xref: /linux/kernel/rcu/tree_nocb.h (revision 1e525507)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  * Copyright SUSE, 2021
10  *
11  * Author: Ingo Molnar <mingo@elte.hu>
12  *	   Paul E. McKenney <paulmck@linux.ibm.com>
13  *	   Frederic Weisbecker <frederic@kernel.org>
14  */
15 
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
20 {
21 	return lockdep_is_held(&rdp->nocb_lock);
22 }
23 
24 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
25 {
26 	/* Race on early boot between thread creation and assignment */
27 	if (!rdp->nocb_cb_kthread || !rdp->nocb_gp_kthread)
28 		return true;
29 
30 	if (current == rdp->nocb_cb_kthread || current == rdp->nocb_gp_kthread)
31 		if (in_task())
32 			return true;
33 	return false;
34 }
35 
36 /*
37  * Offload callback processing from the boot-time-specified set of CPUs
38  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
39  * created that pull the callbacks from the corresponding CPU, wait for
40  * a grace period to elapse, and invoke the callbacks.  These kthreads
41  * are organized into GP kthreads, which manage incoming callbacks, wait for
42  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
43  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
44  * do a wake_up() on their GP kthread when they insert a callback into any
45  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
46  * in which case each kthread actively polls its CPU.  (Which isn't so great
47  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
48  *
49  * This is intended to be used in conjunction with Frederic Weisbecker's
50  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
51  * running CPU-bound user-mode computations.
52  *
53  * Offloading of callbacks can also be used as an energy-efficiency
54  * measure because CPUs with no RCU callbacks queued are more aggressive
55  * about entering dyntick-idle mode.
56  */
57 
58 
59 /*
60  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
61  * If the list is invalid, a warning is emitted and all CPUs are offloaded.
62  */
63 static int __init rcu_nocb_setup(char *str)
64 {
65 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
66 	if (*str == '=') {
67 		if (cpulist_parse(++str, rcu_nocb_mask)) {
68 			pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
69 			cpumask_setall(rcu_nocb_mask);
70 		}
71 	}
72 	rcu_state.nocb_is_setup = true;
73 	return 1;
74 }
75 __setup("rcu_nocbs", rcu_nocb_setup);
76 
77 static int __init parse_rcu_nocb_poll(char *arg)
78 {
79 	rcu_nocb_poll = true;
80 	return 1;
81 }
82 __setup("rcu_nocb_poll", parse_rcu_nocb_poll);
83 
84 /*
85  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
86  * After all, the main point of bypassing is to avoid lock contention
87  * on ->nocb_lock, which only can happen at high call_rcu() rates.
88  */
89 static int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
90 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
91 
92 /*
93  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
94  * lock isn't immediately available, increment ->nocb_lock_contended to
95  * flag the contention.
96  */
97 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
98 	__acquires(&rdp->nocb_bypass_lock)
99 {
100 	lockdep_assert_irqs_disabled();
101 	if (raw_spin_trylock(&rdp->nocb_bypass_lock))
102 		return;
103 	atomic_inc(&rdp->nocb_lock_contended);
104 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
105 	smp_mb__after_atomic(); /* atomic_inc() before lock. */
106 	raw_spin_lock(&rdp->nocb_bypass_lock);
107 	smp_mb__before_atomic(); /* atomic_dec() after lock. */
108 	atomic_dec(&rdp->nocb_lock_contended);
109 }
110 
111 /*
112  * Spinwait until the specified rcu_data structure's ->nocb_lock is
113  * not contended.  Please note that this is extremely special-purpose,
114  * relying on the fact that at most two kthreads and one CPU contend for
115  * this lock, and also that the two kthreads are guaranteed to have frequent
116  * grace-period-duration time intervals between successive acquisitions
117  * of the lock.  This allows us to use an extremely simple throttling
118  * mechanism, and further to apply it only to the CPU doing floods of
119  * call_rcu() invocations.  Don't try this at home!
120  */
121 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
122 {
123 	WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
124 	while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
125 		cpu_relax();
126 }
127 
128 /*
129  * Conditionally acquire the specified rcu_data structure's
130  * ->nocb_bypass_lock.
131  */
132 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
133 {
134 	lockdep_assert_irqs_disabled();
135 	return raw_spin_trylock(&rdp->nocb_bypass_lock);
136 }
137 
138 /*
139  * Release the specified rcu_data structure's ->nocb_bypass_lock.
140  */
141 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
142 	__releases(&rdp->nocb_bypass_lock)
143 {
144 	lockdep_assert_irqs_disabled();
145 	raw_spin_unlock(&rdp->nocb_bypass_lock);
146 }
147 
148 /*
149  * Acquire the specified rcu_data structure's ->nocb_lock, but only
150  * if it corresponds to a no-CBs CPU.
151  */
152 static void rcu_nocb_lock(struct rcu_data *rdp)
153 {
154 	lockdep_assert_irqs_disabled();
155 	if (!rcu_rdp_is_offloaded(rdp))
156 		return;
157 	raw_spin_lock(&rdp->nocb_lock);
158 }
159 
160 /*
161  * Release the specified rcu_data structure's ->nocb_lock, but only
162  * if it corresponds to a no-CBs CPU.
163  */
164 static void rcu_nocb_unlock(struct rcu_data *rdp)
165 {
166 	if (rcu_rdp_is_offloaded(rdp)) {
167 		lockdep_assert_irqs_disabled();
168 		raw_spin_unlock(&rdp->nocb_lock);
169 	}
170 }
171 
172 /*
173  * Release the specified rcu_data structure's ->nocb_lock and restore
174  * interrupts, but only if it corresponds to a no-CBs CPU.
175  */
176 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
177 				       unsigned long flags)
178 {
179 	if (rcu_rdp_is_offloaded(rdp)) {
180 		lockdep_assert_irqs_disabled();
181 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
182 	} else {
183 		local_irq_restore(flags);
184 	}
185 }
186 
187 /* Lockdep check that ->cblist may be safely accessed. */
188 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
189 {
190 	lockdep_assert_irqs_disabled();
191 	if (rcu_rdp_is_offloaded(rdp))
192 		lockdep_assert_held(&rdp->nocb_lock);
193 }
194 
195 /*
196  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
197  * grace period.
198  */
199 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
200 {
201 	swake_up_all(sq);
202 }
203 
204 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
205 {
206 	return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
207 }
208 
209 static void rcu_init_one_nocb(struct rcu_node *rnp)
210 {
211 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
212 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
213 }
214 
215 static bool __wake_nocb_gp(struct rcu_data *rdp_gp,
216 			   struct rcu_data *rdp,
217 			   bool force, unsigned long flags)
218 	__releases(rdp_gp->nocb_gp_lock)
219 {
220 	bool needwake = false;
221 
222 	if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
223 		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
224 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
225 				    TPS("AlreadyAwake"));
226 		return false;
227 	}
228 
229 	if (rdp_gp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
230 		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
231 		del_timer(&rdp_gp->nocb_timer);
232 	}
233 
234 	if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
235 		WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
236 		needwake = true;
237 	}
238 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
239 	if (needwake) {
240 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
241 		wake_up_process(rdp_gp->nocb_gp_kthread);
242 	}
243 
244 	return needwake;
245 }
246 
247 /*
248  * Kick the GP kthread for this NOCB group.
249  */
250 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
251 {
252 	unsigned long flags;
253 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
254 
255 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
256 	return __wake_nocb_gp(rdp_gp, rdp, force, flags);
257 }
258 
259 #ifdef CONFIG_RCU_LAZY
260 /*
261  * LAZY_FLUSH_JIFFIES decides the maximum amount of time that
262  * can elapse before lazy callbacks are flushed. Lazy callbacks
263  * could be flushed much earlier for a number of other reasons
264  * however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are
265  * left unsubmitted to RCU after those many jiffies.
266  */
267 #define LAZY_FLUSH_JIFFIES (10 * HZ)
268 static unsigned long jiffies_lazy_flush = LAZY_FLUSH_JIFFIES;
269 
270 // To be called only from test code.
