xref: /linux/kernel/reboot.c (revision c6fbb759)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/reboot.c
4  *
5  *  Copyright (C) 2013  Linus Torvalds
6  */
7 
8 #define pr_fmt(fmt)	"reboot: " fmt
9 
10 #include <linux/atomic.h>
11 #include <linux/ctype.h>
12 #include <linux/export.h>
13 #include <linux/kexec.h>
14 #include <linux/kmod.h>
15 #include <linux/kmsg_dump.h>
16 #include <linux/reboot.h>
17 #include <linux/suspend.h>
18 #include <linux/syscalls.h>
19 #include <linux/syscore_ops.h>
20 #include <linux/uaccess.h>
21 
22 /*
23  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
24  */
25 
26 static int C_A_D = 1;
27 struct pid *cad_pid;
28 EXPORT_SYMBOL(cad_pid);
29 
30 #if defined(CONFIG_ARM)
31 #define DEFAULT_REBOOT_MODE		= REBOOT_HARD
32 #else
33 #define DEFAULT_REBOOT_MODE
34 #endif
35 enum reboot_mode reboot_mode DEFAULT_REBOOT_MODE;
36 EXPORT_SYMBOL_GPL(reboot_mode);
37 enum reboot_mode panic_reboot_mode = REBOOT_UNDEFINED;
38 
39 /*
40  * This variable is used privately to keep track of whether or not
41  * reboot_type is still set to its default value (i.e., reboot= hasn't
42  * been set on the command line).  This is needed so that we can
43  * suppress DMI scanning for reboot quirks.  Without it, it's
44  * impossible to override a faulty reboot quirk without recompiling.
45  */
46 int reboot_default = 1;
47 int reboot_cpu;
48 enum reboot_type reboot_type = BOOT_ACPI;
49 int reboot_force;
50 
51 struct sys_off_handler {
52 	struct notifier_block nb;
53 	int (*sys_off_cb)(struct sys_off_data *data);
54 	void *cb_data;
55 	enum sys_off_mode mode;
56 	bool blocking;
57 	void *list;
58 };
59 
60 /*
61  * Temporary stub that prevents linkage failure while we're in process
62  * of removing all uses of legacy pm_power_off() around the kernel.
63  */
64 void __weak (*pm_power_off)(void);
65 
66 /**
67  *	emergency_restart - reboot the system
68  *
69  *	Without shutting down any hardware or taking any locks
70  *	reboot the system.  This is called when we know we are in
71  *	trouble so this is our best effort to reboot.  This is
72  *	safe to call in interrupt context.
73  */
74 void emergency_restart(void)
75 {
76 	kmsg_dump(KMSG_DUMP_EMERG);
77 	machine_emergency_restart();
78 }
79 EXPORT_SYMBOL_GPL(emergency_restart);
80 
81 void kernel_restart_prepare(char *cmd)
82 {
83 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
84 	system_state = SYSTEM_RESTART;
85 	usermodehelper_disable();
86 	device_shutdown();
87 }
88 
89 /**
90  *	register_reboot_notifier - Register function to be called at reboot time
91  *	@nb: Info about notifier function to be called
92  *
93  *	Registers a function with the list of functions
94  *	to be called at reboot time.
95  *
96  *	Currently always returns zero, as blocking_notifier_chain_register()
97  *	always returns zero.
98  */
99 int register_reboot_notifier(struct notifier_block *nb)
100 {
101 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
102 }
103 EXPORT_SYMBOL(register_reboot_notifier);
104 
105 /**
106  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
107  *	@nb: Hook to be unregistered
108  *
109  *	Unregisters a previously registered reboot
110  *	notifier function.
111  *
112  *	Returns zero on success, or %-ENOENT on failure.
113  */
114 int unregister_reboot_notifier(struct notifier_block *nb)
115 {
116 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
117 }
118 EXPORT_SYMBOL(unregister_reboot_notifier);
119 
120 static void devm_unregister_reboot_notifier(struct device *dev, void *res)
121 {
122 	WARN_ON(unregister_reboot_notifier(*(struct notifier_block **)res));
123 }
124 
125 int devm_register_reboot_notifier(struct device *dev, struct notifier_block *nb)
126 {
127 	struct notifier_block **rcnb;
128 	int ret;
129 
130 	rcnb = devres_alloc(devm_unregister_reboot_notifier,
131 			    sizeof(*rcnb), GFP_KERNEL);
132 	if (!rcnb)
133 		return -ENOMEM;
134 
135 	ret = register_reboot_notifier(nb);
136 	if (!ret) {
137 		*rcnb = nb;
138 		devres_add(dev, rcnb);
139 	} else {
140 		devres_free(rcnb);
141 	}
142 
143 	return ret;
144 }
145 EXPORT_SYMBOL(devm_register_reboot_notifier);
146 
147 /*
148  *	Notifier list for kernel code which wants to be called
149  *	to restart the system.
150  */
151 static ATOMIC_NOTIFIER_HEAD(restart_handler_list);
152 
153 /**
154  *	register_restart_handler - Register function to be called to reset
155  *				   the system
156  *	@nb: Info about handler function to be called
157  *	@nb->priority:	Handler priority. Handlers should follow the
158  *			following guidelines for setting priorities.
159  *			0:	Restart handler of last resort,
160  *				with limited restart capabilities
161  *			128:	Default restart handler; use if no other
162  *				restart handler is expected to be available,
163  *				and/or if restart functionality is
164  *				sufficient to restart the entire system
165  *			255:	Highest priority restart handler, will
166  *				preempt all other restart handlers
167  *
168  *	Registers a function with code to be called to restart the
169  *	system.
