xref: /linux/kernel/sched/deadline.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Deadline Scheduling Class (SCHED_DEADLINE)
4  *
5  * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6  *
7  * Tasks that periodically executes their instances for less than their
8  * runtime won't miss any of their deadlines.
9  * Tasks that are not periodic or sporadic or that tries to execute more
10  * than their reserved bandwidth will be slowed down (and may potentially
11  * miss some of their deadlines), and won't affect any other task.
12  *
13  * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14  *                    Juri Lelli <juri.lelli@gmail.com>,
15  *                    Michael Trimarchi <michael@amarulasolutions.com>,
16  *                    Fabio Checconi <fchecconi@gmail.com>
17  */
18 #include "sched.h"
19 #include "pelt.h"
20 
21 struct dl_bandwidth def_dl_bandwidth;
22 
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 	return container_of(dl_se, struct task_struct, dl);
26 }
27 
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 	return container_of(dl_rq, struct rq, dl);
31 }
32 
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 	struct task_struct *p = dl_task_of(dl_se);
36 	struct rq *rq = task_rq(p);
37 
38 	return &rq->dl;
39 }
40 
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 	return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45 
46 #ifdef CONFIG_SMP
47 static inline struct dl_bw *dl_bw_of(int i)
48 {
49 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
50 			 "sched RCU must be held");
51 	return &cpu_rq(i)->rd->dl_bw;
52 }
53 
54 static inline int dl_bw_cpus(int i)
55 {
56 	struct root_domain *rd = cpu_rq(i)->rd;
57 	int cpus = 0;
58 
59 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
60 			 "sched RCU must be held");
61 	for_each_cpu_and(i, rd->span, cpu_active_mask)
62 		cpus++;
63 
64 	return cpus;
65 }
66 #else
67 static inline struct dl_bw *dl_bw_of(int i)
68 {
69 	return &cpu_rq(i)->dl.dl_bw;
70 }
71 
72 static inline int dl_bw_cpus(int i)
73 {
74 	return 1;
75 }
76 #endif
77 
78 static inline
79 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
80 {
81 	u64 old = dl_rq->running_bw;
82 
83 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
84 	dl_rq->running_bw += dl_bw;
85 	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
86 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
87 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
88 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
89 }
90 
91 static inline
92 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
93 {
94 	u64 old = dl_rq->running_bw;
95 
96 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
97 	dl_rq->running_bw -= dl_bw;
98 	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
99 	if (dl_rq->running_bw > old)
100 		dl_rq->running_bw = 0;
101 	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
102 	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
103 }
104 
105 static inline
106 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
107 {
108 	u64 old = dl_rq->this_bw;
109 
110 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
111 	dl_rq->this_bw += dl_bw;
112 	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
113 }
114 
115 static inline
116 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
117 {
118 	u64 old = dl_rq->this_bw;
119 
120 	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
121 	dl_rq->this_bw -= dl_bw;
122 	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
123 	if (dl_rq->this_bw > old)
124 		dl_rq->this_bw = 0;
125 	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
126 }
127 
128 static inline
129 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
130 {
131 	if (!dl_entity_is_special(dl_se))
132 		__add_rq_bw(dl_se->dl_bw, dl_rq);
133 }
134 
135 static inline
136 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
137 {
138 	if (!dl_entity_is_special(dl_se))
139 		__sub_rq_bw(dl_se->dl_bw, dl_rq);
140 }
141 
142 static inline
143 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
144 {
145 	if (!dl_entity_is_special(dl_se))
146 		__add_running_bw(dl_se->dl_bw, dl_rq);
147 }
148 
149 static inline
150 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
151 {
152 	if (!dl_entity_is_special(dl_se))
153 		__sub_running_bw(dl_se->dl_bw, dl_rq);
154 }
155 
156 void dl_change_utilization(struct task_struct *p, u64 new_bw)
157 {
158 	struct rq *rq;
159 
160 	BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
161 
162 	if (task_on_rq_queued(p))
163 		return;
164 
165 	rq = task_rq(p);
166 	if (p->dl.dl_non_contending) {
167 		sub_running_bw(&p->dl, &rq->dl);
168 		p->dl.dl_non_contending = 0;
169 		/*
170 		 * If the timer handler is currently running and the
171 		 * timer cannot be cancelled, inactive_task_timer()
172 		 * will see that dl_not_contending is not set, and
173 		 * will not touch the rq's active utilization,
174 		 * so we are still safe.
175 		 */
176 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
177 			put_task_struct(p);
178 	}
179 	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
180 	__add_rq_bw(new_bw, &rq->dl);
181 }
182 
183 /*
184  * The utilization of a task cannot be immediately removed from
185  * the rq active utilization (running_bw) when the task blocks.
186  * Instead, we have to wait for the so called "0-lag time".
187  *
188  * If a task blocks before the "0-lag time", a timer (the inactive
189  * timer) is armed, and running_bw is decreased when the timer
190  * fires.
191  *
192  * If the task wakes up again before the inactive timer fires,
193  * the timer is cancelled, whereas if the task wakes up after the
194  * inactive timer fired (and running_bw has been decreased) the
195  * task's utilization has to be added to running_bw again.
196  * A flag in the deadline scheduling entity (dl_non_contending)
197  * is used to avoid race conditions between the inactive timer handler
198  * and task wakeups.
199  *
200  * The following diagram shows how running_bw is updated. A task is
201  * "ACTIVE" when its utilization contributes to running_bw; an
202  * "ACTIVE contending" task is in the TASK_RUNNING state, while an
203  * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
204  * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
205  * time already passed, which does not contribute to running_bw anymore.
206  *                              +------------------+
207  *             wakeup           |    ACTIVE        |
208  *          +------------------>+   contending     |
209  *          | add_running_bw    |                  |
210  *          |                   +----+------+------+
211  *          |                        |      ^
212  *          |                dequeue |      |
213  * +--------+-------+                |      |
214  * |                |   t >= 0-lag   |      | wakeup
215  * |    INACTIVE    |<---------------+      |
216  * |                | sub_running_bw |      |
217  * +--------+-------+                |      |
218  *          ^                        |      |
219  *          |              t < 0-lag |      |
220  *          |                        |      |
221  *          |                        V      |
222  *          |                   +----+------+------+
223  *          | sub_running_bw    |    ACTIVE        |
224  *          +-------------------+                  |
225  *            inactive timer    |  non contending  |
226  *            fired             +------------------+
227  *
228  * The task_non_contending() function is invoked when a task
229  * blocks, and checks if the 0-lag time already passed or
230  * not (in the first case, it directly updates running_bw;
231  * in the second case, it arms the inactive timer).
232  *
233  * The task_contending() function is invoked when a task wakes
234  * up, and checks if the task is still in the "ACTIVE non contending"
235  * state or not (in the second case, it updates running_bw).
236  */
237 static void task_non_contending(struct task_struct *p)
238 {
239 	struct sched_dl_entity *dl_se = &p->dl;
240 	struct hrtimer *timer = &dl_se->inactive_timer;
241 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
242 	struct rq *rq = rq_of_dl_rq(dl_rq);
243 	s64 zerolag_time;
244 
245 	/*
246 	 * If this is a non-deadline task that has been boosted,
247 	 * do nothing
248 	 */
249 	if (dl_se->dl_runtime == 0)
250 		return;
251 
252 	if (dl_entity_is_special(dl_se))
253 		return;
254 
255 	WARN_ON(dl_se->dl_non_contending);
256 
257 	zerolag_time = dl_se->deadline -
258 		 div64_long((dl_se->runtime * dl_se->dl_period),
259 			dl_se->dl_runtime);
260 
261 	/*
262 	 * Using relative times instead of the absolute "0-lag time"
263 	 * allows to simplify the code
264 	 */
265 	zerolag_time -= rq_clock(rq);
266 
267 	/*
268 	 * If the "0-lag time" already passed, decrease the active
269 	 * utilization now, instead of starting a timer
270 	 */
271 	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
272 		if (dl_task(p))
273 			sub_running_bw(dl_se, dl_rq);
274 		if (!dl_task(p) || p->state == TASK_DEAD) {
275 			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
276 
277 			if (p->state == TASK_DEAD)
278 				sub_rq_bw(&p->dl, &rq->dl);
279 			raw_spin_lock(&dl_b->lock);
280 			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
281 			__dl_clear_params(p);
282 			raw_spin_unlock(&dl_b->lock);
283 		}
284 
285 		return;
286 	}
287 
288 	dl_se->dl_non_contending = 1;
289 	get_task_struct(p);
290 	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
291 }
292 
293 static void task_contending(struct sched_dl_entity *dl_se, int flags)
294 {
295 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
296 
297 	/*
298 	 * If this is a non-deadline task that has been boosted,
299 	 * do nothing
300 	 */
301 	if (dl_se->dl_runtime == 0)
302 		return;
303 
304 	if (flags & ENQUEUE_MIGRATED)
305 		add_rq_bw(dl_se, dl_rq);
306 
307 	if (dl_se->dl_non_contending) {
308 		dl_se->dl_non_contending = 0;
309 		/*
310 		 * If the timer handler is currently running and the
311 		 * timer cannot be cancelled, inactive_task_timer()
312 		 * will see that dl_not_contending is not set, and
313 		 * will not touch the rq's active utilization,
314 		 * so we are still safe.
315 		 */
316 		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
317 			put_task_struct(dl_task_of(dl_se));
318 	} else {
319 		/*
320 		 * Since "dl_non_contending" is not set, the
321 		 * task's utilization has already been removed from
322 		 * active utilization (either when the task blocked,
323 		 * when the "inactive timer" fired).
324 		 * So, add it back.
325 		 */
326 		add_running_bw(dl_se, dl_rq);
327 	}
328 }
329 
330 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
331 {
332 	struct sched_dl_entity *dl_se = &p->dl;
333 
334 	return dl_rq->root.rb_leftmost == &dl_se->rb_node;
335 }
336 
337 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
338 {
339 	raw_spin_lock_init(&dl_b->dl_runtime_lock);
340 	dl_b->dl_period = period;
341 	dl_b->dl_runtime = runtime;
342 }
343 
344 void init_dl_bw(struct dl_bw *dl_b)
345 {
346 	raw_spin_lock_init(&dl_b->lock);
347 	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
348 	if (global_rt_runtime() == RUNTIME_INF)
349 		dl_b->bw = -1;
350 	else
351 		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
352 	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
353 	dl_b->total_bw = 0;
354 }
355 
356 void init_dl_rq(struct dl_rq *dl_rq)
357 {
358 	dl_rq->root = RB_ROOT_CACHED;
359 
360 #ifdef CONFIG_SMP
361 	/* zero means no -deadline tasks */
362 	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
363 
364 	dl_rq->dl_nr_migratory = 0;
365 	dl_rq->overloaded = 0;
366 	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
367 #else
368 	init_dl_bw(&dl_rq->dl_bw);
369 #endif
370 
371 	dl_rq->running_bw = 0;
372 	dl_rq->this_bw = 0;
373 	init_dl_rq_bw_ratio(dl_rq);
374 }
375 
376 #ifdef CONFIG_SMP
377 
378 static inline int dl_overloaded(struct rq *rq)
379 {
380 	return atomic_read(&rq->rd->dlo_count);
381 }
382 
383 static inline void dl_set_overload(struct rq *rq)
384 {
385 	if (!rq->online)
386 		return;
387 
388 	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
389 	/*
390 	 * Must be visible before the overload count is
391 	 * set (as in sched_rt.c).
