648 {
1649 	int idx;
1650 
1651 	mutex_lock(&ssp->srcu_sup->srcu_gp_mutex);
1652 
1653 	/*
1654 	 * Because readers might be delayed for an extended period after
1655 	 * fetching ->srcu_idx for their index, at any point in time there
1656 	 * might well be readers using both idx=0 and idx=1.  We therefore
1657 	 * need to wait for readers to clear from both index values before
1658 	 * invoking a callback.
1659 	 *
1660 	 * The load-acquire ensures that we see the accesses performed
1661 	 * by the prior grace period.
1662 	 */
1663 	idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq)); /* ^^^ */
1664 	if (idx == SRCU_STATE_IDLE) {
1665 		spin_lock_irq_rcu_node(ssp->srcu_sup);
1666 		if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1667 			WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq));
1668 			spin_unlock_irq_rcu_node(ssp->srcu_sup);
1669 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1670 			return;
1671 		}
1672 		idx = rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq));
1673 		if (idx == SRCU_STATE_IDLE)
1674 			srcu_gp_start(ssp);
1675 		spin_unlock_irq_rcu_node(ssp->srcu_sup);
1676 		if (idx != SRCU_STATE_IDLE) {
1677 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1678 			return; /* Someone else started the grace period. */
1679 		}
1680 	}
1681 
1682 	if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1683 		idx = 1 ^ (ssp->srcu_idx & 1);
1684 		if (!try_check_zero(ssp, idx, 1)) {
1685 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1686 			return; /* readers present, retry later. */
1687 		}
1688 		srcu_flip(ssp);
1689 		spin_lock_irq_rcu_node(ssp->srcu_sup);
1690 		rcu_seq_set_state(&ssp->srcu_sup->srcu_gp_seq, SRCU_STATE_SCAN2);
1691 		ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1692 		spin_unlock_irq_rcu_node(ssp->srcu_sup);
1693 	}
1694 
1695 	if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1696 
1697 		/*
1698 		 * SRCU read-side critical sections are normally short,
1699 		 * so check at least twice in quick succession after a flip.
1700 		 */
1701 		idx = 1 ^ (ssp->srcu_idx & 1);
1702 		if (!try_check_zero(ssp, idx, 2)) {
1703 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1704 			return; /* readers present, retry later. */
1705 		}
1706 		ssp->srcu_sup->srcu_n_exp_nodelay = 0;
1707 		srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1708 	}
1709 }
1710 
1711 /*
1712  * Invoke a limited number of SRCU callbacks that have passed through
1713  * their grace period.  If there are more to do, SRCU will reschedule
1714  * the workqueue.  Note that needed memory barriers have been executed
1715  * in this task's context by srcu_readers_active_idx_check().
1716  */
1717 static void srcu_invoke_callbacks(struct work_struct *work)
1718 {
1719 	long len;
1720 	bool more;
1721 	struct rcu_cblist ready_cbs;
1722 	struct rcu_head *rhp;
1723 	struct srcu_data *sdp;
1724 	struct srcu_struct *ssp;
1725 
1726 	sdp = container_of(work, struct srcu_data, work);
1727 
1728 	ssp = sdp->ssp;
1729 	rcu_cblist_init(&ready_cbs);
1730 	spin_lock_irq_rcu_node(sdp);
1731 	WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL));
1732 	rcu_segcblist_advance(&sdp->srcu_cblist,
1733 			      rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
1734 	/*
1735 	 * Although this function is theoretically re-entrant, concurrent
1736 	 * callbacks invocation is disallowed to avoid executing an SRCU barrier
1737 	 * too early.
1738 	 */
1739 	if (sdp->srcu_cblist_invoking ||
1740 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1741 		spin_unlock_irq_rcu_node(sdp);
1742 		return;  /* Someone else on the job or nothing to do. */
1743 	}
1744 
1745 	/* We are on the job!  Extract and invoke ready callbacks. */
1746 	sdp->srcu_cblist_invoking = true;
1747 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1748 	len = ready_cbs.len;
1749 	spin_unlock_irq_rcu_node(sdp);
1750 	rhp = rcu_cblist_dequeue(&ready_cbs);
1751 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1752 		debug_rcu_head_unqueue(rhp);
1753 		debug_rcu_head_callback(rhp);
1754 		local_bh_disable();
1755 		rhp->func(rhp);
1756 		local_bh_enable();
1757 	}
1758 	WARN_ON_ONCE(ready_cbs.len);
1759 
1760 	/*
1761 	 * Update counts, accelerate new callbacks, and if needed,
1762 	 * schedule another round of callback invocation.
