xref: /linux/kernel/sys.c (revision daa694e4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/kernel/sys.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/mm_inline.h>
11 #include <linux/utsname.h>
12 #include <linux/mman.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/kmod.h>
18 #include <linux/ksm.h>
19 #include <linux/perf_event.h>
20 #include <linux/resource.h>
21 #include <linux/kernel.h>
22 #include <linux/workqueue.h>
23 #include <linux/capability.h>
24 #include <linux/device.h>
25 #include <linux/key.h>
26 #include <linux/times.h>
27 #include <linux/posix-timers.h>
28 #include <linux/security.h>
29 #include <linux/random.h>
30 #include <linux/suspend.h>
31 #include <linux/tty.h>
32 #include <linux/signal.h>
33 #include <linux/cn_proc.h>
34 #include <linux/getcpu.h>
35 #include <linux/task_io_accounting_ops.h>
36 #include <linux/seccomp.h>
37 #include <linux/cpu.h>
38 #include <linux/personality.h>
39 #include <linux/ptrace.h>
40 #include <linux/fs_struct.h>
41 #include <linux/file.h>
42 #include <linux/mount.h>
43 #include <linux/gfp.h>
44 #include <linux/syscore_ops.h>
45 #include <linux/version.h>
46 #include <linux/ctype.h>
47 #include <linux/syscall_user_dispatch.h>
48 
49 #include <linux/compat.h>
50 #include <linux/syscalls.h>
51 #include <linux/kprobes.h>
52 #include <linux/user_namespace.h>
53 #include <linux/time_namespace.h>
54 #include <linux/binfmts.h>
55 
56 #include <linux/sched.h>
57 #include <linux/sched/autogroup.h>
58 #include <linux/sched/loadavg.h>
59 #include <linux/sched/stat.h>
60 #include <linux/sched/mm.h>
61 #include <linux/sched/coredump.h>
62 #include <linux/sched/task.h>
63 #include <linux/sched/cputime.h>
64 #include <linux/rcupdate.h>
65 #include <linux/uidgid.h>
66 #include <linux/cred.h>
67 
68 #include <linux/nospec.h>
69 
70 #include <linux/kmsg_dump.h>
71 /* Move somewhere else to avoid recompiling? */
72 #include <generated/utsrelease.h>
73 
74 #include <linux/uaccess.h>
75 #include <asm/io.h>
76 #include <asm/unistd.h>
77 
78 #include "uid16.h"
79 
80 #ifndef SET_UNALIGN_CTL
81 # define SET_UNALIGN_CTL(a, b)	(-EINVAL)
82 #endif
83 #ifndef GET_UNALIGN_CTL
84 # define GET_UNALIGN_CTL(a, b)	(-EINVAL)
85 #endif
86 #ifndef SET_FPEMU_CTL
87 # define SET_FPEMU_CTL(a, b)	(-EINVAL)
88 #endif
89 #ifndef GET_FPEMU_CTL
90 # define GET_FPEMU_CTL(a, b)	(-EINVAL)
91 #endif
92 #ifndef SET_FPEXC_CTL
93 # define SET_FPEXC_CTL(a, b)	(-EINVAL)
94 #endif
95 #ifndef GET_FPEXC_CTL
96 # define GET_FPEXC_CTL(a, b)	(-EINVAL)
97 #endif
98 #ifndef GET_ENDIAN
99 # define GET_ENDIAN(a, b)	(-EINVAL)
100 #endif
101 #ifndef SET_ENDIAN
102 # define SET_ENDIAN(a, b)	(-EINVAL)
103 #endif
104 #ifndef GET_TSC_CTL
105 # define GET_TSC_CTL(a)		(-EINVAL)
106 #endif
107 #ifndef SET_TSC_CTL
108 # define SET_TSC_CTL(a)		(-EINVAL)
109 #endif
110 #ifndef GET_FP_MODE
111 # define GET_FP_MODE(a)		(-EINVAL)
112 #endif
113 #ifndef SET_FP_MODE
114 # define SET_FP_MODE(a,b)	(-EINVAL)
115 #endif
116 #ifndef SVE_SET_VL
117 # define SVE_SET_VL(a)		(-EINVAL)
118 #endif
119 #ifndef SVE_GET_VL
120 # define SVE_GET_VL()		(-EINVAL)
121 #endif
122 #ifndef SME_SET_VL
123 # define SME_SET_VL(a)		(-EINVAL)
124 #endif
125 #ifndef SME_GET_VL
126 # define SME_GET_VL()		(-EINVAL)
127 #endif
128 #ifndef PAC_RESET_KEYS
129 # define PAC_RESET_KEYS(a, b)	(-EINVAL)
130 #endif
131 #ifndef PAC_SET_ENABLED_KEYS
132 # define PAC_SET_ENABLED_KEYS(a, b, c)	(-EINVAL)
133 #endif
134 #ifndef PAC_GET_ENABLED_KEYS
135 # define PAC_GET_ENABLED_KEYS(a)	(-EINVAL)
136 #endif
137 #ifndef SET_TAGGED_ADDR_CTRL
138 # define SET_TAGGED_ADDR_CTRL(a)	(-EINVAL)
139 #endif
140 #ifndef GET_TAGGED_ADDR_CTRL
141 # define GET_TAGGED_ADDR_CTRL()		(-EINVAL)
142 #endif
143 #ifndef RISCV_V_SET_CONTROL
144 # define RISCV_V_SET_CONTROL(a)		(-EINVAL)
145 #endif
146 #ifndef RISCV_V_GET_CONTROL
147 # define RISCV_V_GET_CONTROL()		(-EINVAL)
148 #endif
149 
150 /*
151  * this is where the system-wide overflow UID and GID are defined, for
152  * architectures that now have 32-bit UID/GID but didn't in the past
153  */
154 
155 int overflowuid = DEFAULT_OVERFLOWUID;
156 int overflowgid = DEFAULT_OVERFLOWGID;
157 
158 EXPORT_SYMBOL(overflowuid);
159 EXPORT_SYMBOL(overflowgid);
160 
161 /*
162  * the same as above, but for filesystems which can only store a 16-bit
163  * UID and GID. as such, this is needed on all architectures
164  */
165 
166 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
167 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
168 
169 EXPORT_SYMBOL(fs_overflowuid);
170 EXPORT_SYMBOL(fs_overflowgid);
171 
172 /*
173  * Returns true if current's euid is same as p's uid or euid,
174  * or has CAP_SYS_NICE to p's user_ns.
175  *
176  * Called with rcu_read_lock, creds are safe
177  */
178 static bool set_one_prio_perm(struct task_struct *p)
179 {
180 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
181 
182 	if (uid_eq(pcred->uid,  cred->euid) ||
183 	    uid_eq(pcred->euid, cred->euid))
184 		return true;
185 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
186 		return true;
187 	return false;
188 }
189 
190 /*
191  * set the priority of a task
192  * - the caller must hold the RCU read lock
193  */
194 static int set_one_prio(struct task_struct *p, int niceval, int error)
195 {
196 	int no_nice;
197 
198 	if (!set_one_prio_perm(p)) {
199 		error = -EPERM;
200 		goto out;
201 	}
202 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
203 		error = -EACCES;
204 		goto out;
205 	}
206 	no_nice = security_task_setnice(p, niceval);
207 	if (no_nice) {
208 		error = no_nice;
209 		goto out;
210 	}
211 	if (error == -ESRCH)
212 		error = 0;
213 	set_user_nice(p, niceval);
214 out:
215 	return error;
216 }
217 
218 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
219 {
220 	struct task_struct *g, *p;
221 	struct user_struct *user;
222 	const struct cred *cred = current_cred();
223 	int error = -EINVAL;
224 	struct pid *pgrp;
225 	kuid_t uid;
226 
227 	if (which > PRIO_USER || which < PRIO_PROCESS)
228 		goto out;
229 
230 	/* normalize: avoid signed division (rounding problems) */
231 	error = -ESRCH;
232 	if (niceval < MIN_NICE)
233 		niceval = MIN_NICE;
234 	if (niceval > MAX_NICE)
235 		niceval = MAX_NICE;
236 
237 	rcu_read_lock();
238 	switch (which) {
239 	case PRIO_PROCESS:
240 		if (who)
241 			p = find_task_by_vpid(who);
242 		else
243 			p = current;
244 		if (p)
245 			error = set_one_prio(p, niceval, error);
246 		break;
247 	case PRIO_PGRP:
248 		if (who)
249 			pgrp = find_vpid(who);
250 		else
251 			pgrp = task_pgrp(current);
252 		read_lock(&tasklist_lock);
253 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
254 			error = set_one_prio(p, niceval, error);
255 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
256 		read_unlock(&tasklist_lock);
257 		break;
258 	case PRIO_USER:
259 		uid = make_kuid(cred->user_ns, who);
260 		user = cred->user;
261 		if (!who)
262 			uid = cred->uid;
263 		else if (!uid_eq(uid, cred->uid)) {
264 			user = find_user(uid);
265 			if (!user)
266 				goto out_unlock;	/* No processes for this user */
267 		}
268 		for_each_process_thread(g, p) {
269 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
270 				error = set_one_prio(p, niceval, error);
271 		}
272 		if (!uid_eq(uid, cred->uid))
273 			free_uid(user);		/* For find_user() */
274 		break;
275 	}
276 out_unlock:
277 	rcu_read_unlock();
278 out:
279 	return error;
280 }
281 
282 /*
283  * Ugh. To avoid negative return values, "getpriority()" will
284  * not return the normal nice-value, but a negated value that
285  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
286  * to stay compatible.
287  */
288 SYSCALL_DEFINE2(getpriority, int, which, int, who)
289 {
290 	struct task_struct *g, *p;
291 	struct user_struct *user;
292 	const struct cred *cred = current_cred();
293 	long niceval, retval = -ESRCH;
294 	struct pid *pgrp;
295 	kuid_t uid;
296 
297 	if (which > PRIO_USER || which < PRIO_PROCESS)
298 		return -EINVAL;
299 
300 	rcu_read_lock();
301 	switch (which) {
302 	case PRIO_PROCESS:
303 		if (who)
304 			p = find_task_by_vpid(who);
305 		else
306 			p = current;
307 		if (p) {
308 			niceval = nice_to_rlimit(task_nice(p));
309 			if (niceval > retval)
310 				retval = niceval;
311 		}
312 		break;
313 	case PRIO_PGRP:
314 		if (who)
315 			pgrp = find_vpid(who);
316 		else
317 			pgrp = task_pgrp(current);
318 		read_lock(&tasklist_lock);
319 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
320 			niceval = nice_to_rlimit(task_nice(p));
321 			if (niceval > retval)
322 				retval = niceval;
323 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
324 		read_unlock(&tasklist_lock);
325 		break;
326 	case PRIO_USER:
327 		uid = make_kuid(cred->user_ns, who);
328 		user = cred->user;
329 		if (!who)
330 			uid = cred->uid;
331 		else if (!uid_eq(uid, cred->uid)) {
332 			user = find_user(uid);
333 			if (!user)
334 				goto out_unlock;	/* No processes for this user */
335 		}
336 		for_each_process_thread(g, p) {
337 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
338 				niceval = nice_to_rlimit(task_nice(p));
339 				if (niceval > retval)
340 					retval = niceval;
341 			}
342 		}
343 		if (!uid_eq(uid, cred->uid))
344 			free_uid(user);		/* for find_user() */
345 		break;
346 	}
347 out_unlock:
348 	rcu_read_unlock();
349 
350 	return retval;
351 }
352 
353 /*
354  * Unprivileged users may change the real gid to the effective gid
355  * or vice versa.  (BSD-style)
356  *
357  * If you set the real gid at all, or set the effective gid to a value not
358  * equal to the real gid, then the saved gid is set to the new effective gid.