392 	 *
393 	 * Matched by the barrier in pull_dl_task().
394 	 */
395 	smp_wmb();
396 	atomic_inc(&rq->rd->dlo_count);
397 }
398 
399 static inline void dl_clear_overload(struct rq *rq)
400 {
401 	if (!rq->online)
402 		return;
403 
404 	atomic_dec(&rq->rd->dlo_count);
405 	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
406 }
407 
408 static void update_dl_migration(struct dl_rq *dl_rq)
409 {
410 	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
411 		if (!dl_rq->overloaded) {
412 			dl_set_overload(rq_of_dl_rq(dl_rq));
413 			dl_rq->overloaded = 1;
414 		}
415 	} else if (dl_rq->overloaded) {
416 		dl_clear_overload(rq_of_dl_rq(dl_rq));
417 		dl_rq->overloaded = 0;
418 	}
419 }
420 
421 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
422 {
423 	struct task_struct *p = dl_task_of(dl_se);
424 
425 	if (p->nr_cpus_allowed > 1)
426 		dl_rq->dl_nr_migratory++;
427 
428 	update_dl_migration(dl_rq);
429 }
430 
431 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
432 {
433 	struct task_struct *p = dl_task_of(dl_se);
434 
435 	if (p->nr_cpus_allowed > 1)
436 		dl_rq->dl_nr_migratory--;
437 
438 	update_dl_migration(dl_rq);
439 }
440 
441 /*
442  * The list of pushable -deadline task is not a plist, like in
443  * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
444  */
445 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
446 {
447 	struct dl_rq *dl_rq = &rq->dl;
448 	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
449 	struct rb_node *parent = NULL;
450 	struct task_struct *entry;
451 	bool leftmost = true;
452 
453 	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
454 
455 	while (*link) {
456 		parent = *link;
457 		entry = rb_entry(parent, struct task_struct,
458 				 pushable_dl_tasks);
459 		if (dl_entity_preempt(&p->dl, &entry->dl))
460 			link = &parent->rb_left;
461 		else {
462 			link = &parent->rb_right;
463 			leftmost = false;
464 		}
465 	}
466 
467 	if (leftmost)
468 		dl_rq->earliest_dl.next = p->dl.deadline;
469 
470 	rb_link_node(&p->pushable_dl_tasks, parent, link);
471 	rb_insert_color_cached(&p->pushable_dl_tasks,
472 			       &dl_rq->pushable_dl_tasks_root, leftmost);
473 }
474 
475 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
476 {
477 	struct dl_rq *dl_rq = &rq->dl;
478 
479 	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
480 		return;
481 
482 	if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
483 		struct rb_node *next_node;
484 
485 		next_node = rb_next(&p->pushable_dl_tasks);
486 		if (next_node) {
487 			dl_rq->earliest_dl.next = rb_entry(next_node,
488 				struct task_struct, pushable_dl_tasks)->dl.deadline;
489 		}
490 	}
491 
492 	rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
493 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
494 }
495 
496 static inline int has_pushable_dl_tasks(struct rq *rq)
497 {
498 	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
499 }
500 
501 static int push_dl_task(struct rq *rq);
502 
503 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
504 {
505 	return dl_task(prev);
506 }
507 
508 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
509 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
510 
511 static void push_dl_tasks(struct rq *);
512 static void pull_dl_task(struct rq *);
513 
514 static inline void deadline_queue_push_tasks(struct rq *rq)
515 {
516 	if (!has_pushable_dl_tasks(rq))
517 		return;
518 
519 	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
520 }
521 
522 static inline void deadline_queue_pull_task(struct rq *rq)
523 {
524 	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
525 }
526 
527 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
528 
529 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
530 {
531 	struct rq *later_rq = NULL;
532 
533 	later_rq = find_lock_later_rq(p, rq);
534 	if (!later_rq) {
535 		int cpu;
536 
537 		/*
538 		 * If we cannot preempt any rq, fall back to pick any
539 		 * online CPU:
540 		 */
541 		cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
542 		if (cpu >= nr_cpu_ids) {
543 			/*
544 			 * Failed to find any suitable CPU.
545 			 * The task will never come back!
546 			 */
547 			BUG_ON(dl_bandwidth_enabled());
548 
549 			/*
550 			 * If admission control is disabled we
551 			 * try a little harder to let the task
552 			 * run.
553 			 */
554 			cpu = cpumask_any(cpu_active_mask);
555 		}
556 		later_rq = cpu_rq(cpu);
557 		double_lock_balance(rq, later_rq);
558 	}
559 
560 	set_task_cpu(p, later_rq->cpu);
561 	double_unlock_balance(later_rq, rq);
562 
563 	return later_rq;
564 }
565 
566 #else
567 
568 static inline
569 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
570 {
571 }
572 
573 static inline
574 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
575 {
576 }
577 
578 static inline
579 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
580 {
581 }
582 
583 static inline
584 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
585 {
586 }
587 
588 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
589 {
590 	return false;
591 }
592 
593 static inline void pull_dl_task(struct rq *rq)
594 {
595 }
596 
597 static inline void deadline_queue_push_tasks(struct rq *rq)
598 {
599 }
600 
601 static inline void deadline_queue_pull_task(struct rq *rq)
602 {
603 }
604 #endif /* CONFIG_SMP */
605 
606 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
607 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
608 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
609 
610 /*
611  * We are being explicitly informed that a new instance is starting,
612  * and this means that:
613  *  - the absolute deadline of the entity has to be placed at
614  *    current time + relative deadline;
615  *  - the runtime of the entity has to be set to the maximum value.
616  *
617  * The capability of specifying such event is useful whenever a -deadline
618  * entity wants to (try to!) synchronize its behaviour with the scheduler's
619  * one, and to (try to!) reconcile itself with its own scheduling
620  * parameters.
621  */
622 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
623 {
624 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
625 	struct rq *rq = rq_of_dl_rq(dl_rq);
626 
627 	WARN_ON(dl_se->dl_boosted);
628 	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
629 
630 	/*
631 	 * We are racing with the deadline timer. So, do nothing because
632 	 * the deadline timer handler will take care of properly recharging
633 	 * the runtime and postponing the deadline
634 	 */
635 	if (dl_se->dl_throttled)
636 		return;
637 
638 	/*
639 	 * We use the regular wall clock time to set deadlines in the
640 	 * future; in fact, we must consider execution overheads (time
641 	 * spent on hardirq context, etc.).
642 	 */
643 	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
644 	dl_se->runtime = dl_se->dl_runtime;
645 }
646 
647 /*
648  * Pure Earliest Deadline First (EDF) scheduling does not deal with the
649  * possibility of a entity lasting more than what it declared, and thus
650  * exhausting its runtime.
651  *
652  * Here we are interested in making runtime overrun possible, but we do
653  * not want a entity which is misbehaving to affect the scheduling of all
654  * other entities.
655  * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
656  * is used, in order to confine each entity within its own bandwidth.
657  *
658  * This function deals exactly with that, and ensures that when the runtime
659  * of a entity is replenished, its deadline is also postponed. That ensures
660  * the overrunning entity can't interfere with other entity in the system and
661  * can't make them miss their deadlines. Reasons why this kind of overruns
662  * could happen are, typically, a entity voluntarily trying to overcome its
663  * runtime, or it just underestimated it during sched_setattr().
664  */
665 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
666 				struct sched_dl_entity *pi_se)
667 {
668 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
669 	struct rq *rq = rq_of_dl_rq(dl_rq);
670 
671 	BUG_ON(pi_se->dl_runtime <= 0);
672 
673 	/*
674 	 * This could be the case for a !-dl task that is boosted.
675 	 * Just go with full inherited parameters.
676 	 */
677 	if (dl_se->dl_deadline == 0) {
678 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
679 		dl_se->runtime = pi_se->dl_runtime;
680 	}
681 
682 	if (dl_se->dl_yielded && dl_se->runtime > 0)
683 		dl_se->runtime = 0;
684 
685 	/*
686 	 * We keep moving the deadline away until we get some
687 	 * available runtime for the entity. This ensures correct
688 	 * handling of situations where the runtime overrun is
689 	 * arbitrary large.
690 	 */
691 	while (dl_se->runtime <= 0) {
692 		dl_se->deadline += pi_se->dl_period;
693 		dl_se->runtime += pi_se->dl_runtime;
694 	}
695 
696 	/*
697 	 * At this point, the deadline really should be "in
698 	 * the future" with respect to rq->clock. If it's
699 	 * not, we are, for some reason, lagging too much!
700 	 * Anyway, after having warn userspace abut that,
701 	 * we still try to keep the things running by
702 	 * resetting the deadline and the budget of the
703 	 * entity.
704 	 */
705 	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
706 		printk_deferred_once("sched: DL replenish lagged too much\n");
707 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
708 		dl_se->runtime = pi_se->dl_runtime;
709 	}
710 
711 	if (dl_se->dl_yielded)
712 		dl_se->dl_yielded = 0;
713 	if (dl_se->dl_throttled)
714 		dl_se->dl_throttled = 0;
715 }
716 
717 /*
718  * Here we check if --at time t-- an entity (which is probably being
719  * [re]activated or, in general, enqueued) can use its remaining runtime
720  * and its current deadline _without_ exceeding the bandwidth it is
721  * assigned (function returns true if it can't). We are in fact applying
722  * one of the CBS rules: when a task wakes up, if the residual runtime
723  * over residual deadline fits within the allocated bandwidth, then we
724  * can keep the current (absolute) deadline and residual budget without
725  * disrupting the schedulability of the system. Otherwise, we should
726  * refill the runtime and set the deadline a period in the future,
727  * because keeping the current (absolute) deadline of the task would
728  * result in breaking guarantees promised to other tasks (refer to
729  * Documentation/scheduler/sched-deadline.txt for more information).
730  *
731  * This function returns true if:
732  *
733  *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
734  *
735  * IOW we can't recycle current parameters.
736  *
737  * Notice that the bandwidth check is done against the deadline. For
738  * task with deadline equal to period this is the same of using
739  * dl_period instead of dl_deadline in the equation above.
740  */
741 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
742 			       struct sched_dl_entity *pi_se, u64 t)
743 {
744 	u64 left, right;
745 
746 	/*
747 	 * left and right are the two sides of the equation above,
748 	 * after a bit of shuffling to use multiplications instead
749 	 * of divisions.