271 void rcu_set_jiffies_lazy_flush(unsigned long jif)
272 {
273 	jiffies_lazy_flush = jif;
274 }
275 EXPORT_SYMBOL(rcu_set_jiffies_lazy_flush);
276 
277 unsigned long rcu_get_jiffies_lazy_flush(void)
278 {
279 	return jiffies_lazy_flush;
280 }
281 EXPORT_SYMBOL(rcu_get_jiffies_lazy_flush);
282 #endif
283 
284 /*
285  * Arrange to wake the GP kthread for this NOCB group at some future
286  * time when it is safe to do so.
287  */
288 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
289 			       const char *reason)
290 {
291 	unsigned long flags;
292 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
293 
294 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
295 
296 	/*
297 	 * Bypass wakeup overrides previous deferments. In case of
298 	 * callback storms, no need to wake up too early.
299 	 */
300 	if (waketype == RCU_NOCB_WAKE_LAZY &&
301 	    rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) {
302 		mod_timer(&rdp_gp->nocb_timer, jiffies + rcu_get_jiffies_lazy_flush());
303 		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
304 	} else if (waketype == RCU_NOCB_WAKE_BYPASS) {
305 		mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
306 		WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
307 	} else {
308 		if (rdp_gp->nocb_defer_wakeup < RCU_NOCB_WAKE)
309 			mod_timer(&rdp_gp->nocb_timer, jiffies + 1);
310 		if (rdp_gp->nocb_defer_wakeup < waketype)
311 			WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
312 	}
313 
314 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
315 
316 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
317 }
318 
319 /*
320  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
321  * However, if there is a callback to be enqueued and if ->nocb_bypass
322  * proves to be initially empty, just return false because the no-CB GP
323  * kthread may need to be awakened in this case.
324  *
325  * Return true if there was something to be flushed and it succeeded, otherwise
326  * false.
327  *
328  * Note that this function always returns true if rhp is NULL.
329  */
330 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in,
331 				     unsigned long j, bool lazy)
332 {
333 	struct rcu_cblist rcl;
334 	struct rcu_head *rhp = rhp_in;
335 
336 	WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
337 	rcu_lockdep_assert_cblist_protected(rdp);
338 	lockdep_assert_held(&rdp->nocb_bypass_lock);
339 	if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
340 		raw_spin_unlock(&rdp->nocb_bypass_lock);
341 		return false;
342 	}
343 	/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
344 	if (rhp)
345 		rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
346 
347 	/*
348 	 * If the new CB requested was a lazy one, queue it onto the main
349 	 * ->cblist so that we can take advantage of the grace-period that will
350 	 * happen regardless. But queue it onto the bypass list first so that
351 	 * the lazy CB is ordered with the existing CBs in the bypass list.
352 	 */
353 	if (lazy && rhp) {
354 		rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
355 		rhp = NULL;
356 	}
357 	rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
358 	WRITE_ONCE(rdp->lazy_len, 0);
359 
360 	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
361 	WRITE_ONCE(rdp->nocb_bypass_first, j);
362 	rcu_nocb_bypass_unlock(rdp);
363 	return true;
364 }
365 
366 /*
367  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
368  * However, if there is a callback to be enqueued and if ->nocb_bypass
369  * proves to be initially empty, just return false because the no-CB GP
370  * kthread may need to be awakened in this case.
371  *
372  * Note that this function always returns true if rhp is NULL.
373  */
374 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
375 				  unsigned long j, bool lazy)
376 {
377 	if (!rcu_rdp_is_offloaded(rdp))
378 		return true;
379 	rcu_lockdep_assert_cblist_protected(rdp);
380 	rcu_nocb_bypass_lock(rdp);
381 	return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy);
382 }
383 
384 /*
385  * If the ->nocb_bypass_lock is immediately available, flush the
386  * ->nocb_bypass queue into ->cblist.
387  */
388 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
389 {
390 	rcu_lockdep_assert_cblist_protected(rdp);
391 	if (!rcu_rdp_is_offloaded(rdp) ||
392 	    !rcu_nocb_bypass_trylock(rdp))
393 		return;
394 	WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false));
395 }
396 
397 /*
398  * See whether it is appropriate to use the ->nocb_bypass list in order
399  * to control contention on ->nocb_lock.  A limited number of direct
400  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
401  * is non-empty, further callbacks must be placed into ->nocb_bypass,
402  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
403  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
404  * used if ->cblist is empty, because otherwise callbacks can be stranded
405  * on ->nocb_bypass because we cannot count on the current CPU ever again
406  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
407  * non-empty, the corresponding no-CBs grace-period kthread must not be
408  * in an indefinite sleep state.
409  *
410  * Finally, it is not permitted to use the bypass during early boot,
411  * as doing so would confuse the auto-initialization code.  Besides
412  * which, there is no point in worrying about lock contention while
413  * there is only one CPU in operation.
414  */
415 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
416 				bool *was_alldone, unsigned long flags,
417 				bool lazy)
418 {
419 	unsigned long c;
420 	unsigned long cur_gp_seq;
421 	unsigned long j = jiffies;
422 	long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
423 	bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len));
424 
425 	lockdep_assert_irqs_disabled();
426 
427 	// Pure softirq/rcuc based processing: no bypassing, no
428 	// locking.
429 	if (!rcu_rdp_is_offloaded(rdp)) {
430 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
431 		return false;
432 	}
433 
434 	// In the process of (de-)offloading: no bypassing, but
435 	// locking.
436 	if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
437 		rcu_nocb_lock(rdp);
438 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
439 		return false; /* Not offloaded, no bypassing. */
440 	}
441 
442 	// Don't use ->nocb_bypass during early boot.
443 	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
444 		rcu_nocb_lock(rdp);
445 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
446 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
447 		return false;
448 	}
449 
450 	// If we have advanced to a new jiffy, reset counts to allow
451 	// moving back from ->nocb_bypass to ->cblist.
452 	if (j == rdp->nocb_nobypass_last) {
453 		c = rdp->nocb_nobypass_count + 1;
454 	} else {
455 		WRITE_ONCE(rdp->nocb_nobypass_last, j);
456 		c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
457 		if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
458 				 nocb_nobypass_lim_per_jiffy))
459 			c = 0;
460 		else if (c > nocb_nobypass_lim_per_jiffy)
461 			c = nocb_nobypass_lim_per_jiffy;
462 	}
463 	WRITE_ONCE(rdp->nocb_nobypass_count, c);
464 
465 	// If there hasn't yet been all that many ->cblist enqueues
466 	// this jiffy, tell the caller to enqueue onto ->cblist.  But flush
467 	// ->nocb_bypass first.
468 	// Lazy CBs throttle this back and do immediate bypass queuing.
469 	if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) {
470 		rcu_nocb_lock(rdp);
471 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
472 		if (*was_alldone)
473 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
474 					    TPS("FirstQ"));
475 
476 		WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false));
477 		WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
478 		return false; // Caller must enqueue the callback.
479 	}
480 
481 	// If ->nocb_bypass has been used too long or is too full,
482 	// flush ->nocb_bypass to ->cblist.
483 	if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) ||
484 	    (ncbs &&  bypass_is_lazy &&
485 	     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()))) ||
486 	    ncbs >= qhimark) {
487 		rcu_nocb_lock(rdp);
488 		*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
489 
490 		if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) {
491 			if (*was_alldone)
492 				trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
493 						    TPS("FirstQ"));
494 			WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
495 			return false; // Caller must enqueue the callback.
496 		}
497 		if (j != rdp->nocb_gp_adv_time &&
498 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
499 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
500 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
501 			rdp->nocb_gp_adv_time = j;
502 		}
503 
504 		// The flush succeeded and we moved CBs into the regular list.
505 		// Don't wait for the wake up timer as it may be too far ahead.
506 		// Wake up the GP thread now instead, if the cblist was empty.
507 		__call_rcu_nocb_wake(rdp, *was_alldone, flags);
508 
509 		return true; // Callback already enqueued.
510 	}
511 
512 	// We need to use the bypass.
513 	rcu_nocb_wait_contended(rdp);
514 	rcu_nocb_bypass_lock(rdp);
515 	ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
516 	rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
517 	rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
518 
519 	if (lazy)
520 		WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1);
521 
522 	if (!ncbs) {
523 		WRITE_ONCE(rdp->nocb_bypass_first, j);
524 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
525 	}
526 	rcu_nocb_bypass_unlock(rdp);
527 	smp_mb(); /* Order enqueue before wake. */
528 	// A wake up of the grace period kthread or timer adjustment
529 	// needs to be done only if:
530 	// 1. Bypass list was fully empty before (this is the first
531 	//    bypass list entry), or:
532 	// 2. Both of these conditions are met:
533 	//    a. The bypass list previously had only lazy CBs, and:
534 	//    b. The new CB is non-lazy.