359  *
360  * This makes it possible for a setgid program to completely drop its
361  * privileges, which is often a useful assertion to make when you are doing
362  * a security audit over a program.
363  *
364  * The general idea is that a program which uses just setregid() will be
365  * 100% compatible with BSD.  A program which uses just setgid() will be
366  * 100% compatible with POSIX with saved IDs.
367  *
368  * SMP: There are not races, the GIDs are checked only by filesystem
369  *      operations (as far as semantic preservation is concerned).
370  */
371 #ifdef CONFIG_MULTIUSER
372 long __sys_setregid(gid_t rgid, gid_t egid)
373 {
374 	struct user_namespace *ns = current_user_ns();
375 	const struct cred *old;
376 	struct cred *new;
377 	int retval;
378 	kgid_t krgid, kegid;
379 
380 	krgid = make_kgid(ns, rgid);
381 	kegid = make_kgid(ns, egid);
382 
383 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
384 		return -EINVAL;
385 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
386 		return -EINVAL;
387 
388 	new = prepare_creds();
389 	if (!new)
390 		return -ENOMEM;
391 	old = current_cred();
392 
393 	retval = -EPERM;
394 	if (rgid != (gid_t) -1) {
395 		if (gid_eq(old->gid, krgid) ||
396 		    gid_eq(old->egid, krgid) ||
397 		    ns_capable_setid(old->user_ns, CAP_SETGID))
398 			new->gid = krgid;
399 		else
400 			goto error;
401 	}
402 	if (egid != (gid_t) -1) {
403 		if (gid_eq(old->gid, kegid) ||
404 		    gid_eq(old->egid, kegid) ||
405 		    gid_eq(old->sgid, kegid) ||
406 		    ns_capable_setid(old->user_ns, CAP_SETGID))
407 			new->egid = kegid;
408 		else
409 			goto error;
410 	}
411 
412 	if (rgid != (gid_t) -1 ||
413 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
414 		new->sgid = new->egid;
415 	new->fsgid = new->egid;
416 
417 	retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
418 	if (retval < 0)
419 		goto error;
420 
421 	return commit_creds(new);
422 
423 error:
424 	abort_creds(new);
425 	return retval;
426 }
427 
428 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
429 {
430 	return __sys_setregid(rgid, egid);
431 }
432 
433 /*
434  * setgid() is implemented like SysV w/ SAVED_IDS
435  *
436  * SMP: Same implicit races as above.
437  */
438 long __sys_setgid(gid_t gid)
439 {
440 	struct user_namespace *ns = current_user_ns();
441 	const struct cred *old;
442 	struct cred *new;
443 	int retval;
444 	kgid_t kgid;
445 
446 	kgid = make_kgid(ns, gid);
447 	if (!gid_valid(kgid))
448 		return -EINVAL;
449 
450 	new = prepare_creds();
451 	if (!new)
452 		return -ENOMEM;
453 	old = current_cred();
454 
455 	retval = -EPERM;
456 	if (ns_capable_setid(old->user_ns, CAP_SETGID))
457 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
458 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
459 		new->egid = new->fsgid = kgid;
460 	else
461 		goto error;
462 
463 	retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
464 	if (retval < 0)
465 		goto error;
466 
467 	return commit_creds(new);
468 
469 error:
470 	abort_creds(new);
471 	return retval;
472 }
473 
474 SYSCALL_DEFINE1(setgid, gid_t, gid)
475 {
476 	return __sys_setgid(gid);
477 }
478 
479 /*
480  * change the user struct in a credentials set to match the new UID
481  */
482 static int set_user(struct cred *new)
483 {
484 	struct user_struct *new_user;
485 
486 	new_user = alloc_uid(new->uid);
487 	if (!new_user)
488 		return -EAGAIN;
489 
490 	free_uid(new->user);
491 	new->user = new_user;
492 	return 0;
493 }
494 
495 static void flag_nproc_exceeded(struct cred *new)
496 {
497 	if (new->ucounts == current_ucounts())
498 		return;
499 
500 	/*
501 	 * We don't fail in case of NPROC limit excess here because too many
502 	 * poorly written programs don't check set*uid() return code, assuming
503 	 * it never fails if called by root.  We may still enforce NPROC limit
504 	 * for programs doing set*uid()+execve() by harmlessly deferring the
505 	 * failure to the execve() stage.
506 	 */
507 	if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
508 			new->user != INIT_USER)
509 		current->flags |= PF_NPROC_EXCEEDED;
510 	else
511 		current->flags &= ~PF_NPROC_EXCEEDED;
512 }
513 
514 /*
515  * Unprivileged users may change the real uid to the effective uid
516  * or vice versa.  (BSD-style)
517  *
518  * If you set the real uid at all, or set the effective uid to a value not
519  * equal to the real uid, then the saved uid is set to the new effective uid.
520  *
521  * This makes it possible for a setuid program to completely drop its
522  * privileges, which is often a useful assertion to make when you are doing
523  * a security audit over a program.
524  *
525  * The general idea is that a program which uses just setreuid() will be
526  * 100% compatible with BSD.  A program which uses just setuid() will be
527  * 100% compatible with POSIX with saved IDs.
528  */
529 long __sys_setreuid(uid_t ruid, uid_t euid)
530 {
531 	struct user_namespace *ns = current_user_ns();
532 	const struct cred *old;
533 	struct cred *new;
534 	int retval;
535 	kuid_t kruid, keuid;
536 
537 	kruid = make_kuid(ns, ruid);
538 	keuid = make_kuid(ns, euid);
539 
540 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
541 		return -EINVAL;
542 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
543 		return -EINVAL;
544 
545 	new = prepare_creds();
546 	if (!new)
547 		return -ENOMEM;
548 	old = current_cred();
549 
550 	retval = -EPERM;
551 	if (ruid != (uid_t) -1) {
552 		new->uid = kruid;
553 		if (!uid_eq(old->uid, kruid) &&
554 		    !uid_eq(old->euid, kruid) &&
555 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
556 			goto error;
557 	}
558 
559 	if (euid != (uid_t) -1) {
560 		new->euid = keuid;
561 		if (!uid_eq(old->uid, keuid) &&
562 		    !uid_eq(old->euid, keuid) &&
563 		    !uid_eq(old->suid, keuid) &&
564 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
565 			goto error;
566 	}
567 
568 	if (!uid_eq(new->uid, old->uid)) {
569 		retval = set_user(new);
570 		if (retval < 0)
571 			goto error;
572 	}
573 	if (ruid != (uid_t) -1 ||
574 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
575 		new->suid = new->euid;
576 	new->fsuid = new->euid;
577 
578 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
579 	if (retval < 0)
580 		goto error;
581 
582 	retval = set_cred_ucounts(new);
583 	if (retval < 0)
584 		goto error;
585 
586 	flag_nproc_exceeded(new);
587 	return commit_creds(new);
588 
589 error:
590 	abort_creds(new);
591 	return retval;
592 }
593 
594 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
595 {
596 	return __sys_setreuid(ruid, euid);
597 }
598 
599 /*
600  * setuid() is implemented like SysV with SAVED_IDS
601  *
602  * Note that SAVED_ID's is deficient in that a setuid root program
603  * like sendmail, for example, cannot set its uid to be a normal
604  * user and then switch back, because if you're root, setuid() sets
605  * the saved uid too.  If you don't like this, blame the bright people
606  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
607  * will allow a root program to temporarily drop privileges and be able to
608  * regain them by swapping the real and effective uid.
609  */
610 long __sys_setuid(uid_t uid)
611 {
612 	struct user_namespace *ns = current_user_ns();
613 	const struct cred *old;
614 	struct cred *new;
615 	int retval;
616 	kuid_t kuid;
617 
618 	kuid = make_kuid(ns, uid);
619 	if (!uid_valid(kuid))
620 		return -EINVAL;
621 
622 	new = prepare_creds();
623 	if (!new)
624 		return -ENOMEM;
625 	old = current_cred();
626 
627 	retval = -EPERM;
628 	if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
629 		new->suid = new->uid = kuid;
630 		if (!uid_eq(kuid, old->uid)) {
631 			retval = set_user(new);
632 			if (retval < 0)
633 				goto error;
634 		}
635 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
636 		goto error;
637 	}
638 
639 	new->fsuid = new->euid = kuid;
640 
641 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
642 	if (retval < 0)
643 		goto error;
644 
645 	retval = set_cred_ucounts(new);
646 	if (retval < 0)
647 		goto error;
648 
649 	flag_nproc_exceeded(new);
650 	return commit_creds(new);
651 
652 error:
653 	abort_creds(new);
654 	return retval;
655 }
656 
657 SYSCALL_DEFINE1(setuid, uid_t, uid)
658 {
659 	return __sys_setuid(uid);
660 }
661 
662 
663 /*
664  * This function implements a generic ability to update ruid, euid,
665  * and suid.  This allows you to implement the 4.4 compatible seteuid().
666  */
667 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
668 {
669 	struct user_namespace *ns = current_user_ns();
670 	const struct cred *old;
671 	struct cred *new;
672 	int retval;
673 	kuid_t kruid, keuid, ksuid;
674 	bool ruid_new, euid_new, suid_new;
675 
676 	kruid = make_kuid(ns, ruid);
677 	keuid = make_kuid(ns, euid);
678 	ksuid = make_kuid(ns, suid);
679 
680 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
681 		return -EINVAL;
682 
683 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
684 		return -EINVAL;
685 
686 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
687 		return -EINVAL;
688 
689 	old = current_cred();
690 
691 	/* check for no-op */
692 	if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
693 	    (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
694 				    uid_eq(keuid, old->fsuid))) &&
695 	    (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
696 		return 0;
697 
698 	ruid_new = ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
699 		   !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
700 	euid_new = euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
701 		   !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
702 	suid_new = suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
703 		   !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
704 	if ((ruid_new || euid_new || suid_new) &&
705 	    !ns_capable_setid(old->user_ns, CAP_SETUID))
706 		return -EPERM;
707 
708 	new = prepare_creds();
709 	if (!new)
710 		return -ENOMEM;
711 
712 	if (ruid != (uid_t) -1) {
713 		new->uid = kruid;
714 		if (!uid_eq(kruid, old->uid)) {
715 			retval = set_user(new);
716 			if (retval < 0)
717 				goto error;
718 		}
719 	}
720 	if (euid != (uid_t) -1)
721 		new->euid = keuid;
722 	if (suid != (uid_t) -1)
723 		new->suid = ksuid;
724 	new->fsuid = new->euid;
725 
726 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
727 	if (retval < 0)
728 		goto error;
729 
730 	retval = set_cred_ucounts(new);
731 	if (retval < 0)
732 		goto error;
733 
734 	flag_nproc_exceeded(new);
735 	return commit_creds(new);
736 
737 error:
738 	abort_creds(new);
739 	return retval;
740 }
741 
742 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
743 {
744 	return __sys_setresuid(ruid, euid, suid);
745 }
746 
747 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
748 {
749 	const struct cred *cred = current_cred();
750 	int retval;
751 	uid_t ruid, euid, suid;
752 
753 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
754 	euid = from_kuid_munged(cred->user_ns, cred->euid);
755 	suid = from_kuid_munged(cred->user_ns, cred->suid);
756 
757 	retval = put_user(ruid, ruidp);
758 	if (!retval) {
759 		retval = put_user(euid, euidp);
760 		if (!retval)
761 			return put_user(suid, suidp);
762 	}
763 	return retval;
764 }
765 
766 /*
767  * Same as above, but for rgid, egid, sgid.