750 	 *
751 	 * Note that none of the time values involved in the two
752 	 * multiplications are absolute: dl_deadline and dl_runtime
753 	 * are the relative deadline and the maximum runtime of each
754 	 * instance, runtime is the runtime left for the last instance
755 	 * and (deadline - t), since t is rq->clock, is the time left
756 	 * to the (absolute) deadline. Even if overflowing the u64 type
757 	 * is very unlikely to occur in both cases, here we scale down
758 	 * as we want to avoid that risk at all. Scaling down by 10
759 	 * means that we reduce granularity to 1us. We are fine with it,
760 	 * since this is only a true/false check and, anyway, thinking
761 	 * of anything below microseconds resolution is actually fiction
762 	 * (but still we want to give the user that illusion >;).
763 	 */
764 	left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
765 	right = ((dl_se->deadline - t) >> DL_SCALE) *
766 		(pi_se->dl_runtime >> DL_SCALE);
767 
768 	return dl_time_before(right, left);
769 }
770 
771 /*
772  * Revised wakeup rule [1]: For self-suspending tasks, rather then
773  * re-initializing task's runtime and deadline, the revised wakeup
774  * rule adjusts the task's runtime to avoid the task to overrun its
775  * density.
776  *
777  * Reasoning: a task may overrun the density if:
778  *    runtime / (deadline - t) > dl_runtime / dl_deadline
779  *
780  * Therefore, runtime can be adjusted to:
781  *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
782  *
783  * In such way that runtime will be equal to the maximum density
784  * the task can use without breaking any rule.
785  *
786  * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
787  * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
788  */
789 static void
790 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
791 {
792 	u64 laxity = dl_se->deadline - rq_clock(rq);
793 
794 	/*
795 	 * If the task has deadline < period, and the deadline is in the past,
796 	 * it should already be throttled before this check.
797 	 *
798 	 * See update_dl_entity() comments for further details.
799 	 */
800 	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
801 
802 	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
803 }
804 
805 /*
806  * Regarding the deadline, a task with implicit deadline has a relative
807  * deadline == relative period. A task with constrained deadline has a
808  * relative deadline <= relative period.
809  *
810  * We support constrained deadline tasks. However, there are some restrictions
811  * applied only for tasks which do not have an implicit deadline. See
812  * update_dl_entity() to know more about such restrictions.
813  *
814  * The dl_is_implicit() returns true if the task has an implicit deadline.
815  */
816 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
817 {
818 	return dl_se->dl_deadline == dl_se->dl_period;
819 }
820 
821 /*
822  * When a deadline entity is placed in the runqueue, its runtime and deadline
823  * might need to be updated. This is done by a CBS wake up rule. There are two
824  * different rules: 1) the original CBS; and 2) the Revisited CBS.
825  *
826  * When the task is starting a new period, the Original CBS is used. In this
827  * case, the runtime is replenished and a new absolute deadline is set.
828  *
829  * When a task is queued before the begin of the next period, using the
830  * remaining runtime and deadline could make the entity to overflow, see
831  * dl_entity_overflow() to find more about runtime overflow. When such case
832  * is detected, the runtime and deadline need to be updated.
833  *
834  * If the task has an implicit deadline, i.e., deadline == period, the Original
835  * CBS is applied. the runtime is replenished and a new absolute deadline is
836  * set, as in the previous cases.
837  *
838  * However, the Original CBS does not work properly for tasks with
839  * deadline < period, which are said to have a constrained deadline. By
840  * applying the Original CBS, a constrained deadline task would be able to run
841  * runtime/deadline in a period. With deadline < period, the task would
842  * overrun the runtime/period allowed bandwidth, breaking the admission test.
843  *
844  * In order to prevent this misbehave, the Revisited CBS is used for
845  * constrained deadline tasks when a runtime overflow is detected. In the
846  * Revisited CBS, rather than replenishing & setting a new absolute deadline,
847  * the remaining runtime of the task is reduced to avoid runtime overflow.
848  * Please refer to the comments update_dl_revised_wakeup() function to find
849  * more about the Revised CBS rule.
850  */
851 static void update_dl_entity(struct sched_dl_entity *dl_se,
852 			     struct sched_dl_entity *pi_se)
853 {
854 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
855 	struct rq *rq = rq_of_dl_rq(dl_rq);
856 
857 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
858 	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
859 
860 		if (unlikely(!dl_is_implicit(dl_se) &&
861 			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
862 			     !dl_se->dl_boosted)){
863 			update_dl_revised_wakeup(dl_se, rq);
864 			return;
865 		}
866 
867 		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
868 		dl_se->runtime = pi_se->dl_runtime;
869 	}
870 }
871 
872 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
873 {
874 	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
875 }
876 
877 /*
878  * If the entity depleted all its runtime, and if we want it to sleep
879  * while waiting for some new execution time to become available, we
880  * set the bandwidth replenishment timer to the replenishment instant
881  * and try to activate it.
882  *
883  * Notice that it is important for the caller to know if the timer
884  * actually started or not (i.e., the replenishment instant is in
885  * the future or in the past).
886  */
887 static int start_dl_timer(struct task_struct *p)
888 {
889 	struct sched_dl_entity *dl_se = &p->dl;
890 	struct hrtimer *timer = &dl_se->dl_timer;
891 	struct rq *rq = task_rq(p);
892 	ktime_t now, act;
893 	s64 delta;
894 
895 	lockdep_assert_held(&rq->lock);
896 
897 	/*
898 	 * We want the timer to fire at the deadline, but considering
899 	 * that it is actually coming from rq->clock and not from
900 	 * hrtimer's time base reading.
901 	 */
902 	act = ns_to_ktime(dl_next_period(dl_se));
903 	now = hrtimer_cb_get_time(timer);
904 	delta = ktime_to_ns(now) - rq_clock(rq);
905 	act = ktime_add_ns(act, delta);
906 
907 	/*
908 	 * If the expiry time already passed, e.g., because the value
909 	 * chosen as the deadline is too small, don't even try to
910 	 * start the timer in the past!
911 	 */
912 	if (ktime_us_delta(act, now) < 0)
913 		return 0;
914 
915 	/*
916 	 * !enqueued will guarantee another callback; even if one is already in
917 	 * progress. This ensures a balanced {get,put}_task_struct().
918 	 *
919 	 * The race against __run_timer() clearing the enqueued state is
920 	 * harmless because we're holding task_rq()->lock, therefore the timer
921 	 * expiring after we've done the check will wait on its task_rq_lock()
922 	 * and observe our state.
923 	 */
924 	if (!hrtimer_is_queued(timer)) {
925 		get_task_struct(p);
926 		hrtimer_start(timer, act, HRTIMER_MODE_ABS);
927 	}
928 
929 	return 1;
930 }
931 
932 /*
933  * This is the bandwidth enforcement timer callback. If here, we know
934  * a task is not on its dl_rq, since the fact that the timer was running
935  * means the task is throttled and needs a runtime replenishment.
936  *
937  * However, what we actually do depends on the fact the task is active,
938  * (it is on its rq) or has been removed from there by a call to
939  * dequeue_task_dl(). In the former case we must issue the runtime
940  * replenishment and add the task back to the dl_rq; in the latter, we just
941  * do nothing but clearing dl_throttled, so that runtime and deadline
942  * updating (and the queueing back to dl_rq) will be done by the
943  * next call to enqueue_task_dl().
944  */
945 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
946 {
947 	struct sched_dl_entity *dl_se = container_of(timer,
948 						     struct sched_dl_entity,
949 						     dl_timer);
950 	struct task_struct *p = dl_task_of(dl_se);
951 	struct rq_flags rf;
952 	struct rq *rq;
953 
954 	rq = task_rq_lock(p, &rf);
955 
956 	/*
957 	 * The task might have changed its scheduling policy to something
958 	 * different than SCHED_DEADLINE (through switched_from_dl()).
959 	 */
960 	if (!dl_task(p))
961 		goto unlock;
962 
963 	/*
964 	 * The task might have been boosted by someone else and might be in the
965 	 * boosting/deboosting path, its not throttled.
966 	 */
967 	if (dl_se->dl_boosted)
968 		goto unlock;
969 
970 	/*
971 	 * Spurious timer due to start_dl_timer() race; or we already received
972 	 * a replenishment from rt_mutex_setprio().
973 	 */
974 	if (!dl_se->dl_throttled)
975 		goto unlock;
976 
977 	sched_clock_tick();
978 	update_rq_clock(rq);
979 
980 	/*
981 	 * If the throttle happened during sched-out; like:
982 	 *
983 	 *   schedule()
984 	 *     deactivate_task()
985 	 *       dequeue_task_dl()
986 	 *         update_curr_dl()
987 	 *           start_dl_timer()
988 	 *         __dequeue_task_dl()
989 	 *     prev->on_rq = 0;
990 	 *
991 	 * We can be both throttled and !queued. Replenish the counter
992 	 * but do not enqueue -- wait for our wakeup to do that.
993 	 */
994 	if (!task_on_rq_queued(p)) {
995 		replenish_dl_entity(dl_se, dl_se);
996 		goto unlock;
997 	}
998 
999 #ifdef CONFIG_SMP
1000 	if (unlikely(!rq->online)) {
1001 		/*
1002 		 * If the runqueue is no longer available, migrate the
1003 		 * task elsewhere. This necessarily changes rq.
1004 		 */
1005 		lockdep_unpin_lock(&rq->lock, rf.cookie);
1006 		rq = dl_task_offline_migration(rq, p);
1007 		rf.cookie = lockdep_pin_lock(&rq->lock);
1008 		update_rq_clock(rq);
1009 
1010 		/*
1011 		 * Now that the task has been migrated to the new RQ and we
1012 		 * have that locked, proceed as normal and enqueue the task
1013 		 * there.
1014 		 */
1015 	}
1016 #endif
1017 
1018 	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1019 	if (dl_task(rq->curr))
1020 		check_preempt_curr_dl(rq, p, 0);
1021 	else
1022 		resched_curr(rq);
1023 
1024 #ifdef CONFIG_SMP
1025 	/*
1026 	 * Queueing this task back might have overloaded rq, check if we need
1027 	 * to kick someone away.
1028 	 */
1029 	if (has_pushable_dl_tasks(rq)) {
1030 		/*
1031 		 * Nothing relies on rq->lock after this, so its safe to drop
1032 		 * rq->lock.
1033 		 */
1034 		rq_unpin_lock(rq, &rf);
1035 		push_dl_task(rq);
1036 		rq_repin_lock(rq, &rf);
1037 	}
1038 #endif
1039 
1040 unlock:
1041 	task_rq_unlock(rq, p, &rf);
1042 
1043 	/*
1044 	 * This can free the task_struct, including this hrtimer, do not touch
1045 	 * anything related to that after this.