170  *
171  *	Registered functions will be called from machine_restart as last
172  *	step of the restart sequence (if the architecture specific
173  *	machine_restart function calls do_kernel_restart - see below
174  *	for details).
175  *	Registered functions are expected to restart the system immediately.
176  *	If more than one function is registered, the restart handler priority
177  *	selects which function will be called first.
178  *
179  *	Restart handlers are expected to be registered from non-architecture
180  *	code, typically from drivers. A typical use case would be a system
181  *	where restart functionality is provided through a watchdog. Multiple
182  *	restart handlers may exist; for example, one restart handler might
183  *	restart the entire system, while another only restarts the CPU.
184  *	In such cases, the restart handler which only restarts part of the
185  *	hardware is expected to register with low priority to ensure that
186  *	it only runs if no other means to restart the system is available.
187  *
188  *	Currently always returns zero, as atomic_notifier_chain_register()
189  *	always returns zero.
190  */
191 int register_restart_handler(struct notifier_block *nb)
192 {
193 	return atomic_notifier_chain_register(&restart_handler_list, nb);
194 }
195 EXPORT_SYMBOL(register_restart_handler);
196 
197 /**
198  *	unregister_restart_handler - Unregister previously registered
199  *				     restart handler
200  *	@nb: Hook to be unregistered
201  *
202  *	Unregisters a previously registered restart handler function.
203  *
204  *	Returns zero on success, or %-ENOENT on failure.
205  */
206 int unregister_restart_handler(struct notifier_block *nb)
207 {
208 	return atomic_notifier_chain_unregister(&restart_handler_list, nb);
209 }
210 EXPORT_SYMBOL(unregister_restart_handler);
211 
212 /**
213  *	do_kernel_restart - Execute kernel restart handler call chain
214  *
215  *	Calls functions registered with register_restart_handler.
216  *
217  *	Expected to be called from machine_restart as last step of the restart
218  *	sequence.
219  *
220  *	Restarts the system immediately if a restart handler function has been
221  *	registered. Otherwise does nothing.
222  */
223 void do_kernel_restart(char *cmd)
224 {
225 	atomic_notifier_call_chain(&restart_handler_list, reboot_mode, cmd);
226 }
227 
228 void migrate_to_reboot_cpu(void)
229 {
230 	/* The boot cpu is always logical cpu 0 */
231 	int cpu = reboot_cpu;
232 
233 	cpu_hotplug_disable();
234 
235 	/* Make certain the cpu I'm about to reboot on is online */
236 	if (!cpu_online(cpu))
237 		cpu = cpumask_first(cpu_online_mask);
238 
239 	/* Prevent races with other tasks migrating this task */
240 	current->flags |= PF_NO_SETAFFINITY;
241 
242 	/* Make certain I only run on the appropriate processor */
243 	set_cpus_allowed_ptr(current, cpumask_of(cpu));
244 }
245 
246 /*
247  *	Notifier list for kernel code which wants to be called
248  *	to prepare system for restart.
249  */
250 static BLOCKING_NOTIFIER_HEAD(restart_prep_handler_list);
251 
252 static void do_kernel_restart_prepare(void)
253 {
254 	blocking_notifier_call_chain(&restart_prep_handler_list, 0, NULL);
255 }
256 
257 /**
258  *	kernel_restart - reboot the system
259  *	@cmd: pointer to buffer containing command to execute for restart
260  *		or %NULL
261  *
262  *	Shutdown everything and perform a clean reboot.
263  *	This is not safe to call in interrupt context.
264  */
265 void kernel_restart(char *cmd)
266 {
267 	kernel_restart_prepare(cmd);
268 	do_kernel_restart_prepare();
269 	migrate_to_reboot_cpu();
270 	syscore_shutdown();
271 	if (!cmd)
272 		pr_emerg("Restarting system\n");
273 	else
274 		pr_emerg("Restarting system with command '%s'\n", cmd);
275 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
276 	machine_restart(cmd);
277 }
278 EXPORT_SYMBOL_GPL(kernel_restart);
279 
280 static void kernel_shutdown_prepare(enum system_states state)
281 {
282 	blocking_notifier_call_chain(&reboot_notifier_list,
283 		(state == SYSTEM_HALT) ? SYS_HALT : SYS_POWER_OFF, NULL);
284 	system_state = state;
285 	usermodehelper_disable();
286 	device_shutdown();
287 }
288 /**
289  *	kernel_halt - halt the system
290  *
291  *	Shutdown everything and perform a clean system halt.
292  */
293 void kernel_halt(void)
294 {
295 	kernel_shutdown_prepare(SYSTEM_HALT);
296 	migrate_to_reboot_cpu();
297 	syscore_shutdown();
298 	pr_emerg("System halted\n");
299 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
300 	machine_halt();
301 }
302 EXPORT_SYMBOL_GPL(kernel_halt);
303 
304 /*
305  *	Notifier list for kernel code which wants to be called
306  *	to prepare system for power off.
307  */
308 static BLOCKING_NOTIFIER_HEAD(power_off_prep_handler_list);
309 
310 /*
311  *	Notifier list for kernel code which wants to be called
312  *	to power off system.
313  */
314 static ATOMIC_NOTIFIER_HEAD(power_off_handler_list);
315 
316 static int sys_off_notify(struct notifier_block *nb,
317 			  unsigned long mode, void *cmd)
318 {
319 	struct sys_off_handler *handler;
320 	struct sys_off_data data = {};
321 
322 	handler = container_of(nb, struct sys_off_handler, nb);
323 	data.cb_data = handler->cb_data;
324 	data.mode = mode;
325 	data.cmd = cmd;
326 
327 	return handler->sys_off_cb(&data);
328 }
329 
330 static struct sys_off_handler platform_sys_off_handler;
331 
332 static struct sys_off_handler *alloc_sys_off_handler(int priority)
333 {
334 	struct sys_off_handler *handler;
335 	gfp_t flags;
336 
337 	/*
338 	 * Platforms like m68k can't allocate sys_off handler dynamically
339 	 * at the early boot time because memory allocator isn't available yet.