768  */
769 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
770 {
771 	struct user_namespace *ns = current_user_ns();
772 	const struct cred *old;
773 	struct cred *new;
774 	int retval;
775 	kgid_t krgid, kegid, ksgid;
776 	bool rgid_new, egid_new, sgid_new;
777 
778 	krgid = make_kgid(ns, rgid);
779 	kegid = make_kgid(ns, egid);
780 	ksgid = make_kgid(ns, sgid);
781 
782 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
783 		return -EINVAL;
784 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
785 		return -EINVAL;
786 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
787 		return -EINVAL;
788 
789 	old = current_cred();
790 
791 	/* check for no-op */
792 	if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
793 	    (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
794 				    gid_eq(kegid, old->fsgid))) &&
795 	    (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
796 		return 0;
797 
798 	rgid_new = rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
799 		   !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
800 	egid_new = egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
801 		   !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
802 	sgid_new = sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
803 		   !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
804 	if ((rgid_new || egid_new || sgid_new) &&
805 	    !ns_capable_setid(old->user_ns, CAP_SETGID))
806 		return -EPERM;
807 
808 	new = prepare_creds();
809 	if (!new)
810 		return -ENOMEM;
811 
812 	if (rgid != (gid_t) -1)
813 		new->gid = krgid;
814 	if (egid != (gid_t) -1)
815 		new->egid = kegid;
816 	if (sgid != (gid_t) -1)
817 		new->sgid = ksgid;
818 	new->fsgid = new->egid;
819 
820 	retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
821 	if (retval < 0)
822 		goto error;
823 
824 	return commit_creds(new);
825 
826 error:
827 	abort_creds(new);
828 	return retval;
829 }
830 
831 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
832 {
833 	return __sys_setresgid(rgid, egid, sgid);
834 }
835 
836 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
837 {
838 	const struct cred *cred = current_cred();
839 	int retval;
840 	gid_t rgid, egid, sgid;
841 
842 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
843 	egid = from_kgid_munged(cred->user_ns, cred->egid);
844 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
845 
846 	retval = put_user(rgid, rgidp);
847 	if (!retval) {
848 		retval = put_user(egid, egidp);
849 		if (!retval)
850 			retval = put_user(sgid, sgidp);
851 	}
852 
853 	return retval;
854 }
855 
856 
857 /*
858  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
859  * is used for "access()" and for the NFS daemon (letting nfsd stay at
860  * whatever uid it wants to). It normally shadows "euid", except when
861  * explicitly set by setfsuid() or for access..
862  */
863 long __sys_setfsuid(uid_t uid)
864 {
865 	const struct cred *old;
866 	struct cred *new;
867 	uid_t old_fsuid;
868 	kuid_t kuid;
869 
870 	old = current_cred();
871 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
872 
873 	kuid = make_kuid(old->user_ns, uid);
874 	if (!uid_valid(kuid))
875 		return old_fsuid;
876 
877 	new = prepare_creds();
878 	if (!new)
879 		return old_fsuid;
880 
881 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
882 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
883 	    ns_capable_setid(old->user_ns, CAP_SETUID)) {
884 		if (!uid_eq(kuid, old->fsuid)) {
885 			new->fsuid = kuid;
886 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
887 				goto change_okay;
888 		}
889 	}
890 
891 	abort_creds(new);
892 	return old_fsuid;
893 
894 change_okay:
895 	commit_creds(new);
896 	return old_fsuid;
897 }
898 
899 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
900 {
901 	return __sys_setfsuid(uid);
902 }
903 
904 /*
905  * Samma på svenska..
906  */
907 long __sys_setfsgid(gid_t gid)
908 {
909 	const struct cred *old;
910 	struct cred *new;
911 	gid_t old_fsgid;
912 	kgid_t kgid;
913 
914 	old = current_cred();
915 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
916 
917 	kgid = make_kgid(old->user_ns, gid);
918 	if (!gid_valid(kgid))
919 		return old_fsgid;
920 
921 	new = prepare_creds();
922 	if (!new)
923 		return old_fsgid;
924 
925 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
926 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
927 	    ns_capable_setid(old->user_ns, CAP_SETGID)) {
928 		if (!gid_eq(kgid, old->fsgid)) {
929 			new->fsgid = kgid;
930 			if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
931 				goto change_okay;
932 		}
933 	}
934 
935 	abort_creds(new);
936 	return old_fsgid;
937 
938 change_okay:
939 	commit_creds(new);
940 	return old_fsgid;
941 }
942 
943 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
944 {
945 	return __sys_setfsgid(gid);
946 }
947 #endif /* CONFIG_MULTIUSER */
948 
949 /**
950  * sys_getpid - return the thread group id of the current process
951  *
952  * Note, despite the name, this returns the tgid not the pid.  The tgid and
953  * the pid are identical unless CLONE_THREAD was specified on clone() in
954  * which case the tgid is the same in all threads of the same group.
955  *
956  * This is SMP safe as current->tgid does not change.
957  */
958 SYSCALL_DEFINE0(getpid)
959 {
960 	return task_tgid_vnr(current);
961 }
962 
963 /* Thread ID - the internal kernel "pid" */
964 SYSCALL_DEFINE0(gettid)
965 {
966 	return task_pid_vnr(current);
967 }
968 
969 /*
970  * Accessing ->real_parent is not SMP-safe, it could
971  * change from under us. However, we can use a stale
972  * value of ->real_parent under rcu_read_lock(), see
973  * release_task()->call_rcu(delayed_put_task_struct).
974  */
975 SYSCALL_DEFINE0(getppid)
976 {
977 	int pid;
978 
979 	rcu_read_lock();
980 	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
981 	rcu_read_unlock();
982 
983 	return pid;
984 }
985 
986 SYSCALL_DEFINE0(getuid)
987 {
988 	/* Only we change this so SMP safe */
989 	return from_kuid_munged(current_user_ns(), current_uid());
990 }
991 
992 SYSCALL_DEFINE0(geteuid)
993 {
994 	/* Only we change this so SMP safe */
995 	return from_kuid_munged(current_user_ns(), current_euid());
996 }
997 
998 SYSCALL_DEFINE0(getgid)
999 {
1000 	/* Only we change this so SMP safe */
1001 	return from_kgid_munged(current_user_ns(), current_gid());
1002 }
1003 
1004 SYSCALL_DEFINE0(getegid)
1005 {
1006 	/* Only we change this so SMP safe */
1007 	return from_kgid_munged(current_user_ns(), current_egid());
1008 }
1009 
1010 static void do_sys_times(struct tms *tms)
1011 {
1012 	u64 tgutime, tgstime, cutime, cstime;
1013 
1014 	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1015 	cutime = current->signal->cutime;
1016 	cstime = current->signal->cstime;
1017 	tms->tms_utime = nsec_to_clock_t(tgutime);
1018 	tms->tms_stime = nsec_to_clock_t(tgstime);
1019 	tms->tms_cutime = nsec_to_clock_t(cutime);
1020 	tms->tms_cstime = nsec_to_clock_t(cstime);
1021 }
1022 
1023 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1024 {
1025 	if (tbuf) {
1026 		struct tms tmp;
1027 
1028 		do_sys_times(&tmp);
1029 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1030 			return -EFAULT;
1031 	}
1032 	force_successful_syscall_return();
1033 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1034 }
1035 
1036 #ifdef CONFIG_COMPAT
1037 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1038 {
1039 	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1040 }
1041 
1042 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1043 {
1044 	if (tbuf) {
1045 		struct tms tms;
1046 		struct compat_tms tmp;
1047 
1048 		do_sys_times(&tms);
1049 		/* Convert our struct tms to the compat version. */
1050 		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1051 		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1052 		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1053 		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1054 		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1055 			return -EFAULT;
1056 	}
1057 	force_successful_syscall_return();
1058 	return compat_jiffies_to_clock_t(jiffies);
1059 }
1060 #endif
1061 
1062 /*
1063  * This needs some heavy checking ...
1064  * I just haven't the stomach for it. I also don't fully
1065  * understand sessions/pgrp etc. Let somebody who does explain it.
1066  *
1067  * OK, I think I have the protection semantics right.... this is really
1068  * only important on a multi-user system anyway, to make sure one user
1069  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1070  *
1071  * !PF_FORKNOEXEC check to conform completely to POSIX.
1072  */
1073 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1074 {
1075 	struct task_struct *p;
1076 	struct task_struct *group_leader = current->group_leader;
1077 	struct pid *pgrp;
1078 	int err;
1079 
1080 	if (!pid)
1081 		pid = task_pid_vnr(group_leader);
1082 	if (!pgid)
1083 		pgid = pid;
1084 	if (pgid < 0)
1085 		return -EINVAL;
1086 	rcu_read_lock();
1087 
1088 	/* From this point forward we keep holding onto the tasklist lock
1089 	 * so that our parent does not change from under us. -DaveM
1090 	 */
1091 	write_lock_irq(&tasklist_lock);
1092 
1093 	err = -ESRCH;
1094 	p = find_task_by_vpid(pid);
1095 	if (!p)
1096 		goto out;
1097 
1098 	err = -EINVAL;
1099 	if (!thread_group_leader(p))
1100 		goto out;
1101 
1102 	if (same_thread_group(p->real_parent, group_leader)) {
1103 		err = -EPERM;
1104 		if (task_session(p) != task_session(group_leader))
1105 			goto out;
1106 		err = -EACCES;
1107 		if (!(p->flags & PF_FORKNOEXEC))
1108 			goto out;
1109 	} else {
1110 		err = -ESRCH;
1111 		if (p != group_leader)
1112 			goto out;
1113 	}
1114 
1115 	err = -EPERM;
1116 	if (p->signal->leader)
1117 		goto out;
1118 
1119 	pgrp = task_pid(p);
1120 	if (pgid != pid) {
1121 		struct task_struct *g;
1122 
1123 		pgrp = find_vpid(pgid);
1124 		g = pid_task(pgrp, PIDTYPE_PGID);
1125 		if (!g || task_session(g) != task_session(group_leader))
1126 			goto out;
1127 	}
1128 
1129 	err = security_task_setpgid(p, pgid);
1130 	if (err)
1131 		goto out;
1132 
1133 	if (task_pgrp(p) != pgrp)
1134 		change_pid(p, PIDTYPE_PGID, pgrp);
1135 
1136 	err = 0;
1137 out:
1138 	/* All paths lead to here, thus we are safe. -DaveM */
1139 	write_unlock_irq(&tasklist_lock);
1140 	rcu_read_unlock();
1141 	return err;
1142 }
1143 
1144 static int do_getpgid(pid_t pid)
1145 {
1146 	struct task_struct *p;
1147 	struct pid *grp;
1148 	int retval;
1149 
1150 	rcu_read_lock();
1151 	if (!pid)
1152 		grp = task_pgrp(current);
1153 	else {
1154 		retval = -ESRCH;
1155 		p = find_task_by_vpid(pid);
1156 		if (!p)
1157 			goto out;
1158 		grp = task_pgrp(p);
1159 		if (!grp)
1160 			goto out;
1161 
1162 		retval = security_task_getpgid(p);
1163 		if (retval)
1164 			goto out;
1165 	}
1166 	retval = pid_vnr(grp);
1167 out:
1168 	rcu_read_unlock();
1169 	return retval;
1170 }
1171 
1172 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1173 {
1174 	return do_getpgid(pid);
1175 }
1176 
1177 #ifdef __ARCH_WANT_SYS_GETPGRP
1178 
1179 SYSCALL_DEFINE0(getpgrp)
1180 {
1181 	return do_getpgid(0);
1182 }
1183 
1184 #endif
1185 
1186 SYSCALL_DEFINE1(getsid, pid_t, pid)
1187 {
1188 	struct task_struct *p;
1189 	struct pid *sid;
1190 	int retval;
1191 
1192 	rcu_read_lock();
1193 	if (!pid)
1194 		sid = task_session(current);
1195 	else {
1196 		retval = -ESRCH;
1197 		p = find_task_by_vpid(pid);
1198 		if (!p)
1199 			goto out;
1200 		sid = task_session(p);
1201 		if (!sid)
1202 			goto out;
1203 
1204 		retval = security_task_getsid(p);
1205 		if (retval)
1206 			goto out;
1207 	}
1208 	retval = pid_vnr(sid);
1209 out:
1210 	rcu_read_unlock();
1211 	return retval;
1212 }
1213 
1214 static void set_special_pids(struct pid *pid)
1215 {
1216 	struct task_struct *curr = current->group_leader;
1217 
1218 	if (task_session(curr) != pid)
1219 		change_pid(curr, PIDTYPE_SID, pid);
1220 
1221 	if (task_pgrp(curr) != pid)
1222 		change_pid(curr, PIDTYPE_PGID, pid);
1223 }
1224 
1225 int ksys_setsid(void)
1226 {
1227 	struct task_struct *group_leader = current->group_leader;
1228 	struct pid *sid = task_pid(group_leader);
1229 	pid_t session = pid_vnr(sid);
1230 	int err = -EPERM;
1231 
1232 	write_lock_irq(&tasklist_lock);
1233 	/* Fail if I am already a session leader */
1234 	if (group_leader->signal->leader)
1235 		goto out;
1236 
1237 	/* Fail if a process group id already exists that equals the
1238 	 * proposed session id.