1046 	 */
1047 	put_task_struct(p);
1048 
1049 	return HRTIMER_NORESTART;
1050 }
1051 
1052 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1053 {
1054 	struct hrtimer *timer = &dl_se->dl_timer;
1055 
1056 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1057 	timer->function = dl_task_timer;
1058 }
1059 
1060 /*
1061  * During the activation, CBS checks if it can reuse the current task's
1062  * runtime and period. If the deadline of the task is in the past, CBS
1063  * cannot use the runtime, and so it replenishes the task. This rule
1064  * works fine for implicit deadline tasks (deadline == period), and the
1065  * CBS was designed for implicit deadline tasks. However, a task with
1066  * constrained deadline (deadine < period) might be awakened after the
1067  * deadline, but before the next period. In this case, replenishing the
1068  * task would allow it to run for runtime / deadline. As in this case
1069  * deadline < period, CBS enables a task to run for more than the
1070  * runtime / period. In a very loaded system, this can cause a domino
1071  * effect, making other tasks miss their deadlines.
1072  *
1073  * To avoid this problem, in the activation of a constrained deadline
1074  * task after the deadline but before the next period, throttle the
1075  * task and set the replenishing timer to the begin of the next period,
1076  * unless it is boosted.
1077  */
1078 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1079 {
1080 	struct task_struct *p = dl_task_of(dl_se);
1081 	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1082 
1083 	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1084 	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1085 		if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1086 			return;
1087 		dl_se->dl_throttled = 1;
1088 		if (dl_se->runtime > 0)
1089 			dl_se->runtime = 0;
1090 	}
1091 }
1092 
1093 static
1094 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1095 {
1096 	return (dl_se->runtime <= 0);
1097 }
1098 
1099 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1100 
1101 /*
1102  * This function implements the GRUB accounting rule:
1103  * according to the GRUB reclaiming algorithm, the runtime is
1104  * not decreased as "dq = -dt", but as
1105  * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1106  * where u is the utilization of the task, Umax is the maximum reclaimable
1107  * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1108  * as the difference between the "total runqueue utilization" and the
1109  * runqueue active utilization, and Uextra is the (per runqueue) extra
1110  * reclaimable utilization.
1111  * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1112  * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1113  * BW_SHIFT.
1114  * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1115  * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1116  * Since delta is a 64 bit variable, to have an overflow its value
1117  * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1118  * So, overflow is not an issue here.
1119  */
1120 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1121 {
1122 	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1123 	u64 u_act;
1124 	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1125 
1126 	/*
1127 	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1128 	 * we compare u_inact + rq->dl.extra_bw with
1129 	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1130 	 * u_inact + rq->dl.extra_bw can be larger than
1131 	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1132 	 * leading to wrong results)
1133 	 */
1134 	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1135 		u_act = u_act_min;
1136 	else
1137 		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1138 
1139 	return (delta * u_act) >> BW_SHIFT;
1140 }
1141 
1142 /*
1143  * Update the current task's runtime statistics (provided it is still
1144  * a -deadline task and has not been removed from the dl_rq).
1145  */
1146 static void update_curr_dl(struct rq *rq)
1147 {
1148 	struct task_struct *curr = rq->curr;
1149 	struct sched_dl_entity *dl_se = &curr->dl;
1150 	u64 delta_exec, scaled_delta_exec;
1151 	int cpu = cpu_of(rq);
1152 	u64 now;
1153 
1154 	if (!dl_task(curr) || !on_dl_rq(dl_se))
1155 		return;
1156 
1157 	/*
1158 	 * Consumed budget is computed considering the time as
1159 	 * observed by schedulable tasks (excluding time spent
1160 	 * in hardirq context, etc.). Deadlines are instead
1161 	 * computed using hard walltime. This seems to be the more
1162 	 * natural solution, but the full ramifications of this
1163 	 * approach need further study.
1164 	 */
1165 	now = rq_clock_task(rq);
1166 	delta_exec = now - curr->se.exec_start;
1167 	if (unlikely((s64)delta_exec <= 0)) {
1168 		if (unlikely(dl_se->dl_yielded))
1169 			goto throttle;
1170 		return;
1171 	}
1172 
1173 	schedstat_set(curr->se.statistics.exec_max,
1174 		      max(curr->se.statistics.exec_max, delta_exec));
1175 
1176 	curr->se.sum_exec_runtime += delta_exec;
1177 	account_group_exec_runtime(curr, delta_exec);
1178 
1179 	curr->se.exec_start = now;
1180 	cgroup_account_cputime(curr, delta_exec);
1181 
1182 	if (dl_entity_is_special(dl_se))
1183 		return;
1184 
1185 	/*
1186 	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1187 	 * spare reclaimed bandwidth is used to clock down frequency.
1188 	 *
1189 	 * For the others, we still need to scale reservation parameters
1190 	 * according to current frequency and CPU maximum capacity.
1191 	 */
1192 	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1193 		scaled_delta_exec = grub_reclaim(delta_exec,
1194 						 rq,
1195 						 &curr->dl);
1196 	} else {
1197 		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1198 		unsigned long scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
1199 
1200 		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1201 		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1202 	}
1203 
1204 	dl_se->runtime -= scaled_delta_exec;
1205 
1206 throttle:
1207 	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1208 		dl_se->dl_throttled = 1;
1209 
1210 		/* If requested, inform the user about runtime overruns. */
1211 		if (dl_runtime_exceeded(dl_se) &&
1212 		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1213 			dl_se->dl_overrun = 1;
1214 
1215 		__dequeue_task_dl(rq, curr, 0);
1216 		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1217 			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1218 
1219 		if (!is_leftmost(curr, &rq->dl))
1220 			resched_curr(rq);
1221 	}
1222 
1223 	/*
1224 	 * Because -- for now -- we share the rt bandwidth, we need to
1225 	 * account our runtime there too, otherwise actual rt tasks
1226 	 * would be able to exceed the shared quota.
1227 	 *
1228 	 * Account to the root rt group for now.
1229 	 *
1230 	 * The solution we're working towards is having the RT groups scheduled
1231 	 * using deadline servers -- however there's a few nasties to figure
1232 	 * out before that can happen.
1233 	 */
1234 	if (rt_bandwidth_enabled()) {
1235 		struct rt_rq *rt_rq = &rq->rt;
1236 
1237 		raw_spin_lock(&rt_rq->rt_runtime_lock);
1238 		/*
1239 		 * We'll let actual RT tasks worry about the overflow here, we
1240 		 * have our own CBS to keep us inline; only account when RT
1241 		 * bandwidth is relevant.
1242 		 */
1243 		if (sched_rt_bandwidth_account(rt_rq))
1244 			rt_rq->rt_time += delta_exec;
1245 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1246 	}
1247 }
1248 
1249 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1250 {
1251 	struct sched_dl_entity *dl_se = container_of(timer,
1252 						     struct sched_dl_entity,
1253 						     inactive_timer);
1254 	struct task_struct *p = dl_task_of(dl_se);
1255 	struct rq_flags rf;
1256 	struct rq *rq;
1257 
1258 	rq = task_rq_lock(p, &rf);
1259 
1260 	sched_clock_tick();
1261 	update_rq_clock(rq);
1262 
1263 	if (!dl_task(p) || p->state == TASK_DEAD) {
1264 		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1265 
1266 		if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1267 			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1268 			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1269 			dl_se->dl_non_contending = 0;
1270 		}
1271 
1272 		raw_spin_lock(&dl_b->lock);
1273 		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1274 		raw_spin_unlock(&dl_b->lock);
1275 		__dl_clear_params(p);
1276 
1277 		goto unlock;
1278 	}
1279 	if (dl_se->dl_non_contending == 0)
1280 		goto unlock;
1281 
1282 	sub_running_bw(dl_se, &rq->dl);
1283 	dl_se->dl_non_contending = 0;
1284 unlock:
1285 	task_rq_unlock(rq, p, &rf);
1286 	put_task_struct(p);
1287 
1288 	return HRTIMER_NORESTART;
1289 }
1290 
1291 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1292 {
1293 	struct hrtimer *timer = &dl_se->inactive_timer;
1294 
1295 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1296 	timer->function = inactive_task_timer;
1297 }
1298 
1299 #ifdef CONFIG_SMP
1300 
1301 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1302 {
1303 	struct rq *rq = rq_of_dl_rq(dl_rq);
1304 
1305 	if (dl_rq->earliest_dl.curr == 0 ||
1306 	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1307 		dl_rq->earliest_dl.curr = deadline;
1308 		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1309 	}
1310 }
1311 
1312 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1313 {
1314 	struct rq *rq = rq_of_dl_rq(dl_rq);
1315 
1316 	/*
1317 	 * Since we may have removed our earliest (and/or next earliest)
1318 	 * task we must recompute them.
1319 	 */
1320 	if (!dl_rq->dl_nr_running) {
1321 		dl_rq->earliest_dl.curr = 0;
1322 		dl_rq->earliest_dl.next = 0;
1323 		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1324 	} else {
1325 		struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1326 		struct sched_dl_entity *entry;
1327 
1328 		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1329 		dl_rq->earliest_dl.curr = entry->deadline;
1330 		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1331 	}
1332 }
1333 
1334 #else
1335 
1336 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1337 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1338 
1339 #endif /* CONFIG_SMP */
1340 
1341 static inline
1342 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1343 {
1344 	int prio = dl_task_of(dl_se)->prio;
1345 	u64 deadline = dl_se->deadline;
1346 
1347 	WARN_ON(!dl_prio(prio));
1348 	dl_rq->dl_nr_running++;
1349 	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1350 
1351 	inc_dl_deadline(dl_rq, deadline);
1352 	inc_dl_migration(dl_se, dl_rq);
1353 }
1354 
1355 static inline
1356 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1357 {
1358 	int prio = dl_task_of(dl_se)->prio;
1359 
1360 	WARN_ON(!dl_prio(prio));
1361 	WARN_ON(!dl_rq->dl_nr_running);
1362 	dl_rq->dl_nr_running--;
1363 	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1364 
1365 	dec_dl_deadline(dl_rq, dl_se->deadline);
1366 	dec_dl_migration(dl_se, dl_rq);
1367 }
1368 
1369 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1370 {
1371 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1372 	struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1373 	struct rb_node *parent = NULL;
1374 	struct sched_dl_entity *entry;
1375 	int leftmost = 1;
1376 
1377 	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1378 
1379 	while (*link) {
1380 		parent = *link;
1381 		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1382 		if (dl_time_before(dl_se->deadline, entry->deadline))
1383 			link = &parent->rb_left;
1384 		else {
1385 			link = &parent->rb_right;
1386 			leftmost = 0;
1387 		}
1388 	}
1389 
1390 	rb_link_node(&dl_se->rb_node, parent, link);
1391 	rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1392 
1393 	inc_dl_tasks(dl_se, dl_rq);
1394 }
1395 
1396 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1397 {
1398 	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1399 
1400 	if (RB_EMPTY_NODE(&dl_se->rb_node))
1401 		return;
1402 
1403 	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1404 	RB_CLEAR_NODE(&dl_se->rb_node);
1405 
1406 	dec_dl_tasks(dl_se, dl_rq);
1407 }
1408 
1409 static void
1410 enqueue_dl_entity(struct sched_dl_entity *dl_se,
1411 		  struct sched_dl_entity *pi_se, int flags)
1412 {
1413 	BUG_ON(on_dl_rq(dl_se));
1414 
1415 	/*
1416 	 * If this is a wakeup or a new instance, the scheduling
1417 	 * parameters of the task might need updating. Otherwise,
1418 	 * we want a replenishment of its runtime.
