xref: /linux/kernel/sched/clock.c (revision f86fd32d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * sched_clock() for unstable CPU clocks
4  *
5  *  Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
6  *
7  *  Updates and enhancements:
8  *    Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
9  *
10  * Based on code by:
11  *   Ingo Molnar <mingo@redhat.com>
12  *   Guillaume Chazarain <guichaz@gmail.com>
13  *
14  *
15  * What this file implements:
16  *
17  * cpu_clock(i) provides a fast (execution time) high resolution
18  * clock with bounded drift between CPUs. The value of cpu_clock(i)
19  * is monotonic for constant i. The timestamp returned is in nanoseconds.
20  *
21  * ######################### BIG FAT WARNING ##########################
22  * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
23  * # go backwards !!                                                  #
24  * ####################################################################
25  *
26  * There is no strict promise about the base, although it tends to start
27  * at 0 on boot (but people really shouldn't rely on that).
28  *
29  * cpu_clock(i)       -- can be used from any context, including NMI.
30  * local_clock()      -- is cpu_clock() on the current CPU.
31  *
32  * sched_clock_cpu(i)
33  *
34  * How it is implemented:
35  *
36  * The implementation either uses sched_clock() when
37  * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
38  * sched_clock() is assumed to provide these properties (mostly it means
39  * the architecture provides a globally synchronized highres time source).
40  *
41  * Otherwise it tries to create a semi stable clock from a mixture of other
42  * clocks, including:
43  *
44  *  - GTOD (clock monotomic)
45  *  - sched_clock()
46  *  - explicit idle events
47  *
48  * We use GTOD as base and use sched_clock() deltas to improve resolution. The
49  * deltas are filtered to provide monotonicity and keeping it within an
50  * expected window.
51  *
52  * Furthermore, explicit sleep and wakeup hooks allow us to account for time
53  * that is otherwise invisible (TSC gets stopped).
54  *
55  */
56 #include "sched.h"
57 #include <linux/sched_clock.h>
58 
59 /*
60  * Scheduler clock - returns current time in nanosec units.
61  * This is default implementation.
62  * Architectures and sub-architectures can override this.
63  */
64 unsigned long long __weak sched_clock(void)
65 {
66 	return (unsigned long long)(jiffies - INITIAL_JIFFIES)
67 					* (NSEC_PER_SEC / HZ);
68 }
69 EXPORT_SYMBOL_GPL(sched_clock);
70 
71 static DEFINE_STATIC_KEY_FALSE(sched_clock_running);
72 
73 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
74 /*
75  * We must start with !__sched_clock_stable because the unstable -> stable
76  * transition is accurate, while the stable -> unstable transition is not.
77  *
78  * Similarly we start with __sched_clock_stable_early, thereby assuming we
79  * will become stable, such that there's only a single 1 -> 0 transition.
80  */
81 static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
82 static int __sched_clock_stable_early = 1;
83 
84 /*
85  * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
86  */
87 __read_mostly u64 __sched_clock_offset;
88 static __read_mostly u64 __gtod_offset;
89 
90 struct sched_clock_data {
91 	u64			tick_raw;
92 	u64			tick_gtod;
93 	u64			clock;
94 };
95 
96 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
97 
98 static inline struct sched_clock_data *this_scd(void)
99 {
100 	return this_cpu_ptr(&sched_clock_data);
101 }
102 
103 static inline struct sched_clock_data *cpu_sdc(int cpu)
104 {
105 	return &per_cpu(sched_clock_data, cpu);
106 }
107 
108 int sched_clock_stable(void)
109 {
110 	return static_branch_likely(&__sched_clock_stable);
111 }
112 
113 static void __scd_stamp(struct sched_clock_data *scd)
114 {
115 	scd->tick_gtod = ktime_get_ns();
116 	scd->tick_raw = sched_clock();
117 }
118 
119 static void __set_sched_clock_stable(void)
120 {
121 	struct sched_clock_data *scd;
122 
123 	/*
124 	 * Since we're still unstable and the tick is already running, we have
125 	 * to disable IRQs in order to get a consistent scd->tick* reading.
126 	 */
127 	local_irq_disable();
128 	scd = this_scd();
129 	/*
130 	 * Attempt to make the (initial) unstable->stable transition continuous.
131 	 */
132 	__sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
133 	local_irq_enable();
134 
135 	printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
136 			scd->tick_gtod, __gtod_offset,
137 			scd->tick_raw,  __sched_clock_offset);
138 
139 	static_branch_enable(&__sched_clock_stable);
140 	tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
141 }
142 
143 /*
144  * If we ever get here, we're screwed, because we found out -- typically after
145  * the fact -- that TSC wasn't good. This means all our clocksources (including
146  * ktime) could have reported wrong values.
147  *
148  * What we do here is an attempt to fix up and continue sort of where we left
149  * off in a coherent manner.
150  *
151  * The only way to fully avoid random clock jumps is to boot with:
152  * "tsc=unstable".