535 	if (!ncbs || (bypass_is_lazy && !lazy)) {
536 		// No-CBs GP kthread might be indefinitely asleep, if so, wake.
537 		rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
538 		if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
539 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
540 					    TPS("FirstBQwake"));
541 			__call_rcu_nocb_wake(rdp, true, flags);
542 		} else {
543 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
544 					    TPS("FirstBQnoWake"));
545 			rcu_nocb_unlock(rdp);
546 		}
547 	}
548 	return true; // Callback already enqueued.
549 }
550 
551 /*
552  * Awaken the no-CBs grace-period kthread if needed, either due to it
553  * legitimately being asleep or due to overload conditions.
554  *
555  * If warranted, also wake up the kthread servicing this CPUs queues.
556  */
557 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
558 				 unsigned long flags)
559 				 __releases(rdp->nocb_lock)
560 {
561 	long bypass_len;
562 	unsigned long cur_gp_seq;
563 	unsigned long j;
564 	long lazy_len;
565 	long len;
566 	struct task_struct *t;
567 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
568 
569 	// If we are being polled or there is no kthread, just leave.
570 	t = READ_ONCE(rdp->nocb_gp_kthread);
571 	if (rcu_nocb_poll || !t) {
572 		rcu_nocb_unlock(rdp);
573 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
574 				    TPS("WakeNotPoll"));
575 		return;
576 	}
577 	// Need to actually to a wakeup.
578 	len = rcu_segcblist_n_cbs(&rdp->cblist);
579 	bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass);
580 	lazy_len = READ_ONCE(rdp->lazy_len);
581 	if (was_alldone) {
582 		rdp->qlen_last_fqs_check = len;
583 		// Only lazy CBs in bypass list
584 		if (lazy_len && bypass_len == lazy_len) {
585 			rcu_nocb_unlock(rdp);
586 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY,
587 					   TPS("WakeLazy"));
588 		} else if (!irqs_disabled_flags(flags)) {
589 			/* ... if queue was empty ... */
590 			rcu_nocb_unlock(rdp);
591 			wake_nocb_gp(rdp, false);
592 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
593 					    TPS("WakeEmpty"));
594 		} else {
595 			rcu_nocb_unlock(rdp);
596 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
597 					   TPS("WakeEmptyIsDeferred"));
598 		}
599 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
600 		/* ... or if many callbacks queued. */
601 		rdp->qlen_last_fqs_check = len;
602 		j = jiffies;
603 		if (j != rdp->nocb_gp_adv_time &&
604 		    rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
605 		    rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
606 			rcu_advance_cbs_nowake(rdp->mynode, rdp);
607 			rdp->nocb_gp_adv_time = j;
608 		}
609 		smp_mb(); /* Enqueue before timer_pending(). */
610 		if ((rdp->nocb_cb_sleep ||
611 		     !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
612 		    !timer_pending(&rdp_gp->nocb_timer)) {
613 			rcu_nocb_unlock(rdp);
614 			wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
615 					   TPS("WakeOvfIsDeferred"));
616 		} else {
617 			rcu_nocb_unlock(rdp);
618 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
619 		}
620 	} else {
621 		rcu_nocb_unlock(rdp);
622 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
623 	}
624 }
625 
626 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
627 			  rcu_callback_t func, unsigned long flags, bool lazy)
628 {
629 	bool was_alldone;
630 
631 	if (!rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) {
632 		/* Not enqueued on bypass but locked, do regular enqueue */
633 		rcutree_enqueue(rdp, head, func);
634 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
635 	}
636 }
637 
638 static int nocb_gp_toggle_rdp(struct rcu_data *rdp,
639 			       bool *wake_state)
640 {
641 	struct rcu_segcblist *cblist = &rdp->cblist;
642 	unsigned long flags;
643 	int ret;
644 
645 	rcu_nocb_lock_irqsave(rdp, flags);
646 	if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
647 	    !rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
648 		/*
649 		 * Offloading. Set our flag and notify the offload worker.
650 		 * We will handle this rdp until it ever gets de-offloaded.
651 		 */
652 		rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_GP);
653 		if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
654 			*wake_state = true;
655 		ret = 1;
656 	} else if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED) &&
657 		   rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP)) {
658 		/*
659 		 * De-offloading. Clear our flag and notify the de-offload worker.
660 		 * We will ignore this rdp until it ever gets re-offloaded.
661 		 */
662 		rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_GP);
663 		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB))
664 			*wake_state = true;
665 		ret = 0;
666 	} else {
667 		WARN_ON_ONCE(1);
668 		ret = -1;
669 	}
670 
671 	rcu_nocb_unlock_irqrestore(rdp, flags);
672 
673 	return ret;
674 }
675 
676 static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu)
677 {
678 	trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
679 	swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
680 					!READ_ONCE(my_rdp->nocb_gp_sleep));
681 	trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
682 }
683 
684 /*
685  * No-CBs GP kthreads come here to wait for additional callbacks to show up
686  * or for grace periods to end.
687  */
688 static void nocb_gp_wait(struct rcu_data *my_rdp)
689 {
690 	bool bypass = false;
691 	int __maybe_unused cpu = my_rdp->cpu;
692 	unsigned long cur_gp_seq;
693 	unsigned long flags;
694 	bool gotcbs = false;
695 	unsigned long j = jiffies;
696 	bool lazy = false;
697 	bool needwait_gp = false; // This prevents actual uninitialized use.
698 	bool needwake;
699 	bool needwake_gp;
700 	struct rcu_data *rdp, *rdp_toggling = NULL;
701 	struct rcu_node *rnp;
702 	unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
703 	bool wasempty = false;
704 
705 	/*
706 	 * Each pass through the following loop checks for CBs and for the
707 	 * nearest grace period (if any) to wait for next.  The CB kthreads
708 	 * and the global grace-period kthread are awakened if needed.
709 	 */
710 	WARN_ON_ONCE(my_rdp->nocb_gp_rdp != my_rdp);
711 	/*
712 	 * An rcu_data structure is removed from the list after its
713 	 * CPU is de-offloaded and added to the list before that CPU is
714 	 * (re-)offloaded.  If the following loop happens to be referencing
715 	 * that rcu_data structure during the time that the corresponding
716 	 * CPU is de-offloaded and then immediately re-offloaded, this
717 	 * loop's rdp pointer will be carried to the end of the list by
718 	 * the resulting pair of list operations.  This can cause the loop
719 	 * to skip over some of the rcu_data structures that were supposed
720 	 * to have been scanned.  Fortunately a new iteration through the
721 	 * entire loop is forced after a given CPU's rcu_data structure
722 	 * is added to the list, so the skipped-over rcu_data structures
723 	 * won't be ignored for long.
724 	 */
725 	list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) {
726 		long bypass_ncbs;
727 		bool flush_bypass = false;
728 		long lazy_ncbs;
729 
730 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
731 		rcu_nocb_lock_irqsave(rdp, flags);
732 		lockdep_assert_held(&rdp->nocb_lock);
733 		bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
734 		lazy_ncbs = READ_ONCE(rdp->lazy_len);
735 
736 		if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) &&
737 		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()) ||
738 		     bypass_ncbs > 2 * qhimark)) {
739 			flush_bypass = true;
740 		} else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) &&
741 		    (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
742 		     bypass_ncbs > 2 * qhimark)) {
743 			flush_bypass = true;
744 		} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
745 			rcu_nocb_unlock_irqrestore(rdp, flags);
746 			continue; /* No callbacks here, try next. */
747 		}
748 
749 		if (flush_bypass) {
750 			// Bypass full or old, so flush it.
751 			(void)rcu_nocb_try_flush_bypass(rdp, j);
752 			bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
753 			lazy_ncbs = READ_ONCE(rdp->lazy_len);
754 		}
755 
756 		if (bypass_ncbs) {
757 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
758 					    bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass"));
759 			if (bypass_ncbs == lazy_ncbs)
760 				lazy = true;
761 			else
762 				bypass = true;
763 		}
764 		rnp = rdp->mynode;
765 
766 		// Advance callbacks if helpful and low contention.