340 	 */
341 	if (priority == SYS_OFF_PRIO_PLATFORM) {
342 		handler = &platform_sys_off_handler;
343 		if (handler->cb_data)
344 			return ERR_PTR(-EBUSY);
345 	} else {
346 		if (system_state > SYSTEM_RUNNING)
347 			flags = GFP_ATOMIC;
348 		else
349 			flags = GFP_KERNEL;
350 
351 		handler = kzalloc(sizeof(*handler), flags);
352 		if (!handler)
353 			return ERR_PTR(-ENOMEM);
354 	}
355 
356 	return handler;
357 }
358 
359 static void free_sys_off_handler(struct sys_off_handler *handler)
360 {
361 	if (handler == &platform_sys_off_handler)
362 		memset(handler, 0, sizeof(*handler));
363 	else
364 		kfree(handler);
365 }
366 
367 /**
368  *	register_sys_off_handler - Register sys-off handler
369  *	@mode: Sys-off mode
370  *	@priority: Handler priority
371  *	@callback: Callback function
372  *	@cb_data: Callback argument
373  *
374  *	Registers system power-off or restart handler that will be invoked
375  *	at the step corresponding to the given sys-off mode. Handler's callback
376  *	should return NOTIFY_DONE to permit execution of the next handler in
377  *	the call chain or NOTIFY_STOP to break the chain (in error case for
378  *	example).
379  *
380  *	Multiple handlers can be registered at the default priority level.
381  *
382  *	Only one handler can be registered at the non-default priority level,
383  *	otherwise ERR_PTR(-EBUSY) is returned.
384  *
385  *	Returns a new instance of struct sys_off_handler on success, or
386  *	an ERR_PTR()-encoded error code otherwise.
387  */
388 struct sys_off_handler *
389 register_sys_off_handler(enum sys_off_mode mode,
390 			 int priority,
391 			 int (*callback)(struct sys_off_data *data),
392 			 void *cb_data)
393 {
394 	struct sys_off_handler *handler;
395 	int err;
396 
397 	handler = alloc_sys_off_handler(priority);
398 	if (IS_ERR(handler))
399 		return handler;
400 
401 	switch (mode) {
402 	case SYS_OFF_MODE_POWER_OFF_PREPARE:
403 		handler->list = &power_off_prep_handler_list;
404 		handler->blocking = true;
405 		break;
406 
407 	case SYS_OFF_MODE_POWER_OFF:
408 		handler->list = &power_off_handler_list;
409 		break;
410 
411 	case SYS_OFF_MODE_RESTART_PREPARE:
412 		handler->list = &restart_prep_handler_list;
413 		handler->blocking = true;
414 		break;
415 
416 	case SYS_OFF_MODE_RESTART:
417 		handler->list = &restart_handler_list;
418 		break;
419 
420 	default:
421 		free_sys_off_handler(handler);
422 		return ERR_PTR(-EINVAL);
423 	}
424 
425 	handler->nb.notifier_call = sys_off_notify;
426 	handler->nb.priority = priority;
427 	handler->sys_off_cb = callback;
428 	handler->cb_data = cb_data;
429 	handler->mode = mode;
430 
431 	if (handler->blocking) {
432 		if (priority == SYS_OFF_PRIO_DEFAULT)
433 			err = blocking_notifier_chain_register(handler->list,
434 							       &handler->nb);
435 		else
436 			err = blocking_notifier_chain_register_unique_prio(handler->list,
437 									   &handler->nb);
438 	} else {
439 		if (priority == SYS_OFF_PRIO_DEFAULT)
440 			err = atomic_notifier_chain_register(handler->list,
441 							     &handler->nb);
442 		else
443 			err = atomic_notifier_chain_register_unique_prio(handler->list,
444 									 &handler->nb);
445 	}
446 
447 	if (err) {
448 		free_sys_off_handler(handler);
449 		return ERR_PTR(err);
450 	}
451 
452 	return handler;
453 }
454 EXPORT_SYMBOL_GPL(register_sys_off_handler);
455 
456 /**
457  *	unregister_sys_off_handler - Unregister sys-off handler
458  *	@handler: Sys-off handler
459  *
460  *	Unregisters given sys-off handler.
461  */
462 void unregister_sys_off_handler(struct sys_off_handler *handler)
463 {
464 	int err;
465 
466 	if (IS_ERR_OR_NULL(handler))
467 		return;
468 
469 	if (handler->blocking)
470 		err = blocking_notifier_chain_unregister(handler->list,
471 							 &handler->nb);
472 	else
473 		err = atomic_notifier_chain_unregister(handler->list,
474 						       &handler->nb);
475 
476 	/* sanity check, shall never happen */
477 	WARN_ON(err);
478 
479 	free_sys_off_handler(handler);
480 }
481 EXPORT_SYMBOL_GPL(unregister_sys_off_handler);
482 
483 static void devm_unregister_sys_off_handler(void *data)
484 {
485 	struct sys_off_handler *handler = data;
486 
487 	unregister_sys_off_handler(handler);
488 }
489 
490 /**
491  *	devm_register_sys_off_handler - Register sys-off handler
492  *	@dev: Device that registers handler
493  *	@mode: Sys-off mode
494  *	@priority: Handler priority
495  *	@callback: Callback function
496  *	@cb_data: Callback argument
497  *
498  *	Registers resource-managed sys-off handler.