153  */
154 static void __sched_clock_work(struct work_struct *work)
155 {
156 	struct sched_clock_data *scd;
157 	int cpu;
158 
159 	/* take a current timestamp and set 'now' */
160 	preempt_disable();
161 	scd = this_scd();
162 	__scd_stamp(scd);
163 	scd->clock = scd->tick_gtod + __gtod_offset;
164 	preempt_enable();
165 
166 	/* clone to all CPUs */
167 	for_each_possible_cpu(cpu)
168 		per_cpu(sched_clock_data, cpu) = *scd;
169 
170 	printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
171 	printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
172 			scd->tick_gtod, __gtod_offset,
173 			scd->tick_raw,  __sched_clock_offset);
174 
175 	static_branch_disable(&__sched_clock_stable);
176 }
177 
178 static DECLARE_WORK(sched_clock_work, __sched_clock_work);
179 
180 static void __clear_sched_clock_stable(void)
181 {
182 	if (!sched_clock_stable())
183 		return;
184 
185 	tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
186 	schedule_work(&sched_clock_work);
187 }
188 
189 void clear_sched_clock_stable(void)
190 {
191 	__sched_clock_stable_early = 0;
192 
193 	smp_mb(); /* matches sched_clock_init_late() */
194 
195 	if (static_key_count(&sched_clock_running.key) == 2)
196 		__clear_sched_clock_stable();
197 }
198 
199 static void __sched_clock_gtod_offset(void)
200 {
201 	struct sched_clock_data *scd = this_scd();
202 
203 	__scd_stamp(scd);
204 	__gtod_offset = (scd->tick_raw + __sched_clock_offset) - scd->tick_gtod;
205 }
206 
207 void __init sched_clock_init(void)
208 {
209 	/*
210 	 * Set __gtod_offset such that once we mark sched_clock_running,
211 	 * sched_clock_tick() continues where sched_clock() left off.
212 	 *
213 	 * Even if TSC is buggered, we're still UP at this point so it
214 	 * can't really be out of sync.
215 	 */
216 	local_irq_disable();
217 	__sched_clock_gtod_offset();
218 	local_irq_enable();
219 
220 	static_branch_inc(&sched_clock_running);
221 }
222 /*
223  * We run this as late_initcall() such that it runs after all built-in drivers,
224  * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
225  */
226 static int __init sched_clock_init_late(void)
227 {
228 	static_branch_inc(&sched_clock_running);
229 	/*
230 	 * Ensure that it is impossible to not do a static_key update.
231 	 *
232 	 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
233 	 * and do the update, or we must see their __sched_clock_stable_early
234 	 * and do the update, or both.
235 	 */
236 	smp_mb(); /* matches {set,clear}_sched_clock_stable() */
237 
238 	if (__sched_clock_stable_early)
239 		__set_sched_clock_stable();
240 
241 	return 0;
242 }
243 late_initcall(sched_clock_init_late);
244 
245 /*
246  * min, max except they take wrapping into account
247  */
248 
249 static inline u64 wrap_min(u64 x, u64 y)
250 {
251 	return (s64)(x - y) < 0 ? x : y;
252 }
253 
254 static inline u64 wrap_max(u64 x, u64 y)
255 {
256 	return (s64)(x - y) > 0 ? x : y;
257 }
258 
259 /*
260  * update the percpu scd from the raw @now value
261  *
262  *  - filter out backward motion
263  *  - use the GTOD tick value to create a window to filter crazy TSC values
264  */
265 static u64 sched_clock_local(struct sched_clock_data *scd)
266 {
267 	u64 now, clock, old_clock, min_clock, max_clock, gtod;
268 	s64 delta;
269 
270 again:
271 	now = sched_clock();
272 	delta = now - scd->tick_raw;
273 	if (unlikely(delta < 0))
274 		delta = 0;
275 
276 	old_clock = scd->clock;
277 
278 	/*
279 	 * scd->clock = clamp(scd->tick_gtod + delta,
280 	 *		      max(scd->tick_gtod, scd->clock),
281 	 *		      scd->tick_gtod + TICK_NSEC);
282 	 */
283 
284 	gtod = scd->tick_gtod + __gtod_offset;
285 	clock = gtod + delta;
286 	min_clock = wrap_max(gtod, old_clock);
287 	max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
288 
289 	clock = wrap_max(clock, min_clock);
290 	clock = wrap_min(clock, max_clock);
291 
292 	if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
293 		goto again;
294 
295 	return clock;
296 }
297 
298 static u64 sched_clock_remote(struct sched_clock_data *scd)
299 {
300 	struct sched_clock_data *my_scd = this_scd();
301 	u64 this_clock, remote_clock;
302 	u64 *ptr, old_val, val;
303 
304 #if BITS_PER_LONG != 64
305 again:
306 	/*
307 	 * Careful here: The local and the remote clock values need to
308 	 * be read out atomic as we need to compare the values and
309 	 * then update either the local or the remote side. So the
310 	 * cmpxchg64 below only protects one readout.