767 		needwake_gp = false;
768 		if (!rcu_segcblist_restempty(&rdp->cblist,
769 					     RCU_NEXT_READY_TAIL) ||
770 		    (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
771 		     rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
772 			raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
773 			needwake_gp = rcu_advance_cbs(rnp, rdp);
774 			wasempty = rcu_segcblist_restempty(&rdp->cblist,
775 							   RCU_NEXT_READY_TAIL);
776 			raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
777 		}
778 		// Need to wait on some grace period?
779 		WARN_ON_ONCE(wasempty &&
780 			     !rcu_segcblist_restempty(&rdp->cblist,
781 						      RCU_NEXT_READY_TAIL));
782 		if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
783 			if (!needwait_gp ||
784 			    ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
785 				wait_gp_seq = cur_gp_seq;
786 			needwait_gp = true;
787 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
788 					    TPS("NeedWaitGP"));
789 		}
790 		if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
791 			needwake = rdp->nocb_cb_sleep;
792 			WRITE_ONCE(rdp->nocb_cb_sleep, false);
793 		} else {
794 			needwake = false;
795 		}
796 		rcu_nocb_unlock_irqrestore(rdp, flags);
797 		if (needwake) {
798 			swake_up_one(&rdp->nocb_cb_wq);
799 			gotcbs = true;
800 		}
801 		if (needwake_gp)
802 			rcu_gp_kthread_wake();
803 	}
804 
805 	my_rdp->nocb_gp_bypass = bypass;
806 	my_rdp->nocb_gp_gp = needwait_gp;
807 	my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
808 
809 	// At least one child with non-empty ->nocb_bypass, so set
810 	// timer in order to avoid stranding its callbacks.
811 	if (!rcu_nocb_poll) {
812 		// If bypass list only has lazy CBs. Add a deferred lazy wake up.
813 		if (lazy && !bypass) {
814 			wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY,
815 					TPS("WakeLazyIsDeferred"));
816 		// Otherwise add a deferred bypass wake up.
817 		} else if (bypass) {
818 			wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
819 					TPS("WakeBypassIsDeferred"));
820 		}
821 	}
822 
823 	if (rcu_nocb_poll) {
824 		/* Polling, so trace if first poll in the series. */
825 		if (gotcbs)
826 			trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
827 		if (list_empty(&my_rdp->nocb_head_rdp)) {
828 			raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
829 			if (!my_rdp->nocb_toggling_rdp)
830 				WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
831 			raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
832 			/* Wait for any offloading rdp */
833 			nocb_gp_sleep(my_rdp, cpu);
834 		} else {
835 			schedule_timeout_idle(1);
836 		}
837 	} else if (!needwait_gp) {
838 		/* Wait for callbacks to appear. */
839 		nocb_gp_sleep(my_rdp, cpu);
840 	} else {
841 		rnp = my_rdp->mynode;
842 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
843 		swait_event_interruptible_exclusive(
844 			rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
845 			rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
846 			!READ_ONCE(my_rdp->nocb_gp_sleep));
847 		trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
848 	}
849 
850 	if (!rcu_nocb_poll) {
851 		raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
852 		// (De-)queue an rdp to/from the group if its nocb state is changing
853 		rdp_toggling = my_rdp->nocb_toggling_rdp;
854 		if (rdp_toggling)
855 			my_rdp->nocb_toggling_rdp = NULL;
856 
857 		if (my_rdp->nocb_defer_wakeup > RCU_NOCB_WAKE_NOT) {
858 			WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
859 			del_timer(&my_rdp->nocb_timer);
860 		}
861 		WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
862 		raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
863 	} else {
864 		rdp_toggling = READ_ONCE(my_rdp->nocb_toggling_rdp);
865 		if (rdp_toggling) {
866 			/*
867 			 * Paranoid locking to make sure nocb_toggling_rdp is well
868 			 * reset *before* we (re)set SEGCBLIST_KTHREAD_GP or we could
869 			 * race with another round of nocb toggling for this rdp.
870 			 * Nocb locking should prevent from that already but we stick
871 			 * to paranoia, especially in rare path.
872 			 */
873 			raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
874 			my_rdp->nocb_toggling_rdp = NULL;
875 			raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
876 		}
877 	}
878 
879 	if (rdp_toggling) {
880 		bool wake_state = false;
881 		int ret;
882 
883 		ret = nocb_gp_toggle_rdp(rdp_toggling, &wake_state);
884 		if (ret == 1)
885 			list_add_tail(&rdp_toggling->nocb_entry_rdp, &my_rdp->nocb_head_rdp);
886 		else if (ret == 0)
887 			list_del(&rdp_toggling->nocb_entry_rdp);
888 		if (wake_state)
889 			swake_up_one(&rdp_toggling->nocb_state_wq);
890 	}
891 
892 	my_rdp->nocb_gp_seq = -1;
893 	WARN_ON(signal_pending(current));
894 }
895 
896 /*
897  * No-CBs grace-period-wait kthread.  There is one of these per group
898  * of CPUs, but only once at least one CPU in that group has come online
899  * at least once since boot.  This kthread checks for newly posted
900  * callbacks from any of the CPUs it is responsible for, waits for a
901  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
902  * that then have callback-invocation work to do.
903  */
904 static int rcu_nocb_gp_kthread(void *arg)
905 {
906 	struct rcu_data *rdp = arg;
907 
908 	for (;;) {
909 		WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
910 		nocb_gp_wait(rdp);
911 		cond_resched_tasks_rcu_qs();
912 	}
913 	return 0;
914 }
915 
916 static inline bool nocb_cb_can_run(struct rcu_data *rdp)
917 {
918 	u8 flags = SEGCBLIST_OFFLOADED | SEGCBLIST_KTHREAD_CB;
919 
920 	return rcu_segcblist_test_flags(&rdp->cblist, flags);
921 }
922 
923 static inline bool nocb_cb_wait_cond(struct rcu_data *rdp)
924 {
925 	return nocb_cb_can_run(rdp) && !READ_ONCE(rdp->nocb_cb_sleep);
926 }
927 
928 /*
929  * Invoke any ready callbacks from the corresponding no-CBs CPU,
930  * then, if there are no more, wait for more to appear.
931  */
932 static void nocb_cb_wait(struct rcu_data *rdp)
933 {
934 	struct rcu_segcblist *cblist = &rdp->cblist;
935 	unsigned long cur_gp_seq;
936 	unsigned long flags;
937 	bool needwake_state = false;
938 	bool needwake_gp = false;
939 	bool can_sleep = true;
940 	struct rcu_node *rnp = rdp->mynode;
941 
942 	do {
943 		swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
944 						    nocb_cb_wait_cond(rdp));
945 
946 		if (READ_ONCE(rdp->nocb_cb_sleep)) {
947 			WARN_ON(signal_pending(current));
948 			trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
949 		}
950 	} while (!nocb_cb_can_run(rdp));
951 
952 
953 	local_irq_save(flags);
954 	rcu_momentary_dyntick_idle();
955 	local_irq_restore(flags);
956 	/*
957 	 * Disable BH to provide the expected environment.  Also, when
958 	 * transitioning to/from NOCB mode, a self-requeuing callback might
959 	 * be invoked from softirq.  A short grace period could cause both
960 	 * instances of this callback would execute concurrently.
961 	 */
962 	local_bh_disable();
963 	rcu_do_batch(rdp);
964 	local_bh_enable();
965 	lockdep_assert_irqs_enabled();
966 	rcu_nocb_lock_irqsave(rdp, flags);
967 	if (rcu_segcblist_nextgp(cblist, &cur_gp_seq) &&
968 	    rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
969 	    raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
970 		needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
971 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
972 	}
973 
974 	if (rcu_segcblist_test_flags(cblist, SEGCBLIST_OFFLOADED)) {
975 		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB)) {
976 			rcu_segcblist_set_flags(cblist, SEGCBLIST_KTHREAD_CB);
977 			if (rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
978 				needwake_state = true;
979 		}
980 		if (rcu_segcblist_ready_cbs(cblist))
981 			can_sleep = false;
982 	} else {
983 		/*
984 		 * De-offloading. Clear our flag and notify the de-offload worker.