499  *
500  *	Returns zero on success, or error code on failure.
501  */
502 int devm_register_sys_off_handler(struct device *dev,
503 				  enum sys_off_mode mode,
504 				  int priority,
505 				  int (*callback)(struct sys_off_data *data),
506 				  void *cb_data)
507 {
508 	struct sys_off_handler *handler;
509 
510 	handler = register_sys_off_handler(mode, priority, callback, cb_data);
511 	if (IS_ERR(handler))
512 		return PTR_ERR(handler);
513 
514 	return devm_add_action_or_reset(dev, devm_unregister_sys_off_handler,
515 					handler);
516 }
517 EXPORT_SYMBOL_GPL(devm_register_sys_off_handler);
518 
519 /**
520  *	devm_register_power_off_handler - Register power-off handler
521  *	@dev: Device that registers callback
522  *	@callback: Callback function
523  *	@cb_data: Callback's argument
524  *
525  *	Registers resource-managed sys-off handler with a default priority
526  *	and using power-off mode.
527  *
528  *	Returns zero on success, or error code on failure.
529  */
530 int devm_register_power_off_handler(struct device *dev,
531 				    int (*callback)(struct sys_off_data *data),
532 				    void *cb_data)
533 {
534 	return devm_register_sys_off_handler(dev,
535 					     SYS_OFF_MODE_POWER_OFF,
536 					     SYS_OFF_PRIO_DEFAULT,
537 					     callback, cb_data);
538 }
539 EXPORT_SYMBOL_GPL(devm_register_power_off_handler);
540 
541 /**
542  *	devm_register_restart_handler - Register restart handler
543  *	@dev: Device that registers callback
544  *	@callback: Callback function
545  *	@cb_data: Callback's argument
546  *
547  *	Registers resource-managed sys-off handler with a default priority
548  *	and using restart mode.
549  *
550  *	Returns zero on success, or error code on failure.
551  */
552 int devm_register_restart_handler(struct device *dev,
553 				  int (*callback)(struct sys_off_data *data),
554 				  void *cb_data)
555 {
556 	return devm_register_sys_off_handler(dev,
557 					     SYS_OFF_MODE_RESTART,
558 					     SYS_OFF_PRIO_DEFAULT,
559 					     callback, cb_data);
560 }
561 EXPORT_SYMBOL_GPL(devm_register_restart_handler);
562 
563 static struct sys_off_handler *platform_power_off_handler;
564 
565 static int platform_power_off_notify(struct sys_off_data *data)
566 {
567 	void (*platform_power_power_off_cb)(void) = data->cb_data;
568 
569 	platform_power_power_off_cb();
570 
571 	return NOTIFY_DONE;
572 }
573 
574 /**
575  *	register_platform_power_off - Register platform-level power-off callback
576  *	@power_off: Power-off callback
577  *
578  *	Registers power-off callback that will be called as last step
579  *	of the power-off sequence. This callback is expected to be invoked
580  *	for the last resort. Only one platform power-off callback is allowed
581  *	to be registered at a time.
582  *
583  *	Returns zero on success, or error code on failure.
584  */
585 int register_platform_power_off(void (*power_off)(void))
586 {
587 	struct sys_off_handler *handler;
588 
589 	handler = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
590 					   SYS_OFF_PRIO_PLATFORM,
591 					   platform_power_off_notify,
592 					   power_off);
593 	if (IS_ERR(handler))
594 		return PTR_ERR(handler);
595 
596 	platform_power_off_handler = handler;
597 
598 	return 0;
599 }
600 EXPORT_SYMBOL_GPL(register_platform_power_off);
601 
602 /**
603  *	unregister_platform_power_off - Unregister platform-level power-off callback
604  *	@power_off: Power-off callback
605  *
606  *	Unregisters previously registered platform power-off callback.
607  */
608 void unregister_platform_power_off(void (*power_off)(void))
609 {
610 	if (platform_power_off_handler &&
611 	    platform_power_off_handler->cb_data == power_off) {
612 		unregister_sys_off_handler(platform_power_off_handler);
613 		platform_power_off_handler = NULL;
614 	}
615 }
616 EXPORT_SYMBOL_GPL(unregister_platform_power_off);
617 
618 static int legacy_pm_power_off(struct sys_off_data *data)
619 {
620 	if (pm_power_off)
621 		pm_power_off();
622 
623 	return NOTIFY_DONE;
624 }
625 
626 static void do_kernel_power_off_prepare(void)
627 {
628 	blocking_notifier_call_chain(&power_off_prep_handler_list, 0, NULL);
629 }
630 
631 /**
632  *	do_kernel_power_off - Execute kernel power-off handler call chain
633  *
634  *	Expected to be called as last step of the power-off sequence.
635  *
636  *	Powers off the system immediately if a power-off handler function has
637  *	been registered. Otherwise does nothing.
638  */
639 void do_kernel_power_off(void)
640 {
641 	struct sys_off_handler *sys_off = NULL;
642 
643 	/*
644 	 * Register sys-off handlers for legacy PM callback. This allows
645 	 * legacy PM callbacks temporary co-exist with the new sys-off API.
646 	 *
647 	 * TODO: Remove legacy handlers once all legacy PM users will be
648 	 *       switched to the sys-off based APIs.
649 	 */
650 	if (pm_power_off)
651 		sys_off = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
652 						   SYS_OFF_PRIO_DEFAULT,
653 						   legacy_pm_power_off, NULL);
654 
655 	atomic_notifier_call_chain(&power_off_handler_list, 0, NULL);
656 
657 	unregister_sys_off_handler(sys_off);
658 }
659 
660 /**
661  *	kernel_can_power_off - check whether system can be powered off
662  *
663  *	Returns true if power-off handler is registered and system can be
664  *	powered off, false otherwise.