1763 	 */
1764 	spin_lock_irq_rcu_node(sdp);
1765 	rcu_segcblist_add_len(&sdp->srcu_cblist, -len);
1766 	sdp->srcu_cblist_invoking = false;
1767 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1768 	spin_unlock_irq_rcu_node(sdp);
1769 	/* An SRCU barrier or callbacks from previous nesting work pending */
1770 	if (more)
1771 		srcu_schedule_cbs_sdp(sdp, 0);
1772 }
1773 
1774 /*
1775  * Finished one round of SRCU grace period.  Start another if there are
1776  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1777  */
1778 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1779 {
1780 	bool pushgp = true;
1781 
1782 	spin_lock_irq_rcu_node(ssp->srcu_sup);
1783 	if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) {
1784 		if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq))) {
1785 			/* All requests fulfilled, time to go idle. */
1786 			pushgp = false;
1787 		}
1788 	} else if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)) {
1789 		/* Outstanding request and no GP.  Start one. */
1790 		srcu_gp_start(ssp);
1791 	}
1792 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
1793 
1794 	if (pushgp)
1795 		queue_delayed_work(rcu_gp_wq, &ssp->srcu_sup->work, delay);
1796 }
1797 
1798 /*
1799  * This is the work-queue function that handles SRCU grace periods.
1800  */
1801 static void process_srcu(struct work_struct *work)
1802 {
1803 	unsigned long curdelay;
1804 	unsigned long j;
1805 	struct srcu_struct *ssp;
1806 	struct srcu_usage *sup;
1807 
1808 	sup = container_of(work, struct srcu_usage, work.work);
1809 	ssp = sup->srcu_ssp;
1810 
1811 	srcu_advance_state(ssp);
1812 	curdelay = srcu_get_delay(ssp);
1813 	if (curdelay) {
1814 		WRITE_ONCE(sup->reschedule_count, 0);
1815 	} else {
1816 		j = jiffies;
1817 		if (READ_ONCE(sup->reschedule_jiffies) == j) {
1818 			WRITE_ONCE(sup->reschedule_count, READ_ONCE(sup->reschedule_count) + 1);
1819 			if (READ_ONCE(sup->reschedule_count) > srcu_max_nodelay)
1820 				curdelay = 1;
1821 		} else {
1822 			WRITE_ONCE(sup->reschedule_count, 1);
1823 			WRITE_ONCE(sup->reschedule_jiffies, j);
1824 		}
1825 	}
1826 	srcu_reschedule(ssp, curdelay);
1827 }
1828 
1829 void srcutorture_get_gp_data(enum rcutorture_type test_type,
1830 			     struct srcu_struct *ssp, int *flags,
1831 			     unsigned long *gp_seq)
1832 {
1833 	if (test_type != SRCU_FLAVOR)
1834 		return;
1835 	*flags = 0;
1836 	*gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq);
1837 }
1838 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1839 
1840 static const char * const srcu_size_state_name[] = {
1841 	"SRCU_SIZE_SMALL",
1842 	"SRCU_SIZE_ALLOC",
1843 	"SRCU_SIZE_WAIT_BARRIER",
1844 	"SRCU_SIZE_WAIT_CALL",
1845 	"SRCU_SIZE_WAIT_CBS1",
1846 	"SRCU_SIZE_WAIT_CBS2",
1847 	"SRCU_SIZE_WAIT_CBS3",
1848 	"SRCU_SIZE_WAIT_CBS4",
1849 	"SRCU_SIZE_BIG",
1850 	"SRCU_SIZE_???",
1851 };
1852 
1853 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1854 {
1855 	int cpu;
1856 	int idx;
1857 	unsigned long s0 = 0, s1 = 0;
1858 	int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state);
1859 	int ss_state_idx = ss_state;
1860 
1861 	idx = ssp->srcu_idx & 0x1;
1862 	if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name))
1863 		ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1;
1864 	pr_alert("%s%s Tree SRCU g%ld state %d (%s)",
1865 		 tt, tf, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq), ss_state,
1866 		 srcu_size_state_name[ss_state_idx]);
1867 	if (!ssp->sda) {
1868 		// Called after cleanup_srcu_struct(), perhaps.
1869 		pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n");
1870 	} else {
1871 		pr_cont(" per-CPU(idx=%d):", idx);
1872 		for_each_possible_cpu(cpu) {
1873 			unsigned long l0, l1;
1874 			unsigned long u0, u1;
1875 			long c0, c1;
1876 			struct srcu_data *sdp;
1877 
1878 			sdp = per_cpu_ptr(ssp->sda, cpu);
1879 			u0 = data_race(atomic_long_read(&sdp->srcu_unlock_count[!idx]));
1880 			u1 = data_race(atomic_long_read(&sdp->srcu_unlock_count[idx]));
1881 
1882 			/*
1883 			 * Make sure that a lock is always counted if the corresponding
1884 			 * unlock is counted.