985 		 * We won't touch the callbacks and keep sleeping until we ever
986 		 * get re-offloaded.
987 		 */
988 		WARN_ON_ONCE(!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB));
989 		rcu_segcblist_clear_flags(cblist, SEGCBLIST_KTHREAD_CB);
990 		if (!rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP))
991 			needwake_state = true;
992 	}
993 
994 	WRITE_ONCE(rdp->nocb_cb_sleep, can_sleep);
995 
996 	if (rdp->nocb_cb_sleep)
997 		trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
998 
999 	rcu_nocb_unlock_irqrestore(rdp, flags);
1000 	if (needwake_gp)
1001 		rcu_gp_kthread_wake();
1002 
1003 	if (needwake_state)
1004 		swake_up_one(&rdp->nocb_state_wq);
1005 }
1006 
1007 /*
1008  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
1009  * nocb_cb_wait() to do the dirty work.
1010  */
1011 static int rcu_nocb_cb_kthread(void *arg)
1012 {
1013 	struct rcu_data *rdp = arg;
1014 
1015 	// Each pass through this loop does one callback batch, and,
1016 	// if there are no more ready callbacks, waits for them.
1017 	for (;;) {
1018 		nocb_cb_wait(rdp);
1019 		cond_resched_tasks_rcu_qs();
1020 	}
1021 	return 0;
1022 }
1023 
1024 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
1025 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1026 {
1027 	return READ_ONCE(rdp->nocb_defer_wakeup) >= level;
1028 }
1029 
1030 /* Do a deferred wakeup of rcu_nocb_kthread(). */
1031 static bool do_nocb_deferred_wakeup_common(struct rcu_data *rdp_gp,
1032 					   struct rcu_data *rdp, int level,
1033 					   unsigned long flags)
1034 	__releases(rdp_gp->nocb_gp_lock)
1035 {
1036 	int ndw;
1037 	int ret;
1038 
1039 	if (!rcu_nocb_need_deferred_wakeup(rdp_gp, level)) {
1040 		raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1041 		return false;
1042 	}
1043 
1044 	ndw = rdp_gp->nocb_defer_wakeup;
1045 	ret = __wake_nocb_gp(rdp_gp, rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
1046 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
1047 
1048 	return ret;
1049 }
1050 
1051 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
1052 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
1053 {
1054 	unsigned long flags;
1055 	struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
1056 
1057 	WARN_ON_ONCE(rdp->nocb_gp_rdp != rdp);
1058 	trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1059 
1060 	raw_spin_lock_irqsave(&rdp->nocb_gp_lock, flags);
1061 	smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1062 	do_nocb_deferred_wakeup_common(rdp, rdp, RCU_NOCB_WAKE_BYPASS, flags);
1063 }
1064 
1065 /*
1066  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
1067  * This means we do an inexact common-case check.  Note that if
1068  * we miss, ->nocb_timer will eventually clean things up.
1069  */
1070 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1071 {
1072 	unsigned long flags;
1073 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1074 
1075 	if (!rdp_gp || !rcu_nocb_need_deferred_wakeup(rdp_gp, RCU_NOCB_WAKE))
1076 		return false;
1077 
1078 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1079 	return do_nocb_deferred_wakeup_common(rdp_gp, rdp, RCU_NOCB_WAKE, flags);
1080 }
1081 
1082 void rcu_nocb_flush_deferred_wakeup(void)
1083 {
1084 	do_nocb_deferred_wakeup(this_cpu_ptr(&rcu_data));
1085 }
1086 EXPORT_SYMBOL_GPL(rcu_nocb_flush_deferred_wakeup);
1087 
1088 static int rdp_offload_toggle(struct rcu_data *rdp,
1089 			       bool offload, unsigned long flags)
1090 	__releases(rdp->nocb_lock)
1091 {
1092 	struct rcu_segcblist *cblist = &rdp->cblist;
1093 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1094 	bool wake_gp = false;
1095 
1096 	rcu_segcblist_offload(cblist, offload);
1097 
1098 	if (rdp->nocb_cb_sleep)
1099 		rdp->nocb_cb_sleep = false;
1100 	rcu_nocb_unlock_irqrestore(rdp, flags);
1101 
1102 	/*
1103 	 * Ignore former value of nocb_cb_sleep and force wake up as it could
1104 	 * have been spuriously set to false already.
1105 	 */
1106 	swake_up_one(&rdp->nocb_cb_wq);
1107 
1108 	raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1109 	// Queue this rdp for add/del to/from the list to iterate on rcuog
1110 	WRITE_ONCE(rdp_gp->nocb_toggling_rdp, rdp);
1111 	if (rdp_gp->nocb_gp_sleep) {
1112 		rdp_gp->nocb_gp_sleep = false;
1113 		wake_gp = true;
1114 	}
1115 	raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1116 
1117 	return wake_gp;
1118 }
1119 
1120 static long rcu_nocb_rdp_deoffload(void *arg)
1121 {
1122 	struct rcu_data *rdp = arg;
1123 	struct rcu_segcblist *cblist = &rdp->cblist;
1124 	unsigned long flags;
1125 	int wake_gp;
1126 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1127 
1128 	/*
1129 	 * rcu_nocb_rdp_deoffload() may be called directly if
1130 	 * rcuog/o[p] spawn failed, because at this time the rdp->cpu
1131 	 * is not online yet.
1132 	 */
1133 	WARN_ON_ONCE((rdp->cpu != raw_smp_processor_id()) && cpu_online(rdp->cpu));
1134 
1135 	pr_info("De-offloading %d\n", rdp->cpu);
1136 
1137 	rcu_nocb_lock_irqsave(rdp, flags);
1138 	/*
1139 	 * Flush once and for all now. This suffices because we are
1140 	 * running on the target CPU holding ->nocb_lock (thus having
1141 	 * interrupts disabled), and because rdp_offload_toggle()
1142 	 * invokes rcu_segcblist_offload(), which clears SEGCBLIST_OFFLOADED.
1143 	 * Thus future calls to rcu_segcblist_completely_offloaded() will
1144 	 * return false, which means that future calls to rcu_nocb_try_bypass()
1145 	 * will refuse to put anything into the bypass.
1146 	 */
1147 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
1148 	/*
1149 	 * Start with invoking rcu_core() early. This way if the current thread
1150 	 * happens to preempt an ongoing call to rcu_core() in the middle,
1151 	 * leaving some work dismissed because rcu_core() still thinks the rdp is
1152 	 * completely offloaded, we are guaranteed a nearby future instance of
1153 	 * rcu_core() to catch up.
1154 	 */
1155 	rcu_segcblist_set_flags(cblist, SEGCBLIST_RCU_CORE);
1156 	invoke_rcu_core();
1157 	wake_gp = rdp_offload_toggle(rdp, false, flags);
1158 
1159 	mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1160 	if (rdp_gp->nocb_gp_kthread) {
1161 		if (wake_gp)
1162 			wake_up_process(rdp_gp->nocb_gp_kthread);
1163 
1164 		/*
1165 		 * If rcuo[p] kthread spawn failed, directly remove SEGCBLIST_KTHREAD_CB.
1166 		 * Just wait SEGCBLIST_KTHREAD_GP to be cleared by rcuog.
1167 		 */
1168 		if (!rdp->nocb_cb_kthread) {
1169 			rcu_nocb_lock_irqsave(rdp, flags);
1170 			rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB);
1171 			rcu_nocb_unlock_irqrestore(rdp, flags);
1172 		}
1173 
1174 		swait_event_exclusive(rdp->nocb_state_wq,
1175 					!rcu_segcblist_test_flags(cblist,
1176 					  SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP));
1177 	} else {
1178 		/*
1179 		 * No kthread to clear the flags for us or remove the rdp from the nocb list
1180 		 * to iterate. Do it here instead. Locking doesn't look stricly necessary
1181 		 * but we stick to paranoia in this rare path.