1419 	 */
1420 	if (flags & ENQUEUE_WAKEUP) {
1421 		task_contending(dl_se, flags);
1422 		update_dl_entity(dl_se, pi_se);
1423 	} else if (flags & ENQUEUE_REPLENISH) {
1424 		replenish_dl_entity(dl_se, pi_se);
1425 	} else if ((flags & ENQUEUE_RESTORE) &&
1426 		  dl_time_before(dl_se->deadline,
1427 				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1428 		setup_new_dl_entity(dl_se);
1429 	}
1430 
1431 	__enqueue_dl_entity(dl_se);
1432 }
1433 
1434 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1435 {
1436 	__dequeue_dl_entity(dl_se);
1437 }
1438 
1439 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1440 {
1441 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
1442 	struct sched_dl_entity *pi_se = &p->dl;
1443 
1444 	/*
1445 	 * Use the scheduling parameters of the top pi-waiter task if:
1446 	 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1447 	 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1448 	 *   smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1449 	 *   boosted due to a SCHED_DEADLINE pi-waiter).
1450 	 * Otherwise we keep our runtime and deadline.
1451 	 */
1452 	if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1453 		pi_se = &pi_task->dl;
1454 	} else if (!dl_prio(p->normal_prio)) {
1455 		/*
1456 		 * Special case in which we have a !SCHED_DEADLINE task
1457 		 * that is going to be deboosted, but exceeds its
1458 		 * runtime while doing so. No point in replenishing
1459 		 * it, as it's going to return back to its original
1460 		 * scheduling class after this.
1461 		 */
1462 		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1463 		return;
1464 	}
1465 
1466 	/*
1467 	 * Check if a constrained deadline task was activated
1468 	 * after the deadline but before the next period.
1469 	 * If that is the case, the task will be throttled and
1470 	 * the replenishment timer will be set to the next period.
1471 	 */
1472 	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1473 		dl_check_constrained_dl(&p->dl);
1474 
1475 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1476 		add_rq_bw(&p->dl, &rq->dl);
1477 		add_running_bw(&p->dl, &rq->dl);
1478 	}
1479 
1480 	/*
1481 	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1482 	 * its budget it needs a replenishment and, since it now is on
1483 	 * its rq, the bandwidth timer callback (which clearly has not
1484 	 * run yet) will take care of this.
1485 	 * However, the active utilization does not depend on the fact
1486 	 * that the task is on the runqueue or not (but depends on the
1487 	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1488 	 * In other words, even if a task is throttled its utilization must
1489 	 * be counted in the active utilization; hence, we need to call
1490 	 * add_running_bw().
1491 	 */
1492 	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1493 		if (flags & ENQUEUE_WAKEUP)
1494 			task_contending(&p->dl, flags);
1495 
1496 		return;
1497 	}
1498 
1499 	enqueue_dl_entity(&p->dl, pi_se, flags);
1500 
1501 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1502 		enqueue_pushable_dl_task(rq, p);
1503 }
1504 
1505 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1506 {
1507 	dequeue_dl_entity(&p->dl);
1508 	dequeue_pushable_dl_task(rq, p);
1509 }
1510 
1511 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1512 {
1513 	update_curr_dl(rq);
1514 	__dequeue_task_dl(rq, p, flags);
1515 
1516 	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1517 		sub_running_bw(&p->dl, &rq->dl);
1518 		sub_rq_bw(&p->dl, &rq->dl);
1519 	}
1520 
1521 	/*
1522 	 * This check allows to start the inactive timer (or to immediately
1523 	 * decrease the active utilization, if needed) in two cases:
1524 	 * when the task blocks and when it is terminating
1525 	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1526 	 * way, because from GRUB's point of view the same thing is happening
1527 	 * (the task moves from "active contending" to "active non contending"
1528 	 * or "inactive")
1529 	 */
1530 	if (flags & DEQUEUE_SLEEP)
1531 		task_non_contending(p);
1532 }
1533 
1534 /*
1535  * Yield task semantic for -deadline tasks is:
1536  *
1537  *   get off from the CPU until our next instance, with
1538  *   a new runtime. This is of little use now, since we
1539  *   don't have a bandwidth reclaiming mechanism. Anyway,
1540  *   bandwidth reclaiming is planned for the future, and
1541  *   yield_task_dl will indicate that some spare budget
1542  *   is available for other task instances to use it.
1543  */
1544 static void yield_task_dl(struct rq *rq)
1545 {
1546 	/*
1547 	 * We make the task go to sleep until its current deadline by
1548 	 * forcing its runtime to zero. This way, update_curr_dl() stops
1549 	 * it and the bandwidth timer will wake it up and will give it
1550 	 * new scheduling parameters (thanks to dl_yielded=1).
1551 	 */
1552 	rq->curr->dl.dl_yielded = 1;
1553 
1554 	update_rq_clock(rq);
1555 	update_curr_dl(rq);
1556 	/*
1557 	 * Tell update_rq_clock() that we've just updated,
1558 	 * so we don't do microscopic update in schedule()
1559 	 * and double the fastpath cost.
1560 	 */
1561 	rq_clock_skip_update(rq);
1562 }
1563 
1564 #ifdef CONFIG_SMP
1565 
1566 static int find_later_rq(struct task_struct *task);
1567 
1568 static int
1569 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1570 {
1571 	struct task_struct *curr;
1572 	struct rq *rq;
1573 
1574 	if (sd_flag != SD_BALANCE_WAKE)
1575 		goto out;
1576 
1577 	rq = cpu_rq(cpu);
1578 
1579 	rcu_read_lock();
1580 	curr = READ_ONCE(rq->curr); /* unlocked access */
1581 
1582 	/*
1583 	 * If we are dealing with a -deadline task, we must
1584 	 * decide where to wake it up.
1585 	 * If it has a later deadline and the current task
1586 	 * on this rq can't move (provided the waking task
1587 	 * can!) we prefer to send it somewhere else. On the
1588 	 * other hand, if it has a shorter deadline, we
1589 	 * try to make it stay here, it might be important.
1590 	 */
1591 	if (unlikely(dl_task(curr)) &&
1592 	    (curr->nr_cpus_allowed < 2 ||
1593 	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1594 	    (p->nr_cpus_allowed > 1)) {
1595 		int target = find_later_rq(p);
1596 
1597 		if (target != -1 &&
1598 				(dl_time_before(p->dl.deadline,
1599 					cpu_rq(target)->dl.earliest_dl.curr) ||
1600 				(cpu_rq(target)->dl.dl_nr_running == 0)))
1601 			cpu = target;
1602 	}
1603 	rcu_read_unlock();
1604 
1605 out:
1606 	return cpu;
1607 }
1608 
1609 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1610 {
1611 	struct rq *rq;
1612 
1613 	if (p->state != TASK_WAKING)
1614 		return;
1615 
1616 	rq = task_rq(p);
1617 	/*
1618 	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1619 	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1620 	 * rq->lock is not... So, lock it
1621 	 */
1622 	raw_spin_lock(&rq->lock);
1623 	if (p->dl.dl_non_contending) {
1624 		sub_running_bw(&p->dl, &rq->dl);
1625 		p->dl.dl_non_contending = 0;
1626 		/*
1627 		 * If the timer handler is currently running and the
1628 		 * timer cannot be cancelled, inactive_task_timer()
1629 		 * will see that dl_not_contending is not set, and
1630 		 * will not touch the rq's active utilization,
1631 		 * so we are still safe.
1632 		 */
1633 		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1634 			put_task_struct(p);
1635 	}
1636 	sub_rq_bw(&p->dl, &rq->dl);
1637 	raw_spin_unlock(&rq->lock);
1638 }
1639 
1640 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1641 {
1642 	/*
1643 	 * Current can't be migrated, useless to reschedule,
1644 	 * let's hope p can move out.
1645 	 */
1646 	if (rq->curr->nr_cpus_allowed == 1 ||
1647 	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1648 		return;
1649 
1650 	/*
1651 	 * p is migratable, so let's not schedule it and
1652 	 * see if it is pushed or pulled somewhere else.
1653 	 */
1654 	if (p->nr_cpus_allowed != 1 &&
1655 	    cpudl_find(&rq->rd->cpudl, p, NULL))
1656 		return;
1657 
1658 	resched_curr(rq);
1659 }
1660 
1661 #endif /* CONFIG_SMP */
1662 
1663 /*
1664  * Only called when both the current and waking task are -deadline
1665  * tasks.
1666  */
1667 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1668 				  int flags)
1669 {
1670 	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1671 		resched_curr(rq);
1672 		return;
1673 	}
1674 
1675 #ifdef CONFIG_SMP
1676 	/*
1677 	 * In the unlikely case current and p have the same deadline
1678 	 * let us try to decide what's the best thing to do...
1679 	 */
1680 	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1681 	    !test_tsk_need_resched(rq->curr))
1682 		check_preempt_equal_dl(rq, p);
1683 #endif /* CONFIG_SMP */
1684 }
1685 
1686 #ifdef CONFIG_SCHED_HRTICK
1687 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1688 {
1689 	hrtick_start(rq, p->dl.runtime);
1690 }
1691 #else /* !CONFIG_SCHED_HRTICK */
1692 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1693 {
1694 }
1695 #endif
1696 
1697 static inline void set_next_task(struct rq *rq, struct task_struct *p)
1698 {
1699 	p->se.exec_start = rq_clock_task(rq);
1700 
1701 	/* You can't push away the running task */
1702 	dequeue_pushable_dl_task(rq, p);
1703 }
1704 
1705 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1706 						   struct dl_rq *dl_rq)
1707 {
1708 	struct rb_node *left = rb_first_cached(&dl_rq->root);
1709 
1710 	if (!left)
1711 		return NULL;
1712 
1713 	return rb_entry(left, struct sched_dl_entity, rb_node);
1714 }
1715 
1716 static struct task_struct *
1717 pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1718 {
1719 	struct sched_dl_entity *dl_se;
1720 	struct task_struct *p;
1721 	struct dl_rq *dl_rq;
1722 
1723 	dl_rq = &rq->dl;
1724 
1725 	if (need_pull_dl_task(rq, prev)) {
1726 		/*
1727 		 * This is OK, because current is on_cpu, which avoids it being
1728 		 * picked for load-balance and preemption/IRQs are still
1729 		 * disabled avoiding further scheduler activity on it and we're
1730 		 * being very careful to re-start the picking loop.
1731 		 */
1732 		rq_unpin_lock(rq, rf);
1733 		pull_dl_task(rq);
1734 		rq_repin_lock(rq, rf);
1735 		/*
1736 		 * pull_dl_task() can drop (and re-acquire) rq->lock; this
1737 		 * means a stop task can slip in, in which case we need to
1738 		 * re-start task selection.
1739 		 */
1740 		if (rq->stop && task_on_rq_queued(rq->stop))
1741 			return RETRY_TASK;
1742 	}
1743 
1744 	/*
1745 	 * When prev is DL, we may throttle it in put_prev_task().