665  */
666 bool kernel_can_power_off(void)
667 {
668 	return !atomic_notifier_call_chain_is_empty(&power_off_handler_list) ||
669 		pm_power_off;
670 }
671 EXPORT_SYMBOL_GPL(kernel_can_power_off);
672 
673 /**
674  *	kernel_power_off - power_off the system
675  *
676  *	Shutdown everything and perform a clean system power_off.
677  */
678 void kernel_power_off(void)
679 {
680 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
681 	do_kernel_power_off_prepare();
682 	migrate_to_reboot_cpu();
683 	syscore_shutdown();
684 	pr_emerg("Power down\n");
685 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
686 	machine_power_off();
687 }
688 EXPORT_SYMBOL_GPL(kernel_power_off);
689 
690 DEFINE_MUTEX(system_transition_mutex);
691 
692 /*
693  * Reboot system call: for obvious reasons only root may call it,
694  * and even root needs to set up some magic numbers in the registers
695  * so that some mistake won't make this reboot the whole machine.
696  * You can also set the meaning of the ctrl-alt-del-key here.
697  *
698  * reboot doesn't sync: do that yourself before calling this.
699  */
700 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
701 		void __user *, arg)
702 {
703 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
704 	char buffer[256];
705 	int ret = 0;
706 
707 	/* We only trust the superuser with rebooting the system. */
708 	if (!ns_capable(pid_ns->user_ns, CAP_SYS_BOOT))
709 		return -EPERM;
710 
711 	/* For safety, we require "magic" arguments. */
712 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
713 			(magic2 != LINUX_REBOOT_MAGIC2 &&
714 			magic2 != LINUX_REBOOT_MAGIC2A &&
715 			magic2 != LINUX_REBOOT_MAGIC2B &&
716 			magic2 != LINUX_REBOOT_MAGIC2C))
717 		return -EINVAL;
718 
719 	/*
720 	 * If pid namespaces are enabled and the current task is in a child
721 	 * pid_namespace, the command is handled by reboot_pid_ns() which will
722 	 * call do_exit().
723 	 */
724 	ret = reboot_pid_ns(pid_ns, cmd);
725 	if (ret)
726 		return ret;
727 
728 	/* Instead of trying to make the power_off code look like
729 	 * halt when pm_power_off is not set do it the easy way.
730 	 */
731 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !kernel_can_power_off())
732 		cmd = LINUX_REBOOT_CMD_HALT;
733 
734 	mutex_lock(&system_transition_mutex);
735 	switch (cmd) {
736 	case LINUX_REBOOT_CMD_RESTART:
737 		kernel_restart(NULL);
738 		break;
739 
740 	case LINUX_REBOOT_CMD_CAD_ON:
741 		C_A_D = 1;
742 		break;
743 
744 	case LINUX_REBOOT_CMD_CAD_OFF:
745 		C_A_D = 0;
746 		break;
747 
748 	case LINUX_REBOOT_CMD_HALT:
749 		kernel_halt();
750 		do_exit(0);
751 
752 	case LINUX_REBOOT_CMD_POWER_OFF:
753 		kernel_power_off();
754 		do_exit(0);
755 		break;
756 
757 	case LINUX_REBOOT_CMD_RESTART2:
758 		ret = strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1);
759 		if (ret < 0) {
760 			ret = -EFAULT;
761 			break;
762 		}
763 		buffer[sizeof(buffer) - 1] = '\0';
764 
765 		kernel_restart(buffer);
766 		break;
767 
768 #ifdef CONFIG_KEXEC_CORE
769 	case LINUX_REBOOT_CMD_KEXEC:
770 		ret = kernel_kexec();
771 		break;
772 #endif
773 
774 #ifdef CONFIG_HIBERNATION
775 	case LINUX_REBOOT_CMD_SW_SUSPEND:
776 		ret = hibernate();
777 		break;
778 #endif
779 
780 	default:
781 		ret = -EINVAL;
782 		break;
783 	}
784 	mutex_unlock(&system_transition_mutex);
785 	return ret;
786 }
787 
788 static void deferred_cad(struct work_struct *dummy)
789 {
790 	kernel_restart(NULL);
791 }
792 
793 /*
794  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
795  * As it's called within an interrupt, it may NOT sync: the only choice
796  * is whether to reboot at once, or just ignore the ctrl-alt-del.
797  */
798 void ctrl_alt_del(void)
799 {
800 	static DECLARE_WORK(cad_work, deferred_cad);
801 
802 	if (C_A_D)
803 		schedule_work(&cad_work);
804 	else
805 		kill_cad_pid(SIGINT, 1);
806 }
807 
808 #define POWEROFF_CMD_PATH_LEN  256
809 static char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
810 static const char reboot_cmd[] = "/sbin/reboot";
811 
812 static int run_cmd(const char *cmd)
813 {
814 	char **argv;
815 	static char *envp[] = {
816 		"HOME=/",
817 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
818 		NULL
819 	};
820 	int ret;
821 	argv = argv_split(GFP_KERNEL, cmd, NULL);
822 	if (argv) {
823 		ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
824 		argv_free(argv);
825 	} else {
826 		ret = -ENOMEM;
827 	}
828 
829 	return ret;
830 }
831 
832 static int __orderly_reboot(void)
833 {
834 	int ret;
835 
836 	ret = run_cmd(reboot_cmd);
837 
838 	if (ret) {
839 		pr_warn("Failed to start orderly reboot: forcing the issue\n");
840 		emergency_sync();
841 		kernel_restart(NULL);
842 	}
843 
844 	return ret;
845 }
846 
847 static int __orderly_poweroff(bool force)
848 {
849 	int ret;
850 
851 	ret = run_cmd(poweroff_cmd);
852 
853 	if (ret && force) {
854 		pr_warn("Failed to start orderly shutdown: forcing the issue\n");
855 
856 		/*
857 		 * I guess this should try to kick off some daemon to sync and
858 		 * poweroff asap.  Or not even bother syncing if we're doing an
859 		 * emergency shutdown?