1182 		 */
1183 		rcu_nocb_lock_irqsave(rdp, flags);
1184 		rcu_segcblist_clear_flags(&rdp->cblist,
1185 				SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1186 		rcu_nocb_unlock_irqrestore(rdp, flags);
1187 
1188 		list_del(&rdp->nocb_entry_rdp);
1189 	}
1190 	mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1191 
1192 	/*
1193 	 * Lock one last time to acquire latest callback updates from kthreads
1194 	 * so we can later handle callbacks locally without locking.
1195 	 */
1196 	rcu_nocb_lock_irqsave(rdp, flags);
1197 	/*
1198 	 * Theoretically we could clear SEGCBLIST_LOCKING after the nocb
1199 	 * lock is released but how about being paranoid for once?
1200 	 */
1201 	rcu_segcblist_clear_flags(cblist, SEGCBLIST_LOCKING);
1202 	/*
1203 	 * Without SEGCBLIST_LOCKING, we can't use
1204 	 * rcu_nocb_unlock_irqrestore() anymore.
1205 	 */
1206 	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1207 
1208 	/* Sanity check */
1209 	WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1210 
1211 
1212 	return 0;
1213 }
1214 
1215 int rcu_nocb_cpu_deoffload(int cpu)
1216 {
1217 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1218 	int ret = 0;
1219 
1220 	cpus_read_lock();
1221 	mutex_lock(&rcu_state.barrier_mutex);
1222 	if (rcu_rdp_is_offloaded(rdp)) {
1223 		if (cpu_online(cpu)) {
1224 			ret = work_on_cpu(cpu, rcu_nocb_rdp_deoffload, rdp);
1225 			if (!ret)
1226 				cpumask_clear_cpu(cpu, rcu_nocb_mask);
1227 		} else {
1228 			pr_info("NOCB: Cannot CB-deoffload offline CPU %d\n", rdp->cpu);
1229 			ret = -EINVAL;
1230 		}
1231 	}
1232 	mutex_unlock(&rcu_state.barrier_mutex);
1233 	cpus_read_unlock();
1234 
1235 	return ret;
1236 }
1237 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_deoffload);
1238 
1239 static long rcu_nocb_rdp_offload(void *arg)
1240 {
1241 	struct rcu_data *rdp = arg;
1242 	struct rcu_segcblist *cblist = &rdp->cblist;
1243 	unsigned long flags;
1244 	int wake_gp;
1245 	struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1246 
1247 	WARN_ON_ONCE(rdp->cpu != raw_smp_processor_id());
1248 	/*
1249 	 * For now we only support re-offload, ie: the rdp must have been
1250 	 * offloaded on boot first.
1251 	 */
1252 	if (!rdp->nocb_gp_rdp)
1253 		return -EINVAL;
1254 
1255 	if (WARN_ON_ONCE(!rdp_gp->nocb_gp_kthread))
1256 		return -EINVAL;
1257 
1258 	pr_info("Offloading %d\n", rdp->cpu);
1259 
1260 	/*
1261 	 * Can't use rcu_nocb_lock_irqsave() before SEGCBLIST_LOCKING
1262 	 * is set.
1263 	 */
1264 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1265 
1266 	/*
1267 	 * We didn't take the nocb lock while working on the
1268 	 * rdp->cblist with SEGCBLIST_LOCKING cleared (pure softirq/rcuc mode).
1269 	 * Every modifications that have been done previously on
1270 	 * rdp->cblist must be visible remotely by the nocb kthreads
1271 	 * upon wake up after reading the cblist flags.
1272 	 *
1273 	 * The layout against nocb_lock enforces that ordering:
1274 	 *
1275 	 *  __rcu_nocb_rdp_offload()   nocb_cb_wait()/nocb_gp_wait()
1276 	 * -------------------------   ----------------------------
1277 	 *      WRITE callbacks           rcu_nocb_lock()
1278 	 *      rcu_nocb_lock()           READ flags
1279 	 *      WRITE flags               READ callbacks
1280 	 *      rcu_nocb_unlock()         rcu_nocb_unlock()
1281 	 */
1282 	wake_gp = rdp_offload_toggle(rdp, true, flags);
1283 	if (wake_gp)
1284 		wake_up_process(rdp_gp->nocb_gp_kthread);
1285 	swait_event_exclusive(rdp->nocb_state_wq,
1286 			      rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_CB) &&
1287 			      rcu_segcblist_test_flags(cblist, SEGCBLIST_KTHREAD_GP));
1288 
1289 	/*
1290 	 * All kthreads are ready to work, we can finally relieve rcu_core() and
1291 	 * enable nocb bypass.
1292 	 */
1293 	rcu_nocb_lock_irqsave(rdp, flags);
1294 	rcu_segcblist_clear_flags(cblist, SEGCBLIST_RCU_CORE);
1295 	rcu_nocb_unlock_irqrestore(rdp, flags);
1296 
1297 	return 0;
1298 }
1299 
1300 int rcu_nocb_cpu_offload(int cpu)
1301 {
1302 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1303 	int ret = 0;
1304 
1305 	cpus_read_lock();
1306 	mutex_lock(&rcu_state.barrier_mutex);
1307 	if (!rcu_rdp_is_offloaded(rdp)) {
1308 		if (cpu_online(cpu)) {
1309 			ret = work_on_cpu(cpu, rcu_nocb_rdp_offload, rdp);
1310 			if (!ret)
1311 				cpumask_set_cpu(cpu, rcu_nocb_mask);
1312 		} else {
1313 			pr_info("NOCB: Cannot CB-offload offline CPU %d\n", rdp->cpu);
1314 			ret = -EINVAL;
1315 		}
1316 	}
1317 	mutex_unlock(&rcu_state.barrier_mutex);
1318 	cpus_read_unlock();
1319 
1320 	return ret;
1321 }
1322 EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
1323 
1324 #ifdef CONFIG_RCU_LAZY
1325 static unsigned long
1326 lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1327 {
1328 	int cpu;
1329 	unsigned long count = 0;
1330 
1331 	if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1332 		return 0;
1333 
1334 	/*  Protect rcu_nocb_mask against concurrent (de-)offloading. */
1335 	if (!mutex_trylock(&rcu_state.barrier_mutex))
1336 		return 0;
1337 
1338 	/* Snapshot count of all CPUs */
1339 	for_each_cpu(cpu, rcu_nocb_mask) {
1340 		struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1341 
1342 		count +=  READ_ONCE(rdp->lazy_len);
1343 	}
1344 
1345 	mutex_unlock(&rcu_state.barrier_mutex);
1346 
1347 	return count ? count : SHRINK_EMPTY;
1348 }
1349 
1350 static unsigned long
1351 lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1352 {
1353 	int cpu;
1354 	unsigned long flags;
1355 	unsigned long count = 0;
1356 
1357 	if (WARN_ON_ONCE(!cpumask_available(rcu_nocb_mask)))
1358 		return 0;
1359 	/*
1360 	 * Protect against concurrent (de-)offloading. Otherwise nocb locking
1361 	 * may be ignored or imbalanced.
1362 	 */
1363 	if (!mutex_trylock(&rcu_state.barrier_mutex)) {
1364 		/*
1365 		 * But really don't insist if barrier_mutex is contended since we
1366 		 * can't guarantee that it will never engage in a dependency
1367 		 * chain involving memory allocation. The lock is seldom contended
1368 		 * anyway.
1369 		 */
1370 		return 0;
1371 	}
1372 
1373 	/* Snapshot count of all CPUs */
1374 	for_each_cpu(cpu, rcu_nocb_mask) {
1375 		struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1376 		int _count;
1377 
1378 		if (WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp)))
1379 			continue;
1380 
1381 		if (!READ_ONCE(rdp->lazy_len))
1382 			continue;
1383 
1384 		rcu_nocb_lock_irqsave(rdp, flags);
1385 		/*
1386 		 * Recheck under the nocb lock. Since we are not holding the bypass
1387 		 * lock we may still race with increments from the enqueuer but still
1388 		 * we know for sure if there is at least one lazy callback.