311 	 *
312 	 * We must reread via sched_clock_local() in the retry case on
313 	 * 32-bit kernels as an NMI could use sched_clock_local() via the
314 	 * tracer and hit between the readout of
315 	 * the low 32-bit and the high 32-bit portion.
316 	 */
317 	this_clock = sched_clock_local(my_scd);
318 	/*
319 	 * We must enforce atomic readout on 32-bit, otherwise the
320 	 * update on the remote CPU can hit inbetween the readout of
321 	 * the low 32-bit and the high 32-bit portion.
322 	 */
323 	remote_clock = cmpxchg64(&scd->clock, 0, 0);
324 #else
325 	/*
326 	 * On 64-bit kernels the read of [my]scd->clock is atomic versus the
327 	 * update, so we can avoid the above 32-bit dance.
328 	 */
329 	sched_clock_local(my_scd);
330 again:
331 	this_clock = my_scd->clock;
332 	remote_clock = scd->clock;
333 #endif
334 
335 	/*
336 	 * Use the opportunity that we have both locks
337 	 * taken to couple the two clocks: we take the
338 	 * larger time as the latest time for both
339 	 * runqueues. (this creates monotonic movement)
340 	 */
341 	if (likely((s64)(remote_clock - this_clock) < 0)) {
342 		ptr = &scd->clock;
343 		old_val = remote_clock;
344 		val = this_clock;
345 	} else {
346 		/*
347 		 * Should be rare, but possible:
348 		 */
349 		ptr = &my_scd->clock;
350 		old_val = this_clock;
351 		val = remote_clock;
352 	}
353 
354 	if (cmpxchg64(ptr, old_val, val) != old_val)
355 		goto again;
356 
357 	return val;
358 }
359 
360 /*
361  * Similar to cpu_clock(), but requires local IRQs to be disabled.
362  *
363  * See cpu_clock().
364  */
365 u64 sched_clock_cpu(int cpu)
366 {
367 	struct sched_clock_data *scd;
368 	u64 clock;
369 
370 	if (sched_clock_stable())
371 		return sched_clock() + __sched_clock_offset;
372 
373 	if (!static_branch_likely(&sched_clock_running))
374 		return sched_clock();
375 
376 	preempt_disable_notrace();
377 	scd = cpu_sdc(cpu);
378 
379 	if (cpu != smp_processor_id())
380 		clock = sched_clock_remote(scd);
381 	else
382 		clock = sched_clock_local(scd);
383 	preempt_enable_notrace();
384 
385 	return clock;
386 }
387 EXPORT_SYMBOL_GPL(sched_clock_cpu);
388 
389 void sched_clock_tick(void)
390 {
391 	struct sched_clock_data *scd;
392 
393 	if (sched_clock_stable())
394 		return;
395 
396 	if (!static_branch_likely(&sched_clock_running))
397 		return;
398 
399 	lockdep_assert_irqs_disabled();
400 
401 	scd = this_scd();
402 	__scd_stamp(scd);
403 	sched_clock_local(scd);
404 }
405 
406 void sched_clock_tick_stable(void)
407 {
408 	if (!sched_clock_stable())
409 		return;
410 
411 	/*
412 	 * Called under watchdog_lock.
413 	 *
414 	 * The watchdog just found this TSC to (still) be stable, so now is a
415 	 * good moment to update our __gtod_offset. Because once we find the
416 	 * TSC to be unstable, any computation will be computing crap.
417 	 */
418 	local_irq_disable();
419 	__sched_clock_gtod_offset();
420 	local_irq_enable();
421 }
422 
423 /*
424  * We are going deep-idle (irqs are disabled):
425  */
426 void sched_clock_idle_sleep_event(void)
427 {
428 	sched_clock_cpu(smp_processor_id());
429 }
430 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
431 
432 /*
433  * We just idled; resync with ktime.
434  */
435 void sched_clock_idle_wakeup_event(void)
436 {
437 	unsigned long flags;
438 
439 	if (sched_clock_stable())
440 		return;
441 
442 	if (unlikely(timekeeping_suspended))
443 		return;
444 
445 	local_irq_save(flags);
446 	sched_clock_tick();
447 	local_irq_restore(flags);
448 }
449 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
450 
451 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
452 
453 void __init sched_clock_init(void)
454 {
455 	static_branch_inc(&sched_clock_running);
456 	local_irq_disable();
457 	generic_sched_clock_init();
458 	local_irq_enable();
459 }
460 
461 u64 sched_clock_cpu(int cpu)
462 {
463 	if (!static_branch_likely(&sched_clock_running))
464 		return 0;
465 
466 	return sched_clock();
467 }
468 
469 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
470 
471 /*
472  * Running clock - returns the time that has elapsed while a guest has been
473  * running.
474  * On a guest this value should be local_clock minus the time the guest was
475  * suspended by the hypervisor (for any reason).
476  * On bare metal this function should return the same as local_clock.
477  * Architectures and sub-architectures can override this.
478  */
479 u64 __weak running_clock(void)
480 {
481 	return local_clock();
482 }
483