860 		 */
861 		emergency_sync();
862 		kernel_power_off();
863 	}
864 
865 	return ret;
866 }
867 
868 static bool poweroff_force;
869 
870 static void poweroff_work_func(struct work_struct *work)
871 {
872 	__orderly_poweroff(poweroff_force);
873 }
874 
875 static DECLARE_WORK(poweroff_work, poweroff_work_func);
876 
877 /**
878  * orderly_poweroff - Trigger an orderly system poweroff
879  * @force: force poweroff if command execution fails
880  *
881  * This may be called from any context to trigger a system shutdown.
882  * If the orderly shutdown fails, it will force an immediate shutdown.
883  */
884 void orderly_poweroff(bool force)
885 {
886 	if (force) /* do not override the pending "true" */
887 		poweroff_force = true;
888 	schedule_work(&poweroff_work);
889 }
890 EXPORT_SYMBOL_GPL(orderly_poweroff);
891 
892 static void reboot_work_func(struct work_struct *work)
893 {
894 	__orderly_reboot();
895 }
896 
897 static DECLARE_WORK(reboot_work, reboot_work_func);
898 
899 /**
900  * orderly_reboot - Trigger an orderly system reboot
901  *
902  * This may be called from any context to trigger a system reboot.
903  * If the orderly reboot fails, it will force an immediate reboot.
904  */
905 void orderly_reboot(void)
906 {
907 	schedule_work(&reboot_work);
908 }
909 EXPORT_SYMBOL_GPL(orderly_reboot);
910 
911 /**
912  * hw_failure_emergency_poweroff_func - emergency poweroff work after a known delay
913  * @work: work_struct associated with the emergency poweroff function
914  *
915  * This function is called in very critical situations to force
916  * a kernel poweroff after a configurable timeout value.
917  */
918 static void hw_failure_emergency_poweroff_func(struct work_struct *work)
919 {
920 	/*
921 	 * We have reached here after the emergency shutdown waiting period has
922 	 * expired. This means orderly_poweroff has not been able to shut off
923 	 * the system for some reason.
924 	 *
925 	 * Try to shut down the system immediately using kernel_power_off
926 	 * if populated
927 	 */
928 	pr_emerg("Hardware protection timed-out. Trying forced poweroff\n");
929 	kernel_power_off();
930 
931 	/*
932 	 * Worst of the worst case trigger emergency restart
933 	 */
934 	pr_emerg("Hardware protection shutdown failed. Trying emergency restart\n");
935 	emergency_restart();
936 }
937 
938 static DECLARE_DELAYED_WORK(hw_failure_emergency_poweroff_work,
939 			    hw_failure_emergency_poweroff_func);
940 
941 /**
942  * hw_failure_emergency_poweroff - Trigger an emergency system poweroff
943  *
944  * This may be called from any critical situation to trigger a system shutdown
945  * after a given period of time. If time is negative this is not scheduled.
946  */
947 static void hw_failure_emergency_poweroff(int poweroff_delay_ms)
948 {
949 	if (poweroff_delay_ms <= 0)
950 		return;
951 	schedule_delayed_work(&hw_failure_emergency_poweroff_work,
952 			      msecs_to_jiffies(poweroff_delay_ms));
953 }
954 
955 /**
956  * hw_protection_shutdown - Trigger an emergency system poweroff
957  *
958  * @reason:		Reason of emergency shutdown to be printed.
959  * @ms_until_forced:	Time to wait for orderly shutdown before tiggering a
960  *			forced shudown. Negative value disables the forced
961  *			shutdown.
962  *
963  * Initiate an emergency system shutdown in order to protect hardware from
964  * further damage. Usage examples include a thermal protection or a voltage or
965  * current regulator failures.
966  * NOTE: The request is ignored if protection shutdown is already pending even
967  * if the previous request has given a large timeout for forced shutdown.
968  * Can be called from any context.
969  */
970 void hw_protection_shutdown(const char *reason, int ms_until_forced)
971 {
972 	static atomic_t allow_proceed = ATOMIC_INIT(1);
973 
974 	pr_emerg("HARDWARE PROTECTION shutdown (%s)\n", reason);
975 
976 	/* Shutdown should be initiated only once. */
977 	if (!atomic_dec_and_test(&allow_proceed))
978 		return;
979 
980 	/*
981 	 * Queue a backup emergency shutdown in the event of
982 	 * orderly_poweroff failure
983 	 */
984 	hw_failure_emergency_poweroff(ms_until_forced);
985 	orderly_poweroff(true);
986 }
987 EXPORT_SYMBOL_GPL(hw_protection_shutdown);
988 
989 static int __init reboot_setup(char *str)
990 {
991 	for (;;) {
992 		enum reboot_mode *mode;
993 
994 		/*
995 		 * Having anything passed on the command line via
996 		 * reboot= will cause us to disable DMI checking
997 		 * below.