1389 		 */
1390 		_count = READ_ONCE(rdp->lazy_len);
1391 		if (!_count) {
1392 			rcu_nocb_unlock_irqrestore(rdp, flags);
1393 			continue;
1394 		}
1395 		rcu_nocb_try_flush_bypass(rdp, jiffies);
1396 		rcu_nocb_unlock_irqrestore(rdp, flags);
1397 		wake_nocb_gp(rdp, false);
1398 		sc->nr_to_scan -= _count;
1399 		count += _count;
1400 		if (sc->nr_to_scan <= 0)
1401 			break;
1402 	}
1403 
1404 	mutex_unlock(&rcu_state.barrier_mutex);
1405 
1406 	return count ? count : SHRINK_STOP;
1407 }
1408 #endif // #ifdef CONFIG_RCU_LAZY
1409 
1410 void __init rcu_init_nohz(void)
1411 {
1412 	int cpu;
1413 	struct rcu_data *rdp;
1414 	const struct cpumask *cpumask = NULL;
1415 	struct shrinker * __maybe_unused lazy_rcu_shrinker;
1416 
1417 #if defined(CONFIG_NO_HZ_FULL)
1418 	if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask))
1419 		cpumask = tick_nohz_full_mask;
1420 #endif
1421 
1422 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) &&
1423 	    !rcu_state.nocb_is_setup && !cpumask)
1424 		cpumask = cpu_possible_mask;
1425 
1426 	if (cpumask) {
1427 		if (!cpumask_available(rcu_nocb_mask)) {
1428 			if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
1429 				pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
1430 				return;
1431 			}
1432 		}
1433 
1434 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask);
1435 		rcu_state.nocb_is_setup = true;
1436 	}
1437 
1438 	if (!rcu_state.nocb_is_setup)
1439 		return;
1440 
1441 #ifdef CONFIG_RCU_LAZY
1442 	lazy_rcu_shrinker = shrinker_alloc(0, "rcu-lazy");
1443 	if (!lazy_rcu_shrinker) {
1444 		pr_err("Failed to allocate lazy_rcu shrinker!\n");
1445 	} else {
1446 		lazy_rcu_shrinker->count_objects = lazy_rcu_shrink_count;
1447 		lazy_rcu_shrinker->scan_objects = lazy_rcu_shrink_scan;
1448 
1449 		shrinker_register(lazy_rcu_shrinker);
1450 	}
1451 #endif // #ifdef CONFIG_RCU_LAZY
1452 
1453 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
1454 		pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
1455 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
1456 			    rcu_nocb_mask);
1457 	}
1458 	if (cpumask_empty(rcu_nocb_mask))
1459 		pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
1460 	else
1461 		pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
1462 			cpumask_pr_args(rcu_nocb_mask));
1463 	if (rcu_nocb_poll)
1464 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
1465 
1466 	for_each_cpu(cpu, rcu_nocb_mask) {
1467 		rdp = per_cpu_ptr(&rcu_data, cpu);
1468 		if (rcu_segcblist_empty(&rdp->cblist))
1469 			rcu_segcblist_init(&rdp->cblist);
1470 		rcu_segcblist_offload(&rdp->cblist, true);
1471 		rcu_segcblist_set_flags(&rdp->cblist, SEGCBLIST_KTHREAD_CB | SEGCBLIST_KTHREAD_GP);
1472 		rcu_segcblist_clear_flags(&rdp->cblist, SEGCBLIST_RCU_CORE);
1473 	}
1474 	rcu_organize_nocb_kthreads();
1475 }
1476 
1477 /* Initialize per-rcu_data variables for no-CBs CPUs. */
1478 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1479 {
1480 	init_swait_queue_head(&rdp->nocb_cb_wq);
1481 	init_swait_queue_head(&rdp->nocb_gp_wq);
1482 	init_swait_queue_head(&rdp->nocb_state_wq);
1483 	raw_spin_lock_init(&rdp->nocb_lock);
1484 	raw_spin_lock_init(&rdp->nocb_bypass_lock);
1485 	raw_spin_lock_init(&rdp->nocb_gp_lock);
1486 	timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
1487 	rcu_cblist_init(&rdp->nocb_bypass);
1488 	WRITE_ONCE(rdp->lazy_len, 0);
1489 	mutex_init(&rdp->nocb_gp_kthread_mutex);
1490 }
1491 
1492 /*
1493  * If the specified CPU is a no-CBs CPU that does not already have its
1494  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
1495  * for this CPU's group has not yet been created, spawn it as well.
1496  */
1497 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1498 {
1499 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1500 	struct rcu_data *rdp_gp;
1501 	struct task_struct *t;
1502 	struct sched_param sp;
1503 
1504 	if (!rcu_scheduler_fully_active || !rcu_state.nocb_is_setup)
1505 		return;
1506 
1507 	/* If there already is an rcuo kthread, then nothing to do. */
1508 	if (rdp->nocb_cb_kthread)
1509 		return;
1510 
1511 	/* If we didn't spawn the GP kthread first, reorganize! */
1512 	sp.sched_priority = kthread_prio;
1513 	rdp_gp = rdp->nocb_gp_rdp;
1514 	mutex_lock(&rdp_gp->nocb_gp_kthread_mutex);
1515 	if (!rdp_gp->nocb_gp_kthread) {
1516 		t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
1517 				"rcuog/%d", rdp_gp->cpu);
1518 		if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__)) {
1519 			mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1520 			goto end;
1521 		}
1522 		WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
1523 		if (kthread_prio)
1524 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1525 	}
1526 	mutex_unlock(&rdp_gp->nocb_gp_kthread_mutex);
1527 
1528 	/* Spawn the kthread for this CPU. */
1529 	t = kthread_run(rcu_nocb_cb_kthread, rdp,
1530 			"rcuo%c/%d", rcu_state.abbr, cpu);
1531 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
1532 		goto end;
1533 
1534 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_CB_BOOST) && kthread_prio)
1535 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1536 
1537 	WRITE_ONCE(rdp->nocb_cb_kthread, t);
1538 	WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
1539 	return;
1540 end:
1541 	mutex_lock(&rcu_state.barrier_mutex);
1542 	if (rcu_rdp_is_offloaded(rdp)) {
1543 		rcu_nocb_rdp_deoffload(rdp);
1544 		cpumask_clear_cpu(cpu, rcu_nocb_mask);
1545 	}
1546 	mutex_unlock(&rcu_state.barrier_mutex);
1547 }
1548 
1549 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
1550 static int rcu_nocb_gp_stride = -1;
1551 module_param(rcu_nocb_gp_stride, int, 0444);
1552 
1553 /*
1554  * Initialize GP-CB relationships for all no-CBs CPU.
1555  */
1556 static void __init rcu_organize_nocb_kthreads(void)
1557 {
1558 	int cpu;
1559 	bool firsttime = true;
1560 	bool gotnocbs = false;
1561 	bool gotnocbscbs = true;
1562 	int ls = rcu_nocb_gp_stride;
1563 	int nl = 0;  /* Next GP kthread. */
1564 	struct rcu_data *rdp;
1565 	struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
1566 
1567 	if (!cpumask_available(rcu_nocb_mask))
1568 		return;
1569 	if (ls == -1) {
1570 		ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
1571 		rcu_nocb_gp_stride = ls;
1572 	}
1573 
1574 	/*
1575 	 * Each pass through this loop sets up one rcu_data structure.
1576 	 * Should the corresponding CPU come online in the future, then
1577 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
1578 	 */
1579 	for_each_possible_cpu(cpu) {
1580 		rdp = per_cpu_ptr(&rcu_data, cpu);
1581 		if (rdp->cpu >= nl) {
1582 			/* New GP kthread, set up for CBs & next GP. */
1583 			gotnocbs = true;
1584 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
1585 			rdp_gp = rdp;
1586 			INIT_LIST_HEAD(&rdp->nocb_head_rdp);
1587 			if (dump_tree) {
1588 				if (!firsttime)
1589 					pr_cont("%s\n", gotnocbscbs
1590 							? "" : " (self only)");
1591 				gotnocbscbs = false;
1592 				firsttime = false;
1593 				pr_alert("%s: No-CB GP kthread CPU %d:",
1594 					 __func__, cpu);
1595 			}
1596 		} else {
1597 			/* Another CB kthread, link to previous GP kthread. */
1598 			gotnocbscbs = true;
1599 			if (dump_tree)
1600 				pr_cont(" %d", cpu);
1601 		}
1602 		rdp->nocb_gp_rdp = rdp_gp;
1603 		if (cpumask_test_cpu(cpu, rcu_nocb_mask))
1604 			list_add_tail(&rdp->nocb_entry_rdp, &rdp_gp->nocb_head_rdp);
1605 	}
1606 	if (gotnocbs && dump_tree)
1607 		pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
1608 }
1609 
1610 /*
1611  * Bind the current task to the offloaded CPUs.  If there are no offloaded
1612  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
1613  */
1614 void rcu_bind_current_to_nocb(void)
1615 {
1616 	if (cpumask_available(rcu_nocb_mask) && !cpumask_empty(rcu_nocb_mask))
1617 		WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
1618 }
1619 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
1620 
1621 // The ->on_cpu field is available only in CONFIG_SMP=y, so...