1239 	 */
1240 	if (pid_task(sid, PIDTYPE_PGID))
1241 		goto out;
1242 
1243 	group_leader->signal->leader = 1;
1244 	set_special_pids(sid);
1245 
1246 	proc_clear_tty(group_leader);
1247 
1248 	err = session;
1249 out:
1250 	write_unlock_irq(&tasklist_lock);
1251 	if (err > 0) {
1252 		proc_sid_connector(group_leader);
1253 		sched_autogroup_create_attach(group_leader);
1254 	}
1255 	return err;
1256 }
1257 
1258 SYSCALL_DEFINE0(setsid)
1259 {
1260 	return ksys_setsid();
1261 }
1262 
1263 DECLARE_RWSEM(uts_sem);
1264 
1265 #ifdef COMPAT_UTS_MACHINE
1266 #define override_architecture(name) \
1267 	(personality(current->personality) == PER_LINUX32 && \
1268 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1269 		      sizeof(COMPAT_UTS_MACHINE)))
1270 #else
1271 #define override_architecture(name)	0
1272 #endif
1273 
1274 /*
1275  * Work around broken programs that cannot handle "Linux 3.0".
1276  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1277  * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1278  * 2.6.60.
1279  */
1280 static int override_release(char __user *release, size_t len)
1281 {
1282 	int ret = 0;
1283 
1284 	if (current->personality & UNAME26) {
1285 		const char *rest = UTS_RELEASE;
1286 		char buf[65] = { 0 };
1287 		int ndots = 0;
1288 		unsigned v;
1289 		size_t copy;
1290 
1291 		while (*rest) {
1292 			if (*rest == '.' && ++ndots >= 3)
1293 				break;
1294 			if (!isdigit(*rest) && *rest != '.')
1295 				break;
1296 			rest++;
1297 		}
1298 		v = LINUX_VERSION_PATCHLEVEL + 60;
1299 		copy = clamp_t(size_t, len, 1, sizeof(buf));
1300 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1301 		ret = copy_to_user(release, buf, copy + 1);
1302 	}
1303 	return ret;
1304 }
1305 
1306 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1307 {
1308 	struct new_utsname tmp;
1309 
1310 	down_read(&uts_sem);
1311 	memcpy(&tmp, utsname(), sizeof(tmp));
1312 	up_read(&uts_sem);
1313 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1314 		return -EFAULT;
1315 
1316 	if (override_release(name->release, sizeof(name->release)))
1317 		return -EFAULT;
1318 	if (override_architecture(name))
1319 		return -EFAULT;
1320 	return 0;
1321 }
1322 
1323 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1324 /*
1325  * Old cruft
1326  */
1327 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1328 {
1329 	struct old_utsname tmp;
1330 
1331 	if (!name)
1332 		return -EFAULT;
1333 
1334 	down_read(&uts_sem);
1335 	memcpy(&tmp, utsname(), sizeof(tmp));
1336 	up_read(&uts_sem);
1337 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1338 		return -EFAULT;
1339 
1340 	if (override_release(name->release, sizeof(name->release)))
1341 		return -EFAULT;
1342 	if (override_architecture(name))
1343 		return -EFAULT;
1344 	return 0;
1345 }
1346 
1347 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1348 {
1349 	struct oldold_utsname tmp;
1350 
1351 	if (!name)
1352 		return -EFAULT;
1353 
1354 	memset(&tmp, 0, sizeof(tmp));
1355 
1356 	down_read(&uts_sem);
1357 	memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1358 	memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1359 	memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1360 	memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1361 	memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1362 	up_read(&uts_sem);
1363 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1364 		return -EFAULT;
1365 
1366 	if (override_architecture(name))
1367 		return -EFAULT;
1368 	if (override_release(name->release, sizeof(name->release)))
1369 		return -EFAULT;
1370 	return 0;
1371 }
1372 #endif
1373 
1374 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1375 {
1376 	int errno;
1377 	char tmp[__NEW_UTS_LEN];
1378 
1379 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1380 		return -EPERM;
1381 
1382 	if (len < 0 || len > __NEW_UTS_LEN)
1383 		return -EINVAL;
1384 	errno = -EFAULT;
1385 	if (!copy_from_user(tmp, name, len)) {
1386 		struct new_utsname *u;
1387 
1388 		add_device_randomness(tmp, len);
1389 		down_write(&uts_sem);
1390 		u = utsname();
1391 		memcpy(u->nodename, tmp, len);
1392 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1393 		errno = 0;
1394 		uts_proc_notify(UTS_PROC_HOSTNAME);
1395 		up_write(&uts_sem);
1396 	}
1397 	return errno;
1398 }
1399 
1400 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1401 
1402 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1403 {
1404 	int i;
1405 	struct new_utsname *u;
1406 	char tmp[__NEW_UTS_LEN + 1];
1407 
1408 	if (len < 0)
1409 		return -EINVAL;
1410 	down_read(&uts_sem);
1411 	u = utsname();
1412 	i = 1 + strlen(u->nodename);
1413 	if (i > len)
1414 		i = len;
1415 	memcpy(tmp, u->nodename, i);
1416 	up_read(&uts_sem);
1417 	if (copy_to_user(name, tmp, i))
1418 		return -EFAULT;
1419 	return 0;
1420 }
1421 
1422 #endif
1423 
1424 /*
1425  * Only setdomainname; getdomainname can be implemented by calling
1426  * uname()
1427  */
1428 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1429 {
1430 	int errno;
1431 	char tmp[__NEW_UTS_LEN];
1432 
1433 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1434 		return -EPERM;
1435 	if (len < 0 || len > __NEW_UTS_LEN)
1436 		return -EINVAL;
1437 
1438 	errno = -EFAULT;
1439 	if (!copy_from_user(tmp, name, len)) {
1440 		struct new_utsname *u;
1441 
1442 		add_device_randomness(tmp, len);
1443 		down_write(&uts_sem);
1444 		u = utsname();
1445 		memcpy(u->domainname, tmp, len);
1446 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1447 		errno = 0;
1448 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1449 		up_write(&uts_sem);
1450 	}
1451 	return errno;
1452 }
1453 
1454 /* make sure you are allowed to change @tsk limits before calling this */
1455 static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1456 		      struct rlimit *new_rlim, struct rlimit *old_rlim)
1457 {
1458 	struct rlimit *rlim;
1459 	int retval = 0;
1460 
1461 	if (resource >= RLIM_NLIMITS)
1462 		return -EINVAL;
1463 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1464 
1465 	if (new_rlim) {
1466 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1467 			return -EINVAL;
1468 		if (resource == RLIMIT_NOFILE &&
1469 				new_rlim->rlim_max > sysctl_nr_open)
1470 			return -EPERM;
1471 	}
1472 
1473 	/* Holding a refcount on tsk protects tsk->signal from disappearing. */
1474 	rlim = tsk->signal->rlim + resource;
1475 	task_lock(tsk->group_leader);
1476 	if (new_rlim) {
1477 		/*
1478 		 * Keep the capable check against init_user_ns until cgroups can
1479 		 * contain all limits.
1480 		 */
1481 		if (new_rlim->rlim_max > rlim->rlim_max &&
1482 				!capable(CAP_SYS_RESOURCE))
1483 			retval = -EPERM;
1484 		if (!retval)
1485 			retval = security_task_setrlimit(tsk, resource, new_rlim);
1486 	}
1487 	if (!retval) {
1488 		if (old_rlim)
1489 			*old_rlim = *rlim;
1490 		if (new_rlim)
1491 			*rlim = *new_rlim;
1492 	}
1493 	task_unlock(tsk->group_leader);
1494 
1495 	/*
1496 	 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1497 	 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1498 	 * ignores the rlimit.
1499 	 */
1500 	if (!retval && new_rlim && resource == RLIMIT_CPU &&
1501 	    new_rlim->rlim_cur != RLIM_INFINITY &&
1502 	    IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1503 		/*
1504 		 * update_rlimit_cpu can fail if the task is exiting, but there
1505 		 * may be other tasks in the thread group that are not exiting,
1506 		 * and they need their cpu timers adjusted.
1507 		 *
1508 		 * The group_leader is the last task to be released, so if we
1509 		 * cannot update_rlimit_cpu on it, then the entire process is
1510 		 * exiting and we do not need to update at all.
1511 		 */
1512 		update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1513 	}
1514 
1515 	return retval;
1516 }
1517 
1518 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1519 {
1520 	struct rlimit value;
1521 	int ret;
1522 
1523 	ret = do_prlimit(current, resource, NULL, &value);
1524 	if (!ret)
1525 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1526 
1527 	return ret;
1528 }
1529 
1530 #ifdef CONFIG_COMPAT
1531 
1532 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1533 		       struct compat_rlimit __user *, rlim)
1534 {
1535 	struct rlimit r;
1536 	struct compat_rlimit r32;
1537 
1538 	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1539 		return -EFAULT;
1540 
1541 	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1542 		r.rlim_cur = RLIM_INFINITY;
1543 	else
1544 		r.rlim_cur = r32.rlim_cur;
1545 	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1546 		r.rlim_max = RLIM_INFINITY;
1547 	else
1548 		r.rlim_max = r32.rlim_max;
1549 	return do_prlimit(current, resource, &r, NULL);
1550 }
1551 
1552 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1553 		       struct compat_rlimit __user *, rlim)
1554 {
1555 	struct rlimit r;
1556 	int ret;
1557 
1558 	ret = do_prlimit(current, resource, NULL, &r);
1559 	if (!ret) {
1560 		struct compat_rlimit r32;
1561 		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1562 			r32.rlim_cur = COMPAT_RLIM_INFINITY;
1563 		else
1564 			r32.rlim_cur = r.rlim_cur;
1565 		if (r.rlim_max > COMPAT_RLIM_INFINITY)
1566 			r32.rlim_max = COMPAT_RLIM_INFINITY;
1567 		else
1568 			r32.rlim_max = r.rlim_max;
1569 
1570 		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1571 			return -EFAULT;
1572 	}
1573 	return ret;
1574 }
1575 
1576 #endif
1577 
1578 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1579 
1580 /*
1581  *	Back compatibility for getrlimit. Needed for some apps.