998 		 */
999 		reboot_default = 0;
1000 
1001 		if (!strncmp(str, "panic_", 6)) {
1002 			mode = &panic_reboot_mode;
1003 			str += 6;
1004 		} else {
1005 			mode = &reboot_mode;
1006 		}
1007 
1008 		switch (*str) {
1009 		case 'w':
1010 			*mode = REBOOT_WARM;
1011 			break;
1012 
1013 		case 'c':
1014 			*mode = REBOOT_COLD;
1015 			break;
1016 
1017 		case 'h':
1018 			*mode = REBOOT_HARD;
1019 			break;
1020 
1021 		case 's':
1022 			/*
1023 			 * reboot_cpu is s[mp]#### with #### being the processor
1024 			 * to be used for rebooting. Skip 's' or 'smp' prefix.
1025 			 */
1026 			str += str[1] == 'm' && str[2] == 'p' ? 3 : 1;
1027 
1028 			if (isdigit(str[0])) {
1029 				int cpu = simple_strtoul(str, NULL, 0);
1030 
1031 				if (cpu >= num_possible_cpus()) {
1032 					pr_err("Ignoring the CPU number in reboot= option. "
1033 					"CPU %d exceeds possible cpu number %d\n",
1034 					cpu, num_possible_cpus());
1035 					break;
1036 				}
1037 				reboot_cpu = cpu;
1038 			} else
1039 				*mode = REBOOT_SOFT;
1040 			break;
1041 
1042 		case 'g':
1043 			*mode = REBOOT_GPIO;
1044 			break;
1045 
1046 		case 'b':
1047 		case 'a':
1048 		case 'k':
1049 		case 't':
1050 		case 'e':
1051 		case 'p':
1052 			reboot_type = *str;
1053 			break;
1054 
1055 		case 'f':
1056 			reboot_force = 1;
1057 			break;
1058 		}
1059 
1060 		str = strchr(str, ',');
1061 		if (str)
1062 			str++;
1063 		else
1064 			break;
1065 	}
1066 	return 1;
1067 }
1068 __setup("reboot=", reboot_setup);
1069 
1070 #ifdef CONFIG_SYSFS
1071 
1072 #define REBOOT_COLD_STR		"cold"
1073 #define REBOOT_WARM_STR		"warm"
1074 #define REBOOT_HARD_STR		"hard"
1075 #define REBOOT_SOFT_STR		"soft"
1076 #define REBOOT_GPIO_STR		"gpio"
1077 #define REBOOT_UNDEFINED_STR	"undefined"
1078 
1079 #define BOOT_TRIPLE_STR		"triple"
1080 #define BOOT_KBD_STR		"kbd"
1081 #define BOOT_BIOS_STR		"bios"
1082 #define BOOT_ACPI_STR		"acpi"
1083 #define BOOT_EFI_STR		"efi"
1084 #define BOOT_PCI_STR		"pci"
1085 
1086 static ssize_t mode_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1087 {
1088 	const char *val;
1089 
1090 	switch (reboot_mode) {
1091 	case REBOOT_COLD:
1092 		val = REBOOT_COLD_STR;
1093 		break;
1094 	case REBOOT_WARM:
1095 		val = REBOOT_WARM_STR;
1096 		break;
1097 	case REBOOT_HARD:
1098 		val = REBOOT_HARD_STR;
1099 		break;
1100 	case REBOOT_SOFT:
1101 		val = REBOOT_SOFT_STR;
1102 		break;
1103 	case REBOOT_GPIO:
1104 		val = REBOOT_GPIO_STR;
1105 		break;
1106 	default:
1107 		val = REBOOT_UNDEFINED_STR;
1108 	}
1109 
1110 	return sprintf(buf, "%s\n", val);
1111 }
1112 static ssize_t mode_store(struct kobject *kobj, struct kobj_attribute *attr,
1113 			  const char *buf, size_t count)
1114 {
1115 	if (!capable(CAP_SYS_BOOT))
1116 		return -EPERM;
1117 
1118 	if (!strncmp(buf, REBOOT_COLD_STR, strlen(REBOOT_COLD_STR)))
1119 		reboot_mode = REBOOT_COLD;
1120 	else if (!strncmp(buf, REBOOT_WARM_STR, strlen(REBOOT_WARM_STR)))
1121 		reboot_mode = REBOOT_WARM;
1122 	else if (!strncmp(buf, REBOOT_HARD_STR, strlen(REBOOT_HARD_STR)))
1123 		reboot_mode = REBOOT_HARD;
1124 	else if (!strncmp(buf, REBOOT_SOFT_STR, strlen(REBOOT_SOFT_STR)))
1125 		reboot_mode = REBOOT_SOFT;
1126 	else if (!strncmp(buf, REBOOT_GPIO_STR, strlen(REBOOT_GPIO_STR)))
1127 		reboot_mode = REBOOT_GPIO;
1128 	else
1129 		return -EINVAL;
1130 
1131 	reboot_default = 0;
1132 
1133 	return count;
1134 }
1135 static struct kobj_attribute reboot_mode_attr = __ATTR_RW(mode);
1136 
1137 #ifdef CONFIG_X86
1138 static ssize_t force_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1139 {
1140 	return sprintf(buf, "%d\n", reboot_force);
1141 }
1142 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
1143 			  const char *buf, size_t count)
1144 {
1145 	bool res;
1146 
1147 	if (!capable(CAP_SYS_BOOT))
1148 		return -EPERM;
1149 
1150 	if (kstrtobool(buf, &res))
1151 		return -EINVAL;
1152 
1153 	reboot_default = 0;
1154 	reboot_force = res;
1155 
1156 	return count;
1157 }
1158 static struct kobj_attribute reboot_force_attr = __ATTR_RW(force);