1746 	 * So, we update time before we check for dl_nr_running.
1747 	 */
1748 	if (prev->sched_class == &dl_sched_class)
1749 		update_curr_dl(rq);
1750 
1751 	if (unlikely(!dl_rq->dl_nr_running))
1752 		return NULL;
1753 
1754 	put_prev_task(rq, prev);
1755 
1756 	dl_se = pick_next_dl_entity(rq, dl_rq);
1757 	BUG_ON(!dl_se);
1758 
1759 	p = dl_task_of(dl_se);
1760 
1761 	set_next_task(rq, p);
1762 
1763 	if (hrtick_enabled(rq))
1764 		start_hrtick_dl(rq, p);
1765 
1766 	deadline_queue_push_tasks(rq);
1767 
1768 	if (rq->curr->sched_class != &dl_sched_class)
1769 		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1770 
1771 	return p;
1772 }
1773 
1774 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1775 {
1776 	update_curr_dl(rq);
1777 
1778 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1779 	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1780 		enqueue_pushable_dl_task(rq, p);
1781 }
1782 
1783 /*
1784  * scheduler tick hitting a task of our scheduling class.
1785  *
1786  * NOTE: This function can be called remotely by the tick offload that
1787  * goes along full dynticks. Therefore no local assumption can be made
1788  * and everything must be accessed through the @rq and @curr passed in
1789  * parameters.
1790  */
1791 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1792 {
1793 	update_curr_dl(rq);
1794 
1795 	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1796 	/*
1797 	 * Even when we have runtime, update_curr_dl() might have resulted in us
1798 	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1799 	 * be set and schedule() will start a new hrtick for the next task.
1800 	 */
1801 	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1802 	    is_leftmost(p, &rq->dl))
1803 		start_hrtick_dl(rq, p);
1804 }
1805 
1806 static void task_fork_dl(struct task_struct *p)
1807 {
1808 	/*
1809 	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1810 	 * sched_fork()
1811 	 */
1812 }
1813 
1814 static void set_curr_task_dl(struct rq *rq)
1815 {
1816 	set_next_task(rq, rq->curr);
1817 }
1818 
1819 #ifdef CONFIG_SMP
1820 
1821 /* Only try algorithms three times */
1822 #define DL_MAX_TRIES 3
1823 
1824 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1825 {
1826 	if (!task_running(rq, p) &&
1827 	    cpumask_test_cpu(cpu, &p->cpus_allowed))
1828 		return 1;
1829 	return 0;
1830 }
1831 
1832 /*
1833  * Return the earliest pushable rq's task, which is suitable to be executed
1834  * on the CPU, NULL otherwise:
1835  */
1836 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1837 {
1838 	struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1839 	struct task_struct *p = NULL;
1840 
1841 	if (!has_pushable_dl_tasks(rq))
1842 		return NULL;
1843 
1844 next_node:
1845 	if (next_node) {
1846 		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1847 
1848 		if (pick_dl_task(rq, p, cpu))
1849 			return p;
1850 
1851 		next_node = rb_next(next_node);
1852 		goto next_node;
1853 	}
1854 
1855 	return NULL;
1856 }
1857 
1858 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1859 
1860 static int find_later_rq(struct task_struct *task)
1861 {
1862 	struct sched_domain *sd;
1863 	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1864 	int this_cpu = smp_processor_id();
1865 	int cpu = task_cpu(task);
1866 
1867 	/* Make sure the mask is initialized first */
1868 	if (unlikely(!later_mask))
1869 		return -1;
1870 
1871 	if (task->nr_cpus_allowed == 1)
1872 		return -1;
1873 
1874 	/*
1875 	 * We have to consider system topology and task affinity
1876 	 * first, then we can look for a suitable CPU.
1877 	 */
1878 	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1879 		return -1;
1880 
1881 	/*
1882 	 * If we are here, some targets have been found, including
1883 	 * the most suitable which is, among the runqueues where the
1884 	 * current tasks have later deadlines than the task's one, the
1885 	 * rq with the latest possible one.
1886 	 *
1887 	 * Now we check how well this matches with task's
1888 	 * affinity and system topology.
1889 	 *
1890 	 * The last CPU where the task run is our first
1891 	 * guess, since it is most likely cache-hot there.
1892 	 */
1893 	if (cpumask_test_cpu(cpu, later_mask))
1894 		return cpu;
1895 	/*
1896 	 * Check if this_cpu is to be skipped (i.e., it is
1897 	 * not in the mask) or not.
1898 	 */
1899 	if (!cpumask_test_cpu(this_cpu, later_mask))
1900 		this_cpu = -1;
1901 
1902 	rcu_read_lock();
1903 	for_each_domain(cpu, sd) {
1904 		if (sd->flags & SD_WAKE_AFFINE) {
1905 			int best_cpu;
1906 
1907 			/*
1908 			 * If possible, preempting this_cpu is
1909 			 * cheaper than migrating.
1910 			 */
1911 			if (this_cpu != -1 &&
1912 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1913 				rcu_read_unlock();
1914 				return this_cpu;
1915 			}
1916 
1917 			best_cpu = cpumask_first_and(later_mask,
1918 							sched_domain_span(sd));
1919 			/*
1920 			 * Last chance: if a CPU being in both later_mask
1921 			 * and current sd span is valid, that becomes our
1922 			 * choice. Of course, the latest possible CPU is
1923 			 * already under consideration through later_mask.
1924 			 */
1925 			if (best_cpu < nr_cpu_ids) {
1926 				rcu_read_unlock();
1927 				return best_cpu;
1928 			}
1929 		}
1930 	}
1931 	rcu_read_unlock();
1932 
1933 	/*
1934 	 * At this point, all our guesses failed, we just return
1935 	 * 'something', and let the caller sort the things out.
1936 	 */
1937 	if (this_cpu != -1)
1938 		return this_cpu;
1939 
1940 	cpu = cpumask_any(later_mask);
1941 	if (cpu < nr_cpu_ids)
1942 		return cpu;
1943 
1944 	return -1;
1945 }
1946 
1947 /* Locks the rq it finds */
1948 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1949 {
1950 	struct rq *later_rq = NULL;
1951 	int tries;
1952 	int cpu;
1953 
1954 	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1955 		cpu = find_later_rq(task);
1956 
1957 		if ((cpu == -1) || (cpu == rq->cpu))
1958 			break;
1959 
1960 		later_rq = cpu_rq(cpu);
1961 
1962 		if (later_rq->dl.dl_nr_running &&
1963 		    !dl_time_before(task->dl.deadline,
1964 					later_rq->dl.earliest_dl.curr)) {
1965 			/*
1966 			 * Target rq has tasks of equal or earlier deadline,
1967 			 * retrying does not release any lock and is unlikely
1968 			 * to yield a different result.
1969 			 */
1970 			later_rq = NULL;
1971 			break;
1972 		}
1973 
1974 		/* Retry if something changed. */
1975 		if (double_lock_balance(rq, later_rq)) {
1976 			if (unlikely(task_rq(task) != rq ||
1977 				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) ||
1978 				     task_running(rq, task) ||
1979 				     !dl_task(task) ||
1980 				     !task_on_rq_queued(task))) {
1981 				double_unlock_balance(rq, later_rq);
1982 				later_rq = NULL;
1983 				break;
1984 			}
1985 		}
1986 
1987 		/*
1988 		 * If the rq we found has no -deadline task, or
1989 		 * its earliest one has a later deadline than our
1990 		 * task, the rq is a good one.
1991 		 */
1992 		if (!later_rq->dl.dl_nr_running ||
1993 		    dl_time_before(task->dl.deadline,
1994 				   later_rq->dl.earliest_dl.curr))
1995 			break;
1996 
1997 		/* Otherwise we try again. */
1998 		double_unlock_balance(rq, later_rq);
1999 		later_rq = NULL;
2000 	}
2001 
2002 	return later_rq;
2003 }
2004 
2005 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2006 {
2007 	struct task_struct *p;
2008 
2009 	if (!has_pushable_dl_tasks(rq))
2010 		return NULL;
2011 
2012 	p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2013 		     struct task_struct, pushable_dl_tasks);
2014 
2015 	BUG_ON(rq->cpu != task_cpu(p));
2016 	BUG_ON(task_current(rq, p));
2017 	BUG_ON(p->nr_cpus_allowed <= 1);
2018 
2019 	BUG_ON(!task_on_rq_queued(p));
2020 	BUG_ON(!dl_task(p));
2021 
2022 	return p;
2023 }
2024 
2025 /*
2026  * See if the non running -deadline tasks on this rq
2027  * can be sent to some other CPU where they can preempt
2028  * and start executing.
2029  */
2030 static int push_dl_task(struct rq *rq)
2031 {
2032 	struct task_struct *next_task;
2033 	struct rq *later_rq;
2034 	int ret = 0;
2035 
2036 	if (!rq->dl.overloaded)
2037 		return 0;
2038 
2039 	next_task = pick_next_pushable_dl_task(rq);
2040 	if (!next_task)
2041 		return 0;
2042 
2043 retry:
2044 	if (WARN_ON(next_task == rq->curr))
2045 		return 0;
2046 
2047 	/*
2048 	 * If next_task preempts rq->curr, and rq->curr
2049 	 * can move away, it makes sense to just reschedule
2050 	 * without going further in pushing next_task.
2051 	 */
2052 	if (dl_task(rq->curr) &&
2053 	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2054 	    rq->curr->nr_cpus_allowed > 1) {
2055 		resched_curr(rq);
2056 		return 0;
2057 	}
2058 
2059 	/* We might release rq lock */
2060 	get_task_struct(next_task);
2061 
2062 	/* Will lock the rq it'll find */
2063 	later_rq = find_lock_later_rq(next_task, rq);
2064 	if (!later_rq) {
2065 		struct task_struct *task;
2066 
2067 		/*
2068 		 * We must check all this again, since
2069 		 * find_lock_later_rq releases rq->lock and it is
2070 		 * then possible that next_task has migrated.
2071 		 */
2072 		task = pick_next_pushable_dl_task(rq);
2073 		if (task == next_task) {
2074 			/*
2075 			 * The task is still there. We don't try
2076 			 * again, some other CPU will pull it when ready.
2077 			 */
2078 			goto out;
2079 		}
2080 
2081 		if (!task)
2082 			/* No more tasks */
2083 			goto out;
2084 
2085 		put_task_struct(next_task);
2086 		next_task = task;
2087 		goto retry;
2088 	}
2089 
2090 	deactivate_task(rq, next_task, 0);
2091 	sub_running_bw(&next_task->dl, &rq->dl);
2092 	sub_rq_bw(&next_task->dl, &rq->dl);
2093 	set_task_cpu(next_task, later_rq->cpu);
2094 	add_rq_bw(&next_task->dl, &later_rq->dl);
2095 
2096 	/*
2097 	 * Update the later_rq clock here, because the clock is used
2098 	 * by the cpufreq_update_util() inside __add_running_bw().