1622 #ifdef CONFIG_SMP
1623 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1624 {
1625 	return tsp && task_is_running(tsp) && !tsp->on_cpu ? "!" : "";
1626 }
1627 #else // #ifdef CONFIG_SMP
1628 static char *show_rcu_should_be_on_cpu(struct task_struct *tsp)
1629 {
1630 	return "";
1631 }
1632 #endif // #else #ifdef CONFIG_SMP
1633 
1634 /*
1635  * Dump out nocb grace-period kthread state for the specified rcu_data
1636  * structure.
1637  */
1638 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
1639 {
1640 	struct rcu_node *rnp = rdp->mynode;
1641 
1642 	pr_info("nocb GP %d %c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu %c CPU %d%s\n",
1643 		rdp->cpu,
1644 		"kK"[!!rdp->nocb_gp_kthread],
1645 		"lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
1646 		"dD"[!!rdp->nocb_defer_wakeup],
1647 		"tT"[timer_pending(&rdp->nocb_timer)],
1648 		"sS"[!!rdp->nocb_gp_sleep],
1649 		".W"[swait_active(&rdp->nocb_gp_wq)],
1650 		".W"[swait_active(&rnp->nocb_gp_wq[0])],
1651 		".W"[swait_active(&rnp->nocb_gp_wq[1])],
1652 		".B"[!!rdp->nocb_gp_bypass],
1653 		".G"[!!rdp->nocb_gp_gp],
1654 		(long)rdp->nocb_gp_seq,
1655 		rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops),
1656 		rdp->nocb_gp_kthread ? task_state_to_char(rdp->nocb_gp_kthread) : '.',
1657 		rdp->nocb_gp_kthread ? (int)task_cpu(rdp->nocb_gp_kthread) : -1,
1658 		show_rcu_should_be_on_cpu(rdp->nocb_gp_kthread));
1659 }
1660 
1661 /* Dump out nocb kthread state for the specified rcu_data structure. */
1662 static void show_rcu_nocb_state(struct rcu_data *rdp)
1663 {
1664 	char bufw[20];
1665 	char bufr[20];
1666 	struct rcu_data *nocb_next_rdp;
1667 	struct rcu_segcblist *rsclp = &rdp->cblist;
1668 	bool waslocked;
1669 	bool wassleep;
1670 
1671 	if (rdp->nocb_gp_rdp == rdp)
1672 		show_rcu_nocb_gp_state(rdp);
1673 
1674 	nocb_next_rdp = list_next_or_null_rcu(&rdp->nocb_gp_rdp->nocb_head_rdp,
1675 					      &rdp->nocb_entry_rdp,
1676 					      typeof(*rdp),
1677 					      nocb_entry_rdp);
1678 
1679 	sprintf(bufw, "%ld", rsclp->gp_seq[RCU_WAIT_TAIL]);
1680 	sprintf(bufr, "%ld", rsclp->gp_seq[RCU_NEXT_READY_TAIL]);
1681 	pr_info("   CB %d^%d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%s%c%s%c%c q%ld %c CPU %d%s\n",
1682 		rdp->cpu, rdp->nocb_gp_rdp->cpu,
1683 		nocb_next_rdp ? nocb_next_rdp->cpu : -1,
1684 		"kK"[!!rdp->nocb_cb_kthread],
1685 		"bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
1686 		"cC"[!!atomic_read(&rdp->nocb_lock_contended)],
1687 		"lL"[raw_spin_is_locked(&rdp->nocb_lock)],
1688 		"sS"[!!rdp->nocb_cb_sleep],
1689 		".W"[swait_active(&rdp->nocb_cb_wq)],
1690 		jiffies - rdp->nocb_bypass_first,
1691 		jiffies - rdp->nocb_nobypass_last,
1692 		rdp->nocb_nobypass_count,
1693 		".D"[rcu_segcblist_ready_cbs(rsclp)],
1694 		".W"[!rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL)],
1695 		rcu_segcblist_segempty(rsclp, RCU_WAIT_TAIL) ? "" : bufw,
1696 		".R"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL)],
1697 		rcu_segcblist_segempty(rsclp, RCU_NEXT_READY_TAIL) ? "" : bufr,
1698 		".N"[!rcu_segcblist_segempty(rsclp, RCU_NEXT_TAIL)],
1699 		".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
1700 		rcu_segcblist_n_cbs(&rdp->cblist),
1701 		rdp->nocb_cb_kthread ? task_state_to_char(rdp->nocb_cb_kthread) : '.',
1702 		rdp->nocb_cb_kthread ? (int)task_cpu(rdp->nocb_cb_kthread) : -1,
1703 		show_rcu_should_be_on_cpu(rdp->nocb_cb_kthread));
1704 
1705 	/* It is OK for GP kthreads to have GP state. */
1706 	if (rdp->nocb_gp_rdp == rdp)
1707 		return;
1708 
1709 	waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
1710 	wassleep = swait_active(&rdp->nocb_gp_wq);
1711 	if (!rdp->nocb_gp_sleep && !waslocked && !wassleep)
1712 		return;  /* Nothing untoward. */
1713 
1714 	pr_info("   nocb GP activity on CB-only CPU!!! %c%c%c %c\n",
1715 		"lL"[waslocked],
1716 		"dD"[!!rdp->nocb_defer_wakeup],
1717 		"sS"[!!rdp->nocb_gp_sleep],
1718 		".W"[wassleep]);
1719 }
1720 
1721 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
1722 
1723 static inline int rcu_lockdep_is_held_nocb(struct rcu_data *rdp)
1724 {
1725 	return 0;
1726 }
1727 
1728 static inline bool rcu_current_is_nocb_kthread(struct rcu_data *rdp)
1729 {
1730 	return false;
1731 }
1732 
1733 /* No ->nocb_lock to acquire.  */
1734 static void rcu_nocb_lock(struct rcu_data *rdp)
1735 {
1736 }
1737 
1738 /* No ->nocb_lock to release.  */
1739 static void rcu_nocb_unlock(struct rcu_data *rdp)
1740 {
1741 }
1742 
1743 /* No ->nocb_lock to release.  */
1744 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1745 				       unsigned long flags)
1746 {
1747 	local_irq_restore(flags);
1748 }
1749 
1750 /* Lockdep check that ->cblist may be safely accessed. */
1751 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1752 {
1753 	lockdep_assert_irqs_disabled();
1754 }
1755 
1756 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1757 {
1758 }
1759 
1760 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1761 {
1762 	return NULL;
1763 }
1764 
1765 static void rcu_init_one_nocb(struct rcu_node *rnp)
1766 {
1767 }
1768 
1769 static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
1770 {
1771 	return false;
1772 }
1773 
1774 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1775 				  unsigned long j, bool lazy)
1776 {
1777 	return true;
1778 }
1779 
1780 static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
1781 			  rcu_callback_t func, unsigned long flags, bool lazy)
1782 {
1783 	WARN_ON_ONCE(1);  /* Should be dead code! */
1784 }
1785 
1786 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
1787 				 unsigned long flags)
1788 {
1789 	WARN_ON_ONCE(1);  /* Should be dead code! */
1790 }
1791 
1792 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
1793 {
1794 }
1795 
1796 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level)
1797 {
1798 	return false;
1799 }
1800 
1801 static bool do_nocb_deferred_wakeup(struct rcu_data *rdp)
1802 {
1803 	return false;
1804 }
1805 
1806 static void rcu_spawn_cpu_nocb_kthread(int cpu)
1807 {
1808 }
1809 
1810 static void show_rcu_nocb_state(struct rcu_data *rdp)
1811 {
1812 }
1813 
1814 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
1815