1159 
1160 static ssize_t type_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1161 {
1162 	const char *val;
1163 
1164 	switch (reboot_type) {
1165 	case BOOT_TRIPLE:
1166 		val = BOOT_TRIPLE_STR;
1167 		break;
1168 	case BOOT_KBD:
1169 		val = BOOT_KBD_STR;
1170 		break;
1171 	case BOOT_BIOS:
1172 		val = BOOT_BIOS_STR;
1173 		break;
1174 	case BOOT_ACPI:
1175 		val = BOOT_ACPI_STR;
1176 		break;
1177 	case BOOT_EFI:
1178 		val = BOOT_EFI_STR;
1179 		break;
1180 	case BOOT_CF9_FORCE:
1181 		val = BOOT_PCI_STR;
1182 		break;
1183 	default:
1184 		val = REBOOT_UNDEFINED_STR;
1185 	}
1186 
1187 	return sprintf(buf, "%s\n", val);
1188 }
1189 static ssize_t type_store(struct kobject *kobj, struct kobj_attribute *attr,
1190 			  const char *buf, size_t count)
1191 {
1192 	if (!capable(CAP_SYS_BOOT))
1193 		return -EPERM;
1194 
1195 	if (!strncmp(buf, BOOT_TRIPLE_STR, strlen(BOOT_TRIPLE_STR)))
1196 		reboot_type = BOOT_TRIPLE;
1197 	else if (!strncmp(buf, BOOT_KBD_STR, strlen(BOOT_KBD_STR)))
1198 		reboot_type = BOOT_KBD;
1199 	else if (!strncmp(buf, BOOT_BIOS_STR, strlen(BOOT_BIOS_STR)))
1200 		reboot_type = BOOT_BIOS;
1201 	else if (!strncmp(buf, BOOT_ACPI_STR, strlen(BOOT_ACPI_STR)))
1202 		reboot_type = BOOT_ACPI;
1203 	else if (!strncmp(buf, BOOT_EFI_STR, strlen(BOOT_EFI_STR)))
1204 		reboot_type = BOOT_EFI;
1205 	else if (!strncmp(buf, BOOT_PCI_STR, strlen(BOOT_PCI_STR)))
1206 		reboot_type = BOOT_CF9_FORCE;
1207 	else
1208 		return -EINVAL;
1209 
1210 	reboot_default = 0;
1211 
1212 	return count;
1213 }
1214 static struct kobj_attribute reboot_type_attr = __ATTR_RW(type);
1215 #endif
1216 
1217 #ifdef CONFIG_SMP
1218 static ssize_t cpu_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1219 {
1220 	return sprintf(buf, "%d\n", reboot_cpu);
1221 }
1222 static ssize_t cpu_store(struct kobject *kobj, struct kobj_attribute *attr,
1223 			  const char *buf, size_t count)
1224 {
1225 	unsigned int cpunum;
1226 	int rc;
1227 
1228 	if (!capable(CAP_SYS_BOOT))
1229 		return -EPERM;
1230 
1231 	rc = kstrtouint(buf, 0, &cpunum);
1232 
1233 	if (rc)
1234 		return rc;
1235 
1236 	if (cpunum >= num_possible_cpus())
1237 		return -ERANGE;
1238 
1239 	reboot_default = 0;
1240 	reboot_cpu = cpunum;
1241 
1242 	return count;
1243 }
1244 static struct kobj_attribute reboot_cpu_attr = __ATTR_RW(cpu);
1245 #endif
1246 
1247 static struct attribute *reboot_attrs[] = {
1248 	&reboot_mode_attr.attr,
1249 #ifdef CONFIG_X86
1250 	&reboot_force_attr.attr,
1251 	&reboot_type_attr.attr,
1252 #endif
1253 #ifdef CONFIG_SMP
1254 	&reboot_cpu_attr.attr,
1255 #endif
1256 	NULL,
1257 };
1258 
1259 #ifdef CONFIG_SYSCTL
1260 static struct ctl_table kern_reboot_table[] = {
1261 	{
1262 		.procname       = "poweroff_cmd",
1263 		.data           = &poweroff_cmd,
1264 		.maxlen         = POWEROFF_CMD_PATH_LEN,
1265 		.mode           = 0644,
1266 		.proc_handler   = proc_dostring,
1267 	},
1268 	{
1269 		.procname       = "ctrl-alt-del",
1270 		.data           = &C_A_D,
1271 		.maxlen         = sizeof(int),
1272 		.mode           = 0644,
1273 		.proc_handler   = proc_dointvec,
1274 	},
1275 	{ }
1276 };
1277 
1278 static void __init kernel_reboot_sysctls_init(void)
1279 {
1280 	register_sysctl_init("kernel", kern_reboot_table);
1281 }
1282 #else
1283 #define kernel_reboot_sysctls_init() do { } while (0)
1284 #endif /* CONFIG_SYSCTL */
1285 
1286 static const struct attribute_group reboot_attr_group = {
1287 	.attrs = reboot_attrs,
1288 };
1289 
1290 static int __init reboot_ksysfs_init(void)
1291 {
1292 	struct kobject *reboot_kobj;
1293 	int ret;
1294 
1295 	reboot_kobj = kobject_create_and_add("reboot", kernel_kobj);
1296 	if (!reboot_kobj)
1297 		return -ENOMEM;
1298 
1299 	ret = sysfs_create_group(reboot_kobj, &reboot_attr_group);
1300 	if (ret) {
1301 		kobject_put(reboot_kobj);
1302 		return ret;
1303 	}
1304 
1305 	kernel_reboot_sysctls_init();
1306 
1307 	return 0;
1308 }
1309 late_initcall(reboot_ksysfs_init);
1310 
1311 #endif
1312