2099 	 */
2100 	update_rq_clock(later_rq);
2101 	add_running_bw(&next_task->dl, &later_rq->dl);
2102 	activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2103 	ret = 1;
2104 
2105 	resched_curr(later_rq);
2106 
2107 	double_unlock_balance(rq, later_rq);
2108 
2109 out:
2110 	put_task_struct(next_task);
2111 
2112 	return ret;
2113 }
2114 
2115 static void push_dl_tasks(struct rq *rq)
2116 {
2117 	/* push_dl_task() will return true if it moved a -deadline task */
2118 	while (push_dl_task(rq))
2119 		;
2120 }
2121 
2122 static void pull_dl_task(struct rq *this_rq)
2123 {
2124 	int this_cpu = this_rq->cpu, cpu;
2125 	struct task_struct *p;
2126 	bool resched = false;
2127 	struct rq *src_rq;
2128 	u64 dmin = LONG_MAX;
2129 
2130 	if (likely(!dl_overloaded(this_rq)))
2131 		return;
2132 
2133 	/*
2134 	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2135 	 * see overloaded we must also see the dlo_mask bit.
2136 	 */
2137 	smp_rmb();
2138 
2139 	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2140 		if (this_cpu == cpu)
2141 			continue;
2142 
2143 		src_rq = cpu_rq(cpu);
2144 
2145 		/*
2146 		 * It looks racy, abd it is! However, as in sched_rt.c,
2147 		 * we are fine with this.
2148 		 */
2149 		if (this_rq->dl.dl_nr_running &&
2150 		    dl_time_before(this_rq->dl.earliest_dl.curr,
2151 				   src_rq->dl.earliest_dl.next))
2152 			continue;
2153 
2154 		/* Might drop this_rq->lock */
2155 		double_lock_balance(this_rq, src_rq);
2156 
2157 		/*
2158 		 * If there are no more pullable tasks on the
2159 		 * rq, we're done with it.
2160 		 */
2161 		if (src_rq->dl.dl_nr_running <= 1)
2162 			goto skip;
2163 
2164 		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2165 
2166 		/*
2167 		 * We found a task to be pulled if:
2168 		 *  - it preempts our current (if there's one),
2169 		 *  - it will preempt the last one we pulled (if any).
2170 		 */
2171 		if (p && dl_time_before(p->dl.deadline, dmin) &&
2172 		    (!this_rq->dl.dl_nr_running ||
2173 		     dl_time_before(p->dl.deadline,
2174 				    this_rq->dl.earliest_dl.curr))) {
2175 			WARN_ON(p == src_rq->curr);
2176 			WARN_ON(!task_on_rq_queued(p));
2177 
2178 			/*
2179 			 * Then we pull iff p has actually an earlier
2180 			 * deadline than the current task of its runqueue.
2181 			 */
2182 			if (dl_time_before(p->dl.deadline,
2183 					   src_rq->curr->dl.deadline))
2184 				goto skip;
2185 
2186 			resched = true;
2187 
2188 			deactivate_task(src_rq, p, 0);
2189 			sub_running_bw(&p->dl, &src_rq->dl);
2190 			sub_rq_bw(&p->dl, &src_rq->dl);
2191 			set_task_cpu(p, this_cpu);
2192 			add_rq_bw(&p->dl, &this_rq->dl);
2193 			add_running_bw(&p->dl, &this_rq->dl);
2194 			activate_task(this_rq, p, 0);
2195 			dmin = p->dl.deadline;
2196 
2197 			/* Is there any other task even earlier? */
2198 		}
2199 skip:
2200 		double_unlock_balance(this_rq, src_rq);
2201 	}
2202 
2203 	if (resched)
2204 		resched_curr(this_rq);
2205 }
2206 
2207 /*
2208  * Since the task is not running and a reschedule is not going to happen
2209  * anytime soon on its runqueue, we try pushing it away now.
2210  */
2211 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2212 {
2213 	if (!task_running(rq, p) &&
2214 	    !test_tsk_need_resched(rq->curr) &&
2215 	    p->nr_cpus_allowed > 1 &&
2216 	    dl_task(rq->curr) &&
2217 	    (rq->curr->nr_cpus_allowed < 2 ||
2218 	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2219 		push_dl_tasks(rq);
2220 	}
2221 }
2222 
2223 static void set_cpus_allowed_dl(struct task_struct *p,
2224 				const struct cpumask *new_mask)
2225 {
2226 	struct root_domain *src_rd;
2227 	struct rq *rq;
2228 
2229 	BUG_ON(!dl_task(p));
2230 
2231 	rq = task_rq(p);
2232 	src_rd = rq->rd;
2233 	/*
2234 	 * Migrating a SCHED_DEADLINE task between exclusive
2235 	 * cpusets (different root_domains) entails a bandwidth
2236 	 * update. We already made space for us in the destination
2237 	 * domain (see cpuset_can_attach()).
2238 	 */
2239 	if (!cpumask_intersects(src_rd->span, new_mask)) {
2240 		struct dl_bw *src_dl_b;
2241 
2242 		src_dl_b = dl_bw_of(cpu_of(rq));
2243 		/*
2244 		 * We now free resources of the root_domain we are migrating
2245 		 * off. In the worst case, sched_setattr() may temporary fail
2246 		 * until we complete the update.
2247 		 */
2248 		raw_spin_lock(&src_dl_b->lock);
2249 		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2250 		raw_spin_unlock(&src_dl_b->lock);
2251 	}
2252 
2253 	set_cpus_allowed_common(p, new_mask);
2254 }
2255 
2256 /* Assumes rq->lock is held */
2257 static void rq_online_dl(struct rq *rq)
2258 {
2259 	if (rq->dl.overloaded)
2260 		dl_set_overload(rq);
2261 
2262 	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2263 	if (rq->dl.dl_nr_running > 0)
2264 		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2265 }
2266 
2267 /* Assumes rq->lock is held */
2268 static void rq_offline_dl(struct rq *rq)
2269 {
2270 	if (rq->dl.overloaded)
2271 		dl_clear_overload(rq);
2272 
2273 	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2274 	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2275 }
2276 
2277 void __init init_sched_dl_class(void)
2278 {
2279 	unsigned int i;
2280 
2281 	for_each_possible_cpu(i)
2282 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2283 					GFP_KERNEL, cpu_to_node(i));
2284 }
2285 
2286 #endif /* CONFIG_SMP */
2287 
2288 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2289 {
2290 	/*
2291 	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2292 	 * time is in the future). If the task switches back to dl before
2293 	 * the "inactive timer" fires, it can continue to consume its current
2294 	 * runtime using its current deadline. If it stays outside of
2295 	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2296 	 * will reset the task parameters.
2297 	 */
2298 	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2299 		task_non_contending(p);
2300 
2301 	if (!task_on_rq_queued(p)) {
2302 		/*
2303 		 * Inactive timer is armed. However, p is leaving DEADLINE and
2304 		 * might migrate away from this rq while continuing to run on
2305 		 * some other class. We need to remove its contribution from
2306 		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2307 		 */
2308 		if (p->dl.dl_non_contending)
2309 			sub_running_bw(&p->dl, &rq->dl);
2310 		sub_rq_bw(&p->dl, &rq->dl);
2311 	}
2312 
2313 	/*
2314 	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2315 	 * at the 0-lag time, because the task could have been migrated
2316 	 * while SCHED_OTHER in the meanwhile.
2317 	 */
2318 	if (p->dl.dl_non_contending)
2319 		p->dl.dl_non_contending = 0;
2320 
2321 	/*
2322 	 * Since this might be the only -deadline task on the rq,
2323 	 * this is the right place to try to pull some other one
2324 	 * from an overloaded CPU, if any.
2325 	 */
2326 	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2327 		return;
2328 
2329 	deadline_queue_pull_task(rq);
2330 }
2331 
2332 /*
2333  * When switching to -deadline, we may overload the rq, then
2334  * we try to push someone off, if possible.
2335  */
2336 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2337 {
2338 	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2339 		put_task_struct(p);
2340 
2341 	/* If p is not queued we will update its parameters at next wakeup. */
2342 	if (!task_on_rq_queued(p)) {
2343 		add_rq_bw(&p->dl, &rq->dl);
2344 
2345 		return;
2346 	}
2347 
2348 	if (rq->curr != p) {
2349 #ifdef CONFIG_SMP
2350 		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2351 			deadline_queue_push_tasks(rq);
2352 #endif
2353 		if (dl_task(rq->curr))
2354 			check_preempt_curr_dl(rq, p, 0);
2355 		else
2356 			resched_curr(rq);
2357 	}
2358 }
2359 
2360 /*
2361  * If the scheduling parameters of a -deadline task changed,
2362  * a push or pull operation might be needed.
2363  */
2364 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2365 			    int oldprio)
2366 {
2367 	if (task_on_rq_queued(p) || rq->curr == p) {
2368 #ifdef CONFIG_SMP
2369 		/*
2370 		 * This might be too much, but unfortunately
2371 		 * we don't have the old deadline value, and
2372 		 * we can't argue if the task is increasing
2373 		 * or lowering its prio, so...
2374 		 */
2375 		if (!rq->dl.overloaded)
2376 			deadline_queue_pull_task(rq);
2377 
2378 		/*
2379 		 * If we now have a earlier deadline task than p,
2380 		 * then reschedule, provided p is still on this
2381 		 * runqueue.
2382 		 */
2383 		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2384 			resched_curr(rq);
2385 #else
2386 		/*
2387 		 * Again, we don't know if p has a earlier
2388 		 * or later deadline, so let's blindly set a
2389 		 * (maybe not needed) rescheduling point.
2390 		 */
2391 		resched_curr(rq);
2392 #endif /* CONFIG_SMP */
2393 	}
2394 }
2395 
2396 const struct sched_class dl_sched_class = {
2397 	.next			= &rt_sched_class,
2398 	.enqueue_task		= enqueue_task_dl,
2399 	.dequeue_task		= dequeue_task_dl,
2400 	.yield_task		= yield_task_dl,
2401 
2402 	.check_preempt_curr	= check_preempt_curr_dl,
2403 
2404 	.pick_next_task		= pick_next_task_dl,
2405 	.put_prev_task		= put_prev_task_dl,
2406 
2407 #ifdef CONFIG_SMP
2408 	.select_task_rq		= select_task_rq_dl,
2409 	.migrate_task_rq	= migrate_task_rq_dl,
2410 	.set_cpus_allowed       = set_cpus_allowed_dl,
2411 	.rq_online              = rq_online_dl,
2412 	.rq_offline             = rq_offline_dl,
2413 	.task_woken		= task_woken_dl,
2414 #endif
2415 
2416 	.set_curr_task		= set_curr_task_dl,
2417 	.task_tick		= task_tick_dl,
2418 	.task_fork              = task_fork_dl,
2419 
2420 	.prio_changed           = prio_changed_dl,
2421 	.switched_from		= switched_from_dl,
2422 	.switched_to		= switched_to_dl,
2423 
2424 	.update_curr		= update_curr_dl,
2425 };
2426 
2427 int sched_dl_global_validate(void)
2428 {
2429 	u64 runtime = global_rt_runtime();
2430 	u64 period = global_rt_period();
2431 	u64 new_bw = to_ratio(period, runtime);
2432 	struct dl_bw *dl_b;
2433 	int cpu, ret = 0;
2434 	unsigned long flags;
2435 
2436 	/*
2437 	 * Here we want to check the bandwidth not being set to some
2438 	 * value smaller than the currently allocated bandwidth in
2439 	 * any of the root_domains.