1582  */
1583 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1584 		struct rlimit __user *, rlim)
1585 {
1586 	struct rlimit x;
1587 	if (resource >= RLIM_NLIMITS)
1588 		return -EINVAL;
1589 
1590 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1591 	task_lock(current->group_leader);
1592 	x = current->signal->rlim[resource];
1593 	task_unlock(current->group_leader);
1594 	if (x.rlim_cur > 0x7FFFFFFF)
1595 		x.rlim_cur = 0x7FFFFFFF;
1596 	if (x.rlim_max > 0x7FFFFFFF)
1597 		x.rlim_max = 0x7FFFFFFF;
1598 	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1599 }
1600 
1601 #ifdef CONFIG_COMPAT
1602 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1603 		       struct compat_rlimit __user *, rlim)
1604 {
1605 	struct rlimit r;
1606 
1607 	if (resource >= RLIM_NLIMITS)
1608 		return -EINVAL;
1609 
1610 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1611 	task_lock(current->group_leader);
1612 	r = current->signal->rlim[resource];
1613 	task_unlock(current->group_leader);
1614 	if (r.rlim_cur > 0x7FFFFFFF)
1615 		r.rlim_cur = 0x7FFFFFFF;
1616 	if (r.rlim_max > 0x7FFFFFFF)
1617 		r.rlim_max = 0x7FFFFFFF;
1618 
1619 	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1620 	    put_user(r.rlim_max, &rlim->rlim_max))
1621 		return -EFAULT;
1622 	return 0;
1623 }
1624 #endif
1625 
1626 #endif
1627 
1628 static inline bool rlim64_is_infinity(__u64 rlim64)
1629 {
1630 #if BITS_PER_LONG < 64
1631 	return rlim64 >= ULONG_MAX;
1632 #else
1633 	return rlim64 == RLIM64_INFINITY;
1634 #endif
1635 }
1636 
1637 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1638 {
1639 	if (rlim->rlim_cur == RLIM_INFINITY)
1640 		rlim64->rlim_cur = RLIM64_INFINITY;
1641 	else
1642 		rlim64->rlim_cur = rlim->rlim_cur;
1643 	if (rlim->rlim_max == RLIM_INFINITY)
1644 		rlim64->rlim_max = RLIM64_INFINITY;
1645 	else
1646 		rlim64->rlim_max = rlim->rlim_max;
1647 }
1648 
1649 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1650 {
1651 	if (rlim64_is_infinity(rlim64->rlim_cur))
1652 		rlim->rlim_cur = RLIM_INFINITY;
1653 	else
1654 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1655 	if (rlim64_is_infinity(rlim64->rlim_max))
1656 		rlim->rlim_max = RLIM_INFINITY;
1657 	else
1658 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1659 }
1660 
1661 /* rcu lock must be held */
1662 static int check_prlimit_permission(struct task_struct *task,
1663 				    unsigned int flags)
1664 {
1665 	const struct cred *cred = current_cred(), *tcred;
1666 	bool id_match;
1667 
1668 	if (current == task)
1669 		return 0;
1670 
1671 	tcred = __task_cred(task);
1672 	id_match = (uid_eq(cred->uid, tcred->euid) &&
1673 		    uid_eq(cred->uid, tcred->suid) &&
1674 		    uid_eq(cred->uid, tcred->uid)  &&
1675 		    gid_eq(cred->gid, tcred->egid) &&
1676 		    gid_eq(cred->gid, tcred->sgid) &&
1677 		    gid_eq(cred->gid, tcred->gid));
1678 	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1679 		return -EPERM;
1680 
1681 	return security_task_prlimit(cred, tcred, flags);
1682 }
1683 
1684 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1685 		const struct rlimit64 __user *, new_rlim,
1686 		struct rlimit64 __user *, old_rlim)
1687 {
1688 	struct rlimit64 old64, new64;
1689 	struct rlimit old, new;
1690 	struct task_struct *tsk;
1691 	unsigned int checkflags = 0;
1692 	int ret;
1693 
1694 	if (old_rlim)
1695 		checkflags |= LSM_PRLIMIT_READ;
1696 
1697 	if (new_rlim) {
1698 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1699 			return -EFAULT;
1700 		rlim64_to_rlim(&new64, &new);
1701 		checkflags |= LSM_PRLIMIT_WRITE;
1702 	}
1703 
1704 	rcu_read_lock();
1705 	tsk = pid ? find_task_by_vpid(pid) : current;
1706 	if (!tsk) {
1707 		rcu_read_unlock();
1708 		return -ESRCH;
1709 	}
1710 	ret = check_prlimit_permission(tsk, checkflags);
1711 	if (ret) {
1712 		rcu_read_unlock();
1713 		return ret;
1714 	}
1715 	get_task_struct(tsk);
1716 	rcu_read_unlock();
1717 
1718 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1719 			old_rlim ? &old : NULL);
1720 
1721 	if (!ret && old_rlim) {
1722 		rlim_to_rlim64(&old, &old64);
1723 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1724 			ret = -EFAULT;
1725 	}
1726 
1727 	put_task_struct(tsk);
1728 	return ret;
1729 }
1730 
1731 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1732 {
1733 	struct rlimit new_rlim;
1734 
1735 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1736 		return -EFAULT;
1737 	return do_prlimit(current, resource, &new_rlim, NULL);
1738 }
1739 
1740 /*
1741  * It would make sense to put struct rusage in the task_struct,
1742  * except that would make the task_struct be *really big*.  After
1743  * task_struct gets moved into malloc'ed memory, it would
1744  * make sense to do this.  It will make moving the rest of the information
1745  * a lot simpler!  (Which we're not doing right now because we're not
1746  * measuring them yet).
1747  *
1748  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1749  * races with threads incrementing their own counters.  But since word
1750  * reads are atomic, we either get new values or old values and we don't
1751  * care which for the sums.  We always take the siglock to protect reading
1752  * the c* fields from p->signal from races with exit.c updating those
1753  * fields when reaping, so a sample either gets all the additions of a
1754  * given child after it's reaped, or none so this sample is before reaping.
1755  *
1756  * Locking:
1757  * We need to take the siglock for CHILDEREN, SELF and BOTH
1758  * for  the cases current multithreaded, non-current single threaded
1759  * non-current multithreaded.  Thread traversal is now safe with
1760  * the siglock held.
1761  * Strictly speaking, we donot need to take the siglock if we are current and
1762  * single threaded,  as no one else can take our signal_struct away, no one
1763  * else can  reap the  children to update signal->c* counters, and no one else
1764  * can race with the signal-> fields. If we do not take any lock, the
1765  * signal-> fields could be read out of order while another thread was just
1766  * exiting. So we should  place a read memory barrier when we avoid the lock.
1767  * On the writer side,  write memory barrier is implied in  __exit_signal
1768  * as __exit_signal releases  the siglock spinlock after updating the signal->
1769  * fields. But we don't do this yet to keep things simple.
1770  *
1771  */
1772 
1773 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1774 {
1775 	r->ru_nvcsw += t->nvcsw;
1776 	r->ru_nivcsw += t->nivcsw;
1777 	r->ru_minflt += t->min_flt;
1778 	r->ru_majflt += t->maj_flt;
1779 	r->ru_inblock += task_io_get_inblock(t);
1780 	r->ru_oublock += task_io_get_oublock(t);
1781 }
1782 
1783 void getrusage(struct task_struct *p, int who, struct rusage *r)
1784 {
1785 	struct task_struct *t;
1786 	unsigned long flags;
1787 	u64 tgutime, tgstime, utime, stime;
1788 	unsigned long maxrss;
1789 	struct mm_struct *mm;
1790 	struct signal_struct *sig = p->signal;
1791 
1792 	memset(r, 0, sizeof(*r));
1793 	utime = stime = 0;
1794 	maxrss = 0;
1795 
1796 	if (who == RUSAGE_THREAD) {
1797 		task_cputime_adjusted(current, &utime, &stime);
1798 		accumulate_thread_rusage(p, r);
1799 		maxrss = sig->maxrss;
1800 		goto out_thread;
1801 	}
1802 
1803 	if (!lock_task_sighand(p, &flags))
1804 		return;
1805 
1806 	switch (who) {
1807 	case RUSAGE_BOTH:
1808 	case RUSAGE_CHILDREN:
1809 		utime = sig->cutime;
1810 		stime = sig->cstime;
1811 		r->ru_nvcsw = sig->cnvcsw;
1812 		r->ru_nivcsw = sig->cnivcsw;
1813 		r->ru_minflt = sig->cmin_flt;
1814 		r->ru_majflt = sig->cmaj_flt;
1815 		r->ru_inblock = sig->cinblock;
1816 		r->ru_oublock = sig->coublock;
1817 		maxrss = sig->cmaxrss;
1818 
1819 		if (who == RUSAGE_CHILDREN)
1820 			break;
1821 		fallthrough;
1822 
1823 	case RUSAGE_SELF:
1824 		r->ru_nvcsw += sig->nvcsw;
1825 		r->ru_nivcsw += sig->nivcsw;
1826 		r->ru_minflt += sig->min_flt;
1827 		r->ru_majflt += sig->maj_flt;
1828 		r->ru_inblock += sig->inblock;
1829 		r->ru_oublock += sig->oublock;
1830 		if (maxrss < sig->maxrss)
1831 			maxrss = sig->maxrss;
1832 		__for_each_thread(sig, t)
1833 			accumulate_thread_rusage(t, r);
1834 		break;
1835 
1836 	default:
1837 		BUG();
1838 	}
1839 	unlock_task_sighand(p, &flags);
1840 
1841 	if (who == RUSAGE_CHILDREN)
1842 		goto out_children;
1843 
1844 	thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1845 	utime += tgutime;
1846 	stime += tgstime;
1847 
1848 out_thread:
1849 	mm = get_task_mm(p);
1850 	if (mm) {
1851 		setmax_mm_hiwater_rss(&maxrss, mm);
1852 		mmput(mm);
1853 	}
1854 
1855 out_children:
1856 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1857 	r->ru_utime = ns_to_kernel_old_timeval(utime);
1858 	r->ru_stime = ns_to_kernel_old_timeval(stime);
1859 }
1860 
1861 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1862 {
1863 	struct rusage r;
1864 
1865 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1866 	    who != RUSAGE_THREAD)
1867 		return -EINVAL;
1868 
1869 	getrusage(current, who, &r);
1870 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1871 }
1872 
1873 #ifdef CONFIG_COMPAT
1874 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1875 {
1876 	struct rusage r;
1877 
1878 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1879 	    who != RUSAGE_THREAD)
1880 		return -EINVAL;
1881 
1882 	getrusage(current, who, &r);
1883 	return put_compat_rusage(&r, ru);
1884 }
1885 #endif
1886 
1887 SYSCALL_DEFINE1(umask, int, mask)
1888 {
1889 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1890 	return mask;
1891 }
1892 
1893 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1894 {
1895 	struct fd exe;
1896 	struct inode *inode;
1897 	int err;
1898 
1899 	exe = fdget(fd);
1900 	if (!exe.file)
1901 		return -EBADF;
1902 
1903 	inode = file_inode(exe.file);
1904 
1905 	/*
1906 	 * Because the original mm->exe_file points to executable file, make
1907 	 * sure that this one is executable as well, to avoid breaking an
1908 	 * overall picture.
1909 	 */
1910 	err = -EACCES;
1911 	if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1912 		goto exit;
1913 
1914 	err = file_permission(exe.file, MAY_EXEC);
1915 	if (err)
1916 		goto exit;
1917 
1918 	err = replace_mm_exe_file(mm, exe.file);
1919 exit:
1920 	fdput(exe);
1921 	return err;
1922 }
1923 
1924 /*
1925  * Check arithmetic relations of passed addresses.
1926  *
1927  * WARNING: we don't require any capability here so be very careful
1928  * in what is allowed for modification from userspace.