1885 			 */
1886 			smp_rmb();
1887 
1888 			l0 = data_race(atomic_long_read(&sdp->srcu_lock_count[!idx]));
1889 			l1 = data_race(atomic_long_read(&sdp->srcu_lock_count[idx]));
1890 
1891 			c0 = l0 - u0;
1892 			c1 = l1 - u1;
1893 			pr_cont(" %d(%ld,%ld %c)",
1894 				cpu, c0, c1,
1895 				"C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
1896 			s0 += c0;
1897 			s1 += c1;
1898 		}
1899 		pr_cont(" T(%ld,%ld)\n", s0, s1);
1900 	}
1901 	if (SRCU_SIZING_IS_TORTURE())
1902 		srcu_transition_to_big(ssp);
1903 }
1904 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1905 
1906 static int __init srcu_bootup_announce(void)
1907 {
1908 	pr_info("Hierarchical SRCU implementation.\n");
1909 	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1910 		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1911 	if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY)
1912 		pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay);
1913 	if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY)
1914 		pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay);
1915 	pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase);
1916 	return 0;
1917 }
1918 early_initcall(srcu_bootup_announce);
1919 
1920 void __init srcu_init(void)
1921 {
1922 	struct srcu_usage *sup;
1923 
1924 	/* Decide on srcu_struct-size strategy. */
1925 	if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) {
1926 		if (nr_cpu_ids >= big_cpu_lim) {
1927 			convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention.
1928 			pr_info("%s: Setting srcu_struct sizes to big.\n", __func__);
1929 		} else {
1930 			convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND;
1931 			pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__);
1932 		}
1933 	}
1934 
1935 	/*
1936 	 * Once that is set, call_srcu() can follow the normal path and
1937 	 * queue delayed work. This must follow RCU workqueues creation
1938 	 * and timers initialization.
1939 	 */
1940 	srcu_init_done = true;
1941 	while (!list_empty(&srcu_boot_list)) {
1942 		sup = list_first_entry(&srcu_boot_list, struct srcu_usage,
1943 				      work.work.entry);
1944 		list_del_init(&sup->work.work.entry);
1945 		if (SRCU_SIZING_IS(SRCU_SIZING_INIT) &&
1946 		    sup->srcu_size_state == SRCU_SIZE_SMALL)
1947 			sup->srcu_size_state = SRCU_SIZE_ALLOC;
1948 		queue_work(rcu_gp_wq, &sup->work.work);
1949 	}
1950 }
1951 
1952 #ifdef CONFIG_MODULES
1953 
1954 /* Initialize any global-scope srcu_struct structures used by this module. */
1955 static int srcu_module_coming(struct module *mod)
1956 {
1957 	int i;
1958 	struct srcu_struct *ssp;
1959 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1960 
1961 	for (i = 0; i < mod->num_srcu_structs; i++) {
1962 		ssp = *(sspp++);
1963 		ssp->sda = alloc_percpu(struct srcu_data);
1964 		if (WARN_ON_ONCE(!ssp->sda))
1965 			return -ENOMEM;
1966 	}
1967 	return 0;
1968 }
1969 
1970 /* Clean up any global-scope srcu_struct structures used by this module. */
1971 static void srcu_module_going(struct module *mod)
1972 {
1973 	int i;
1974 	struct srcu_struct *ssp;
1975 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1976 
1977 	for (i = 0; i < mod->num_srcu_structs; i++) {
1978 		ssp = *(sspp++);
1979 		if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed)) &&
1980 		    !WARN_ON_ONCE(!ssp->srcu_sup->sda_is_static))
1981 			cleanup_srcu_struct(ssp);
1982 		if (!WARN_ON(srcu_readers_active(ssp)))
1983 			free_percpu(ssp->sda);
1984 	}
1985 }
1986 
1987 /* Handle one module, either coming or going. */
1988 static int srcu_module_notify(struct notifier_block *self,
1989 			      unsigned long val, void *data)
1990 {
1991 	struct module *mod = data;
1992 	int ret = 0;
1993 
1994 	switch (val) {
1995 	case MODULE_STATE_COMING:
1996 		ret = srcu_module_coming(mod);
1997 		break;
1998 	case MODULE_STATE_GOING:
1999 		srcu_module_going(mod);
2000 		break;
2001 	default:
2002 		break;
2003 	}
2004 	return ret;
2005 }
2006 
2007 static struct notifier_block srcu_module_nb = {
2008 	.notifier_call = srcu_module_notify,
2009 	.priority = 0,
2010 };
2011 
2012 static __init int init_srcu_module_notifier(void)
2013 {
2014 	int ret;
2015 
2016 	ret = register_module_notifier(&srcu_module_nb);
2017 	if (ret)
2018 		pr_warn("Failed to register srcu module notifier\n");
2019 	return ret;
2020 }
2021 late_initcall(init_srcu_module_notifier);
2022 
2023 #endif /* #ifdef CONFIG_MODULES */
2024