2440 	 *
2441 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2442 	 * cycling on root_domains... Discussion on different/better
2443 	 * solutions is welcome!
2444 	 */
2445 	for_each_possible_cpu(cpu) {
2446 		rcu_read_lock_sched();
2447 		dl_b = dl_bw_of(cpu);
2448 
2449 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2450 		if (new_bw < dl_b->total_bw)
2451 			ret = -EBUSY;
2452 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2453 
2454 		rcu_read_unlock_sched();
2455 
2456 		if (ret)
2457 			break;
2458 	}
2459 
2460 	return ret;
2461 }
2462 
2463 void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2464 {
2465 	if (global_rt_runtime() == RUNTIME_INF) {
2466 		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2467 		dl_rq->extra_bw = 1 << BW_SHIFT;
2468 	} else {
2469 		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2470 			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2471 		dl_rq->extra_bw = to_ratio(global_rt_period(),
2472 						    global_rt_runtime());
2473 	}
2474 }
2475 
2476 void sched_dl_do_global(void)
2477 {
2478 	u64 new_bw = -1;
2479 	struct dl_bw *dl_b;
2480 	int cpu;
2481 	unsigned long flags;
2482 
2483 	def_dl_bandwidth.dl_period = global_rt_period();
2484 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
2485 
2486 	if (global_rt_runtime() != RUNTIME_INF)
2487 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2488 
2489 	/*
2490 	 * FIXME: As above...
2491 	 */
2492 	for_each_possible_cpu(cpu) {
2493 		rcu_read_lock_sched();
2494 		dl_b = dl_bw_of(cpu);
2495 
2496 		raw_spin_lock_irqsave(&dl_b->lock, flags);
2497 		dl_b->bw = new_bw;
2498 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2499 
2500 		rcu_read_unlock_sched();
2501 		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2502 	}
2503 }
2504 
2505 /*
2506  * We must be sure that accepting a new task (or allowing changing the
2507  * parameters of an existing one) is consistent with the bandwidth
2508  * constraints. If yes, this function also accordingly updates the currently
2509  * allocated bandwidth to reflect the new situation.
2510  *
2511  * This function is called while holding p's rq->lock.
2512  */
2513 int sched_dl_overflow(struct task_struct *p, int policy,
2514 		      const struct sched_attr *attr)
2515 {
2516 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2517 	u64 period = attr->sched_period ?: attr->sched_deadline;
2518 	u64 runtime = attr->sched_runtime;
2519 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2520 	int cpus, err = -1;
2521 
2522 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2523 		return 0;
2524 
2525 	/* !deadline task may carry old deadline bandwidth */
2526 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2527 		return 0;
2528 
2529 	/*
2530 	 * Either if a task, enters, leave, or stays -deadline but changes
2531 	 * its parameters, we may need to update accordingly the total
2532 	 * allocated bandwidth of the container.
2533 	 */
2534 	raw_spin_lock(&dl_b->lock);
2535 	cpus = dl_bw_cpus(task_cpu(p));
2536 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2537 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2538 		if (hrtimer_active(&p->dl.inactive_timer))
2539 			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2540 		__dl_add(dl_b, new_bw, cpus);
2541 		err = 0;
2542 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2543 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2544 		/*
2545 		 * XXX this is slightly incorrect: when the task
2546 		 * utilization decreases, we should delay the total
2547 		 * utilization change until the task's 0-lag point.
2548 		 * But this would require to set the task's "inactive
2549 		 * timer" when the task is not inactive.
2550 		 */
2551 		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2552 		__dl_add(dl_b, new_bw, cpus);
2553 		dl_change_utilization(p, new_bw);
2554 		err = 0;
2555 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2556 		/*
2557 		 * Do not decrease the total deadline utilization here,
2558 		 * switched_from_dl() will take care to do it at the correct
2559 		 * (0-lag) time.
2560 		 */
2561 		err = 0;
2562 	}
2563 	raw_spin_unlock(&dl_b->lock);
2564 
2565 	return err;
2566 }
2567 
2568 /*
2569  * This function initializes the sched_dl_entity of a newly becoming
2570  * SCHED_DEADLINE task.
2571  *
2572  * Only the static values are considered here, the actual runtime and the
2573  * absolute deadline will be properly calculated when the task is enqueued
2574  * for the first time with its new policy.
2575  */
2576 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2577 {
2578 	struct sched_dl_entity *dl_se = &p->dl;
2579 
2580 	dl_se->dl_runtime = attr->sched_runtime;
2581 	dl_se->dl_deadline = attr->sched_deadline;
2582 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2583 	dl_se->flags = attr->sched_flags;
2584 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2585 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2586 }
2587 
2588 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2589 {
2590 	struct sched_dl_entity *dl_se = &p->dl;
2591 
2592 	attr->sched_priority = p->rt_priority;
2593 	attr->sched_runtime = dl_se->dl_runtime;
2594 	attr->sched_deadline = dl_se->dl_deadline;
2595 	attr->sched_period = dl_se->dl_period;
2596 	attr->sched_flags = dl_se->flags;
2597 }
2598 
2599 /*
2600  * This function validates the new parameters of a -deadline task.
2601  * We ask for the deadline not being zero, and greater or equal
2602  * than the runtime, as well as the period of being zero or
2603  * greater than deadline. Furthermore, we have to be sure that
2604  * user parameters are above the internal resolution of 1us (we
2605  * check sched_runtime only since it is always the smaller one) and
2606  * below 2^63 ns (we have to check both sched_deadline and
2607  * sched_period, as the latter can be zero).
2608  */
2609 bool __checkparam_dl(const struct sched_attr *attr)
2610 {
2611 	/* special dl tasks don't actually use any parameter */
2612 	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2613 		return true;
2614 
2615 	/* deadline != 0 */
2616 	if (attr->sched_deadline == 0)
2617 		return false;
2618 
2619 	/*
2620 	 * Since we truncate DL_SCALE bits, make sure we're at least
2621 	 * that big.
2622 	 */
2623 	if (attr->sched_runtime < (1ULL << DL_SCALE))
2624 		return false;
2625 
2626 	/*
2627 	 * Since we use the MSB for wrap-around and sign issues, make
2628 	 * sure it's not set (mind that period can be equal to zero).
2629 	 */
2630 	if (attr->sched_deadline & (1ULL << 63) ||
2631 	    attr->sched_period & (1ULL << 63))
2632 		return false;
2633 
2634 	/* runtime <= deadline <= period (if period != 0) */
2635 	if ((attr->sched_period != 0 &&
2636 	     attr->sched_period < attr->sched_deadline) ||
2637 	    attr->sched_deadline < attr->sched_runtime)
2638 		return false;
2639 
2640 	return true;
2641 }
2642 
2643 /*
2644  * This function clears the sched_dl_entity static params.
2645  */
2646 void __dl_clear_params(struct task_struct *p)
2647 {
2648 	struct sched_dl_entity *dl_se = &p->dl;
2649 
2650 	dl_se->dl_runtime		= 0;
2651 	dl_se->dl_deadline		= 0;
2652 	dl_se->dl_period		= 0;
2653 	dl_se->flags			= 0;
2654 	dl_se->dl_bw			= 0;
2655 	dl_se->dl_density		= 0;
2656 
2657 	dl_se->dl_throttled		= 0;
2658 	dl_se->dl_yielded		= 0;
2659 	dl_se->dl_non_contending	= 0;
2660 	dl_se->dl_overrun		= 0;
2661 }
2662 
2663 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2664 {
2665 	struct sched_dl_entity *dl_se = &p->dl;
2666 
2667 	if (dl_se->dl_runtime != attr->sched_runtime ||
2668 	    dl_se->dl_deadline != attr->sched_deadline ||
2669 	    dl_se->dl_period != attr->sched_period ||
2670 	    dl_se->flags != attr->sched_flags)
2671 		return true;
2672 
2673 	return false;
2674 }
2675 
2676 #ifdef CONFIG_SMP
2677 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2678 {
2679 	unsigned int dest_cpu;
2680 	struct dl_bw *dl_b;
2681 	bool overflow;
2682 	int cpus, ret;
2683 	unsigned long flags;
2684 
2685 	dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2686 
2687 	rcu_read_lock_sched();
2688 	dl_b = dl_bw_of(dest_cpu);
2689 	raw_spin_lock_irqsave(&dl_b->lock, flags);
2690 	cpus = dl_bw_cpus(dest_cpu);
2691 	overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
2692 	if (overflow) {
2693 		ret = -EBUSY;
2694 	} else {
2695 		/*
2696 		 * We reserve space for this task in the destination
2697 		 * root_domain, as we can't fail after this point.
2698 		 * We will free resources in the source root_domain
2699 		 * later on (see set_cpus_allowed_dl()).
2700 		 */
2701 		__dl_add(dl_b, p->dl.dl_bw, cpus);
2702 		ret = 0;
2703 	}
2704 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2705 	rcu_read_unlock_sched();
2706 
2707 	return ret;
2708 }
2709 
2710 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2711 				 const struct cpumask *trial)
2712 {
2713 	int ret = 1, trial_cpus;
2714 	struct dl_bw *cur_dl_b;
2715 	unsigned long flags;
2716 
2717 	rcu_read_lock_sched();
2718 	cur_dl_b = dl_bw_of(cpumask_any(cur));
2719 	trial_cpus = cpumask_weight(trial);
2720 
2721 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2722 	if (cur_dl_b->bw != -1 &&
2723 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2724 		ret = 0;
2725 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2726 	rcu_read_unlock_sched();
2727 
2728 	return ret;
2729 }
2730 
2731 bool dl_cpu_busy(unsigned int cpu)
2732 {
2733 	unsigned long flags;
2734 	struct dl_bw *dl_b;
2735 	bool overflow;
2736 	int cpus;
2737 
2738 	rcu_read_lock_sched();
2739 	dl_b = dl_bw_of(cpu);
2740 	raw_spin_lock_irqsave(&dl_b->lock, flags);
2741 	cpus = dl_bw_cpus(cpu);
2742 	overflow = __dl_overflow(dl_b, cpus, 0, 0);
2743 	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2744 	rcu_read_unlock_sched();
2745 
2746 	return overflow;
2747 }
2748 #endif
2749 
2750 #ifdef CONFIG_SCHED_DEBUG
2751 void print_dl_stats(struct seq_file *m, int cpu)
2752 {
2753 	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2754 }
2755 #endif /* CONFIG_SCHED_DEBUG */
2756