1929  */
1930 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1931 {
1932 	unsigned long mmap_max_addr = TASK_SIZE;
1933 	int error = -EINVAL, i;
1934 
1935 	static const unsigned char offsets[] = {
1936 		offsetof(struct prctl_mm_map, start_code),
1937 		offsetof(struct prctl_mm_map, end_code),
1938 		offsetof(struct prctl_mm_map, start_data),
1939 		offsetof(struct prctl_mm_map, end_data),
1940 		offsetof(struct prctl_mm_map, start_brk),
1941 		offsetof(struct prctl_mm_map, brk),
1942 		offsetof(struct prctl_mm_map, start_stack),
1943 		offsetof(struct prctl_mm_map, arg_start),
1944 		offsetof(struct prctl_mm_map, arg_end),
1945 		offsetof(struct prctl_mm_map, env_start),
1946 		offsetof(struct prctl_mm_map, env_end),
1947 	};
1948 
1949 	/*
1950 	 * Make sure the members are not somewhere outside
1951 	 * of allowed address space.
1952 	 */
1953 	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1954 		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1955 
1956 		if ((unsigned long)val >= mmap_max_addr ||
1957 		    (unsigned long)val < mmap_min_addr)
1958 			goto out;
1959 	}
1960 
1961 	/*
1962 	 * Make sure the pairs are ordered.
1963 	 */
1964 #define __prctl_check_order(__m1, __op, __m2)				\
1965 	((unsigned long)prctl_map->__m1 __op				\
1966 	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1967 	error  = __prctl_check_order(start_code, <, end_code);
1968 	error |= __prctl_check_order(start_data,<=, end_data);
1969 	error |= __prctl_check_order(start_brk, <=, brk);
1970 	error |= __prctl_check_order(arg_start, <=, arg_end);
1971 	error |= __prctl_check_order(env_start, <=, env_end);
1972 	if (error)
1973 		goto out;
1974 #undef __prctl_check_order
1975 
1976 	error = -EINVAL;
1977 
1978 	/*
1979 	 * Neither we should allow to override limits if they set.
1980 	 */
1981 	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1982 			      prctl_map->start_brk, prctl_map->end_data,
1983 			      prctl_map->start_data))
1984 			goto out;
1985 
1986 	error = 0;
1987 out:
1988 	return error;
1989 }
1990 
1991 #ifdef CONFIG_CHECKPOINT_RESTORE
1992 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1993 {
1994 	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1995 	unsigned long user_auxv[AT_VECTOR_SIZE];
1996 	struct mm_struct *mm = current->mm;
1997 	int error;
1998 
1999 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2000 	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
2001 
2002 	if (opt == PR_SET_MM_MAP_SIZE)
2003 		return put_user((unsigned int)sizeof(prctl_map),
2004 				(unsigned int __user *)addr);
2005 
2006 	if (data_size != sizeof(prctl_map))
2007 		return -EINVAL;
2008 
2009 	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2010 		return -EFAULT;
2011 
2012 	error = validate_prctl_map_addr(&prctl_map);
2013 	if (error)
2014 		return error;
2015 
2016 	if (prctl_map.auxv_size) {
2017 		/*
2018 		 * Someone is trying to cheat the auxv vector.
2019 		 */
2020 		if (!prctl_map.auxv ||
2021 				prctl_map.auxv_size > sizeof(mm->saved_auxv))
2022 			return -EINVAL;
2023 
2024 		memset(user_auxv, 0, sizeof(user_auxv));
2025 		if (copy_from_user(user_auxv,
2026 				   (const void __user *)prctl_map.auxv,
2027 				   prctl_map.auxv_size))
2028 			return -EFAULT;
2029 
2030 		/* Last entry must be AT_NULL as specification requires */
2031 		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2032 		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2033 	}
2034 
2035 	if (prctl_map.exe_fd != (u32)-1) {
2036 		/*
2037 		 * Check if the current user is checkpoint/restore capable.
2038 		 * At the time of this writing, it checks for CAP_SYS_ADMIN
2039 		 * or CAP_CHECKPOINT_RESTORE.
2040 		 * Note that a user with access to ptrace can masquerade an
2041 		 * arbitrary program as any executable, even setuid ones.
2042 		 * This may have implications in the tomoyo subsystem.
2043 		 */
2044 		if (!checkpoint_restore_ns_capable(current_user_ns()))
2045 			return -EPERM;
2046 
2047 		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2048 		if (error)
2049 			return error;
2050 	}
2051 
2052 	/*
2053 	 * arg_lock protects concurrent updates but we still need mmap_lock for
2054 	 * read to exclude races with sys_brk.
2055 	 */
2056 	mmap_read_lock(mm);
2057 
2058 	/*
2059 	 * We don't validate if these members are pointing to
2060 	 * real present VMAs because application may have correspond
2061 	 * VMAs already unmapped and kernel uses these members for statistics
2062 	 * output in procfs mostly, except
2063 	 *
2064 	 *  - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2065 	 *    for VMAs when updating these members so anything wrong written
2066 	 *    here cause kernel to swear at userspace program but won't lead
2067 	 *    to any problem in kernel itself
2068 	 */
2069 
2070 	spin_lock(&mm->arg_lock);
2071 	mm->start_code	= prctl_map.start_code;
2072 	mm->end_code	= prctl_map.end_code;
2073 	mm->start_data	= prctl_map.start_data;
2074 	mm->end_data	= prctl_map.end_data;
2075 	mm->start_brk	= prctl_map.start_brk;
2076 	mm->brk		= prctl_map.brk;
2077 	mm->start_stack	= prctl_map.start_stack;
2078 	mm->arg_start	= prctl_map.arg_start;
2079 	mm->arg_end	= prctl_map.arg_end;
2080 	mm->env_start	= prctl_map.env_start;
2081 	mm->env_end	= prctl_map.env_end;
2082 	spin_unlock(&mm->arg_lock);
2083 
2084 	/*
2085 	 * Note this update of @saved_auxv is lockless thus
2086 	 * if someone reads this member in procfs while we're
2087 	 * updating -- it may get partly updated results. It's
2088 	 * known and acceptable trade off: we leave it as is to
2089 	 * not introduce additional locks here making the kernel
2090 	 * more complex.
2091 	 */
2092 	if (prctl_map.auxv_size)
2093 		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2094 
2095 	mmap_read_unlock(mm);
2096 	return 0;
2097 }
2098 #endif /* CONFIG_CHECKPOINT_RESTORE */
2099 
2100 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2101 			  unsigned long len)
2102 {
2103 	/*
2104 	 * This doesn't move the auxiliary vector itself since it's pinned to
2105 	 * mm_struct, but it permits filling the vector with new values.  It's
2106 	 * up to the caller to provide sane values here, otherwise userspace
2107 	 * tools which use this vector might be unhappy.
2108 	 */
2109 	unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2110 
2111 	if (len > sizeof(user_auxv))
2112 		return -EINVAL;
2113 
2114 	if (copy_from_user(user_auxv, (const void __user *)addr, len))
2115 		return -EFAULT;
2116 
2117 	/* Make sure the last entry is always AT_NULL */
2118 	user_auxv[AT_VECTOR_SIZE - 2] = 0;
2119 	user_auxv[AT_VECTOR_SIZE - 1] = 0;
2120 
2121 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2122 
2123 	task_lock(current);
2124 	memcpy(mm->saved_auxv, user_auxv, len);
2125 	task_unlock(current);
2126 
2127 	return 0;
2128 }
2129 
2130 static int prctl_set_mm(int opt, unsigned long addr,
2131 			unsigned long arg4, unsigned long arg5)
2132 {
2133 	struct mm_struct *mm = current->mm;
2134 	struct prctl_mm_map prctl_map = {
2135 		.auxv = NULL,
2136 		.auxv_size = 0,
2137 		.exe_fd = -1,
2138 	};
2139 	struct vm_area_struct *vma;
2140 	int error;
2141 
2142 	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2143 			      opt != PR_SET_MM_MAP &&
2144 			      opt != PR_SET_MM_MAP_SIZE)))
2145 		return -EINVAL;
2146 
2147 #ifdef CONFIG_CHECKPOINT_RESTORE
2148 	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2149 		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2150 #endif
2151 
2152 	if (!capable(CAP_SYS_RESOURCE))
2153 		return -EPERM;
2154 
2155 	if (opt == PR_SET_MM_EXE_FILE)
2156 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2157 
2158 	if (opt == PR_SET_MM_AUXV)
2159 		return prctl_set_auxv(mm, addr, arg4);
2160 
2161 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
2162 		return -EINVAL;
2163 
2164 	error = -EINVAL;
2165 
2166 	/*
2167 	 * arg_lock protects concurrent updates of arg boundaries, we need
2168 	 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2169 	 * validation.
2170 	 */
2171 	mmap_read_lock(mm);
2172 	vma = find_vma(mm, addr);
2173 
2174 	spin_lock(&mm->arg_lock);
2175 	prctl_map.start_code	= mm->start_code;
2176 	prctl_map.end_code	= mm->end_code;
2177 	prctl_map.start_data	= mm->start_data;
2178 	prctl_map.end_data	= mm->end_data;
2179 	prctl_map.start_brk	= mm->start_brk;
2180 	prctl_map.brk		= mm->brk;
2181 	prctl_map.start_stack	= mm->start_stack;
2182 	prctl_map.arg_start	= mm->arg_start;
2183 	prctl_map.arg_end	= mm->arg_end;
2184 	prctl_map.env_start	= mm->env_start;
2185 	prctl_map.env_end	= mm->env_end;
2186 
2187 	switch (opt) {
2188 	case PR_SET_MM_START_CODE:
2189 		prctl_map.start_code = addr;
2190 		break;
2191 	case PR_SET_MM_END_CODE:
2192 		prctl_map.end_code = addr;
2193 		break;
2194 	case PR_SET_MM_START_DATA:
2195 		prctl_map.start_data = addr;
2196 		break;
2197 	case PR_SET_MM_END_DATA:
2198 		prctl_map.end_data = addr;
2199 		break;
2200 	case PR_SET_MM_START_STACK:
2201 		prctl_map.start_stack = addr;
2202 		break;
2203 	case PR_SET_MM_START_BRK:
2204 		prctl_map.start_brk = addr;
2205 		break;
2206 	case PR_SET_MM_BRK:
2207 		prctl_map.brk = addr;
2208 		break;
2209 	case PR_SET_MM_ARG_START:
2210 		prctl_map.arg_start = addr;
2211 		break;
2212 	case PR_SET_MM_ARG_END:
2213 		prctl_map.arg_end = addr;
2214 		break;
2215 	case PR_SET_MM_ENV_START:
2216 		prctl_map.env_start = addr;
2217 		break;
2218 	case PR_SET_MM_ENV_END:
2219 		prctl_map.env_end = addr;
2220 		break;
2221 	default:
2222 		goto out;
2223 	}
2224 
2225 	error = validate_prctl_map_addr(&prctl_map);
2226 	if (error)
2227 		goto out;
2228 
2229 	switch (opt) {
2230 	/*
2231 	 * If command line arguments and environment
2232 	 * are placed somewhere else on stack, we can
2233 	 * set them up here, ARG_START/END to setup
2234 	 * command line arguments and ENV_START/END
2235 	 * for environment.
2236 	 */
2237 	case PR_SET_MM_START_STACK:
2238 	case PR_SET_MM_ARG_START:
2239 	case PR_SET_MM_ARG_END:
2240 	case PR_SET_MM_ENV_START:
2241 	case PR_SET_MM_ENV_END:
2242 		if (!vma) {
2243 			error = -EFAULT;
2244 			goto out;
2245 		}
2246 	}
2247 
2248 	mm->start_code	= prctl_map.start_code;
2249 	mm->end_code	= prctl_map.end_code;
2250 	mm->start_data	= prctl_map.start_data;
2251 	mm->end_data	= prctl_map.end_data;
2252 	mm->start_brk	= prctl_map.start_brk;
2253 	mm->brk		= prctl_map.brk;
2254 	mm->start_stack	= prctl_map.start_stack;
2255 	mm->arg_start	= prctl_map.arg_start;
2256 	mm->arg_end	= prctl_map.arg_end;
2257 	mm->env_start	= prctl_map.env_start;
2258 	mm->env_end	= prctl_map.env_end;
2259 
2260 	error = 0;
2261 out:
2262 	spin_unlock(&mm->arg_lock);
2263 	mmap_read_unlock(mm);
2264 	return error;
2265 }
2266 
2267 #ifdef CONFIG_CHECKPOINT_RESTORE
2268 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2269 {
2270 	return put_user(me->clear_child_tid, tid_addr);
2271 }
2272 #else
2273 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2274 {
2275 	return -EINVAL;
2276 }
2277 #endif
2278 
2279 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2280 {
2281 	/*
2282 	 * If task has has_child_subreaper - all its descendants
2283 	 * already have these flag too and new descendants will
2284 	 * inherit it on fork, skip them.
2285 	 *
2286 	 * If we've found child_reaper - skip descendants in
2287 	 * it's subtree as they will never get out pidns.
2288 	 */
2289 	if (p->signal->has_child_subreaper ||
2290 	    is_child_reaper(task_pid(p)))
2291 		return 0;
2292 
2293 	p->signal->has_child_subreaper = 1;
2294 	return 1;
2295 }
2296 
2297 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2298 {
2299 	return -EINVAL;
2300 }
2301 
2302 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2303 				    unsigned long ctrl)
2304 {
2305 	return -EINVAL;
2306 }
2307 
2308 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2309 
2310 #ifdef CONFIG_ANON_VMA_NAME
2311 
2312 #define ANON_VMA_NAME_MAX_LEN		80
2313 #define ANON_VMA_NAME_INVALID_CHARS	"\\`$[]"
2314 
2315 static inline bool is_valid_name_char(char ch)
2316 {
2317 	/* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2318 	return ch > 0x1f && ch < 0x7f &&
2319 		!strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2320 }
2321 
2322 static int prctl_set_vma(unsigned long opt, unsigned long addr,
2323 			 unsigned long size, unsigned long arg)
2324 {
2325 	struct mm_struct *mm = current->mm;
2326 	const char __user *uname;
2327 	struct anon_vma_name *anon_name = NULL;
2328 	int error;
2329 
2330 	switch (opt) {
2331 	case PR_SET_VMA_ANON_NAME:
2332 		uname = (const char __user *)arg;
2333 		if (uname) {
2334 			char *name, *pch;
2335 
2336 			name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2337 			if (IS_ERR(name))
2338 				return PTR_ERR(name);
2339 
2340 			for (pch = name; *pch != '\0'; pch++) {
2341 				if (!is_valid_name_char(*pch)) {
2342 					kfree(name);
2343 					return -EINVAL;
2344 				}
2345 			}
2346 			/* anon_vma has its own copy */
2347 			anon_name = anon_vma_name_alloc(name);
2348 			kfree(name);
2349 			if (!anon_name)
2350 				return -ENOMEM;
2351 
2352 		}
2353 
2354 		mmap_write_lock(mm);
2355 		error = madvise_set_anon_name(mm, addr, size, anon_name);
2356 		mmap_write_unlock(mm);
2357 		anon_vma_name_put(anon_name);
2358 		break;
2359 	default:
2360 		error = -EINVAL;
2361 	}
2362 
2363 	return error;
2364 }
2365 
2366 #else /* CONFIG_ANON_VMA_NAME */
2367 static int prctl_set_vma(unsigned long opt, unsigned long start,
2368 			 unsigned long size, unsigned long arg)
2369 {
2370 	return -EINVAL;
2371 }
2372 #endif /* CONFIG_ANON_VMA_NAME */
2373 
2374 static inline unsigned long get_current_mdwe(void)
2375 {
2376 	unsigned long ret = 0;
2377 
2378 	if (test_bit(MMF_HAS_MDWE, &current->mm->flags))
2379 		ret |= PR_MDWE_REFUSE_EXEC_GAIN;
2380 	if (test_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags))
2381 		ret |= PR_MDWE_NO_INHERIT;
2382 
2383 	return ret;
2384 }
2385 
2386 static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3,
2387 				 unsigned long arg4, unsigned long arg5)
2388 {
2389 	unsigned long current_bits;
2390 
2391 	if (arg3 || arg4 || arg5)
2392 		return -EINVAL;
2393 
2394 	if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN | PR_MDWE_NO_INHERIT))
2395 		return -EINVAL;
2396 
2397 	/* NO_INHERIT only makes sense with REFUSE_EXEC_GAIN */
2398 	if (bits & PR_MDWE_NO_INHERIT && !(bits & PR_MDWE_REFUSE_EXEC_GAIN))
2399 		return -EINVAL;
2400 
2401 	/* PARISC cannot allow mdwe as it needs writable stacks */
2402 	if (IS_ENABLED(CONFIG_PARISC))
2403 		return -EINVAL;
2404 
2405 	current_bits = get_current_mdwe();
2406 	if (current_bits && current_bits != bits)
2407 		return -EPERM; /* Cannot unset the flags */
2408 
2409 	if (bits & PR_MDWE_NO_INHERIT)
2410 		set_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags);
2411 	if (bits & PR_MDWE_REFUSE_EXEC_GAIN)
2412 		set_bit(MMF_HAS_MDWE, &current->mm->flags);
2413 
2414 	return 0;
2415 }
2416 
2417 static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3,
2418 				 unsigned long arg4, unsigned long arg5)
2419 {
2420 	if (arg2 || arg3 || arg4 || arg5)
2421 		return -EINVAL;
2422 	return get_current_mdwe();
2423 }
2424 
2425 static int prctl_get_auxv(void __user *addr, unsigned long len)
2426 {
2427 	struct mm_struct *mm = current->mm;
2428 	unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len);
2429 
2430 	if (size && copy_to_user(addr, mm->saved_auxv, size))
2431 		return -EFAULT;
2432 	return sizeof(mm->saved_auxv);
2433 }
2434 
2435 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2436 		unsigned long, arg4, unsigned long, arg5)
2437 {
2438 	struct task_struct *me = current;
2439 	unsigned char comm[sizeof(me->comm)];
2440 	long error;
2441 
2442 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2443 	if (error != -ENOSYS)
2444 		return error;
2445 
2446 	error = 0;
2447 	switch (option) {
2448 	case PR_SET_PDEATHSIG:
2449 		if (!valid_signal(arg2)) {
2450 			error = -EINVAL;
2451 			break;
2452 		}
2453 		me->pdeath_signal = arg2;
2454 		break;
2455 	case PR_GET_PDEATHSIG:
2456 		error = put_user(me->pdeath_signal, (int __user *)arg2);
2457 		break;
2458 	case PR_GET_DUMPABLE:
2459 		error = get_dumpable(me->mm);
2460 		break;
2461 	case PR_SET_DUMPABLE:
2462 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2463 			error = -EINVAL;
2464 			break;
2465 		}
2466 		set_dumpable(me->mm, arg2);
2467 		break;
2468 
2469 	case PR_SET_UNALIGN:
2470 		error = SET_UNALIGN_CTL(me, arg2);
2471 		break;
2472 	case PR_GET_UNALIGN:
2473 		error = GET_UNALIGN_CTL(me, arg2);
2474 		break;
2475 	case PR_SET_FPEMU:
2476 		error = SET_FPEMU_CTL(me, arg2);
2477 		break;
2478 	case PR_GET_FPEMU:
2479 		error = GET_FPEMU_CTL(me, arg2);
2480 		break;
2481 	case PR_SET_FPEXC:
2482 		error = SET_FPEXC_CTL(me, arg2);
2483 		break;
2484 	case PR_GET_FPEXC:
2485 		error = GET_FPEXC_CTL(me, arg2);
2486 		break;
2487 	case PR_GET_TIMING:
2488 		error = PR_TIMING_STATISTICAL;
2489 		break;
2490 	case PR_SET_TIMING:
2491 		if (arg2 != PR_TIMING_STATISTICAL)
2492 			error = -EINVAL;
2493 		break;
2494 	case PR_SET_NAME:
2495 		comm[sizeof(me->comm) - 1] = 0;
2496 		if (strncpy_from_user(comm, (char __user *)arg2,
2497 				      sizeof(me->comm) - 1) < 0)
2498 			return -EFAULT;
2499 		set_task_comm(me, comm);
2500 		proc_comm_connector(me);
2501 		break;
2502 	case PR_GET_NAME:
2503 		get_task_comm(comm, me);
2504 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2505 			return -EFAULT;
2506 		break;
2507 	case PR_GET_ENDIAN:
2508 		error = GET_ENDIAN(me, arg2);
2509 		break;
2510 	case PR_SET_ENDIAN:
2511 		error = SET_ENDIAN(me, arg2);
2512 		break;
2513 	case PR_GET_SECCOMP:
2514 		error = prctl_get_seccomp();
2515 		break;
2516 	case PR_SET_SECCOMP:
2517 		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2518 		break;
2519 	case PR_GET_TSC:
2520 		error = GET_TSC_CTL(arg2);
2521 		break;
2522 	case PR_SET_TSC:
2523 		error = SET_TSC_CTL(arg2);
2524 		break;
2525 	case PR_TASK_PERF_EVENTS_DISABLE:
2526 		error = perf_event_task_disable();
2527 		break;
2528 	case PR_TASK_PERF_EVENTS_ENABLE:
2529 		error = perf_event_task_enable();
2530 		break;
2531 	case PR_GET_TIMERSLACK:
2532 		if (current->timer_slack_ns > ULONG_MAX)
2533 			error = ULONG_MAX;
2534 		else
2535 			error = current->timer_slack_ns;
2536 		break;
2537 	case PR_SET_TIMERSLACK:
2538 		if (arg2 <= 0)
2539 			current->timer_slack_ns =
2540 					current->default_timer_slack_ns;
2541 		else
2542 			current->timer_slack_ns = arg2;
2543 		break;
2544 	case PR_MCE_KILL:
2545 		if (arg4 | arg5)
2546 			return -EINVAL;
2547 		switch (arg2) {
2548 		case PR_MCE_KILL_CLEAR:
2549 			if (arg3 != 0)
2550 				return -EINVAL;
2551 			current->flags &= ~PF_MCE_PROCESS;
2552 			break;
2553 		case PR_MCE_KILL_SET:
2554 			current->flags |= PF_MCE_PROCESS;
2555 			if (arg3 == PR_MCE_KILL_EARLY)
2556 				current->flags |= PF_MCE_EARLY;
2557 			else if (arg3 == PR_MCE_KILL_LATE)
2558 				current->flags &= ~PF_MCE_EARLY;
2559 			else if (arg3 == PR_MCE_KILL_DEFAULT)
2560 				current->flags &=
2561 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2562 			else
2563 				return -EINVAL;
2564 			break;
2565 		default:
2566 			return -EINVAL;
2567 		}
2568 		break;
2569 	case PR_MCE_KILL_GET:
2570 		if (arg2 | arg3 | arg4 | arg5)
2571 			return -EINVAL;
2572 		if (current->flags & PF_MCE_PROCESS)
2573 			error = (current->flags & PF_MCE_EARLY) ?
2574 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2575 		else
2576 			error = PR_MCE_KILL_DEFAULT;
2577 		break;
2578 	case PR_SET_MM:
2579 		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2580 		break;
2581 	case PR_GET_TID_ADDRESS:
2582 		error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2583 		break;
2584 	case PR_SET_CHILD_SUBREAPER:
2585 		me->signal->is_child_subreaper = !!arg2;
2586 		if (!arg2)
2587 			break;
2588 
2589 		walk_process_tree(me, propagate_has_child_subreaper, NULL);
2590 		break;
2591 	case PR_GET_CHILD_SUBREAPER:
2592 		error = put_user(me->signal->is_child_subreaper,
2593 				 (int __user *)arg2);
2594 		break;
2595 	case PR_SET_NO_NEW_PRIVS:
2596 		if (arg2 != 1 || arg3 || arg4 || arg5)
2597 			return -EINVAL;
2598 
2599 		task_set_no_new_privs(current);
2600 		break;
2601 	case PR_GET_NO_NEW_PRIVS:
2602 		if (arg2 || arg3 || arg4 || arg5)
2603 			return -EINVAL;
2604 		return task_no_new_privs(current) ? 1 : 0;
2605 	case PR_GET_THP_DISABLE:
2606 		if (arg2 || arg3 || arg4 || arg5)
2607 			return -EINVAL;
2608 		error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2609 		break;
2610 	case PR_SET_THP_DISABLE:
2611 		if (arg3 || arg4 || arg5)
2612 			return -EINVAL;
2613 		if (mmap_write_lock_killable(me->mm))
2614 			return -EINTR;
2615 		if (arg2)
2616 			set_bit(MMF_DISABLE_THP, &me->mm->flags);
2617 		else
2618 			clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2619 		mmap_write_unlock(me->mm);
2620 		break;
2621 	case PR_MPX_ENABLE_MANAGEMENT:
2622 	case PR_MPX_DISABLE_MANAGEMENT:
2623 		/* No longer implemented: */
2624 		return -EINVAL;
2625 	case PR_SET_FP_MODE:
2626 		error = SET_FP_MODE(me, arg2);
2627 		break;
2628 	case PR_GET_FP_MODE:
2629 		error = GET_FP_MODE(me);
2630 		break;
2631 	case PR_SVE_SET_VL:
2632 		error = SVE_SET_VL(arg2);
2633 		break;
2634 	case PR_SVE_GET_VL:
2635 		error = SVE_GET_VL();
2636 		break;
2637 	case PR_SME_SET_VL:
2638 		error = SME_SET_VL(arg2);
2639 		break;
2640 	case PR_SME_GET_VL:
2641 		error = SME_GET_VL();
2642 		break;
2643 	case PR_GET_SPECULATION_CTRL:
2644 		if (arg3 || arg4 || arg5)
2645 			return -EINVAL;
2646 		error = arch_prctl_spec_ctrl_get(me, arg2);
2647 		break;
2648 	case PR_SET_SPECULATION_CTRL:
2649 		if (arg4 || arg5)
2650 			return -EINVAL;
2651 		error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2652 		break;
2653 	case PR_PAC_RESET_KEYS:
2654 		if (arg3 || arg4 || arg5)
2655 			return -EINVAL;
2656 		error = PAC_RESET_KEYS(me, arg2);
2657 		break;
2658 	case PR_PAC_SET_ENABLED_KEYS:
2659 		if (arg4 || arg5)
2660 			return -EINVAL;
2661 		error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2662 		break;
2663 	case PR_PAC_GET_ENABLED_KEYS:
2664 		if (arg2 || arg3 || arg4 || arg5)
2665 			return -EINVAL;
2666 		error = PAC_GET_ENABLED_KEYS(me);
2667 		break;
2668 	case PR_SET_TAGGED_ADDR_CTRL:
2669 		if (arg3 || arg4 || arg5)
2670 			return -EINVAL;
2671 		error = SET_TAGGED_ADDR_CTRL(arg2);
2672 		break;
2673 	case PR_GET_TAGGED_ADDR_CTRL:
2674 		if (arg2 || arg3 || arg4 || arg5)
2675 			return -EINVAL;
2676 		error = GET_TAGGED_ADDR_CTRL();
2677 		break;
2678 	case PR_SET_IO_FLUSHER:
2679 		if (!capable(CAP_SYS_RESOURCE))
2680 			return -EPERM;
2681 
2682 		if (arg3 || arg4 || arg5)
2683 			return -EINVAL;
2684 
2685 		if (arg2 == 1)
2686 			current->flags |= PR_IO_FLUSHER;
2687 		else if (!arg2)
2688 			current->flags &= ~PR_IO_FLUSHER;
2689 		else
2690 			return -EINVAL;
2691 		break;
2692 	case PR_GET_IO_FLUSHER:
2693 		if (!capable(CAP_SYS_RESOURCE))
2694 			return -EPERM;
2695 
2696 		if (arg2 || arg3 || arg4 || arg5)
2697 			return -EINVAL;
2698 
2699 		error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2700 		break;
2701 	case PR_SET_SYSCALL_USER_DISPATCH:
2702 		error = set_syscall_user_dispatch(arg2, arg3, arg4,
2703 						  (char __user *) arg5);
2704 		break;
2705 #ifdef CONFIG_SCHED_CORE
2706 	case PR_SCHED_CORE:
2707 		error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2708 		break;
2709 #endif
2710 	case PR_SET_MDWE:
2711 		error = prctl_set_mdwe(arg2, arg3, arg4, arg5);
2712 		break;
2713 	case PR_GET_MDWE:
2714 		error = prctl_get_mdwe(arg2, arg3, arg4, arg5);
2715 		break;
2716 	case PR_SET_VMA:
2717 		error = prctl_set_vma(arg2, arg3, arg4, arg5);
2718 		break;
2719 	case PR_GET_AUXV:
2720 		if (arg4 || arg5)
2721 			return -EINVAL;
2722 		error = prctl_get_auxv((void __user *)arg2, arg3);
2723 		break;
2724 #ifdef CONFIG_KSM
2725 	case PR_SET_MEMORY_MERGE:
2726 		if (arg3 || arg4 || arg5)
2727 			return -EINVAL;
2728 		if (mmap_write_lock_killable(me->mm))
2729 			return -EINTR;
2730 
2731 		if (arg2)
2732 			error = ksm_enable_merge_any(me->mm);
2733 		else
2734 			error = ksm_disable_merge_any(me->mm);
2735 		mmap_write_unlock(me->mm);
2736 		break;
2737 	case PR_GET_MEMORY_MERGE:
2738 		if (arg2 || arg3 || arg4 || arg5)
2739 			return -EINVAL;
2740 
2741 		error = !!test_bit(MMF_VM_MERGE_ANY, &me->mm->flags);
2742 		break;
2743 #endif
2744 	case PR_RISCV_V_SET_CONTROL:
2745 		error = RISCV_V_SET_CONTROL(arg2);
2746 		break;
2747 	case PR_RISCV_V_GET_CONTROL:
2748 		error = RISCV_V_GET_CONTROL();
2749 		break;
2750 	default:
2751 		error = -EINVAL;
2752 		break;
2753 	}
2754 	return error;
2755 }
2756 
2757 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2758 		struct getcpu_cache __user *, unused)
2759 {
2760 	int err = 0;
2761 	int cpu = raw_smp_processor_id();
2762 
2763 	if (cpup)
2764 		err |= put_user(cpu, cpup);
2765 	if (nodep)
2766 		err |= put_user(cpu_to_node(cpu), nodep);
2767 	return err ? -EFAULT : 0;
2768 }
2769 
2770 /**
2771  * do_sysinfo - fill in sysinfo struct
2772  * @info: pointer to buffer to fill
2773  */
2774 static int do_sysinfo(struct sysinfo *info)
2775 {
2776 	unsigned long mem_total, sav_total;
2777 	unsigned int mem_unit, bitcount;
2778 	struct timespec64 tp;
2779 
2780 	memset(info, 0, sizeof(struct sysinfo));
2781 
2782 	ktime_get_boottime_ts64(&tp);
2783 	timens_add_boottime(&tp);
2784 	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2785 
2786 	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2787 
2788 	info->procs = nr_threads;
2789 
2790 	si_meminfo(info);
2791 	si_swapinfo(info);
2792 
2793 	/*
2794 	 * If the sum of all the available memory (i.e. ram + swap)
2795 	 * is less than can be stored in a 32 bit unsigned long then
2796 	 * we can be binary compatible with 2.2.x kernels.  If not,
2797 	 * well, in that case 2.2.x was broken anyways...
2798 	 *
2799 	 *  -Erik Andersen <andersee@debian.org>
2800 	 */
2801 
2802 	mem_total = info->totalram + info->totalswap;
2803 	if (mem_total < info->totalram || mem_total < info->totalswap)
2804 		goto out;
2805 	bitcount = 0;
2806 	mem_unit = info->mem_unit;
2807 	while (mem_unit > 1) {
2808 		bitcount++;
2809 		mem_unit >>= 1;
2810 		sav_total = mem_total;
2811 		mem_total <<= 1;
2812 		if (mem_total < sav_total)
2813 			goto out;
2814 	}
2815 
2816 	/*
2817 	 * If mem_total did not overflow, multiply all memory values by
2818 	 * info->mem_unit and set it to 1.  This leaves things compatible
2819 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2820 	 * kernels...
2821 	 */
2822 
2823 	info->mem_unit = 1;
2824 	info->totalram <<= bitcount;
2825 	info->freeram <<= bitcount;
2826 	info->sharedram <<= bitcount;
2827 	info->bufferram <<= bitcount;
2828 	info->totalswap <<= bitcount;
2829 	info->freeswap <<= bitcount;
2830 	info->totalhigh <<= bitcount;
2831 	info->freehigh <<= bitcount;
2832 
2833 out:
2834 	return 0;
2835 }
2836 
2837 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2838 {
2839 	struct sysinfo val;
2840 
2841 	do_sysinfo(&val);
2842 
2843 	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2844 		return -EFAULT;
2845 
2846 	return 0;
2847 }
2848 
2849 #ifdef CONFIG_COMPAT
2850 struct compat_sysinfo {
2851 	s32 uptime;
2852 	u32 loads[3];
2853 	u32 totalram;
2854 	u32 freeram;
2855 	u32 sharedram;
2856 	u32 bufferram;
2857 	u32 totalswap;
2858 	u32 freeswap;
2859 	u16 procs;
2860 	u16 pad;
2861 	u32 totalhigh;
2862 	u32 freehigh;
2863 	u32 mem_unit;
2864 	char _f[20-2*sizeof(u32)-sizeof(int)];
2865 };
2866 
2867 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2868 {
2869 	struct sysinfo s;
2870 	struct compat_sysinfo s_32;
2871 
2872 	do_sysinfo(&s);
2873 
2874 	/* Check to see if any memory value is too large for 32-bit and scale
2875 	 *  down if needed
2876 	 */
2877 	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2878 		int bitcount = 0;
2879 
2880 		while (s.mem_unit < PAGE_SIZE) {
2881 			s.mem_unit <<= 1;
2882 			bitcount++;
2883 		}
2884 
2885 		s.totalram >>= bitcount;
2886 		s.freeram >>= bitcount;
2887 		s.sharedram >>= bitcount;
2888 		s.bufferram >>= bitcount;
2889 		s.totalswap >>= bitcount;
2890 		s.freeswap >>= bitcount;
2891 		s.totalhigh >>= bitcount;
2892 		s.freehigh >>= bitcount;
2893 	}
2894 
2895 	memset(&s_32, 0, sizeof(s_32));
2896 	s_32.uptime = s.uptime;
2897 	s_32.loads[0] = s.loads[0];
2898 	s_32.loads[1] = s.loads[1];
2899 	s_32.loads[2] = s.loads[2];
2900 	s_32.totalram = s.totalram;
2901 	s_32.freeram = s.freeram;
2902 	s_32.sharedram = s.sharedram;
2903 	s_32.bufferram = s.bufferram;
2904 	s_32.totalswap = s.totalswap;
2905 	s_32.freeswap = s.freeswap;
2906 	s_32.procs = s.procs;
2907 	s_32.totalhigh = s.totalhigh;
2908 	s_32.freehigh = s.freehigh;
2909 	s_32.mem_unit = s.mem_unit;
2910 	if (copy_to_user(info, &s_32, sizeof(s_32)))
2911 		return -EFAULT;
2912 	return 0;
2913 }
2914 #endif /* CONFIG_COMPAT */
2915